
Tayl0225

1

Paul Taylor

Deep Learning

In March this year, over 10 days in Seoul, tens of millions of people watched on live internet

feeds, as AlphaGo, a computer program, defeated Lee Seedol, the best player in the world at

Go, the most intellectually demanding of board games. The game is still relatively unknown

in the West but hugely popular in the East. It originated in China but developed into its

current form in Japan, enjoying a long golden age from the 17
th

 to the 19
th

 century. Classic

games from the period include the Blood Vomiting game in which three moves of great

subtlety were allegedly revealed to Honinbo Jowa by a ghost, allowing him to defeat Intetsu

Akaboshi, his rival’s young protégé, who admitting defeat after four days of continuous play,

knelt down and collapsed, to die of TB shortly afterwards. Another, the Ear Reddening

game, turned on a move of such strength that it caused a discernable flow of blood to the

outer ears of the master Inoue Genan Inseki. That move was, until March 13th this year,

probably the most talked-about move in Go. The title probably now belongs to move 78 in

game four of last month’s match, a moment of almost inexplicable intuition which gave Lee

Seedol a single victory in the five game series. The move has been christened the Touch of

God and discussed not just by fans of Go but by all kinds of people with an interest in what

differentiates human from artificial intelligence.

Deepmind, the London-based company behind AlphaGo, was acquired by Google in

January 2014. The £400 million price tag seemed large at the time: the company was mainly

famous for DQN, a program that played Atari video games from the 1980s. Mastering Space

Invaders might not seem, on the face of it, much to boast about compared to beating a

champion Go player, but it is the approach Deepmind has taken to both problems that is

impressive. Traditional computer programming requires that knowledge or expertise be made

https://en.wikipedia.org/wiki/Intetsu_Akaboshi
https://en.wikipedia.org/wiki/Intetsu_Akaboshi
https://en.wikipedia.org/wiki/Inoue_Genan_Inseki

Tayl0225

2

explicit; writing chess programs involves identifying and encoding the principles that

underpin sound play. That isn’t how Deepmind’s software works. DQN doesn’t know how to

repel an invasion, it doesn’t even know that the electronic signals it is processing depict

aliens. They are just an array of pixels[i]. Deepmind searches the game data for correlations,

which it interprets as features. It then learns how those features are affected by the choices it

makes and uses what it learns to make choices that will, ultimately, maximise a desirable

outcome. After just a few hours of training, the software is, if not unbeatable, then at least

uncannily effective.

Demis Hassabis, the CEO of Deepmind, learned to play chess at the age of four. When

he was 12 he used the winnings from an international tournament to buy a Sinclair ZX

Spectrum computer. At 17 he wrote the software for Theme Park, a hugely successful

simulation game. He worked in games for a further ten years before getting a formal

education. He completed a PhD in cognitive neuroscience at UCL, then did research at

Harvard and MIT. In 2011 he founded Deepmind with, he has said, a two-step plan to ‘solve

intelligence, and then use that to solve everything else’.

In 1965 the philosopher Hubert Dreyfus published a critique of artificial intelligence,

later worked up into the book What Computers Can’t Do, in which he argued that computers

programmed to manipulate symbolic representations would never be able to complete tasks

that require intelligence. His thesis was unpopular at the time, but by the turn of the century,

decades of disappointment had led many to accept it. One difference between human

intelligence and digital computation Dreyfus identified is that humans interpret information

within a context that is not explicitly and exhaustively represented. Typically, someone

reading such sentences as ‘the girl caught the butterfly with spots,’ or ‘the girl caught the

butterfly with a net,’ doesn’t register their ambiguity. It seems likely that one’s intuitive

interpretation in each case arises naturally from the association of connected ideas, not by

Tayl0225

3

logical inference on the basis of known facts about the world. The idea that computers could

be programmed to work in a similar way, learning how to interpret data without the

programmer having to provide an explicit representation of the all rules and concepts that the

interpretation might require[1], has been around for almost as long as the kind of symbol-

based AI [2] that Dreyfus wrote so scathingly about, but it has taken until now to really make

it work. It is this kind of ‘machine learning’ that is behind the recent resurgence of interest in

AI.

The best-known example of an early machine-learning was the Perceptron, built at

Cornell in 1957 to simulate a human neuron. Neurons function as simple computational units:

each receives multiple inputs and has only a single output – on or off. Given numerical data

about examples of a particular phenomenon, the Perceptron could learn a rule and use it to

sort further examples into sets. Imagine the Perceptron was trained using data on credit card

transactions, some of which were known to be fraudulent and the rest of them above board.

