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Éric Gaussier eric.gaussier@imag.fr
Univ. Grenoble Alpes, 700 avenue Centrale, 38401 Saint Martin d’Hères, France

Johannes Welbl j.welbl@cs.ucl.ac.uk
Sebastian Riedel s.riedel@cs.ucl.ac.uk
University College London, Gower St, London WC1E 6BT, United Kingdom

Guillaume Bouchard g.bouchard@cs.ucl.ac.uk

Bloomsbury AI, 115 Hampstead Road, London NW1 3EE, United Kingdom

University College London, Gower St, London WC1E 6BT, United Kingdom

Editor: Luc De Raedt

Abstract

In statistical relational learning, knowledge graph completion deals with automati-
cally understanding the structure of large knowledge graphs—labeled directed graphs—
and predicting missing relationships—labeled edges. State-of-the-art embedding models
propose different trade-offs between modeling expressiveness, and time and space complex-
ity. We reconcile both expressiveness and complexity through the use of complex-valued
embeddings and explore the link between such complex-valued embeddings and unitary
diagonalization. We corroborate our approach theoretically and show that all real square
matrices—thus all possible relation/adjacency matrices—are the real part of some unitarily
diagonalizable matrix. This results opens the door to a lot of other applications of square
matrices factorization. Our approach based on complex embeddings is arguably simple,
as it only involves a Hermitian dot product, the complex counterpart of the standard dot
product between real vectors, whereas other methods resort to more and more complicated
composition functions to increase their expressiveness. The proposed complex embeddings
are scalable to large data sets as it remains linear in both space and time, while consistently
outperforming alternative approaches on standard link prediction benchmarks.1

Keywords: complex embeddings, tensor factorization, knowledge graph, matrix comple-
tion, statistical relational learning

1. Introduction

Web-scale knowledge graph provide a structured representation of world knowledge, with
projects such as the Google Knowledge Vault (Dong et al., 2014). They enable a wide
range of applications including recommender systems, question answering and automated
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personal agents. The incompleteness of these knowledge graphs—also called knowledge
bases—has stimulated research into predicting missing entries, a task known as link pre-
diction or knowledge graph completion. The need for high quality predictions required by
link prediction applications made it progressively become the main problem in statistical
relational learning (Getoor and Taskar, 2007), a research field interested in relational data
representation and modeling.

Knowledge graphs were born with the advent of the Semantic Web, pushed by the World
Wide Web Consortium (W3C) recommendations. Namely, the Resource Description Frame-
work (RDF) standard, that underlies knowledge graphs’ data representation, provides for
the first time a common framework across all connected information systems to share their
data under the same paradigm. Being more expressive than classical relational databases,
all existing relational data can be translated into RDF knowledge graphs (Sahoo et al.,
2009).

Knowledge graphs express data as a directed graph with labeled edges (relations) be-
tween nodes (entities). Natural redundancies between the recorded relations often make it
possible to fill in the missing entries of a knowledge graph. As an example, the relation
CountryOfBirth could not be recorded for all entities, but it can be inferred if the rela-
tion CityOfBirth is known. The goal of link prediction is the automatic discovery of such
regularities. However, many relations are non-deterministic: the combination of the two
facts IsBornIn(John,Athens) and IsLocatedIn(Athens,Greece) does not always imply
the fact HasNationality(John,Greece). Hence, it is natural to handle inference proba-
bilistically, and jointly with other facts involving these relations and entities. To this end,
an increasingly popular method is to state the knowledge graph completion task as a 3D
binary tensor completion problem, where each tensor slice is the adjacency matrix of one
relation in the knowledge graph, and compute a decomposition of this partially-observed
tensor from which its missing entries can be completed.

Factorization models with low-rank embeddings were popularized by the Netflix chal-
lenge (Koren et al., 2009). A partially-observed matrix or tensor is decomposed into a
product of embedding matrices with much smaller dimensions, resulting in fixed-dimensional
vector representations for each entity and relation in the graph, that allow completion of the
missing entries. For a given fact r(s,o) in which the subject entity s is linked to the object
entity o through the relation r, a score for the fact can be recovered as a multilinear product
between the embedding vectors of s, r and o, or through more sophisticated composition
functions (Nickel et al., 2016a).

Binary relations in knowledge graphs exhibit various types of patterns: hierarchies and
compositions like FatherOf, OlderThan or IsPartOf, with strict/non-strict orders or pre-
orders, and equivalence relations like IsSimilarTo. These characteristics maps to different
combinations of the following properties: reflexivity/irreflexivity, symmetry/antisymmetry
and transitivity. As described in Bordes et al. (2013a), a relational model should (i) be able
to learn all combinations of such properties, and (ii) be linear in both time and memory in
order to scale to the size of present-day knowledge graphs, and keep up with their growth.

A natural way to handle any possible set of relations is to use the classic canonical
polyadic (CP) decomposition (Hitchcock, 1927), which yields two different embeddings for
each entity and thus low prediction performances as shown in Section 5. With unique
entity embeddings, multilinear products scale well and can naturally handle both symmetry
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and (ir)-reflexivity of relations, and when combined with an appropriate loss function,
dot products can even handle transitivity (Bouchard et al., 2015). However, dealing with
antisymmetric—and more generally asymmetric—relations has so far almost always implied
superlinear time and space complexity (Nickel et al., 2011; Socher et al., 2013) (see Section
2), making models prone to overfitting and not scalable. Finding the best trade-off between
expressiveness, generalization and complexity is the keystone of embedding models.

In this work, we argue that the standard dot product between embeddings can be a very
effective composition function, provided that one uses the right representation: instead of
using embeddings containing real numbers, we discuss and demonstrate the capabilities of
complex embeddings. When using complex vectors, that is vectors with entries in C, the
dot product is often called the Hermitian (or sesquilinear) dot product, as it involves the
conjugate-transpose of one of the two vectors. As a consequence, the dot product is not
symmetric any more, and facts about one relation can receive different scores depending on
the ordering of the entities involved in the fact. In summary, complex embeddings naturally
represent arbitrary relations while retaining the efficiency of a dot product, that is linearity
in both space and time complexity.

This paper extends a previously published article (Trouillon et al., 2016). This extended
version adds proofs of existence of the proposed model in both single and multi-relational
settings, as well as proofs of the non-uniqueness of the complex embeddings for a given
relation. Bounds on the rank of the proposed decomposition are also demonstrated and
discussed. The learning algorithm is provided in more details, and more experiments are
provided, especially regarding the training time of the models.

The remainder of the paper is organized as follows. We first provide justification and
intuition for using complex embeddings in the square matrix case (Section 2), where there
is only a single type of relation between entities, and show the existence of the proposed
decomposition for all possible relations. The formulation is then extended to a stacked
set of square matrices in a third-order tensor to represent multiple relations (Section 3).
The stochastic gradient descent algorithm used to learn the model is detailed in Section
4, where we present an equivalent reformulation of the proposed model that involves only
real embeddings. This should help practitioners when implementing our method, without
requiring the use of complex numbers in their software implementation. We then describe
experiments on large-scale public benchmark knowledge graphs in which we empirically
show that this representation leads not only to simpler and faster algorithms, but also gives
a systematic accuracy improvement over current state-of-the-art alternatives (Section 5).
Related work is discussed in Section 6.

2. Relations as the Real Parts of Low-Rank Normal Matrices

We consider in this section a simplified link prediction task with a single relation, and
introduce complex embeddings for low-rank matrix factorization.

We will first discuss the desired properties of embedding models, show how this problem
relates to the spectral theorems, and discuss the classes of matrices these theorems encom-
pass in the real and in the complex case. We then propose a new matrix decomposition—to
the best of our knowledge—and a proof of its existence for all real square matrices. Finally
we discuss the rank of the proposed decomposition.
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2.1 Modeling Relations

Let E be a set of entities, with |E| = n. The truth of the single relation holding between
two entities is represented by a sign value yso ∈ {−1, 1}, where 1 represents true facts and
-1 false facts, s ∈ E is the subject entity and o ∈ E is the object entity. The probability for
the relation holding true is given by

P (yso = 1) = σ(xso) (1)

where X ∈ Rn×n is a latent matrix of scores indexed by the subject (rows) and object
entities (columns), Y is a partially-observed sign matrix indexed in identical fashion, and
σ is a suitable sigmoid function. Throughout this paper we used the logistic inverse link
function σ(x) = 1

1+e−x .

