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SUMMARY

Spatiotemporal regulation of gene expression de-
pends on the cooperation of multiple mechanisms,
including the functional interaction of promoters
with distally located enhancers. Here, we show
that, in cortical neurons, a subset of short inter-
spersed nuclear elements (SINEs) located in the
proximity of activity-regulated genes bears features
of enhancers. Enhancer SINEs (eSINEs) recruit the
Pol III cofactor complex TFIIIC in a stimulus-depen-
dent manner and are transcribed by Pol III in
response to neuronal depolarization. Characteriza-
tion of an eSINE located in proximity to the Fos
gene (FosRSINE1) indicated that the FosRSINE1-en-
coded transcript interacts with Pol II at the Fos pro-
moter and mediates Fos relocation to Pol II factories,
providing an unprecedented molecular link between
Pol III and Pol II transcription. Strikingly, knockdown
of the FosRSINE1 transcript induces defects of both
cortical radial migration in vivo and activity-depen-
dent dendritogenesis in vitro, demonstrating that
FosRSINE1 acts as a strong enhancer of Fos expres-
sion in diverse physiological contexts.

INTRODUCTION

All organisms respond to environmental conditions by modifying

gene expression in a manner that is strictly regulated both

temporally and spatially. Although this adaptive response is of

fundamental importance for any cell type, it is particularly rele-

vant to neurons. Failure to rapidly adapt the transcriptional

output to ever-changing conditions compromises most brain

tasks, including learning and memory formation (Flavell and

Greenberg, 2008; Sweatt, 2016; West and Greenberg, 2011).

In eukaryotic cells, three RNA polymerases regulate the tran-

scription of largely non-overlapping sets of genes. RNA polymer-

ase II (Pol II) transcribes protein-coding genes, and Pol I and Pol

III transcribe rRNA and tRNA genes, respectively (Roeder, 1996).

Pol III also transcribes the 5S rRNA, small RNAs, microRNAs,

and RNAs derived from DNA-repetitive elements such as short
Cell Rep
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interspersed nuclear elements (SINEs) (Dieci et al., 2007).

Despite the fact that most genes transcribed by Pol III are highly

conserved across species, the genomic occupancy of the Pol III

complex varies greatly between organisms and between cell

types within the organism (Barski et al., 2010; Moqtaderi and

Struhl, 2004; Moqtaderi et al., 2010; Raha et al., 2010), implying

that it may have additional, cell-specific functions. In human

cells, Pol III complexes bind preferentially to genomic regions

adjacent to Pol II transcriptional start sites (TSSs) (Moqtaderi

et al., 2010; Oler et al., 2010), and expressed tRNA genes are

predominantly located in the vicinity of active Pol II promoters

(Oler et al., 2010). Thus, Pol III and Pol II transcription may be

functionally linked.

Gene expression is regulated by multiple mechanisms,

including the interaction of promoters with distal enhancers,

which are short genomic elements (typically < 200 bp) often posi-

tioned several kilobases away from their target genes (Kolovos

et al., 2012). Enhancers function in an orientation-independent

manner and are characterized by distinctive features, such as

an ‘‘open’’ chromatin and the presence of the histone modifica-

tions H3 lysine 4 monomethylation (H3K4me1) and lysine 27

acetylation (H3K27ac) (Heintzman et al., 2009; Kolovos et al.,

2012; Zentner et al., 2011). Enhancers are often transcribed

into non-coding RNAs known as enhancer RNAs (eRNAs), which

stabilize the formation of DNA loops, possibly facilitating the

interaction of enhancers with gene promoters (Kolovos et al.,

2012). Recently, a distinct class of enhancers has been shown

to provide spatiotemporal specificity to gene expression during

neuronal development (Frank et al., 2015) and in mature neurons

(Kim et al., 2010; Malik et al., 2014; Schaukowitch et al., 2014;

Telese et al., 2015). However, the mechanisms by which they

regulate transcription remain poorly understood.

We previously showed that, in neurons, a group of SINEs un-

dergoes de novo histone acetylation and recruits the Pol III gen-

eral transcription factor TFIIIC (Crepaldi et al., 2013). SINEs are

an abundant class of retrotransposons often considered as

non-functional DNA because of their non-coding, repetitive

nature. They are short modular sequences that, similarly to other

Pol III-transcribed genes, possess an internal Pol III promoter

containing A and B boxes (Muotri et al., 2007; White, 2011).

These elements bind the multi-subunit complex TFIIIC, which,

in turn, recruits TFIIIB and Pol III. Most SINEs carry mutations

that disrupt the promoter region, leaving only a few subtypes
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C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:a.riccio@ucl.ac.uk
https://doi.org/10.1016/j.celrep.2017.11.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.11.019&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


(legend on next page)

2880 Cell Reports 21, 2879–2894, December 5, 2017



with transcriptional potential (Ichiyanagi, 2013). Recent studies

indicated that SINEs often acquire novel functions in the host

genome in a phenomenon known as exaptation (Huda et al.,

2010; Rebollo et al., 2012). In mammalian fibroblasts exposed

to heat shock, for example, SINE transcripts inhibited Pol II-

dependent transcription by interacting with the Pol II enzyme

(Allen et al., 2004; Mariner et al., 2008). Two members of the

ancient SINE family Amniota SINE1 (AmnSINE1) were shown to

act as enhancers for the fibroblast growth factor 8 (Fgf8) and

special AT-rich sequence-binding protein 2 (Satb2) genes in

the developing mouse brain (Sasaki et al., 2008; Tashiro et al.,

2011). Similarly, in humans, members of the Alu family are

enriched for enhancer-like histone modifications in a tissue-spe-

cific manner and preferentially engage in long-distance interac-

tions with gene promoters and other Alu elements (Su et al.,

2014).

Here, we identified a class of SINEs that function as enhancers

of activity-regulated neuronal genes. Genome-wide analyses re-

vealed that enhancer SINEs (eSINEs) bear the epigenetic marks

H3K4me1 and H3K27ac, recruit TFIIIC, and are transcribed by

Pol III in response to depolarization. We discovered that an

eSINE located in the proximity of the activity-dependent gene

Fos (which we named FosRSINE1) functions as a Fos enhancer

and is transcribed in depolarized neurons. FosRSINE1 eRNA inter-

acts with Pol II at the Fos promoter and is necessary for the relo-

cation of Fos to Pol II transcription factories upon depolarization.

Strikingly, this mechanism is required for activity-dependent

dendritogenesis and for cortical radial migration and neuronal

differentiation of neural progenitors during embryonic develop-

ment. Together, our findings demonstrate the profound effect

of FosRSINE1 on Fos gene expression and reveal a functional

link between Pol III and Pol II transcription.