To begin with, each element of information (for example the size of the transaction, the time

since the previous transaction, the location, any information about the vendor) fed to the

Perceptron is given a random weight, and the machine classifies cases according to whether

the total reaches an arbitrary threshold. Details of the training examples are entered, and

whether the computer assigns an example to the right side of the threshold (fraud or not

fraud) monitored, the weights given to the various inputs then gradually adjusted so as to

improve the machine’s success rate. [3]

Tayl0225

4

Given enough data and a well-structured problem the Perceptron could learn a rule that could

be applied to new examples. Unfortunately even very simple problems turned out to have a

structure that is too complex to be learned in this way. Imagine that only two things are

known about credit card transactions: their amount, and where they take place (since both

must be expressed as numbers, let’s assume the location is expressed as the distance from the

cardholder’s home address). If fraud is found to occur only with large purchases or only with

remote ones, the Perceptron can be trained to distinguish fraudulent from bona fide

transactions. However, if fraud occurs in small remote purchases and also in large local

purchases, the task of classification is too complex. This kind of system only works on

problems that are ‘linearly separable’ and, as should be clear from Figure 1, no single straight

line through the space will separate the fraud cases from the others.

Interest in the approach at first faded, but at the end of the 1970s, people worked out

how to tackle more complex classification tasks using networks of artificial neurons arranged

in layers, so that the outputs of one layer formed the inputs of the next. Consider the network

in Figure 2. Imagine the two nodes in the input layer is used to store the size and location of

each credit card transaction. If the left-hand node in the middle layer can be trained to detect

Tayl0225

5

just the cases in the top left of figure one – a linearly separable problem - and the right-hand

node can be trained to detect only the cases to the bottom right – which again is a linearly

separable problem - the two inputs to the output node would measure the extent to which a

case is a) small and distant, and b) large and local. Bona fide transactions will score low on

both measures, fraud transactions will score highly on one or the other, so that the two classes

can be divided by a straight line. The challenge is that the network has to identify the

concepts to be captured in the hidden middle layer from information about how changing the

weights on the final set of links affects the final classification of transactions as fraud or bona

fide. The process works by computing a measure of how a change in the final set of weights

changes the rate of errors in the classification and then propagating that measure backwards

through the network.

For a while multi-layer networks were a hot topic, not least because people were

excited by the explicit analogy with human perception, which depends on a network of cells

that compute features in a hierarchy of increasing abstraction but, as before, early promise

gave way to disappointment. The backwards propagation of errors seemed a hopelessly

inefficient training algorithm if more than one or two layers separated the input and the

output. Such shallow networks couldn’t be programmed to complete challenging tasks in

vision or speech recognition, and on simpler tasks they were outperformed by other

approaches to machine learning.

Tayl0225

6

The challenge in machine learning is not so much finding a rule that correctly classifies

the training data, as finding the rule that is most likely to work for future examples. One

Tayl0225

7

approach that would work for a linearly separable problem would be to divide the two sets

using the straight line that maximises the distance between the line and the nearest point in

each of the two sets. Finding that line is mathematically relatively straightforward. But as

I’ve said, most interesting problems can’t be separated by a straight line. A mathematically

elegant solution is to project the data into a higher dimensional space where a simple

separation can be found, by a process of iterative search. For the data in Figure 1, the search

would be to find a mathematical function that takes the values of the x and y co-ordinates for

each of the points and use them to derive a z co-ordinate so that the red points hovered at a

greater height than the blue ones.

The representation of credit card transactions as points on a 2-D surface or in a 3-D

space in this way is, of course, metaphorical. In reality each transaction is just a set of

numbers, and in most problems there will be a lot more than three numbers to deal with. A 2-

D space is divided by a line, a 3-D space by a plane. A space of more dimensions than that is

divided by a hyperplane. A ‘support vector machine’, as these classifiers are known,

identifies the hyperplane that optimally separates points in an n-dimensional space. Support

vector machines dominated machine learning from the 1990s until very recently; they have

the sought-after property, not shared by neural networks, that if the computation converges

on a solution, it is guaranteed to be the best available one.

Imagine a classifier is to be trained using a hundred images: fifty of them each contain

a different handwritten ‘i’ in shades of grey on a white background, and the other fifty

contain examples of ‘j’s. If each image is 32 pixels high and 32 pixels wide then it can be

represented as a single point in a 1024-dimensional space, where each dimension corresponds

to a pixel, and the value on the dimension ranges from 0, which represents white, to 255,

which represents black. The data for the set of images is completely represented as a hundred

points in this 1024-D space. A support vector machine could attempt to find a hyperplane that

Tayl0225

8

divides the space so that, ideally, all the points corresponding to the images of ‘i’s are on one

side and all the ‘j’s on the other. However the hundred images will form a diffuse cloud

taking up only a tiny fraction of the total space and will almost certainly be unhelpfully

distributed within it. This is a common problem in machine learning: the feature space is only

very sparsely populated by the data.