2.1.1 Handling Both Asymmetry and Unique Entity Embeddings

In this work we pursue three objectives: finding a generic structure for X that leads to
(i) a computationally efficient model, (ii) an expressive enough approximation of common
relations in real world knowledge graphs, and (iii) good generalization performances in
practice. Standard matrix factorization approximates X by a matrix product UV >, where
U and V are two functionally-independent n×K matrices, K being the rank of the matrix.
Within this formulation it is assumed that entities appearing as subjects are different from
entities appearing as objects. In the Netflix challenge (Koren et al., 2009) for example,
each row ui corresponds to the user i and each column vj corresponds to the movie j. This
extensively studied type of model is closely related to the singular value decomposition
(SVD) and fits well with the case where the matrix X is rectangular.

However, in many knowledge graph completion problems, the same entity i can ap-
pear as both subject or object and will have two different embedding vectors, ui and vi,
depending on whether it appears as subject or object of a relation. It seems natural to
learn unique embeddings of entities, as initially proposed by Nickel et al. (2011) and Bordes
et al. (2011) and since then used systematically in other prominent approaches (Bordes
et al., 2013b; Yang et al., 2015; Socher et al., 2013). In the factorization setting, using the
same embeddings for left- and right-side factors boils down to a specific case of eigenvalue
decomposition: orthogonal diagonalization.

Definition 1 A real square matrix X ∈ Rn×n is orthogonally diagonalizable if it can be
written as X = EWE>, where E,W ∈ Rn×n, W is diagonal, and E orthogonal so that
EE> = E>E = I where I is the identity matrix.

The spectral theorem for symmetric matrices tells us that a matrix is orthogonally
diagonalizable if and only if it is symmetric (Cauchy, 1829). It is therefore often used to
approximate covariance matrices, kernel functions and distance or similarity matrices.

However as previously stated, this paper is explicitly interested in problems where
matrices—and thus the relation patterns they represent—can also be antisymmetric, or
even not have any particular symmetry pattern at all (asymmetry). In order to both use
a unique embedding for entities and extend the expressiveness to asymmetric relations, re-
searchers have generalised the notion of dot products to scoring functions, also known as
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Model Scoring Function φ Relation Parameters Otime Ospace
CP (Hitchcock, 1927) 〈wr, us, vo〉 wr ∈ RK O(K) O(K)

RESCAL (Nickel et al., 2011) eTsWreo Wr ∈ RK2 O(K2) O(K2)

TransE (Bordes et al.,
2013b)

−||(es + wr)− eo||p wr ∈ RK O(K) O(K)

NTN (Socher et al., 2013) u>r f(esW
[1..D]
r eo+Vr

[
es
eo

]
+br)

Wr ∈ RK2D, br ∈ RK
Vr ∈ R2KD, ur ∈ RK

O(K2D) O(K2D)

DistMult (Yang et al., 2015) 〈wr, es, eo〉 wr ∈ RK O(K) O(K)

HolE (Nickel et al., 2016b) wTr (F−1[F [es]�F [eo]])) wr ∈ RK O(K logK) O(K)

ComplEx (this paper) Re(〈wr, es, ēo〉) wr ∈ CK O(K) O(K)

Table 1: Scoring functions of state-of-the-art latent factor models for a given fact r(s, o),
along with the representation of their relation parameters, and time and space
(memory) complexity. K is the dimensionality of the embeddings. The entity
embeddings es and eo of subject s and object o are in RK for each model, except
for ComplEx, where es, eo ∈ CK . x̄ is the complex conjugate, and D is an
additional latent dimension of the NTN model. F and F−1 denote respectively
the Fourier transform and its inverse, � is the element-wise product between two
vectors, Re(.) denotes the real part of a complex vector, and 〈·, ·, ·〉 denotes the
trilinear product.

composition functions, that allow more general combinations of embeddings. We briefly
recall several examples of scoring functions in Table 1, as well as the extension proposed in
this paper.

These models propose different trade-offs between the three essential points:

• Expressiveness, which is the ability to represent symmetric, antisymmetric and more
generally asymmetric relations.

• Scalability, which means keeping linear time and space complexity scoring function.

• Generalization, for which having unique entity embeddings is critical.

RESCAL (Nickel et al., 2011) and NTN (Socher et al., 2013) are very expressive, but
their scoring functions have quadratic complexity in the rank of the factorization. More
recently the HolE model (Nickel et al., 2016b) proposes a solution that has quasi-linear
complexity in time and linear space complexity. DistMult (Yang et al., 2015) can be seen
as a joint orthogonal diagonalization with real embeddings, hence handling only symmetric
relations. Conversely, TransE (Bordes et al., 2013b) handles symmetric relations to the
price of strong constraints on its embeddings. The canonical-polyadic decomposition (CP)
(Hitchcock, 1927) generalizes poorly with its different embeddings for entities as subject
and as object.

We reconcile expressiveness, scalability and generalization by going back to the realm
of well-studied matrix factorizations, and making use of complex linear algebra, a scarcely
used tool in the machine learning community.
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2.1.2 Decomposition in the Complex Domain

We introduce a new decomposition of real square matrices using unitary diagonalization,
the generalization of orthogonal diagonalization to complex matrices. This allows decom-
position of arbitrary real square matrices with unique representations of rows and columns.

Let us first recall some notions of complex linear algebra as well as specific cases of
diagonalization of real square matrices, before building our proposition upon these results.

A complex-valued vector x ∈ CK , with x = Re(x) + iIm(x) is composed of a real part
Re(x) ∈ RK and an imaginary part Im(x) ∈ RK , where i denotes the square root of −1. The
conjugate x of a complex vector inverts the sign of its imaginary part: x = Re(x)− iIm(x).

Conjugation appears in the usual dot product for complex numbers, called the Hermitian
product, or sesquilinear form, which is defined as:

〈u, v〉 := ū>v

= Re(u)>Re(v) + Im(u)>Im(v)

+i(Re(u)>Im(v)− Im(u)>Re(v)) .

A simple way to justify the Hermitian product for composing complex vectors is that
it provides a valid topological norm in the induced vector space. For example, x̄>x = 0
implies x = 0 while this is not the case for the bilinear form x>x as there are many complex
vectors x for which x>x = 0.

This yields an interesting property of the Hermitian product concerning the order of the
involved vectors: 〈u, v〉 = 〈v, u〉, meaning that the real part of the product is symmetric,
while the imaginary part is antisymmetric.

For matrices, we shall write X∗ ∈ Cn×m for the conjugate-transpose X∗ = (X)> = X>.
The conjugate transpose is also often written X† or XH.

Definition 2 A complex square matrix X ∈ Cn×n is unitarily diagonalizable if it can be
written as X = EWE∗, where E,W ∈ Cn×n, W is diagonal, and E is unitary such that
EE∗ = E∗E = I.

Definition 3 A complex square matrix X is normal if it commutes with its conjugate-
transpose so that XX∗ = X∗X.

We can now state the spectral theorem for normal matrices.

Theorem 1 (Spectral theorem for normal matrices, von Neumann (1929)) Let X
be a complex square matrix. Then X is unitarily diagonalizable if and only if X is normal.

It is easy to check that all real symmetric matrices are normal, and have pure real
eigenvectors and eigenvalues. But the set of purely real normal matrices also includes all
real antisymmetric matrices (useful to model hierarchical relations such as IsOlder), as well
as all real orthogonal matrices (including permutation matrices), and many other matrices
that are useful to represent binary relations, such as assignment matrices which represent
bipartite graphs. However, far from all matrices expressed as X = EWE∗ are purely real,
and Equation (1) requires the scores X to be purely real.