RESULTS

Genome-wide Occupancy of the Pol III Machinery
Identifies eSINEs
In response to neuronal depolarization, a group of SINEs located

near activity-dependent genes undergoes de novo acetylation at

H3K9/K14 (Crepaldi et al., 2013). Because acetylated SINEs

possess an internal Pol III promoter (Muotri et al., 2007; White,

2011), we reasoned that they may represent a class of Pol III-

transcribed neuronal enhancers. To investigate this hypothesis,
Figure 1. Genome-wide Identification of eSINEs
(A and B) Box and whisker plots of Gtf3c1 (A) and Rpc155 (B) distribution. Shown

comparable size. The solid line denotes the median. Lower and upper box limits i

the interquartile distance, measured from the median.

(C) Distribution of Gtf3c1-bound eSINEs under control (dashed line) or depolarize

genes (right).

(D and E) Box and whisker plots summarizing the distribution of Gtf3c1 (D) and

selected SINEs of comparable size. The solid line denotes the median. Lower and

indicate 1.5 times the interquartile distance, measured from the median.

(F and G) Binding density profiles of Gtf3c1 and Rpc155 at gene bodies of the ind

45 min, solid line) neurons. Inducible genes (IGs, F), housekeeping genes (HGs, G

analyzed.

(H) Transcription of activity-regulated genes correlates with Gtf3c1 recruitment to

induction at the closest eSINE. R2 (Pearson correlation coefficient) and p value a

See also Figure S1.
we first employed chromatin immunoprecipitation sequencing

(ChIP-seq) to map the Pol III machinery genome-wide in

resting or depolarized mouse primary cortical neurons. We

employed paired-end sequencing to obtain reads that were

significantly longer than SINEs and, therefore, easily mappable

(Figure S1A). For each experimental condition, we produced

over 32 million high-quality mapped reads, providing excellent

depth (Figure S1B).

ChIP-seq was performed using antibodies that recognize the

catalytic subunit of Pol III (Rpc155) or the DNA binding subunit

of TFIIIC (Gtf3c1). As expected, both Rpc155 and Gtf3c1 were

highly enriched at tRNA genes (Figures S1C and S1D). Gtf3c1

was widely distributed across the genome, with 66,662 and

58,090 peaks in control (Ctrl) and depolarized conditions,

respectively (Table S1). Similar to other cell types (Barski et al.,

2010; Oler et al., 2010), only a small fraction of Gtf3c1 binding

sites recruited Rpc155 (14.8% and 6.1% in Ctrl and depolarized

conditions, respectively; Table S1). Interestingly, a considerable

fraction of Rpc155 and Gtf3c1 peaks overlapped at least one

SINE (17.4% and 20.0% in resting and stimulated neurons,

respectively, for Gtf3c1 and 20.7% and 21.1% for Rpc155;

Table S1). Comparative analysis in untreated and depolarized

neurons revealed that 7,700 genomic regions showed significant

recruitment of Gtf3c1 in response to depolarization, of which

1,151 overlapped with SINEs (Table S2). We named this group

of 1,151 SINEs characterized by activity-dependent recruitment

of TFIIIC eSINEs. The levels of Gtf3c1 binding to these elements

were higher than for randomly selected SINEs (rndSINEs,

p < 2.2e�16, Mann-Whitney test for both Ctrl and KCl condi-

tions; Figure 1A). Importantly, Gtf3c1 binding to eSINEs

increased in response to stimulation (p < 2.2e�16, Mann-Whit-

ney test), whereas it was unchanged for rndSINEs. Similarly,

Pol III binding was higher on eSINEs compared with rndSINEs

(p < 2.2e�16, Mann-Whitney test for both Ctrl and KCl condi-

tions; Figure 1B), and recruitment to eSINEs increased in KCl-

treated neurons (p = 2.9e�11, Mann-Whitney test). ChIP-seq

tracks of representative eSINEs are shown in Figure S1E.

To investigate whether Gtf3c1 recruitment to eSINEs corre-

lated with activity-dependent transcription genome-wide, we

analyzed RNA sequencing (RNA-seq) data performed under

similar experimental conditions (Kim et al., 2010; Malik et al.,

2014). We observed that eSINEs were enriched in the proximity

of inducible, but not housekeeping, genes (Figure 1C). Although
is ChIP-seq tag density at eSINEs or at randomly selected SINEs (rndSINEs) of

ndicate the 25th and 75th percentiles, respectively. Whiskers indicate 1.5 times

d (solid line) conditions relative to the TSS of inducible (left) and housekeeping

Rpc155 (E). Shown is ChIP-seq tag density at 120 eSINEs or at 120 randomly

upper box limits indicate the 25th and 75th percentiles, respectively. Whiskers

icated sets of genes under control (dashed line) or depolarized (KCl, 50 mM for

), a randomly selected set of genes (RGs, G), and silent genes (SGs, G) were

proximal eSINEs. mRNA fold induction for each gene is plotted versus Gtf3c1

re shown.
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alternative roles cannot be excluded, this genomic localization

suggests that eSINEsmay represent a new class of regulatory el-

ements that coordinate activity-dependent transcription in neu-

rons. Next, 120 genes that were induced at least 2-fold in

response to depolarization were paired with the closest eSINE

(distances ranging from < 1 kb to several hundred kilobases

from the TSS; Table S3). This group of eSINEs showed recruit-

ment of the Pol III machinery in response to depolarization

(Figures 1D and 1E, right plots; p < 2.2e�16 and p = 2.1e�7

for Gtf3c1 and Rpc155 respectively, Mann-Whitney test)

whereas 120 rndSINEs did not (Figures 1D and 1E, left plots).

In accordance with previous studies indicating that Pol II and

Pol III co-localize on the proximity of expressed genes, the

enrichment of Rpc155 and Gtf3c1 at the TSSs and gene bodies

of the paired 120 genes increased in depolarized neurons (Fig-

ure 1F; Moqtaderi et al., 2010; Oler et al., 2010; Raha et al.,

2010). As expected, no significant recruitment of the Pol III ma-

chinery was observed on housekeeping genes (HGs; Figure 1G);

lower occupancy of Pol III and Gtf3c1 was observed at randomly

selected genes (RGs) and silent genes (SGs), with no changes

upon neuronal activity (Figure 1G). A positive correlation

(r2 = 0.5, p = 9.7e�8; Figure 1H) was found between the recruit-

ment of Gtf3c1 at eSINEs following depolarization and the tran-

scription of genes for which the closest eSINE was located at a

distance of 100 bp or less from the TSS (45 of 120 genes). This

subset of genes included Fos, Gadd45b, and other well-charac-

terized activity-dependent genes, such as FosB, JunB, Egr4,

Crem, Npas4, Nr4a1, and Nr4a3 (Figure 1H; Table S3).

