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In March this year, over 10 days in Seoul, tens of millions of people watched on live internet 

feeds, as AlphaGo, a computer program, defeated Lee Seedol, the best player in the world at 

Go, the most intellectually demanding of board games. The game is still relatively unknown 

in the West but hugely popular in the East. It originated in China but developed into its 

current form in Japan, enjoying a long golden age from the 17
th

 to the 19
th

 century. Classic 

games from the period include the Blood Vomiting game in which three moves of great 

subtlety were allegedly revealed to Honinbo Jowa by a ghost, allowing him to defeat Intetsu 

Akaboshi, his rival’s young protégé, who admitting defeat after four days of continuous play, 

knelt down and collapsed, to die of TB shortly afterwards.  Another, the Ear Reddening 

game, turned on a move of such strength that it caused a discernable flow of blood to the 

outer ears of the master Inoue Genan Inseki. That move was, until March 13th this year, 

probably the most talked-about move in Go. The title probably now belongs to move 78 in 

game four of last month’s match, a moment of almost inexplicable intuition which gave Lee 

Seedol a single victory in the five game series.  The move has been christened the Touch of 

God and discussed not just by fans of Go but by all kinds of people with an interest in what 

differentiates human from artificial intelligence.  

Deepmind, the London-based company behind AlphaGo, was acquired by Google in 

January 2014. The £400 million price tag seemed large at the time: the company was mainly 

famous for DQN, a program that played Atari video games from the 1980s. Mastering Space 

Invaders might not seem, on the face of it, much to boast about compared to beating a 

champion Go player, but it is the approach Deepmind has taken to both problems that is 

impressive. Traditional computer programming requires that knowledge or expertise be made 

https://en.wikipedia.org/wiki/Intetsu_Akaboshi
https://en.wikipedia.org/wiki/Intetsu_Akaboshi
https://en.wikipedia.org/wiki/Inoue_Genan_Inseki
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explicit; writing chess programs involves identifying and encoding the principles that 

underpin sound play. That isn’t how Deepmind’s software works. DQN doesn’t know how to 

repel an invasion, it doesn’t even know that the electronic signals it is processing depict 

aliens. They are just an array of pixels[i]. Deepmind searches the game data for correlations, 

which it interprets as features. It then learns how those features are affected by the choices it 

makes and uses what it learns to make choices that will, ultimately, maximise a desirable 

outcome. After just a few hours of training, the software is, if not unbeatable, then at least 

uncannily effective.  

Demis Hassabis, the CEO of Deepmind, learned to play chess at the age of four. When 

he was 12 he used the winnings from an international tournament to buy a Sinclair ZX 

Spectrum computer. At 17 he wrote the software for Theme Park, a hugely successful 

simulation game. He worked in games for a further ten years before getting a formal 

education. He completed a PhD in cognitive neuroscience at UCL, then did research at 

Harvard and MIT. In 2011 he founded Deepmind with, he has said, a two-step plan to ‘solve 

intelligence, and then use that to solve everything else’.  

In 1965 the philosopher Hubert Dreyfus published a critique of artificial intelligence, 

later worked up into the book What Computers Can’t Do, in which he argued that computers 

programmed to manipulate symbolic representations would never be able to complete tasks 

that require intelligence. His thesis was unpopular at the time, but by the turn of the century, 

decades of disappointment had led many to accept it. One difference between human 

intelligence and digital computation Dreyfus identified is that humans interpret information 

within a context that is not explicitly and exhaustively represented. Typically, someone 

reading such sentences as ‘the girl caught the butterfly with spots,’ or ‘the girl caught the 

butterfly with a net,’ doesn’t register their ambiguity. It seems likely that one’s intuitive 

interpretation in each case arises naturally from the association of connected ideas, not by 
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logical inference on the basis of known facts about the world. The idea that computers could 

be programmed to work in a similar way, learning how to interpret data without the 

programmer having to provide an explicit representation of the all rules and concepts that the 

interpretation might require[1], has been around for almost as long as the kind of symbol-

based AI [2] that Dreyfus wrote so scathingly about, but it has taken until now to really make 

it work. It is this kind of ‘machine learning’ that is behind the recent resurgence of interest in 

AI.  