6



Knowledge Graph Completion via Complex Tensor Factorization

As we only focus on real square matrices in this work, let us summarize all the cases
whereX is real square andX = EWE∗ ifX is unitarily diagonalizable, where E,W ∈ Cn×n,
W is diagonal and E is unitary:

• X is symmetric if and only if X is orthogonally diagonalizable and E and W are
purely real.

• X is normal and non-symmetric if and only if X is unitarily diagonalizable and E and
W are not both purely real.

• X is not normal if and only if X is not unitarily diagonalizable.

We generalize all three cases by showing that, for any X ∈ Rn×n, there exists a unitary
diagonalization in the complex domain, of which the real part equals X:

X = Re(EWE∗) . (2)

In other words, the unitary diagonalization is projected onto the real subspace.

Theorem 2 Suppose X ∈ Rn×n is a real square matrix. Then there exists a normal matrix
Z ∈ Cn×n such that Re(Z) = X.

Proof Let Z := X + iX>. Then

Z∗ = X> − iX = −i(iX> +X) = −iZ ,

so that

ZZ∗ = Z(−iZ) = (−iZ)Z = Z∗Z .

Therefore Z is normal.

Note that there also exists a normal matrix Z = X> + iX such that Im(Z) = X.
Following Theorem 1 and Theorem 2, any real square matrix can be written as the real

part of a complex diagonal matrix through a unitary change of basis.

Corollary 1 Suppose X ∈ Rn×n is a real square matrix. Then there exist E,W ∈ Cn×n,
where E is unitary, and W is diagonal, such that X = Re(EWE∗).

Proof From Theorem 2, we can write X = Re(Z), where Z is a normal matrix, and from
Theorem 1, Z is unitarily diagonalizable.

Applied to the knowledge graph completion setting, the rows of E here are vectorial
representations of the entities corresponding to rows and columns of the relation score
matrix X. The score for the relation holding true between entities s and o is hence

xso = Re(e>s Wēo) (3)

where es, eo ∈ Cn and W ∈ Cn×n is diagonal. For a given entity, its subject embedding
vector is the complex conjugate of its object embedding vector.
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To illustrate this difference of expressiveness with respect to real-valued embeddings,
let us consider two complex embeddings es, eo ∈ C of dimension 1, with arbitrary values:
es = 1 − 2i, and eo = −3 + i; as well as their real-valued, twice-bigger counterparts:
e′s =

(
1
−2

)
∈ R2 and e′o =

(−3
1

)
∈ R2. In the real-valued case, that corresponds to the

DistMult model (Yang et al., 2015), the score is xso = e′>s W
′e′o. Figure 1 represents the

heatmaps of the scores xso and xos, as a function of W ∈ C in the complex-valued case, and
as a function of W ′ ∈ R2 diagonal in the real-valued case. In the real-valued case, that is
symmetric in the subject and object entities, the scores xso and xos are equal for any value
of W ′ ∈ R2 diagonal. Whereas in the complex-valued case, the variation of W ∈ C allows
to score xso and xos with any desired pair of values.

This decomposition however is non-unique, a simple example of this non-uniqueness is
obtained by adding a purely imaginary constant to the eigenvalues. Let X ∈ Rn×n, and
X = Re(EWE∗) where E is unitary, W is diagonal. Then for any real constant c ∈ R we
have:

X = Re(E(W + icI)E∗)

= Re(EWE∗ + icEIE∗)

= Re(EWE∗ + icI)

= Re(EWE∗) .

In general, there are many other possible couples of matrices E and W that preserve the
real part of the decomposition. In practice however this is no synonym of low generaliza-
tion abilities, as many effective matrix and tensor decomposition methods used in machine
learning lead to non-unique solutions (Paatero and Tapper, 1994; Nickel et al., 2011). In
this case also, the learned representations prove useful as shown in the experimental section.

2.2 Low-Rank Decomposition

Addressing knowledge graph completion with data-driven approaches assumes that there
is a sufficient regularity in the observed data to generalize to unobserved facts. When
formulated as a matrix completion problem, as it is the case in this section, one way of
implementing this hypothesis is to make the assumption that the matrix has a low rank or
approximately low rank. We first discuss the rank of the proposed decomposition, and then
introduce the sign-rank and extend the bound developed on the rank to the sign-rank.

2.2.1 Rank Upper Bound

First, we recall one definition of the rank of a matrix (Horn and Johnson, 2012).

Definition 4 The rank of an m-by-n complex matrix rank(X) = rank(X>) = k, if X has
exactly k linearly independent columns.

Also note that if X is diagonalizable so that X = EWE−1 with rank(X) = k, then W
has k non-zero diagonal entries for some diagonal W and some invertible matrix E. From
this it is easy to derive a known additive property of the rank:

rank(B + C) ≤ rank(B) + rank(C) (4)
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Figure 1: Left: Scores xso = Re(e>s Wēo) (top) and xos = Re(e>oWes) (bottom) for the
proposed complex-valued decomposition, plotted as a function of W ∈ C, for fixed
entity embeddings es = 1−2i, and eo = −3+i. Right: Scores xso = e′>s W

′e′o (top)
and xos = e′>o W

′e′s (bottom) for the corresponding real-valued decomposition
with the same number of free real-valued parameters (i.e. in twice the dimension),
plotted as a function of W ′ ∈ R2 diagonal, for fixed entity embeddings e′s =

(
1
−2

)
and e′o =

(−3
1

)
. By varying W ∈ C, the proposed complex-valued decomposition

can attribute any pair of scores to xso and xos, whereas xso = xos for all W ′ ∈ R2

with the real-valued decomposition.

where B,C ∈ Cm×n.

We now show that any rank k real square matrix can be reconstructed from a 2k-
dimensional unitary diagonalization.

Corollary 2 Suppose X ∈ Rn×n and rank(X) = k. Then there exist E ∈ Cn×2k such
that the columns of E form an orthonormal basis of C2k, W ∈ C2k×2k is diagonal, and
X = Re(EWE∗).
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Proof Consider the complex square matrix Z := X + iX>. We have rank(iX>) =
rank(X>) = rank(X) = k.

From Equation (4), rank(Z) ≤ rank(X) + rank(iX>) = 2k.
The proof of Theorem 2 shows that Z is normal. Thus Z = EWE∗ with E ∈ Cn×2k,

W ∈ C2k×2k where the columns of E form an orthonormal basis of C2k, and W is diagonal.

Since E is not necessarily square, we replace the unitary requirement of Corollary 1 by
the requirement that its columns form an orthonormal basis of its smallest dimension, 2k.

Also, given that such decomposition always exists in dimension n (Theorem 2), this
upper bound is not relevant when rank(X) ≥ n

2 .

2.2.2 Sign-Rank Upper Bound

Since we encode the truth values of each fact with ±1, we deal with square sign matrices:
Y ∈ {−1, 1}n×n. Sign matrices have an alternative rank definition, the sign-rank.

Definition 5 The sign-rank rank±(Y ) of an m-by-n sign matrix Y, is the rank of the m-
by-n real matrix of least rank that has the same sign-pattern as Y, so that

rank±(Y ) := min
X∈Rm×n

{rank(X) | sign(X) = Y } ,

where sign(X)ij = sign(xij).

We define the sign function of c ∈ R as

sign(c) =

{
1 if c ≥ 0
−1 otherwise

where the value c = 0 is here arbitrarily assigned to 1 to allow zero entries in X, conversely
to the stricter usual definition of the sign-rank.

To make generalization possible, we hypothesize that the true matrix Y has a low sign-
rank, and thus can be reconstructed by the sign of a low-rank score matrix X. The low
sign-rank assumption is theoretically justified by the fact that the sign-rank is a natural
complexity measure of sign matrices (Linial et al., 2007) and is linked to learnability (Alon
et al., 2016) and empirically confirmed by the wide success of factorization models (Nickel
et al., 2016a).