eSINEs Bear the Epigenetic Hallmarks of Enhancers and
Are Transcribed
Epigenetic marks commonly used to identify putative enhancers

include H3K27ac and H3K4me1 (Kolovos et al., 2012; Zentner

et al., 2011). ChIP-seq experiments performed on Ctrl and

depolarized neurons revealed that both histone modifica-

tions were higher at the 1,151 eSINEs than at rndSINEs

(p < 2.2e�16, Mann-Whitney test for both Ctrl and KCl condi-

tions; Figures 2A and 2B). H3K4me1 and H3K27ac were present

at eSINEs in resting neurons, indicating that they may be epige-

netically primed prior to neuronal activation. H3K4me1

and H3K27ac were also enriched at the 120 eSINEs paired

with activity-dependent genes (p = 2.5e�15 and p = 6.2e�12,

respectively, under Ctrl conditions; Figures S2A and S2B). The

recruitment of Gtf3c1 to a panel of eSINEs in response to depo-

larization and the presence of H3K4me1 and H3K27ac were

confirmed using ChIP-qPCR (Figure S2C). It should be noted

that eSINEs displayed levels of H3K4me1 and H3K27ac similar
Figure 2. eSINEs Show the Hallmarks of Enhancers and Are Transcrib

(A and B) Box and whisker plots summarizing the distribution of H3K4me1 (A) and

SINEs of comparable size. The solid line denotes the median. Lower and upper b

1.5 times the interquartile distance, measured from the median.

(C–E) Cortical neurons were treated with DNaseI (3 units for 20 min, 3) or vehicl

efficiency at eSINEs (C), non-enhancer SINEs (D), and the TSS of Actb and Fsh (E) e

*p < 0.05, **p < 0.01, ***p < 0.001, two-way ANOVA.

(F and G) Expression profile of a panel of eSINEs (F) and non-enhancer SINEs (G) i

mean ± SEM and normalized to 0 min KCl (n = 3). *p < 0.05, **p < 0.01, ***p < 0.

See also Figures S2 and S3.
to previously identified enhancers for the activity-dependent

genes Arc and Fos (Kim et al., 2010; Schaukowitch et al.,

2014; Figure S2C). In contrast, SINEs located in the proximity

of housekeeping (Actb and Hprt) and repressed (Prrt1 and

Ndufb5) genes did not recruit Gtf3c1 and were devoid of the

enhancer marks H3K4me1 and H3K27ac (Figure S2C).

Enhancers are active genomic regions that, similarly to pro-

moters, are associated with an open, easily accessible state of

the chromatin (Boyle et al., 2008; Frank et al., 2015). When the

chromatin accessibility of eSINEs was tested using the DNaseI

hypersensitivity assay, we observed increased sensitivity to

DNaseI digestion after depolarization (Figure 2C), indicating

that the chromatin surrounding eSINEs becomes depleted of nu-

cleosomes and primed for transcription. In contrast, SINEs

located in the proximity of either housekeeping (Actb and Hprt)

or repressed (Prrt1 and Ndufb5) genes were not sensitive to

DNaseI (Figure 2D). Notably, the hypersensitivity of eSINEs to

DNaseI after neuronal stimulation was comparable with that

observed at the TSS of the housekeeping gene Actb (actin

beta; Figure 2E), whereas Fsh (follicle-stimulating hormone), a

gene that is not expressed in neurons, did not show DNaseI hy-

persensitivity (Figure 2E).

Enhancers are transcribed in a number of organisms and cell

types in response to external stimuli (Kaikkonen et al., 2013;

Koch et al., 2011; Wang et al., 2011), and the eRNAs produced

are critical for enhancer function (Lam et al., 2013; Li et al.,

2013; Melo et al., 2013; Schaukowitch et al., 2014; Telese

et al., 2015). We therefore investigated whether eSINEs were ex-

pressed in response to neuronal depolarization using qRT-PCR

and found that they were transcribed in activated neurons (Fig-

ure 2F). Importantly, eSINE RNAs terminated in the proximity

of canonical Pol III transcriptional terminators (Figure S3), indi-

cating that they are bona fide Pol III transcripts. As expected,

SINEs located proximal either to housekeeping (Actb and Hprt)

or repressed (Prrt1 and Ndufb5) genes were not transcribed

(Figure 2G). Thus, eSINEs represent a new class of neuronal

enhancers that recruit TFIIIC and are transcribed by Pol III.

Functional Characterization of FosRSINE andGadd45bB1F

eSINEs
To gain further insights into the biochemical and functional prop-

erties of eSINEs, two elements located in the proximity of Fos

andGadd45b (named FosRSINE1 andGadd45bB1F) were selected

for further analysis. Fos and Gadd45b are activity-dependent

genes with well known functions in the nervous system (Green-

berg et al., 1986; Ma et al., 2009) that are transcribed in vivo

in cortical neurons upon exposure to a novel enriched
ed

H3K27ac (B). Shown is ChIP-seq tag density at eSINEs or at randomly selected

ox limits indicate the 25th and 75th percentiles, respectively. Whiskers indicate

e (0) and depolarized with KCl for 45 min. Histograms show DNaseI digestion

xpressed as fold over undigested. Data are represented asmean ± SEM (n = 3).

n response to KCl stimulation, assessed by qRT-PCR. Data are represented as

001, ****p < 0.0001, one-way ANOVA.
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environment (NEE) and in response to neuronal depolarization

in vitro (Crepaldi et al., 2013; Sheng et al., 1990; Sultan et al.,

2012). Moreover, both eSINEs are de novo acetylated on

H3K9K14 in the somatosensory cortex of mice exposed to

NEE (Crepaldi et al., 2013). Despite the fact that SINE sequences

are highly repetitive, FosRSINE1 and Gadd45bB1F have distinctive

features that allow unequivocal identification (Figure S4A). We

first confirmed that FosRSINE1 and Gadd45bB1F recruited

Gtf3c1 and Rpc155 in response to depolarization (Figures 3A

and 3B) and displayed the H3K4me1 and H3K27ac marks (Fig-

ures 3C and 3D). FosRSINE1 and Gadd45bB1F also showed activ-

ity-dependent hypersensitivity to DNaseI comparable to Fos and

Gadd45b TSSs (Figure 3E). qRT-PCR of FosRSINE1 and

Gadd45bB1F RNA at different times after neuronal depolarization

revealed that both eSINEs are robustly transcribed (Figure 3F).