The best-known example of an early machine-learning was the Perceptron, built at 

Cornell in 1957 to simulate a human neuron. Neurons function as simple computational units: 

each receives multiple inputs and has only a single output – on or off. Given numerical data 

about examples of a particular phenomenon, the Perceptron could learn a rule and use it to 

sort further examples into sets. Imagine the Perceptron was trained using data on credit card 

transactions, some of which were known to be fraudulent and the rest of them above board. 

To begin with, each element of information (for example the size of the transaction, the time 

since the previous transaction, the location, any information about the vendor) fed to the 

Perceptron is given a random weight, and the machine classifies cases according to whether 

the total reaches an arbitrary threshold. Details of the training examples are entered, and 

whether the computer assigns an example to the right side of the threshold (fraud or not 

fraud) monitored, the weights given to the various inputs then gradually adjusted so as to 

improve the machine’s success rate. [3] 
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Given enough data and a well-structured problem the Perceptron could learn a rule that could 

be applied to new examples. Unfortunately even very simple problems turned out to have a 

structure that is too complex to be learned in this way. Imagine that only two things are 

known about credit card transactions: their amount, and where they take place (since both 

must be expressed as numbers, let’s assume the location is expressed as the distance from the 

cardholder’s home address). If fraud is found to occur only with large purchases or only with 

remote ones, the Perceptron can be trained to distinguish fraudulent from bona fide 

transactions. However, if fraud occurs in small remote purchases and also in large local 

purchases, the task of classification is too complex. This kind of system only works on 

problems that are ‘linearly separable’ and, as should be clear from Figure 1, no single straight 

line through the space will separate the fraud cases from the others.  

Interest in the approach at first faded, but at the end of the 1970s, people worked out 

how to tackle more complex classification tasks using networks of artificial neurons arranged 

in layers, so that the outputs of one layer formed the inputs of the next. Consider the network 

in Figure 2. Imagine the two nodes in the input layer is used to store the size and location of 

each credit card transaction. If the left-hand node in the middle layer can be trained to detect 
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just the cases in the top left of figure one – a linearly separable problem - and the right-hand 

node can be trained to detect only the cases to the bottom right – which again is a linearly 

separable problem - the two inputs to the output node would measure the extent to which a 

case is a) small and distant, and b) large and local. Bona fide transactions will score low on 

both measures, fraud transactions will score highly on one or the other, so that the two classes 

can be divided by a straight line. The challenge is that the network has to identify the 

concepts to be captured in the hidden middle layer from information about how changing the 

weights on the final set of links affects the final classification of transactions as fraud or bona 

fide. The process works by computing a measure of how a change in the final set of weights 

changes the rate of errors in the classification and then propagating that measure backwards 

through the network. 

For a while multi-layer networks were a hot topic, not least because people were 

excited by the explicit analogy with human perception, which depends on a network of cells 

that compute features in a hierarchy of increasing abstraction but, as before, early promise 

gave way to disappointment. The backwards propagation of errors seemed a hopelessly 

inefficient training algorithm if more than one or two layers separated the input and the 

output. Such shallow networks couldn’t be programmed to complete challenging tasks in 

vision or speech recognition, and on simpler tasks they were outperformed by other 

approaches to machine learning. 
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The challenge in machine learning is not so much finding a rule that correctly classifies 

the training data, as finding the rule that is most likely to work for future examples. One 
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approach that would work for a linearly separable problem would be to divide the two sets 

using the straight line that maximises the distance between the line and the nearest point in 

each of the two sets. Finding that line is mathematically relatively straightforward. But as 

I’ve said, most interesting problems can’t be separated by a straight line. A mathematically 

elegant solution is to project the data into a higher dimensional space where a simple 

separation can be found, by a process of iterative search. For the data in Figure 1, the search 

would be to find a mathematical function that takes the values of the x and y co-ordinates for 

each of the points and use them to derive a z co-ordinate so that the red points hovered at a 

greater height than the blue ones.  