Using Corollary 2, we can now show that any square sign matrix of sign-rank k can be
reconstructed from a rank 2k unitary diagonalization.

Corollary 3 Suppose Y ∈ {−1, 1}n×n, rank±(Y ) = k. Then there exists E ∈ Cn×2k,
W ∈ C2k×2k where the columns of E form an orthonormal basis of C2k, and W is diagonal,
such that Y = sign(Re(EWE∗)).

Proof By definition, if rank±(Y ) = k, there exists a real square matrix X such that
rank(X) = k and sign(X) = Y . From Corollary 2, X = Re(EWE∗) where E ∈ Cn×2k,
W ∈ C2k×2k where the columns of E form an orthonormal basis of C2k, and W is diagonal.
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Previous attempts to approximate the sign-rank in relational learning did not use com-
plex numbers. They showed the existence of compact factorizations under conditions on
the sign matrix (Nickel et al., 2014), or only in specific cases (Bouchard et al., 2015). In
contrast, our results show that if a square sign matrix has sign-rank k, then it can be exactly
decomposed through a 2k-dimensional unitary diagonalization.

Although we can only show the existence of a complex decomposition of rank 2k for a
matrix with sign-rank k, the sign rank of Y is often much lower than the rank of Y , as we
do not know any matrix Y ∈ {−1, 1}n×n for which rank±(Y ) >

√
n (Alon et al., 2016). For

example, the n × n identity matrix has rank n, but its sign-rank is only 3! By swapping
the columns 2j and 2j − 1 for j in 1, . . . , n2 , the identity matrix corresponds to the relation
marriedTo, a relation known to be hard to factorize over the reals (Nickel et al., 2014),
since the rank is invariant by row/column permutations. Yet our model can express it at
most in rank 6, for any n.

Hence, by enforcing a low-rank K � n on EWE∗, individual relation scores xso =
Re(e>s Wēo) between entities s and o can be efficiently predicted, as es, eo ∈ CK and W ∈
CK×K is diagonal.

Finding the K that matches the sign-rank of Y corresponds to finding the smallest K
that brings the 0–1 loss on X to 0, as link prediction can be seen as binary classification
of the facts. In practice, and as classically done in machine learning to avoid this NP-hard
problem, we use a continuous surrogate of the 0–1 loss, in this case the logistic loss as
described in Section 4, and validate models on different values of K, as described in Section
5.

2.2.3 Rank Bound Discussion

Corollaries 2 and 3 use the aforementioned subadditive property of the rank to derive the
2k upper bound. Let us give an example for which this bound is strictly greater than k.

Consider the following 2-by-2 sign matrix:

Y =

[
−1 −1

1 1

]
.

Not only is this matrix not normal, but one can also easily check that there is no real
normal 2-by-2 matrix that has the same sign-pattern as Y . Clearly, Y is a rank 1 matrix
since its columns are linearly dependent, hence its sign-rank is also 1. From Corollary 3,
we know that there is a normal matrix whose real part has the same sign-pattern as Y , and
whose rank is at most 2.

However, there is no rank 1 unitary diagonalization of which the real part equals Y .
Otherwise we could find a 2-by-2 complex matrix Z such that Re(z11) < 0 and Re(z22) > 0,
where z11 = e1wē1 = w|e1|2, z22 = e2wē2 = w|e2|2, e ∈ C2, w ∈ C. This is obviously
unsatisfiable. This example generalizes to any n-by-n square sign matrix that only has −1
on its first row and is hence rank 1, the same argument holds considering Re(z11) < 0 and
Re(znn) > 0.

This example shows that the upper bound on the rank of the unitary diagonalization
showed in Corollaries 2 and 3 can be strictly greater than k, the rank or sign-rank, of the
decomposed matrix. However, there might be other examples for which the addition of
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an imaginary part could—additionally to making the matrix normal—create some linear
dependence between the rows/columns and thus decrease the rank of the matrix, up to a
factor of 2.

We summarize this section in three points:

1. The proposed factorization encompasses all possible score matrices X for a single
binary relation.

2. By construction, the factorization is well suited to represent both symmetric and
antisymmetric relations.

3. Relation patterns can be efficiently approximated with a low-rank factorization using
complex-valued embeddings.

3. Extension to Multi-Relational Data

Let us now extend the previous discussion to models with multiple relations. Let R be
the set of relations, with |R| = m. We shall now write X ∈ Rm×n×n for the score tensor,
Xr ∈ Rn×n for the score matrix of the relation r ∈ R, and Y ∈ {−1, 1}m×n×n for the
partially-observed sign tensor.

Given one relation r ∈ R and two entities s, o ∈ E , the probability that the fact r(s,o)
is true given by:

P (yrso = 1) = σ(xrso) = σ(φ(r, s, o; Θ)) (5)

where φ is the scoring function of the model considered and Θ denotes the model parameters.
We denote the set of all possible facts (or triples) for a knowledge graph by T = R×E ×E .
While the tensor X as a whole is unknown, we assume that we observe a set of true and
false triples Ω = {((r, s, o), yrso) | (r, s, o) ∈ TΩ} where yrso ∈ {−1, 1} and TΩ ⊆ T is the set
of observed triples. The goal is to find the probabilities of entries yr′s′o′ for a set of targeted
unobserved triples {(r′, s′, o′) ∈ T \ TΩ}.

Depending on the scoring function φ(r, s, o; Θ) used to model the score tensor X, we
obtain different models. Examples of scoring functions are given in Table 1.

3.1 Complex Factorization Extension to Tensors

The single-relation model is extended by jointly factorizing all the square matrices of scores
into a 3rd-order tensor X ∈ Rm×n×n, with a different diagonal matrix Wr ∈ CK×K for each
relation r, and by sharing the entity embeddings E ∈ Cn×K across all relations:

φ(r, s, o; Θ) = Re(e>s Wrēo)

= Re(

K∑
k=1

wrkeskēok)

= Re(〈wr, es, ēo〉) (6)

where K is the rank hyperparameter, es, eo ∈ CK are the rows in E corresponding to the
entities s and o, wr = diag(Wr) ∈ CK is a complex vector, and 〈a, b, c〉 :=

∑
k akbkck is the
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component-wise multilinear dot product2. For this scoring function, the set of parameters
Θ is {ei, wr ∈ CK , i ∈ E , r ∈ R}. This resembles the real part of a complex matrix
decomposition as in the single-relation case discussed above. However, we now have a
different vector of eigenvalues for every relation. Expanding the real part of this product
gives:

Re(〈wr, es, ēo〉) = 〈Re(wr),Re(es),Re(eo)〉
+ 〈Re(wr), Im(es), Im(eo)〉
+ 〈Im(wr),Re(es), Im(eo)〉
− 〈Im(wr), Im(es),Re(eo)〉 . (7)

These equations provide two interesting views of the model:

• Changing the representation: Equation (6) would correspond to DistMult with real
embeddings (see Table 1), but handles asymmetry thanks to the complex conjugate
of the object-entity embedding.

• Changing the scoring function: Equation (7) only involves real vectors corresponding
to the real and imaginary parts of the embeddings and relations.

By separating the real and imaginary parts of the relation embedding wr as shown
in Equation (7), it is apparent that these parts naturally act as weights on each latent
dimension: Re(wr) over the real part of 〈eo, es〉 which is symmetric, and Im(w) over the
imaginary part of 〈eo, es〉 which is antisymmetric.