Importantly, transcription was not detected at genomic regions

located immediately upstream (USr) or downstream (DSr) of

FosRSINE1 (�170 and +750 bp) and Gadd45bB1F (�400

and +200 bp) (Figure 3F), indicating that the eSINEs are not

part of larger transcriptional units. Interestingly, expression of

both FosRSINE1 and Gadd45bB1F preceded Fos and Gadd45b

transcription (Figure 3F), suggesting that FosRSINE1 and

Gadd45bB1F eRNA may control the expression of these genes.

We next investigated whether FosRSINE1 enhanced activity-

dependent transcription using luciferase reporter assays. Neu-

rons were transfected with plasmids expressing the luciferase

coding region under the control of three activity-response gene

promoters (Fos, Gadd45b, and Arc) and either depolarized

or left untreated. Under stimulated conditions, inclusion of

FosRSINE1 at the 30 end of the luciferase cassette markedly

increased luciferase expression for all tested promoters

(Figure 3G). FosRSINE1 did not enhance luciferase expression

when cloned 30 of either the SV40 promoter of the pGL3-pro-

moter vector or the Gapdh promoter (Figures S4B and S4C).

Importantly, in neurons transfected with equimolar amounts of

a vector carrying FosRSINE1 and a separate luciferase construct

encoding the Fos promoter, FosRSINE1 failed to enhance lucif-

erase expression (Figure S4D), indicating that genomic contigu-

ity is required for enhancer function.

To establish whether transcription of FosRSINE1 is necessary for

enhancer function, we generated a mutated version of the eSINE

bearing a six-nucleotidemismatch that disrupts Gtf3c1 and Pol III

recruitment (Orioli et al., 2012). Mouse neuroblastoma cells

(Neuro-2a) were transfected with a vector carrying either wild-

type (pBS_RSINE1WT) or mutant FosRSINE1 (pBS_RSINE1mut)

and stimulated with forskolin. FosRSINE1 expression levels were
Figure 3. FosRSINE1 and Gadd45bB1F Are Bona Fide eSINEs

(A–D) Mouse cortical neurons were exposed to KCl (50 mM, 45 min) or left untre

ChIP-qPCR. Histograms show ChIP efficiency expressed as percentage of chrom

are represented as mean ± SEM (n = 3). *p < 0.05, ***p < 0.001, Student’s t test.

(E) Cortical neurons were treated with DNaseI (3 units for 20 min, 3) or vehicle (0

pressed as fold over undigested. Data are represented as mean ± SEM (n = 3). *

(F) KCl-dependent expression levels of FosRSINE1, Gadd45bB1F, Fos, Gadd45b,

(DSr) of the two SINEs were analyzed by qRT-PCR. Fos (top) and Gadd45b (b

***p < 0.001, one-way ANOVA.

(G) Luciferase assay of mouse cortical neurons transfected with the indicated vec

mean ± SEM (n R 3). *p < 0.05, **p < 0.01, ***p < 0.001, two-way ANOVA.

See also Figure S4.
significantly lower in cells transfected with the mutant compared

with the wild-type vector (Figure S4E). Strikingly, this mutated

version of FosRSINE1 failed to enhance activity driven by Fos,

Gadd45b, and Arc promoters (Figure 3G). Thus, Pol III binding

to FosRSINE1 is required for enhancer activity.

FosRSINE eRNA Is Required for Enhancer Function
To investigate the mechanisms by which eSINEs regulate activ-

ity-dependent transcription, the FosRSINE1 genomic sequence

was disrupted using a high-fidelity variant of Cas9 (SpCas9-

HF1; Kleinstiver et al., 2016). A guide RNA targeting FosRSINE1

was expressed in Neuro-2a cells together with a vector encoding

SpCas9-HF1. As a control, we transfected the SpCas9-HF1-en-

coding plasmid and an empty vector (no guide). Efficient editing

of the FosRSINE1 locus was assessed by Surveyor assay (Fig-

ure S5A) and confirmed by DNA sequencing of individual clones

(Figure S5B). In cells transfected with FosRSINE1 guide RNA, the

induction of FosRSINE1 eRNA upon forskolin stimulation was

drastically reduced compared with empty vector (Figure 4A),

whereas induction of a different eSINE (Dusp1MIRc) was not

affected by (Figure 4A). Strikingly, disruption of the FosRSINE1

genomic locus was sufficient to abolish forskolin-dependent

transcription of Fos (Figure 4A), indicating that the genomic

integrity of FosRSINE1 is necessary for Fos expression upon

neuronal stimulation.

Experiments that knockdown eRNAs have recently shown that

enhancer transcripts regulate the expression of nearby genes

(Lam et al., 2013; Li et al., 2013; Melo et al., 2013; Mousavi

et al., 2013; Schaukowitch et al., 2014). To investigate whether

FosRSINE1 enhancer activity is mediated by Pol III-dependent

eRNA synthesis, we employed several complementary ap-

proaches. First, cortical neurons were treated with the specific

Pol III inhibitor ML60218 (50 mM, 15 min; Wu et al., 2003) and

depolarized. ML60218 treatment decreased transcription of

the Pol III-transcribed gene tRNALeu (Figure S6A), indicating

efficient inhibition of Pol III. Importantly, inhibition of Pol III mark-

edly reduced transcription of both FosRSINE1 and the Fos gene in

response to neuronal activation (Figures 4B and 4C). The effect

of ML60218 on Fos transcription was not due to non-specific

inhibition of Pol II because the expression levels of the Pol II-tran-

scribed b-Actin were unchanged (Figure S6B). Conversely,

treatment of cortical neurons with the specific Pol II inhibitor

5,6-dichloro-1-b-D-ribofuranosylbenzimidazole (DRB) (Yanku-

lov et al., 1995) led to a strong reduction in Fos induction and

b-Actin transcription but had no effect on either FosRSINE1 or

tRNALeu transcription (Figures 4B and 4C; Figures S6A and
ated and subjected to Gtf3c1 (A), Rpc155 (B), H3K4me1 (C), and H3K27ac (D)

atin input; immunoglobulin G (IgG) ChIP was used as a negative control. Data

) and depolarized with KCl. Histograms show DNaseI digestion efficiency ex-

p < 0.05, **p < 0.01, ***p < 0.001, two-way ANOVA.

and the genomic regions located immediately upstream (USr) or downstream

ottom). Data are represented as mean ± SEM (n R 5). *p < 0.05, **p < 0.01,

tors and stimulated with KCl for 6 hr or left untreated. Data are represented as
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Figure 4. FosRSINE1 eRNAs Is Required for

Enhancer Functions

(A) Neuro-2a cells were transfected with a vector

encoding SpCas9-HF1 protein and either an

empty RNA vector (BPK1520, no guide) or an RNA

vector containing a small guide RNA targeting

FosRSINE1 (guide RNA). Cells were either left un-

treated or treated with forskolin (50 mM, 45 min).