An alternative is to build a new feature space, a system of co-ordinates that is adapted

to the data we are interested in. For example, the origin of the new system of co-ordinates

could be placed at the centre of the cloud of points and a line drawn that passes through the

origin and goes as close as possible to as many points as possible. A second line through the

origin could be set at 90° to the first and again positioned as close to as many points as

possible; and then a third, and so on until, say, ten dimensions have been defined. Each image

can now be given a set of co-ordinates in the new ten-dimensional space. Each image is no

longer represented by 1024 pixels but by a set of ten numbers that is both a much better

characterisation of the data and a more parsimonious input to a support vector machine. Each

of the ten numbers corresponds to a value for an abstract feature which has been derived by

the computer from an analysis of the data as a whole. This abstract feature will correspond to

some way in which the ‘i’s and ‘j’s vary, but it may or may not correspond to an intuitive

human interpretation of the data.

From around 1990 to around 2010 most research in machine learning was focused on

statistical techniques such as support vector machines and the attempt to derive feature spaces

that made classification easier. As computers became more and more powerful and datasets

became larger and larger, it became more practical to leave it to the computers to figure out

the right feature space to use. This is what seems magical about software like Deepmind’s:

computers are abstracting from experience something which can then be applied in reasoning

about a problem. It seems natural to say that the computer has learned a concept.

Tayl0225

9

In 2006 Netflix offered a prize of $1 million to anyone who could improve on the

algorithm it used to generate recommendations for its customers. To give contestants

something to work with, it released a database of 100,480,507 ratings that 480,189 users had

given to 17,770 movies. The prize was awarded in 2009 to a team who used a blend of

different algorithms, although most of their success seemed to be down to just two of the

dozens of approaches used. [4]

In the first approach a large matrix is created in which each movie is a row and each

user a column. In roughly 1 per cent of the cells there is a number between one and five

which indicates the rating a particular user gave to a particular movie. The challenge is to use

the data to predict if a given user would like a movie that they haven’t yet seen. This

corresponds to using the values in the filled cells to predict the rating that should go into each

of the empty cells. The solution makes an assumption, that there are a smallish number, say

30, of features that determine whether or not a user likes a movie. It doesn’t make any

assumption about what the features are (a happy ending, a big budget, a strong female lead?)

just about how many there are. The problem then reduces to identifying two much smaller

matrices. One has a row for each movie and a column for each feature and records the extent

to which a feature is present in a movie. The other has a row for each feature and a column

for each user and records the extent to which a user has a preference for a feature [5c]. The

product of these two matrices (footnote: The conventional approach to multiplying matrices

allows a matrix with m rows and n columns to be combined with another having n rows and p

columns to create a matrix with m rows and p columns.) will then generate a rating

corresponding to each cell in the large matrix. The problem is that none of the values in either

of the smaller matrices are known. The solution, as with other approaches to machine

learning, is start with an initial guess [5e], see how the generated predictions for filled cells

Tayl0225

10

compare with the known ratings and then make repeated adjustments to minimise the average

error.

The other algorithm that seemed particularly successful in this challenge also assumed

that the required predictions could be generated from a small set of latent features, but used a

variant of a neural net, known as a Restricted Boltzman Machine or an autoencoder, to derive

the features from the data. A traditional neural net is trained on samples with a known

classification until it learns a rule. An autoencoder is trained on samples of unclassified data

until it learns to generate similar patterns of data. The Netflix autoencoder looks just like the

neural network in Figure Two, but with many more nodes, it has an input node for each

movie, a hidden node for each feature and an output node for each movie. Every movie is

linked to every hidden node. As with all neural nets, each link is associated with a weight.

The state of each hidden node is determined, for a given user’s set of ratings, by multiplying

the ratings by the weights and applying a threshold. The process is then run in reverse,

applying the same weights to the states of the hidden nodes, and adding up the products and

setting a threshold to determine the rating that is ‘reconstructed’ at the output node. The

algorithm then adjusts the weights to minimise the difference between the original and

reconstructed ratings. The weights of the links and the values at the hidden nodes can then be

used to generate new ratings for each user.