Indeed, the decomposition of each score matrix Xr for each r ∈ R can be written as
the sum of a symmetric matrix and an antisymmetric matrix. To see this, let us rewrite
the decomposition of each score matrix Xr in matrix notation. We write the real part of
matrices with primes E′ = Re(E) and imaginary parts with double primes E′′ = Im(E):

Xr = Re(EWrE
∗)

= Re((E′ + iE′′)(W ′r + iW ′′r )(E′ − iE′′)>)

= (E′W ′rE
′> + E′′W ′rE

′′>) + (E′W ′′r E
′′> − E′′W ′′r E′

>
) . (8)

It is trivial to check that the matrix E′W ′rE
′> + E′′W ′rE

′′> is symmetric and that the

matrix E′W ′′r E
′′> − E′′W ′′r E′

>
is antisymmetric. Hence this model is well suited to model

jointly symmetric and antisymmetric relations between pairs of entities, while still using
the same entity representations for subjects and objects. When learning, it simply needs
to collapse W ′′r = Im(Wr) to zero for symmetric relations r ∈ R, and W ′r = Re(Wr) to zero
for antisymmetric relations r ∈ R, as Xr is indeed symmetric when Wr is purely real, and
antisymmetric when Wr is purely imaginary.

From a geometrical point of view, each relation embedding wr is an anisotropic scaling
of the basis defined by the entity embeddings E, followed by a projection onto the real
subspace.

2. This is not the Hermitian extension of the multilinear dot product as there appears to be no standard
definition of the Hermitian multilinear product in the linear algebra literature.
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3.2 Existence of the Tensor Factorization

Let us first discuss the existence of the multi-relational model where the rank of the decom-
position K ≤ n, which relates to simultaneous unitary decomposition.

Definition 6 A family of matrices X1, . . . , Xm ∈ Cn×n is simultaneously unitarily diago-
nalizable, if there is a single unitary matrix E ∈ Cn×n, such that Xi = EWiE

∗ for all i in
1, . . . ,m, where Wi ∈ Cn×n are diagonal.

Definition 7 A family of normal matrices X1, . . . , Xm ∈ Cn×n is a commuting family of
normal matrices, if XiX

∗
j = X∗iXj, for all i, j in 1, . . . ,m.

Theorem 3 (see Horn and Johnson (2012)) Suppose F is the family of matrices X1,
. . . , Xm ∈ Cn×n. Then F is a commuting family of normal matrices if and only if F is
simultaneously unitarily diagonalizable.

To apply Theorem 3 to the proposed factorization, we would have to make the hypothesis
that the relation score matrices Xr are a commuting family, which is too strong a hypothesis.
Actually, the model is slightly different since we take only the real part of the tensor
factorization. In the single-relation case, taking only the real part of the decomposition rids
us of the normality requirement of Theorem 1 for the decomposition to exist, as shown in
Theorem 2.

In the multiple-relation case, it is an open question whether taking the real part of
the simultaneous unitary diagonalization will enable us to decompose families of arbitrary
real square matrices—that is with a single unitary matrix E that has at most n columns.
Though it seems unlikely, we could not find a counter-example yet.

However, by letting the rank of the tensor factorization K to be greater than n, we
can show that the proposed tensor decomposition exists for families of arbitrary real square
matrices, by simply concatenating the decomposition of Theorem 2 of each real square
matrix Xi.

Theorem 4 Suppose X1, . . . , Xm ∈ Rn×n. Then there exists E ∈ Cn×nm and Wi ∈
Cnm×nm are diagonal, such that Xi = Re(EWiE

∗) for all i in 1, . . . ,m.

Proof From Theorem 2 we have Xi = Re(EiWiE
∗
i ), where Wi ∈ Cn×n is diagonal, and

each Ei ∈ Cn×n is unitary for all i in 1, . . . ,m.
Let E = [E1 . . . Em], and

Λi =

0((i−1)n)×((i−1)n)

Wi

0((m−i)n)×((m−i)n)


where 0l×l the zero l × l matrix. Therefore Xi = Re(EΛiE

∗) for all i in 1, . . . ,m.

By construction, the rank of the decomposition is at most nm. When m ≤ n, this
bound actually matches the general upper bound on the rank of the canonical polyadic
(CP) decomposition (Hitchcock, 1927; Kruskal, 1989). Since m corresponds to the number
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of relations and n to the number of entities, m is always smaller than n in real world
knowledge graphs, hence the bound holds in practice.

Though when it comes to relational learning, we might expect the actual rank to be
much lower than nm for two reasons. The first one, as discussed above, is that we are
dealing with sign tensors, hence the rank of the matrices Xr need only match the sign-rank
of the partially-observed matrices Yr. The second one is that the matrices are related to
each other, as they all represent the same entities in different relations, and thus benefit
from sharing latent dimensions. As opposed to the construction exposed in the proof of
Theorem 4, where other relations dimensions are canceled out. In practice, the rank needed
to generalize well is indeed much lower than nm as we show experimentally in Figure 5.

Also, note that with the construction of the proof of Theorem 4, the matrix E =
[E1 . . . Em] is not unitary any more. However the unitary constraints in the matrix case
serve only the proof of existence, which is just one solution among the infinite ones of
same rank. In practice, imposing orthonormality is essentially a numerical commodity for
the decomposition of dense matrices, through iterative methods for example (Saad, 1992).
When it comes to matrix and tensor completion, and thus generalisation, imposing such
constraints is more of a numerical hassle than anything else, especially for gradient methods.
As there is no apparent link between orthonormality and generalisation properties, we did
not impose these constraints when learning this model in the following experiments.

4. Algorithm

Algorithm 1 describes stochastic gradient descent (SGD) to learn the proposed multi-
relational model with the AdaGrad learning-rate updates (Duchi et al., 2011). We refer
to the proposed model as ComplEx, for Complex Embeddings. We expose a version of the
algorithm that uses only real-valued vectors, in order to facilitate its implementation. To
do so, we use separate real-valued representations of the real and imaginary parts of the
embeddings.

These real and imaginary part vectors are initialized with vectors having a zero-mean
normal distribution with unit variance. If the training set Ω contains only positive triples,
negatives are generated for each batch using the local closed-world assumption as in Bordes
et al. (2013b). That is, for each triple, we randomly change either the subject or the object,
to form a negative example. In this case the parameter η > 0 sets the number of negative
triples to generate for each positive triple. Collision with positive triples in Ω is not checked,
as it occurs rarely in real world knowledge graphs as they are largely sparse, and may also
be computationally expensive.

Squared gradients are accumulated to compute AdaGrad learning rates, then gradients
are updated. Every s iterations, the parameters Θ are evaluated over the evaluation set
Ωv (evaluate AP or MRR(Ωv; Θ) function in Algorithm 1). If the data set contains both
positive and negative examples, average precision (AP) is used to evaluate the model. If
the data set contains only positives, then mean reciprocal rank (MRR) is used as average
precision cannot be computed without true negatives. The optimization process is stopped
when the measure considered decreases compared to the last evaluation (early stopping).
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Bern(p) is the Bernoulli distribution, the one random sample(E) function sample uni-
formly one entity in the set of all entities E , and the sample batch of size b(Ω, b) function
sample b true and false triples uniformly at random from the training set Ω.

For a given embedding size K, let us rewrite Equation (7), by denoting the real part
of embeddings with primes and the imaginary part with double primes: e′i = Re(ei), e

′′
i =

Im(ei), w
′
r = Re(wr), w

′′
r = Im(wr). The set of parameters is Θ = {e′i, e′′i , w′r, w′′r ∈ RK , i ∈

E , r ∈ R}, and the scoring function involves only real vectors:

φ(r, s, o; Θ) =
〈
w′r, e

′
s, e
′
o

〉
+
〈
w′r, e

′′
s , e
′′
o

〉
+
〈
w′′r , e

′
s, e
′′
o

〉
−
〈
w′′r , e

′′
s , e
′
o

〉
(9)

where each entity and each relation has two real embeddings.

Gradients are now easy to write:

∇e′sφ(r, s, o; Θ) = (w′r � e′o) + (w′′r � e′′o),
∇e′′sφ(r, s, o; Θ) = (w′r � e′′o)− (w′′r � e′o),
∇e′oφ(r, s, o; Θ) = (w′r � e′s) − (w′′r � e′′s),
∇e′′oφ(r, s, o; Θ) = (w′r � e′′s) + (w′′r � e′s),
∇w′rφ(r, s, o; Θ) = (e′s � e′o) + (e′′s � e′′o),
∇w′′r φ(r, s, o; Θ) = (e′s � e′′o)− (e′′s � e′o),

where � is the element-wise (Hadamard) product.