The representation of credit card transactions as points on a 2-D surface or in a 3-D 

space in this way is, of course, metaphorical. In reality each transaction is just a set of 

numbers, and in most problems there will be a lot more than three numbers to deal with.  A 2-

D space is divided by a line, a 3-D space by a plane. A space of more dimensions than that is 

divided by a hyperplane. A ‘support vector machine’, as these classifiers are known, 

identifies the hyperplane that optimally separates points in an n-dimensional space. Support 

vector machines dominated machine learning from the 1990s until very recently; they have 

the sought-after property, not shared by neural networks, that if the computation converges 

on a solution, it is guaranteed to be the best available one. 

Imagine a classifier is to be trained using a hundred images: fifty of them each contain 

a different handwritten ‘i’ in shades of grey on a white background, and the other fifty 

contain examples of ‘j’s. If each image is 32 pixels high and 32 pixels wide then it can be 

represented as a single point in a 1024-dimensional space, where each dimension corresponds 

to a pixel, and the value on the dimension ranges from 0, which represents white, to 255, 

which represents black. The data for the set of images is completely represented as a hundred 

points in this 1024-D space. A support vector machine could attempt to find a hyperplane that 
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divides the space so that, ideally, all the points corresponding to the images of ‘i’s are on one 

side and all the ‘j’s on the other. However the hundred images will form a diffuse cloud 

taking up only a tiny fraction of the total space and will almost certainly be unhelpfully 

distributed within it. This is a common problem in machine learning: the feature space is only 

very sparsely populated by the data.  

An alternative is to build a new feature space, a system of co-ordinates that is adapted 

to the data we are interested in. For example, the origin of the new system of co-ordinates 

could be placed at the centre of the cloud of points and a line drawn that passes through the 

origin and goes as close as possible to as many points as possible. A second line through the 

origin could be set at 90° to the first and again positioned as close to as many points as 

possible; and then a third, and so on until, say, ten dimensions have been defined. Each image 

can now be given a set of co-ordinates in the new ten-dimensional space. Each image is no 

longer represented by 1024 pixels but by a set of ten numbers that is both a much better 

characterisation of the data and a more parsimonious input to a support vector machine. Each 

of the ten numbers corresponds to a value for an abstract feature which has been derived by 

the computer from an analysis of the data as a whole. This abstract feature will correspond to 

some way in which the ‘i’s and ‘j’s vary, but it may or may not correspond to an intuitive 

human interpretation of the data.  

From around 1990 to around 2010 most research in machine learning was focused on 

statistical techniques such as support vector machines and the attempt to derive feature spaces 

that made classification easier. As computers became more and more powerful and datasets 

became larger and larger, it became more practical to leave it to the computers to figure out 

the right feature space to use. This is what seems magical about software like Deepmind’s: 

computers are abstracting from experience something which can then be applied in reasoning 

about a problem. It seems natural to say that the computer has learned a concept. 
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In 2006 Netflix offered a prize of $1 million to anyone who could improve on the 

algorithm it used to generate recommendations for its customers. To give contestants 

something to work with, it released a database of 100,480,507 ratings that 480,189 users had 

given to 17,770 movies. The prize was awarded in 2009 to a team who used a blend of 

different algorithms, although most of their success seemed to be down to just two of the 

dozens of approaches used. [4] 