Although Netflix awarded their prize with a blaze of publicity, the winning approach

was never implemented. In part this was because Netflix had already begun to distribute

movies via a streaming service. Customers were able to pick what they wanted to watch

there and then rather than having to choose DVDs to watch a week or two later, and

somehow this meant that they were less likely to pick the kinds of films that earned high

ratings – no one wants to watch Schindler’s List after putting the kids to bed on a Tuesday

night – with the consequence that predicting ratings was no longer the best way to make

Tayl0225

11

recommendations. There was the added difficulty that although Netflix believed it had

anonymised the data it released, it had included information about films people had watched

but not rated and also the dates on which they were watched. If you knew the dates on which

you and your partner had watched two or three films together, that would typically be enough

to pick out his or her unique column in the data, which might mean you could find out what

he or she had watched without you. This became known as the ‘Brokeback Mountain

problem’ and in 2009 Netflix was successfully sued for breach of privacy.

In 2006, about the time Netflix launched the competition, Geoffrey Hinton, one of a

dwindling number of researchers then working on neural networks, realised that if the lower

levels of a neural network could be programmed using autoencoders, the bottom of a deep

neural network would learn a feature space that the top of the network could use to learn a

classification. In 2009 two of his students using this approach published results for a speech

recognition system that had, within a few years of development, outperformed competitors

which had been refined for over 30 years. One student went on to work for Microsoft, the

other for Google and by 2012 this work was the heart of the algorithm that allowed Android

phones to respond reasonably reliably to spoken queries and commands. [7]

By then Google had begun to make a number of large investments in what was

becoming known as ‘deep learning’. It devoted some space in its massive computing

infrastructure to build what was, until last year, the world’s biggest artificial neural network.

‘Inception’, as it was called, was trained on a thousand machines running in parallel for three

days. It analysed still images selected at random from ten million YouTube videos. Whereas

earlier neural networks had been used to perform low-level image processing or speech

recognition, the much taller stack of layers in this monster network made it possible to

recognise human faces or (this tells us more about YouTube than it does about AI) cats’

faces. If this network had been fed thousands of images labelled as ‘contains cats’ or ‘doesn’t

Tayl0225

12

contain cats’ and trained to work out the difference for itself by iteratively tweeking its 1.7

billion parameters [8] until it had found a classification rule, that would have been impressive

enough, given the scale of the task involved in mapping from pixels to low-level image

features and then to something as varied and complex as a cat’s face. What Google actually

achieved is much more extraordinary, and slightly chilling. The input images weren’t labelled

in any way: the network distilled the concept of ‘cat face’ out of the data unguided.

Last year Hinton, now a Google employee himself, gave a talk to the Royal Society at

which he reviewed some of the history and spoke of new developments. Recurrent neural

networks add the innovation that weighted links exist not just between nodes but between

instances of the same node at successive steps in the computation. It is as if, instead of the

network shown in Figure 2, there is a 3D stack of identical networks with links rising up from

the page from each node to the node above. Each layer in the stack, however, doesn’t

represent a part of the network, but the state of the network at a point in time, so the bottom

layer is the network at the start of training, the next layer is the network after the first cycle of

training and so on. The point is that when a conventional neural network learns how to

classify examples, be they images or sets of customer ratings, it doesn’t matter in what order

the training examples are processed. Recurrent networks, in contrast, are ideally suited to

analysing data which is inherently sequential, data such as speech or language. Researchers at

Google have for some years been programming recurrent neural networks to predict the next

word in a sentence. Almost as a by-product this work creates a point in a high-dimensional

feature space for each word. The features have no human interpretation, they are just the

values of the hidden nodes in a network that was trained for a prediction task. But the

researchers noticed that words with similar meanings had similar representations in the

feature space. Even more astonishing, you could do a kind of arithmetic with the

representations. Subtracting the features for ‘uncle’ from those for ‘aunt’ gives almost the

Tayl0225

13

same answer as subtracting ‘king’ from ‘queen’, suggesting that this abstract, computer-

derived space has a dimension that correlates with gender. One practical result of this work is

an approach to machine translation that involves mapping between the feature representations

of words in different languages. The process is still in its infancy and outperformed by more

conventional methods, but it is getting better faster.