We optimized the negative log-likelihood of the logistic model described in Equation (5)
with L2 regularization on the parameters Θ:

γ(Ω; Θ) =
∑

((r,s,o),y)∈Ω

log(1 + exp(−yφ(r, s, o; Θ))) + λ||Θ||22 (10)

where λ ∈ R+ is the regularization parameter.

To handle regularization, note that using separate representations for the real and imagi-
nary parts does not change anything as the squared L2-norm of a complex vector v = v′+iv′′

is the sum of the squared modulus of each entry:

||v||22 =
∑
j

√
v′2j + v′′2j

2

=
∑
j

v′2j +
∑
j

v′′2j

= ||v′||22 + ||v′′||22 ,

which is actually the sum of the L2-norms of the vectors of the real and imaginary parts.

We can finally write the gradient of γ with respect to a real embedding v for one triple
(r, s, o) and its truth value y:

∇vγ({((r, s, o), y)}; Θ) = −yσ(−yφ(r, s, o; Θ))∇vφ(r, s, o; Θ) + 2λv . (11)
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Algorithm 1 Stochastic gradient descent with AdaGrad for the ComplEx model

Input Training set Ω, validation set Ωv, learning rate α ∈ R++, rank K ∈ Z++, L2

regularization factor λ ∈ R+, negative ratio η ∈ Z++, batch size b ∈ Z++, maximum
iteration m ∈ Z++, validate every s ∈ Z++ iterations, AdaGrad regularizer ε = 10−8.

Output Embeddings e′, e′′, w′, w′′.
e′i ∼ N (0k, Ik×k) , e′′i ∼ N (0k, Ik×k) for each i ∈ E
w′i ∼ N (0k, Ik×k), w′′i ∼ N (0k, Ik×k) for each i ∈ R
ge′i ← 0k , ge′′i ← 0k for each i ∈ E
gw′i ← 0k , gw′′i ← 0k for each i ∈ R
previous score← 0
for i = 1, . . . ,m do

for j = 1, . . . , |Ω|/b do
Ωb ← sample batch of size b(Ω, b)
// Negative sampling:
Ωn ← {∅}
for ((r, s, o), y) in Ωb do

for l = 1, . . . , η do
e← one random sample(E)
if Bern(0.5) > 0.5 then

Ωn ← Ωn ∪ {((r, e, o),−1)}
else

Ωn ← Ωn ∪ {((r, s, e),−1)}
end if

end for
end for
Ωb ← Ωb ∪ Ωn

for ((r, s, o), y) in Ωb do
for v in Θ do

// AdaGrad updates:
gv ← gv + (∇vγ({((r, s, o), y)}; Θ))2

// Gradient updates:
v ← v − α

gv+ε∇vγ({((r, s, o), y)}; Θ)
end for

end for
end for
// Early stopping
if i mod s = 0 then
current score← evaluate AP or MRR(Ωv; Θ)
if current score ≤ previous score then

break
end if
previous score← current score

end if
end for
return Θ
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5. Experiments

We evaluated the method proposed in this paper on both synthetic and real data sets. The
synthetic data set contains both symmetric and antisymmetric relations, whereas the real
data sets are standard link prediction benchmarks based on real knowledge graphs.

We compared ComplEx to state-of-the-art models, namely TransE (Bordes et al.,
2013b), DistMult (Yang et al., 2015), RESCAL (Nickel et al., 2011) and also to the
canonical polyadic decomposition (CP) (Hitchcock, 1927), to emphasize empirically the im-
portance of learning unique embeddings for entities. For experimental fairness, we reimple-
mented these models within the same framework as the ComplEx model, using a Theano-
based SGD implementation3 (Bergstra et al., 2010).

For the TransE model, results were obtained with its original max-margin loss, as it
turned out to yield better results for this model only. To use this max-margin loss on data
sets with observed negatives (Sections 5.1 and 5.2), positive triples were replicated when
necessary to match the number of negative triples, as described in Garcia-Duran et al.
(2016). All other models are trained with the negative log-likelihood of the logistic model
(Equation (10)). In all the following experiments we used a maximum number of iterations

m = 1000, a batch size b = |Ω|
100 , and validated the models for early stopping every s = 50

iterations.

5.1 Synthetic Task

To assess our claim that ComplEx can accurately model jointly symmetry and antisym-
metry, we randomly generated a knowledge graph of two relations and 30 entities. One
relation is entirely symmetric, while the other is completely antisymmetric. This data set
corresponds to a 2 × 30 × 30 tensor. Figure 2 shows a part of this randomly generated
tensor, with a symmetric slice and an antisymmetric slice, decomposed into training, val-
idation and test sets. To ensure that all test values are predictable, the upper triangular
parts of the matrices are always kept in the training set, and the diagonals are unobserved.
We conducted a 5-fold cross-validation on the lower-triangular matrices, using the upper-
triangular parts plus 3 folds for training, one fold for validation and one fold for testing.
Each training set contains 1392 observed triples, whereas validation and test sets contain
174 triples each.

Figure 3 shows the best cross-validated average precision (area under the precision-
recall curve) for different factorization models of ranks ranging up to 50. The regularization
parameter λ is validated in {0.1, 0.03, 0.01, 0.003,0.001, 0.0003, 0.00001, 0.0} and the
learning rate α was initialized to 0.5.

As expected, DistMult (Yang et al., 2015) is not able to model antisymmetry and
only predicts the symmetric relations correctly. Although TransE (Bordes et al., 2013b)
is not a symmetric model, it performs poorly in practice, particularly on the antisymmetric
relation. RESCAL (Nickel et al., 2011), with its large number of parameters, quickly overfits
as the rank grows. Canonical Polyadic (CP) decomposition (Hitchcock, 1927) fails on
both relations as it has to push symmetric and antisymmetric patterns through the entity
embeddings. Surprisingly, only ComplEx succeeds even on such simple data.

3. https://github.com/lmjohns3/downhill
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Figure 2: Parts of the training, validation and test sets of the generated experiment with
one symmetric and one antisymmetric relation. Red pixels are positive triples,
blue are negatives, and green missing ones. Top: Plots of the symmetric slice
(relation) for the 10 first entities. Bottom: Plots of the antisymmetric slice for
the 10 first entities.

5.2 Real Fully-Observed Data Sets: Kinships and UMLS

We then compare all models on two fully observed data sets, that contain both positive
and negative triples, also called the closed-world assumption. The Kinships data set (Den-
ham, 1973) describes the 26 different kinship relations of the Alyawarra tribe in Australia,
among 104 individuals. The unified medical language system (UMLS) data set (McCray,
2003) represents 135 medical concepts and diseases, linked by 49 relations describing their
interactions. Metadata for the two data sets is summarized in Table 2.

Data set |E| |R| Total number of triples

Kinships 104 26 281,216
UMLS 135 49 893,025

Table 2: Number of entities |E|, relations |R|, and observed triples (all are observed) for
the Kinships and UMLS data sets.
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Figure 3: Average precision (AP) for each factorization rank ranging from 5 to 50 for differ-
ent state-of-the-art models on the synthetic task. Learning is performed jointly
on the symmetric relation and on the antisymmetric relation. Top-left: AP over
the symmetric relation only. Top-right: AP over the antisymmetric relation only.
Bottom: Overall AP.

We performed a 10-fold cross-validation, keeping 8 for training, one for validation and
one for testing. Figure 4 shows the best cross-validated average precision for ranks ranging
up to 50, and error bars show the standard deviation over the 10 runs. The regularization
parameter λ is validated in {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.00001, 0.0} and the
learning rate α was initialized to 0.5.

On both data sets ComplEx, RESCAL and CP are very close, with a slight advantage
for ComplEx on Kinships, and for RESCAL on UMLS. DistMult performs poorly here
as many relations are antisymmetric both in UMLS (causal links, anatomical hierarchies)
and Kinships (being father, uncle or grand-father).