In the first approach a large matrix is created in which each movie is a row and each 

user a column. In roughly 1 per cent of the cells there is a number between one and five 

which indicates the rating a particular user gave to a particular movie. The challenge is to use 

the data to predict if a given user would like a movie that they haven’t yet seen. This 

corresponds to using the values in the filled cells to predict the rating that should go into each 

of the empty cells. The solution makes an assumption, that there are a smallish number, say 

30, of features that determine whether or not a user likes a movie. It doesn’t make any 

assumption about what the features are (a happy ending, a big budget, a strong female lead?) 

just about how many there are. The problem then reduces to identifying two much smaller 

matrices. One has a row for each movie and a column for each feature and records the extent 

to which a feature is present in a movie. The other has a row for each feature and a column 

for each user and records the extent to which a user has a preference for a feature [5c]. The 

product of these two matrices (footnote: The conventional approach to multiplying matrices 

allows a matrix with m rows and n columns to be combined with another having n rows and p 

columns to create a matrix with m rows and p columns.) will then generate a rating 

corresponding to each cell in the large matrix. The problem is that none of the values in either 

of the smaller matrices are known. The solution, as with other approaches to machine 

learning, is start with an initial guess [5e], see how the generated predictions for filled cells 
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compare with the known ratings and then make repeated adjustments to minimise the average 

error.  

The other algorithm that seemed particularly successful in this challenge also assumed 

that the required predictions could be generated from a small set of latent features, but used a 

variant of a neural net, known as a Restricted Boltzman Machine or an autoencoder, to derive 

the features from the data. A traditional neural net is trained on samples with a known 

classification until it learns a rule. An autoencoder is trained on samples of unclassified data 

until it learns to generate similar patterns of data. The Netflix autoencoder looks just like the 

neural network in Figure Two, but with many more nodes, it has an input node for each 

movie, a hidden node for each feature  and an output node for each movie. Every movie is 

linked to every hidden node. As with all neural nets, each link is associated with a weight. 

The state of each hidden node is determined, for a given user’s set of ratings, by multiplying 

the ratings by the weights and applying a threshold. The process is then run in reverse, 

applying the same weights to the states of the hidden nodes, and adding up the products and 

setting a threshold to determine the rating that is ‘reconstructed’ at the output node. The 

algorithm then adjusts the weights to minimise the difference between the original and 

reconstructed ratings. The weights of the links and the values at the hidden nodes can then be 

used to generate new ratings for each user. 

Although Netflix awarded their prize with a blaze of publicity, the winning approach 

was never implemented. In part this was because Netflix had already begun to distribute 

movies via a streaming service.  Customers were able to pick what they wanted to watch 

there and then rather than having to choose DVDs to watch a week or two later, and 

somehow this meant that they were less likely to pick the kinds of films that earned high 

ratings – no one wants to watch Schindler’s List after putting the kids to bed on a Tuesday 

night – with the consequence that predicting ratings was no longer the best way to make 
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recommendations. There was the added difficulty that although Netflix believed it had 

anonymised the data it released, it had included information about films people had watched 

but not rated and also the dates on which they were watched. If you knew the dates on which 

you and your partner had watched two or three films together, that would typically be enough 

to pick out his or her unique column in the data, which might mean you could find out what 

he or she had watched without you. This became known as the ‘Brokeback Mountain 

problem’ and in 2009 Netflix was successfully sued for breach of privacy.  

In 2006, about the time Netflix launched the competition, Geoffrey Hinton, one of a 

dwindling number of researchers then working on neural networks, realised that if the lower 

levels of a neural network could be programmed using autoencoders, the bottom of a deep 

neural network would learn a feature space that the top of the network could use to learn a 

classification. In 2009 two of his students using this approach published results for a speech 

recognition system that had, within a few years of development, outperformed competitors 

which had been refined for over 30 years. One student went on to work for Microsoft, the 

other for Google and by 2012 this work was the heart of the algorithm that allowed Android 

phones to respond reasonably reliably to spoken queries and commands. [7] 

By then Google had begun to make a number of large investments in what was 

becoming known as ‘deep learning’. It devoted some space in its massive computing 

infrastructure to build what was, until last year, the world’s biggest artificial neural network. 