Shown are mean ± SEM of fold induction of

FosRSINE1, Fos, and Dusp1MIRc over control no

guide (n = 4). *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001, two-way ANOVA.

(B and C) qRT-PCR of cortical neurons treated

with ML60218 (50 mM, 15 min) or DRB (25 mM,

15 min) and exposed to KCl for 45 min. Shown

are mean ± SEM of fold induction over

DMSO control of FosRSINE1 eRNA (B) and Fos

mRNA (C) (n = 3). *p < 0.05, **p < 0.01, two-way

ANOVA.

(D) RNA FISH analysis of Fos mRNA in cortical

neurons transfected with GFP and either LNACTR

or LNARSINE1 and exposed to KCl for 45 min or left

untreated. Shown are maximal projections of

confocal scans; reconstructed cell edges are

shown in green, DAPI-counterstained nuclei are

shown in blue, and Fos mRNA ribonucleoparticles

are shown in red.

(E) Quantitative analysis of RNA FISH experi-

ments. Shown are means ± SEM of at least 42

cells per condition (n = 3). *p < 0.05, ***p < 0.001,

two-way ANOVA.

(F) Luciferase assay of cortical neurons trans-

fected with the indicated vectors in combination

with either LNACTR or LNARSINE1. Data shown

as mean ± SEM (n = 4). **p < 0.01, ***p < 0.001,

****p < 0.0001, two-way ANOVA.

See also Figures S5–S7.
S6B). Similar results were obtained for two additional eSINEs

(Gadd45bB1F and Dusp1MIRc) and the paired activity-dependent

genes (Gadd45b and Dusp1) (Figures S6C–S6F).

Next we used locked nucleic acid (LNA) oligonucleotides to

specifically target FosRSINE1 eRNA for degradation. In Neuro-2a

cells, an LNA targeting FosRSINE1 eRNA (LNARSINE1) reduced

FosRSINE1 levels without affecting Dusp1MIRc expression (Figures

S6G and S6H). Cortical neurons were transfected with either

LNARSINE1 or a control LNA (LNACTR) and depolarized, and the

Fos transcript was measured using RNA fluorescence in situ
2886 Cell Reports 21, 2879–2894, December 5, 2017
hybridization (FISH). As expected, in

LNACTR-treated neurons depolarization

induced the appearance of clearly

detectable ribonucleoparticles contain-

ing FosmRNA (Figure 4D, top right, white

arrowheads). Remarkably, LNARSINE1

caused a 70% reduction of Fos mRNA

expression compared with LNACTR (Fig-

ures 4D and 4E). Similarly, an LNA target-

ing Dusp1MIRc eRNA (LNAMIRc) strongly

reduced Dusp1 mRNA levels following

KCl stimulation (Figures S7A and S7B).

The specificity of LNARSINE1 was tested
by performing luciferase assays on neurons expressing vectors

encoding luciferase under the control of either the Fos promoter

and FosRSINE1 (prom_RSINE1) or the Fos promoter alone

(prom). In neurons transfected with prom_RSINE1, LNARSINE1

completely abolished FosRSINE1 enhancer activity but was inef-

fective in decreasing luciferase expression in neurons trans-

fected with a vector containing Fos promoter only (Figure 4F).

Together, these data show that Pol III-dependent transcription

of FosRSINE1 is necessary for enhancing Fos expression in depo-

larized neurons.



Figure 5. FosRSINE1 eRNA Mediates Fos Relocation to Transcription Factories

(A) Representative images of confocal sections of immuno-DNA FISH showing nuclear localization of Fos and Csn2 loci (green) relative to TFs in neurons

transfected with GFP and either LNACTR or LNARSINE1 and exposed to KCl for 45 min or left untreated. TFs were detected by Pol II immunostaining (4H8, red);

nuclei were stained with DAPI (blue). For each image series, the distance between the center of the FISH signal and the nearest TF is indicated (top right inset).

Scale bars, 2 mm (images on the left) and 0.5 mm (magnified images).

(B) Box and whisker plot of the distribution of the distance between Fos orCsn2 loci and the nearest TF.Whiskers denote the 90th and 10th percentiles, box edges

denote the 75th and 25th percentiles, solid lines denote medians, and dashed lines denote averages. n = 33–48 foci across 3 biological replicates.

(C) Percentage of co-localization of the Fos andCsn2 loci with TFs, both under basal conditions and in response to KCl, in neurons transfected with either LNACTR

or LNARSINE1. *p < 0.05, Fisher’s exact test.
FosRSINE1 eRNA Controls Fos Gene Relocation to
Transcription Factories
Transcription factories (TFs) are discrete nuclear foci formed by

clusters of Pol II and transcription factors that create a permis-

sive environment for transcription (Rieder et al., 2012) where en-

hancers and promoters may physically interact (Cook, 2010).

Because activity-dependent genes relocate to TFs upon depo-

larization (Crepaldi et al., 2013), we investigated whether eSINE

eRNA regulates this process by performing immuno-DNA FISH

on cortical neurons transfected with LNAs (Figure 5A). TFs

were labeled using a Pol II antibody, and the distance between

the center of the DNA-FISH signal and the nearest TF was

measured. In neurons transfected with LNACTR, neuronal stimu-

lation decreased the distance between the Fos locus and the
nearest TF (Figure 5B) and led to higher co-localization of FISH

signals with TFs (Figure 5C). Strikingly, transfection with

LNARSINE1 inhibited depolarization-dependent relocation of Fos

to TFs (Figures 5A–5C), whereas the nuclear position of Csn2,

a gene that is not expressed in neurons, was not affected (Fig-

ures 5A–5C). Our findings indicate that FosRSINE1 eRNA pro-

motes Fos relocation to TFs in response to stimulation and

may contribute to the spatial organization of chromatin within

neuronal nuclei.

FosRSINE1 eRNA Interacts with Pol II to Mediate
Transcriptional Initiation and Elongation
It has been proposed that eRNAs may contribute to Pol II

loading onto target promoters (Mousavi et al., 2013). Moreover,
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Figure 6. FosRSINE1 eRNA Interacts with Pol

II and Affects Pol II Initiation and Elongation

(A) RNA immunoprecipitation (RIP) of cortical

neuron nuclear extracts incubated with Pol II

8WG16 antibody and subjected to qRT-PCR. RIP

efficiency was expressed as increment over

control IgG. Data are represented as mean ± SEM

(n = 3). **p < 0.005, Student’s t test.

(B) EMSA of FosRSINE1 eRNA. A FosRSINE1 radio-

labeled probe was incubated with cortical neuron

nuclear extracts. An excess of either sense (S) or

antisense (A) unlabeled probe was used as con-

trol. Three bands were detected (lane 3, white

arrowheads) that were super-shifted or displaced

by Pol II antibodies (lanes 4–6).