The fact that CP, RESCAL and ComplEx work so well on these data sets illus-
trates the importance of having an expressive enough model, as DistMult fails because
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Figure 4: Average precision (AP) for each factorization rank ranging from 5 to 50 for dif-
ferent state-of-the-art models on the Kinships data set (top) and on the UMLS
data set (bottom).

of antisymmetry; the power of the multilinear product—that is the tensor factorization
approach—as TransE can be seen as a sum of bilinear products (Garcia-Duran et al.,
2016); but not yet the importance of having unique entity embeddings, as CP works well.
We believe having separate subject and object-entity embeddings works well under the
closed-world assumption, because of the amount of training data compared to the number
of embeddings to learn. Though when only a fractions of the positive training examples are
observed (as it is most often the case), we will see in the next experiments that enforcing
unique entity embeddings is key to good generalization.
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Number of triples in sets:
Data set |E| |R| Training Validation Test

WN18 40,943 18 141,442 5,000 5,000
FB15K 14,951 1,345 483,142 50,000 59,071

Table 3: Number of entities |E|, relations |R|, and observed triples in each split for the
FB15K and WN18 data sets.

5.3 Real Sparse Data Sets: FB15K and WN18

Finally, we evaluated ComplEx on the FB15K and WN18 data sets, as they are well es-
tablished benchmarks for the link prediction task. FB15K is a subset of Freebase (Bollacker
et al., 2008), a curated knowledge graph of general facts, whereas WN18 is a subset of Word-
Net (Fellbaum, 1998), a database featuring lexical relations between words. We used the
same training, validation and test set splits as in Bordes et al. (2013b). Table 3 summarizes
the metadata of the two data sets.

5.3.1 Experimental Setup

As both data sets contain only positive triples, we generated negative samples using the
local closed-world assumption, as described in Section 4. For evaluation, we measure the
quality of the ranking of each test triple among all possible subject and object substitutions
: r(s′, o) and r(s, o′), for each s′, o′ in E , as used in previous studies (Bordes et al., 2013b;
Nickel et al., 2016b). Mean Reciprocal Rank (MRR) and Hits at N are standard evaluation
measures for these data sets and come in two flavours: raw and filtered. The filtered metrics
are computed after removing all the other positive observed triples that appear in either
training, validation or test set from the ranking, whereas the raw metrics do not remove
these.

Since ranking measures are used, previous studies generally preferred a max-margin
ranking loss for the task (Bordes et al., 2013b; Nickel et al., 2016b). We chose to use the
negative log-likelihood of the logistic model—as described in the previous section—as it is a
continuous surrogate of the sign-rank, and has been shown to learn compact representations
for several important relations, especially for transitive relations (Bouchard et al., 2015).
As previously stated, we tried both losses in preliminary work, and indeed training the
models with the log-likelihood yielded better results than with the max-margin ranking
loss, especially on FB15K—except with TransE.

We report both filtered and raw MRR, and filtered Hits at 1, 3 and 10 in Table 4 for the
evaluated models. The HolE model has recently been shown to be equivalent to ComplEx
(Hayashi and Shimbo, 2017), we record the original results for HolE as reported in Nickel
et al. (2016b) and briefly discuss the discrepancy of results obtained with ComplEx.

Reported results are given for the best set of hyper-parameters evaluated on the vali-
dation set for each model, after a distributed grid-search on the following values: K ∈ {10,
20, 50, 100, 150, 200}, λ ∈ {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0}, α ∈ {1.0, 0.5, 0.2,
0.1, 0.05, 0.02, 0.01}, η ∈ {1, 2, 5, 10} with λ the L2 regularization parameter, α the initial
learning rate, and η the number of negatives generated per positive training triple. We also
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WN18 FB15K
MRR Hits at MRR Hits at

Model Filtered Raw 1 3 10 Filtered Raw 1 3 10

CP 0.075 0.058 0.049 0.080 0.125 0.326 0.152 0.219 0.376 0.532
TransE 0.454 0.335 0.089 0.823 0.934 0.380 0.221 0.231 0.472 0.641
RESCAL 0.894 0.583 0.867 0.918 0.935 0.461 0.226 0.324 0.536 0.720
DistMult 0.822 0.532 0.728 0.914 0.936 0.654 0.242 0.546 0.733 0.824
HolE* 0.938 0.616 0.930 0.945 0.949 0.524 0.232 0.402 0.613 0.739

ComplEx 0.941 0.587 0.936 0.945 0.947 0.692 0.242 0.599 0.759 0.840

Table 4: Filtered and raw mean reciprocal rank (MRR) for the models tested on the FB15K
and WN18 data sets. Hits@N metrics are filtered. *Results reported from Nickel
et al. (2016b) for the HolE model, that has been shown to be equivalent to
ComplEx (Hayashi and Shimbo, 2017), score divergence on FB15K is only due
to the loss function used (Trouillon and Nickel, 2017).

tried varying the batch size but this had no impact and we settled with 100 batches per
epoch. With the best hyper-parameters, training the ComplEx model on a single GPU
(NVIDIA Tesla P40) takes 45 minutes on WN18 (K = 150, η = 1), and three hours on
FB15K (K = 200, η = 10).

5.3.2 Results

WN18 describes lexical and semantic hierarchies between concepts and contains many an-
tisymmetric relations such as hypernymy, hyponymy, and being part of. Indeed, the Dist-
Mult and TransE models are outperformed here by ComplEx and HolE, which are on
a par with respective filtered MRR scores of 0.941 and 0.938, which is expected as both
models are equivalent.

Table 5 shows the filtered MRR for the reimplemented models and each relation of
WN18, confirming the advantage of ComplEx on antisymmetric relations while losing
nothing on the others. 2D projections of the relation embeddings (Figures 8 & 9) visually
corroborate the results.

On FB15K, the gap is much more pronounced and the ComplEx model largely outper-
forms HolE, with a filtered MRR of 0.692 and 59.9% of Hits at 1, compared to 0.524 and
40.2% for HolE. This difference of scores between the two models, though they have been
proved to be equivalent (Hayashi and Shimbo, 2017), is due to the use of the aforementioned
max-margin loss in the original HolE publication (Nickel et al., 2016b) that performs worse
than the log-likelihood on this dataset, and to the generation of more than one negative
sample per positive in these experiments. This has been confirmed and discussed in details
by Trouillon and Nickel (2017). The fact that DistMult yields fairly high scores (0.654
filtered MRR) is also due to the task itself and the evaluation measures used. As the dataset
only involves true facts, the test set never includes the opposite facts r(o, s) of each test
fact r(s, o) for antisymmetric relations—as the opposite fact is always false. Thus highly
scoring the opposite fact barely impacts the rankings for antisymmetric relations. This is
not the case in the fully observed experiments (Section 5.2), as the opposite fact is known
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Relation name ComplEx RESCAL DistMult TransE CP

hypernym 0.953 0.935 0.791 0.446 0.109
hyponym 0.946 0.932 0.710 0.361 0.009
member meronym 0.921 0.851 0.704 0.418 0.019
member holonym 0.946 0.861 0.740 0.465 0.134
instance hypernym 0.965 0.833 0.943 0.961 0.233
instance hyponym 0.945 0.849 0.940 0.745 0.040
has part 0.933 0.879 0.753 0.426 0.035
part of 0.940 0.888 0.867 0.455 0.094
member of domain topic 0.924 0.865 0.914 0.861 0.007
synset domain topic of 0.930 0.855 0.919 0.917 0.153
member of domain usage 0.917 0.629 0.917 0.875 0.001
synset domain usage of 1.000 0.541 1.000 1.000 0.134
member of domain region 0.865 0.632 0.635 0.865 0.001
synset domain region of 0.919 0.655 0.888 0.986 0.149
derivationally related form 0.946 0.928 0.940 0.384 0.100
similar to 1.000 0.001 1.000 0.244 0.000
verb group 0.936 0.857 0.897 0.323 0.035
also see 0.603 0.302 0.607 0.279 0.020

Table 5: Filtered Mean Reciprocal Rank (MRR) for the models tested on each relation of
the WordNet data set (WN18).

to be false—for antisymmetric relations—and largely impacts the average precision of the
DistMult model (Figure 4).