‘Inception’, as it was called, was trained on a thousand machines running in parallel for three 

days. It analysed still images selected at random from ten million YouTube videos. Whereas 

earlier neural networks had been used to perform low-level image processing or speech 

recognition, the much taller stack of layers in this monster network made it possible to 

recognise human faces or (this tells us more about YouTube than it does about AI) cats’ 

faces. If this network had been fed thousands of images labelled as ‘contains cats’ or ‘doesn’t 
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contain cats’ and trained to work out the difference for itself by iteratively tweeking its 1.7 

billion parameters [8] until it had found a classification rule, that would have been impressive 

enough, given the scale of the task involved in mapping from pixels to low-level image 

features and then to something as varied and complex as a cat’s face. What Google actually 

achieved is much more extraordinary, and slightly chilling. The input images weren’t labelled 

in any way: the network distilled the concept of ‘cat face’ out of the data unguided. 

Last year Hinton, now a Google employee himself, gave a talk to the Royal Society at 

which he reviewed some of the history and spoke of new developments. Recurrent neural 

networks add the innovation that weighted links exist not just between nodes but between 

instances of the same node at successive steps in the computation. It is as if, instead of the 

network shown in Figure 2, there is a 3D stack of identical networks with links rising up from 

the page from each node to the node above. Each layer in the stack, however, doesn’t 

represent a part of the network, but the state of the network at a point in time, so the bottom 

layer is the network at the start of training, the next layer is the network after the first cycle of 

training and so on. The point is that when a conventional neural network learns how to 

classify examples, be they images or sets of customer ratings, it doesn’t matter in what order 

the training examples are processed. Recurrent networks, in contrast, are ideally suited to 

analysing data which is inherently sequential, data such as speech or language. Researchers at 

Google have for some years been programming recurrent neural networks to predict the next 

word in a sentence. Almost as a by-product this work creates a point in a high-dimensional 

feature space for each word. The features have no human interpretation, they are just the 

values of the hidden nodes in a network that was trained for a prediction task. But the 

researchers noticed that words with similar meanings had similar representations in the 

feature space. Even more astonishing, you could do a kind of arithmetic with the 

representations. Subtracting the features for ‘uncle’ from those for ‘aunt’ gives almost the 
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same answer as subtracting ‘king’ from ‘queen’, suggesting that this abstract, computer-

derived space has a dimension that correlates with gender. One practical result of this work is 

an approach to machine translation that involves mapping between the feature representations 

of words in different languages. The process is still in its infancy and outperformed by more 

conventional methods, but it is getting better faster.  

The extraordinary progress made in deep learning has led some to talk as if artificial 

intelligence is being solved. The solving of problems that until recently seemed insuperable 

gives the impression that the machines are acquiring capacities usually thought distinctively 

human. But although what happens in a large recurrent neural network does resemble what 

takes place in a brain more than more conventional software does, it remains the case that the 

similarity is limited. There is no close analogy between how neural networks are trained and 

what we know about how human learning takes place. It is too early to say whether scaling 

up networks like Inception will enable computers identify not only a cat’s face but also the 

general concept ‘cat’ or even more abstract ideas such as ‘two’ or ‘authenticity. And 

powerful though Google’s networks are, the features they derive from sequences of words are 

not built from the experience of human interaction in the way that our use of language is: it is 

unclear whether or not they will eventually be able to use language as humans do. 

Ray Kurzweil has written about the Singularity, the idea that once computers are able to 

generate improvements to their own intelligence, the rate at which that intelligence improves 

will accelerate asymptotically. Nick Bostrom, the Oxford philosopher, wrote a 2014 

bestseller, Superintelligence, examining the risks associated with uncontrolled artificial 

intelligence. Stephen Hawking has suggested that building machines more intelligent than we 

are could lead to the end of the human race. Elon Musk has aired similar anxieties. In truth, if 

there is something to be scared about here, it is the social consequences of the economic 

transformation that they might enable, that and the growing dominance of a small number of 
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corporations with access to the mammoth quantities of computing power and data that the 

technology requires. 