(C–F) Neuro-2a cells were transfected with the

indicated LNAs, stimulated with forskolin (Fsk),

and subjected to ChIP using 8WG16 (C), 4H8 (D

and E), and H5 (F) antibodies. Histograms

show ChIP efficiency at the Fos promoter and

exon 4, expressed as fold over control. Data

are shown as mean ± SEM (n = 3). **p < 0.01,

***p < 0.001, ****p < 0.0001, two-way ANOVA.
transcripts originating from SINEs have been shown to bind Pol II

in mouse fibroblasts (Allen et al., 2004; Mariner et al., 2008). To

investigate whether FosRSINE1 eRNA interacted with Pol II, neu-

rons were subjected to RNA immunoprecipitation (RIP) using a

Pol II antibody. We observed that, upon depolarization, the Pol

II antibody immunoprecipitated FosRSINE1 eRNA at high levels

(Figure 6A), indicating binding. Additional evidence of the inter-

action was obtained by performing electrophoretic mobility

shift assays (EMSAs) using in vitro-transcribed a-32P-labeled

FosRSINE1 eRNA. The radioactive probe was loaded on a non-

denaturing polyacrylamide gel either alone (probe only) or in

the presence of neuronal nuclear proteins. At least three distinct

protein complexes were bound to FosRSINE1 eRNA (Figure 6B,
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lane 3, white arrowheads). Antibodies

that recognize the pre-initiating, initiating,

or elongating forms of Pol II (8WG16,

4H8, and H5, respectively; Sutherland

and Bickmore, 2009) displaced or su-

per-shifted at least one band, confirming

that FosRSINE1 eRNA was associated with

Pol II and indicating that the interaction

can occur at different stages of transcrip-

tion (Figure 6B, lanes 4–6).

Wenext askedwhether FosRSINE1 eRNA

influenced Pol II recruitment to the endog-

enous Fos promoter using Pol II ChIP. In

untransfected or LNACTR-transfected

Neuro-2a cells, Pol II binding to the Fos

gene significantly increased upon stimula-

tion at both the promoter (8WG16and 4H8

antibodies) and at the coding region (4H8

and H5 antibodies) (Figures 6C–6F). In

cells transfected with LNARSINE1, stim-

ulus-dependent binding of pre-initiating

Pol II to the Fos promoter was conserved
(Figure 6C), whereas recruitment of both the initiating and elon-

gating forms of Pol II at the Fos promoter and coding region was

prevented (Figures 6D–6F). These results indicate that, in the

absence of the Fos RSINE1 eRNA, Pol II is unable to progress into

active transcription and provide the first evidence of a functional

link between a Pol III-dependent transcript and Pol II.

FosRSINE1 eRNA Regulates Neuronal Differentiation
and Cortical Development
The biological significance of FosRSINE1-dependent regulation of

Fos transcription was investigated by studying dendritogenesis

of primary cortical neurons. Dendritic growth in response to

external cues requires the transcription of activity-regulated



Figure 7. FosRSINE1 Enhances Fos Expression in Diverse Physiological Contexts

(A) Representative images of cortical neurons transfected with a GFP-expressing vector in combination with either LNACTR or LNARSINE1 and maintained under

basal or depolarizing (KCl, 50 mM) conditions for 48 hr, followed by GFP immunostaining. Scale bar, 50 mm.

(B) Quantification of the total length of the dendritic processes of 29–31 neurons (n = 3). Shown are means ± SEM. **p < 0.01, two-way ANOVA.

(C) Sholl analysis of neurons analyzed in (B). For each distance point, the average number of intersections ± SEM is shown. *p < 0.05, **p < 0.01, ****p < 0.0001,

two-way ANOVA.

(D) qRT-PCR of mouse neural progenitor cells (NPCs) and post mitotic-neurons (PMNs). Data show mean ± SEM of fold induction of Hprt SINE RNA, FosRSINE1

eRNA, and Fos mRNA (n = 6) normalized to expression levels in NPCs. **p < 0.005, ****p < 0.0001, paired t test.

(legend continued on next page)

Cell Reports 21, 2879–2894, December 5, 2017 2889



genes (West and Greenberg, 2011), many of which are regulated

by Fos (Greenberg et al., 1986;Malik et al., 2014). Thus, early and

robust activation of Fosmay be necessary for dendritic arboriza-

tion. Neurons were transfected with a GFP-expressing vector

and either LNACTR or LNARSINE1 and maintained under basal or

depolarized conditions for 48 hr. As expected, neurons trans-

fected with LNACTR showed an increase in both dendritic length

and complexity (Figures 7A–7C). Strikingly, activity-dependent

dendritogenesis was completely abrogated in neurons trans-

fected with LNARSINE1 (Figures 7A–7C).

Because Fos has been shown to regulatemouse brain develop-

ment (Velazquez et al., 2015), we reasoned that FosRSINE1 may

also enhance Fos expression in this physiological context. First,

we assessed whether FosRSINE1 was expressed in embryonic

cortical neurons. Mouse neural progenitor cells (NPCs) were

dissected at embryonic day 12.5 (E12.5) and differentiated

in vitro into post-mitotic neurons (PMNs) (Nitarska et al., 2016).

A remarkable increase in both FosRSINE1 and Fos expression

levels was observed following differentiation of NPCs to PMNs

(Figure 7D). Conversely, transcription of the non-enhancer SINE

HprtSINE was unchanged (Figure 7D). Next, we asked whether

FosRSINE1 regulated the expression of Fos during neuronal devel-

opment in vivo by performing in utero electroporation experi-

ments. LNACTR or LNARSINE1 were electroporated together with

a GFP expression plasmid into E13.5 mouse brains, and, after

2 days, neural migration and expression of differentiation markers

were assessed. As observedpreviously (Nitarska et al., 2016) after

48 hr, 33% of the progeny of neural progenitors electroporated

with LNACTR in the ventricular zone (VZ) had reached the cortical

plate (CP) (Figures 7E and 7F). Inhibition of FosRSINE1 expression

resulted in an accumulation of cells within the VZ and a reduction

of neurons migrating toward the CP (Figures 7E and 7F). Neural

progenitors electroporated with LNARSINE1 failed to differentiate

and express T-Box Brain 1 (Tbr1) (Figures 7E and 7G), a transcrip-

tion factor found in early-born neurons (Hevner et al., 2001).

Consistent with the phenotype observed in Fos�/� mice

(Velazquez et al., 2015), depletion of FosRSINE1 eRNAalso resulted

in increased proliferation of neural progenitors, as indicated by the

elevated number of Ki67- and Sox2-positive cells (Figures 7H–

7K). Co-electroporation of neuronal progenitors with a vector

expressing Fos under the control of a cytomegalovirus (CMV)

early enhancer/chicken b-actin (CAG) promoter fully rescued the

defects induced by the inhibition of FosRSINE1 (Figures 7E–7K),

ruling out potential off-target effects of LNARSINE1.