The extraordinary progress made in deep learning has led some to talk as if artificial

intelligence is being solved. The solving of problems that until recently seemed insuperable

gives the impression that the machines are acquiring capacities usually thought distinctively

human. But although what happens in a large recurrent neural network does resemble what

takes place in a brain more than more conventional software does, it remains the case that the

similarity is limited. There is no close analogy between how neural networks are trained and

what we know about how human learning takes place. It is too early to say whether scaling

up networks like Inception will enable computers identify not only a cat’s face but also the

general concept ‘cat’ or even more abstract ideas such as ‘two’ or ‘authenticity. And

powerful though Google’s networks are, the features they derive from sequences of words are

not built from the experience of human interaction in the way that our use of language is: it is

unclear whether or not they will eventually be able to use language as humans do.

Ray Kurzweil has written about the Singularity, the idea that once computers are able to

generate improvements to their own intelligence, the rate at which that intelligence improves

will accelerate asymptotically. Nick Bostrom, the Oxford philosopher, wrote a 2014

bestseller, Superintelligence, examining the risks associated with uncontrolled artificial

intelligence. Stephen Hawking has suggested that building machines more intelligent than we

are could lead to the end of the human race. Elon Musk has aired similar anxieties. In truth, if

there is something to be scared about here, it is the social consequences of the economic

transformation that they might enable, that and the growing dominance of a small number of

Tayl0225

14

corporations with access to the mammoth quantities of computing power and data that the

technology requires.

There are some pretty terrifying estimates of the number of jobs that artificial

intelligence could destroy. They might be overstated, optimists will argue that as with

previous technological revolutions jobs will be created too. Richard Susskind, writing in the

Future of the Professions, suggests that what will be destroyed is not so much jobs as tasks,

the roles fulfilled by lawyers, doctors, teachers, architects and so on will evolve in the way

that that of the airline pilot already has, with automation taking over the bits that human

intellects struggle to complete safely or efficiently.

And the computers still haven’t entirely outsmarted us. To pick the best move in a

game, you need to consider all possible moves and all possible moves that might follow from

that move, until the end of the game. In Go there might be 250 moves to consider and after

each move branching sequences might unfold for 150 further moves, so the number of

possible ways a game can unfurl is around 250
150

 and an exhaustive search through them is

infeasible, even for Google. There are two ways to limit the search. One is to have a policy,

which restricts the search to the moves that are most plausible, the other is to understand the

value of a position, so there is need to search through the possible further moves from that

position. AlphaGo contains two 13 layer neural networks, a policy network which computes a

probability for each possible move, at any given state of play, and a value network which

computes the probability of winning from that position. Whereas DQN learned to play Atari

from scratch, the AlphaGo policy network starts with a database of 30,000,000 actual games

stored on a server that allows people to play games with each other over the Internet.

Training the policy network on this database allowed it to predict with 57% accuracy the

move that the humans – all amateurs - made. That doesn’t sound a great basis from which to

improve on human play, but it is enough, and in fact the engineers say that improvements at

Tayl0225

15

this stage in the process have huge consequences later on. To get from a passable prediction

of human play to a policy that would beat an expert, the system was then programmed to

play out games in which the current version of the policy network competed with an

adversary selected at random from earlier versions and used the learning algorithms

developed in DQN to adjust the weights in the networks to obtain more successful policies.

The final stage in the process used another dataset of 30 million positions from games and

again the software played out games from these positions, playing against itself, and

adjusting weights to improve its assessment of the value of positions.

The whole thing is an incredible engineering achievement. The competition version ran

over 48 CPUs with extra processing power from specialist GPU chips that are optimised for

parallel computations. AlphaGo won the first three games, and therefore the match. One hour

thirteen minutes, with barely 30 minutes time left on his clock Lee Sedol, playing white,

thinks for 16 minutes before making an aggressive move into black’s territory, on the left

edge of the centre. Two or three moves follow fairly quickly, and it is clear that white will

need two or three forcing moves if he is going make the attack count and it isn’t obvious, at

least to the commentary team, where they are coming from. Lee Seedol then takes a terrifying

six minutes before placing a white stone in between two black stones at the right side of the

centre. Afterwards the AlphaGo team checked and found the policy network had rated the

chances of an opponent making this move at 1 in 10,000. Michael Redmond, a 9 dan

professional player commentating on the game, admitted he hadn’t seen it either, but he

recognised its significance immediately: if black didn’t find a response the needed forcing

moves would be there. AlphaGo, however, didn’t seem to realise what was happening. This

wasn’t something it had encountered in the amateur play on which the policy network was

trained, nor had it emerged in the millions and millions of games it had played with itself. In

the post-match press conference Lee Seedol was complimented on the move and asked what

Tayl0225

16

he had been thinking when he played it. His response was that it was the only move he had

been able to see.

[i] I don’t like ‘just zeroes and ones’, everything in a computer is always just zeroes and

ones.