There are some pretty terrifying estimates of the number of jobs that artificial 

intelligence could destroy. They might be overstated, optimists will argue that as with 

previous technological revolutions jobs will be created too. Richard Susskind, writing in the 

Future of the Professions, suggests that what will be destroyed is not so much jobs as tasks, 

the roles fulfilled by lawyers, doctors, teachers, architects and so on will evolve in the way 

that that of the airline pilot already has, with automation taking over the bits that human 

intellects struggle to complete safely or efficiently.  

And the computers still haven’t entirely outsmarted us. To pick the best move in a 

game, you need to consider all possible moves and all possible moves that might follow from 

that move, until the end of the game. In Go there might be 250 moves to consider and after 

each move branching sequences might unfold for 150 further moves, so the number of 

possible ways a game can unfurl is around 250
150

 and an exhaustive search through them is 

infeasible, even for Google. There are two ways to limit the search. One is to have a policy, 

which restricts the search to the moves that are most plausible, the other is to understand the 

value of a position, so there is need to search through the possible further moves from that 

position. AlphaGo contains two 13 layer neural networks, a policy network which computes a 

probability for each possible move, at any given state of play, and a value network which 

computes the probability of winning from that position. Whereas DQN learned to play Atari 

from scratch, the AlphaGo policy network starts with a database of 30,000,000 actual games 

stored on a server that allows people to play games with each other over the Internet. 

Training the policy network on this database allowed it to predict with 57% accuracy the 

move that the humans – all amateurs - made. That doesn’t sound a great basis from which to 

improve on human play, but it is enough, and in fact the engineers say that improvements at 
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this stage in the process have huge consequences later on. To get from a passable prediction 

of human play to a policy that would beat an expert, the system was then programmed  to 

play out games in which the current version of the policy network competed with an 

adversary selected at random from earlier versions and used the learning algorithms 

developed in DQN to adjust the weights in the networks to obtain more successful policies. 

The final stage in the process used another dataset of 30 million positions from games and 

again the software played out games from these positions, playing against itself, and 

adjusting weights to improve its assessment of the value of positions.  

The whole thing is an incredible engineering achievement. The competition version ran 

over 48 CPUs with extra processing power from specialist GPU chips that are optimised for 

parallel computations. AlphaGo won the first three games, and therefore the match. One hour 

thirteen minutes, with barely 30 minutes time left on his clock Lee Sedol, playing white, 

thinks for 16 minutes before making an aggressive move into black’s territory, on the left 

edge of the centre. Two or three moves follow fairly quickly, and it is clear that white will 

need two or three forcing moves if he is going make the attack count and it isn’t obvious, at 

least to the commentary team, where they are coming from. Lee Seedol then takes a terrifying 

six minutes before placing a white stone in between two black stones at the right side of the 

centre. Afterwards the AlphaGo team checked and found the policy network had rated the 

chances of an opponent making this move at 1 in 10,000. Michael Redmond, a 9 dan 

professional player commentating on the game, admitted he hadn’t seen it either, but he 

recognised its significance immediately: if black didn’t find a response the needed forcing 

moves would be there. AlphaGo, however, didn’t seem to realise what was happening. This 

wasn’t something it had encountered in the amateur play on which the policy network was 

trained, nor had it emerged in the millions and millions of games it had played with itself. In 

the post-match press conference Lee Seedol was complimented on the move and asked what 
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he had been thinking when he played it. His response was that it was the only move he had 

been able to see.  

 

[i] I don’t like ‘just zeroes and ones’, everything in a computer is always just zeroes and 

ones.  