Thus, during the early stages of cortical development,

FosRSINE1 regulates radial migration and neuronal differentiation
(E) E13.5 embryos electroporated in uterowith LNAs and a CAG-Fos-expressing c

of coronal sections immunolabeled for GFP (green) and Tbr1 (red). Scale bar, 10

(F) Quantification of the distribution of cells electroporated as in (E) between the

plate (CP). Data are from 3 independent experiments and 16–22 embryos per co

(G) Quantification of neurons expressing Tbr1. Data are from 3 independent exp

(H) Coronal sections of mouse embryonic brains immunolabeled with GFP (gree

(I) Quantification of cells expressing Ki67. Data are from 3 independent experime

(J) Coronal sections of mouse brains immunolabeled with GFP (green) or Sox2 (r

(K) Histograms showing quantification of the percentage of cells expressing Sox2

Data are represented as mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001, ****p <

Tukey’s post test (G, I, and K).
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of NPCs, whereas at the onset of neuronal maturation, FosRSINE1

eRNA is required for activity-dependent dendritogenesis.

DISCUSSION

eSINEs Are a Class of Neuronal Enhancers
Repetitive elements are extremely abundant in the mammalian

genome, however their function remains largely obscure. In

recent years, SINE transcripts have been linked to protein synthe-

sis, mRNA turnover, and RNA editing in both human and mouse

cell lines (Athanasiadis et al., 2004; Kim et al., 2004; Levanon

et al., 2004; Ohnishi et al., 2012). SINEs may also have regulatory

functions independent of their transcription, providing for

example, sites of alternative splicing (Levanon et al., 2004),

generating new TSSs and polyadenylation signals (Chen et al.,

2009; Faulkner et al., 2009), and offering an accessible chromatin

environment for transcription factor binding (Gomez et al., 2016).

SINEs also act as insulators, transcriptional repressors, or devel-

opmentally regulated enhancers (Allen et al., 2004; Lunyak et al.,

2007; Nakanishi et al., 2012; Tashiro et al., 2011). We have iden-

tified a new class of enhancer SINEs that are transcribed by Pol III

and likely regulate the expression of many Pol II-dependent

genes in response to neuronal depolarization. eSINEs share

biochemical and functional properties with previously identified

neuronal enhancers, including the epigenetic marks H3K4me1

and H3K27ac (Figures 2A and 2B, and 3C and 3D) and hypersen-

sitivity to DNaseI (Figures 2C and 3E), which is associated with

open, nucleosome-depleted chromatin. Importantly, although

we were not able to perform a genome-wide analysis of eSINE

transcripts because of technical issues related to their repetitive

nature, we showed thatmany eSINEs are transcribed in response

to neuronal depolarization (Figures 2F and 3F) and that transcrip-

tion is critical for target gene induction (Figure 4; Figure S7).

A Functional Link between Pol III and Pol II Transcription
The Pol II and Pol III transcriptional machineries have been tradi-

tionally considered independent entities that regulate the

expression of largely non-overlapping genes. However, recent

studies have demonstrated that they often co-localize on

genomic loci in both murine and human cells and that co-local-

ization of the two machineries correlates with transcription (Bar-

ski et al., 2010; Moqtaderi et al., 2010; Oler et al., 2010; Raha

et al., 2010). Whether the two machineries are functionally linked

and the mechanisms of such regulation is still unknown.

Transcription of enhancer elements was first observed more

than 20 years ago (Collis et al., 1990), and, more recently, RNA
onstruct as indicated and analyzed at E15.5. Shown are representative images

0 mm.

ventricular-subventricular zone (VZ-SVZ), intermediate zone (IZ), and cortical

ndition.

eriments and 16–22 embryos per condition.

n) and Ki67 (red) antibodies. Scale bar, 100 mm.

nts and 10–21 embryos per condition.

ed) antibodies. Scale bar, 100 mm.

. Data are from 3 independent experiments and 10–21 embryos per condition.

0.0001, two-way ANOVA with Tukey’s post test (F) and one-way ANOVA with



synthesis has been demonstrated at active enhancers of most

cell types across many species (Kaikkonen et al., 2013; Koch

et al., 2011; Wang et al., 2011). All neuronal enhancers identified

to date are transcribed by Pol II and bind transcription factors

that are also enriched on the promoter of their target genes

(Kim et al., 2010; Malik et al., 2014; Telese et al., 2015). It has

been postulated that recruitment of transcription factors to

both enhancers and promoters helps to create a molecular

bridge that physically connects the two elements, conferring

specificity to enhancer-promoter pairings (Lam et al., 2014). In

contrast, eSINEs are transcribed by Pol III and bind the general

transcription factor complex TFIIIC (Figures 1A and 1B and 3A

and 3B). Interestingly, eSINEs do not possess consensus se-

quences for any transcription factor associated with Pol II-tran-

scribed neuronal enhancers (L.C. and A.R., unpublished data).

Because TFIIIC and Pol III are recruited to both eSINEs and

TSSs of activity-regulated genes (Figures 1A, 1B, and 1F), they

may play a role in pairing eSINEs with their gene promoters in

response to depolarization.

Binding of the Pol III machinery to eSINEs correlates with tran-

scription of the closest genes in response to neuronal activation

(Figure 1H), suggesting that contiguity of eSINEs with their target

genes is necessary for enhancer functions. Consistent with this

finding, FosRSINE1 eRNA failed to enhance luciferase expression

driven by theminimal Fos promoter when encoded by a separate

vector (Figure S4D). However, the higher-order structure of

chromatin within the nucleus enables enhancers to contact pro-

moters even when they are located far apart on the chromo-

some. We discovered that FosRSINE1 eRNA binds Pol II (Figures

6A and 6B) and is necessary for relocation of the Fos genomic re-

gion to transcription factories (Figure 5), perhaps inducing

changes of chromatin structure that favor enhancer-promoter in-

teractions. The finding that both Pol III and TFIIIC are recruited to

Pol II-regulated genes (Figure 1F) further indicates that the two

machineries may come into close proximity within transcription

factories.

FosRSINE1 Enhances Fos Expression in Diverse
Physiological Contexts
The biological relevance of FosRSINE1 was demonstrated by the

fact that FosRSINE1 eRNA is required for activity-dependent den-

dritic growth and branching (Figures 7A–7C). We previously

showed that silencing of TFIIIC in cortical neurons increased den-

dritic length (Crepaldi et al., 2013). These findings may be ex-

plainedby the fact thatmore than80%ofGtf3c1binding identified

by ChIP-seq is located in genomic regions other than eSINEs and

independently of Pol III (< 20% of co-localization on SINEs

and < 15% genome-wide). Therefore, global silencing of TFIIIC

is likely to affect genome organization and transcription in ways

distinct from the inhibition of FosRSINE1 and Fos expression alone.

Strikingly, the role of FosRSINE1 was not limited to regulating Fos

expression in response to neuronal activity but extended to early

brain development. Both Fos and FosRSINE1 levels increased dur-

ing neuronal differentiation in vitro (Figure 7D), and FosRSINE1

eRNA was required for embryonic cortical development in vivo

(Figures 7E–7K). Thus, in very different physiological contexts,

Pol II-dependent transcription of the Fos gene is regulated by

the Pol III-mediated transcription of its nearby eSINE.
In 1969 Britten and Davidson, formulated the hypothesis that

transposable elements such as SINEs participate in gene-regu-

latory networks, contributing to speciation novelty (Britten and

Davidson, 1969). More recently, repetitive elements have been

shown to represent key determinants of macroevolution and

clade-specific phenotypes (Tashiro et al., 2011). The consider-

able number of eSINEs identified in neurons suggests that they

may have an unexpected and complex role that goes beyond

controlling the expression of isolated genes and extend to glob-

ally linking Pol III with Pol II transcription.

EXPERIMENTAL PROCEDURES

CRISPR-Cas9

Single guide RNAs were designed toward the Fos eSINE using http://crispr.

mit.edu/. The backbones for the vectors expressing the guide RNA (U6-

BsmBIcassette-Sp-sgRNA, Addgene 65777) and the high-fidelity Cas9

(CMV-T7-humanSpCas9-HF1(N497A, R661A, Q695A, Q926A)-NLS-3xFLAG,

Addgene 72247; Kleinstiver et al., 2016) were obtained from Addgene. An-

nealed oligos composing the guide RNAs were cloned into the BsmBI site of

U6-BsmBIcassette-Sp-sgRNA. Neuro-2a cells were plated into a 12-well plate

and transfected 48 hr later with 250 ng U6-BsmBIcassette-Sp-sgRNA (either

empty vector or containing FosRSINE guide RNA) and 750 ng CMV-T7-human-

SpCas9- HF1 using Lipofectamine 2000. The medium was changed 2–3 hr

after transfection, and cells were harvested 48 hr later. For RNA analysis, cells

were serum-starved 16 hr before adding forskolin (50 mM, 45 min). The guide

RNA sequence usedwas GGTCATGCACTTGAGGTCATGGG (the last 3 letters

are protospacer adjacent motif [PAM]).

Immuno-DNA FISH

Immuno-DNA FISH experiments were performed as described previously

(Crepaldi et al., 2013) with some modifications. Briefly, cells were fixed for

10 min in 3% paraformaldehyde (PFA) in PBS, followed by permeabilization

for 10 min in 0.5% Triton X-100 in PBS. After blocking with PBS+ (PBS plus

0.1% casein, 1% BSA, 0.2% fish skin gelatin) for 1 hr, coverslips were incu-

bated overnight with Pol II-Ser5p (1:500, 4H8, Millipore 06-623) and GFP

(1:2,000, Abcam ab13970) antibodies in PBS+. For detection, coverslips

were incubated with anti-mouse Alexa Fluor 568 (1:1,000, Life Technologies)

and anti-chicken Alexa Fluor 488 (1:1,000, Life Technologies) for 1 hr in

PBS+. Post-fixation in 3% PFA in PBS (10 min) was followed by permeabiliza-

tion in 0.1 M HCl and 0.7% Triton X-100 (10 min on ice) and by denaturation in

70% formamide in 23 saline sodium citrate (SSC) (80�C, 30 min). FISH hybrid-

ization with digoxigenin-labeled probes was carried out overnight at 42�C. The
probes (bacterial artificial chromosome/clones [BACs] Fos RP24-233K8 and

Csn2 RP23-110B6) were labeled with digoxigenin-deoxyuridine triphosphate

(dUTP) using anick translation kit (Roche), denatured (95�C, 5min), andpre-an-

nealed (37�C, 45 min) with Cot-1 DNA in hybridization buffer (50% formamide,

20% dextran sulfate, 23 SSC, and 1 mg/mL BSA) immediately before hybrid-

ization. FISH signals were amplified using sheep anti-digoxigenin fluorescein

Fab fragments (1:50, Roche 11207741910) and fluorescein rabbit anti-sheep

antibodies (1:100, Vector Laboratories FI-6000); DNA was counterstained

with DAPI. Confocal images of neuronal nuclei were acquired using a Leica

SPE3 confocal microscope. The co-localization threshold was set to 225 nm,

corresponding to the distance at which the two smallest detectable objects

overlap.

In Utero Electroporation

E13.5 pregnant mice were anesthetized with isoflurane in oxygen carrier

(Abbot Laboratories), and the uterine horns were exposed through a small inci-

sion in the ventral peritoneum. Plasmid DNA solution (0.5–1.5 mg/mL), prepared

using the EndoFree plasmid purification kit (QIAGEN), was mixed with 50 mM

antisense LNA GapmeR (in vivo-ready, Exiqon) and 0.05% Fast Green (Sigma)

and injected through the uterine wall into the lateral ventricles of the embryos

using pulled borosilicate needles and a Femtojet microinjector (Eppendorf).

Five electrical pulses were applied at 35 V (50-ms duration) across the uterine
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wall at 950-ms intervals using 5-mm platinum Tweezertrodes (Harvard Appa-

ratus) and an ECM-830 BTX square wave electroporator (Harvard Apparatus).

The uterine horns were replaced in the abdominal cavity and the abdomen

wall, and the skin was sutured. 48 hr after surgery, pregnant mice were sacri-

ficed, and embryos were subjected to immunofluorescence to assess radial

migration and expression of proliferation and laminar markers.

Radial Neural Migration Analysis

Embryos were electroporated in utero with the indicated GFP vectors, and

analysis of radial migration was performed as described using ImageJ and

an Excel macro (Nitarska et al., 2016). Images were acquired on an SP8

confocal microscope with Leica Application Suite Advanced Fluorescence

(LAS AF) software using a 203 objective at 1,024 3 1,024 pixel resolution.

Confocal images were run through a band-pass filter to segment and isolate

cell-sized shapes, thresholded and segmented into 10 radial regions between

the ventricle and the pial surface. Individual cell position along the radial axis

was recorded and imported into Excel along with the coordinates of top

(pial) and bottom (ventricle) boundaries obtained using ImageJ’s Path Writer

plugin. The distance and percentage of migrating cells in each area were

calculated using an Excel macro.
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