RESCAL, that represents each relation with a K×K matrix, performs well on WN18 as
there are few relations and hence not so many parameters. On FB15K though, it probably
overfits due to the large number of relations and thus the large number of parameters to
learn, and performs worse than a less expressive model like DistMult. On both data sets,
TransE and CP are largely left behind. This illustrates again the power of the multilinear
product in the first case, and the importance of learning unique entity embeddings in the
second. CP performs especially poorly on WN18 due to the small number of relations,
which magnifies this subject/object difference.

Figure 5 shows that the filtered MRR of the ComplEx model quickly converges on both
data sets, showing that the low-rank hypothesis is reasonable in practice. The little gain of
performances for ranks comprised between 50 and 200 also shows that ComplEx does not
perform better because it has twice as many parameters for the same rank—the real and
imaginary parts—compared to other linear space complexity models but indeed thanks to
its better expressiveness.

Best ranks were generally 150 or 200, in both cases scores were always very close for all
models, suggesting there was no need to grid-search on higher ranks. The number of negative
samples per positive sample also had a large influence on the filtered MRR on FB15K (up
to +0.08 improvement from 1 to 10 negatives), but not much on WN18. On both data sets
regularization was important (up to +0.05 on filtered MRR between λ = 0 and optimal
one). We found the initial learning rate to be very important on FB15K, while not so
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Figure 5: Best filtered MRR for ComplEx on the FB15K and WN18 data sets for different
ranks. Increasing the rank gives little performance gain for ranks of 50− 200.

much on WN18. We think this may also explain the large gap of improvement ComplEx
provides on this data set compared to previously published results—as DistMult results
are also better than those previously reported (Yang et al., 2015)—along with the use of
the log-likelihood objective. It seems that in general AdaGrad is relatively insensitive to
the initial learning rate, perhaps causing some overconfidence in its ability to tune the step
size online and consequently leading to less efforts when selecting the initial step size.

5.4 Training time

As defended in Section 2, having a linear time and space complexity becomes critical when
the dataset grows. To illustrate this, we report in Figure 6 the evolution of the filtered MRR
on the validation set as a function of time, for the best set of validated hyper-parameters
for each model. The convergence criterion used is the decrease of the validation filtered
MRR—computed every 50 iterations—with a maximum number of iterations of 1000 (see
Algorithm 1). All models have a linear complexity except for RESCAL that has a quadratic
one in the rank of the decomposition, as it learns one matrix embedding for each relation
r ∈ R. Timings are measured on a single NVIDIA Tesla P40 GPU.

On WN18, all models reach convergence in a reasonable time, between 15 minutes and
1 hour and 20 minutes. The difference between RESCAL and the other models is not sharp
there, first because its optimal embedding size (K = 50) is lower compared to the other
models. Secondly, there are only |R| = 18 relations in WN18, hence the memory footprint
of RESCAL is pretty similar to the other models—because it represents only relations with
matrices and not entities. On FB15K, the difference is much more pronounced, as RESCAL
optimal rank is similar to the other models; and with |R| = 1345 relations, RESCAL has
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Figure 6: Evolution of the filtered MRR on the validation set as a function of time, on WN18
(top) and FB15K (bottom) for each model for its best set of hyper-parameters.
The best rank K is reported in legend. Final black marker indicates that the
maximum number of iterations (1000) has been reached (RESCAL on WN18,
TransE on FB15K).

a much higher memory footprint, which implies more processor cache misses due to the
uniformly-random nature of the SGD sampling.

RESCAL took more than four days to train on FB15K, whereas other models took
between 40 minutes and 3 hours. While a few days might seem manageable, this could not
be the case on larger data sets, as FB15K is but a small subset of Freebase that contains
|R| = 35000 relations (Bollacker et al., 2008). This experimentally supports our claim that
linear complexity is required for scalability.
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Figure 7: Influence of the number of negative triples generated per positive training example
on the filtered test MRR and on training time to convergence on FB15K for the
ComplEx model withK = 200, λ = 0.01 and α = 0.5. Times are given relative to
the training time with one negative triple generated per positive training sample
(= 1 on time scale).

5.4.1 Influence of Negative Samples

We further investigated the influence of the number of negatives generated per positive
training sample. In the previous experiment, due to computational limitations, the number
of negatives per training sample, η, was validated over the set {1, 2, 5, 10}. On WN18 it
proved to be of no help to have more than one generated negative per positive. Here we
explore in which proportions increasing the number of generated negatives leads to better
results on FB15K. To do so, we fixed the best validated λ,K, α obtained from the previous
experiment. We then let η vary in {1, 2, 5, 10, 20, 50, 100, 200}.

Figure 7 shows the influence of the number of generated negatives per positive train-
ing triple on the performance of ComplEx on FB15K. Generating more negatives clearly
improves the results up to 100 negative triples, with a filtered MRR of 0.737 and 64.8%
of Hits@1, before decreasing again with 200 negatives, probably due to the too large class
imbalance. The model also converges with fewer epochs, which compensates partially for
the additional training time per epoch, up to 50 negatives. It then grows linearly as the
number of negatives increases.

5.4.2 WN18 Embeddings Visualization

We used principal component analysis (PCA) to visualize embeddings of the relations of the
WordNet data set (WN18). We plotted the four first components of the best DistMult
and ComplEx model’s embeddings in Figures 8 & 9. For the ComplEx model, we simply
concatenated the real and imaginary parts of each embedding.
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Figure 8: Plots of the first and second components of the WN18 relations embeddings using
principal component analysis. Red arrows link the labels to their point. Top:
ComplEx embeddings. Bottom: DistMult embeddings. Opposite relations
are clustered together by DistMult while correctly separated by ComplEx.
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Figure 9: Plots of the third and fourth components of the WN18 relations embeddings using
principal component analysis. Red arrows link the labels to their point. Top:
ComplEx embeddings. Bottom: DistMult embeddings. Opposite relations
are clustered together by DistMult while correctly separated by ComplEx.
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Most of WN18 relations describe hierarchies, and are thus antisymmetric. Each of
these hierarchic relations has its inverse relation in the data set. For example: hypernym /
hyponym, part of / has part, synset domain topic of / member of domain topic. Since
DistMult is unable to model antisymmetry, it will correctly represent the nature of each
pair of opposite relations, but not the direction of the relations. Loosely speaking, in
the hypernym / hyponym pair the nature is sharing semantics, and the direction is that
one entity generalizes the semantics of the other. This makes DistMult representing the
opposite relations with very close embeddings. It is especially striking for the third and
fourth principal component (Figure 9). Conversely, ComplEx manages to oppose spatially
the opposite relations.

6. Related Work

We first discuss related work about complex-valued matrix and tensor decompositions, and
then review other approaches for knowledge graph completion.

6.1 Complex Numbers

When factorization methods are applied, the representation of the decomposition is gen-
erally chosen in accordance with the data, despite the fact that most real square matrices
only have eigenvalues in the complex domain. Indeed in the machine learning community,
the data is usually real-valued, and thus eigendecomposition is used for symmetric matri-
ces, or other decompositions such as (real-valued) singular value decomposition (Beltrami,
1873), non-negative matrix factorization (Paatero and Tapper, 1994), or canonical polyadic
decomposition when it comes to tensors (Hitchcock, 1927).

Conversely, in signal processing, data is often complex-valued (Stoica and Moses, 2005)
and the complex-valued counterparts of these decompositions are then used. Joint diago-
nalization is also a much more common tool than in machine learning for decomposing sets
of (complex) dense square matrices (Belouchrani et al., 1997; De Lathauwer et al., 2001).

Some works on recommender systems use complex numbers as an encoding facility, to
merge two real-valued relations, similarity and liking, into one single complex-valued matrix
which is then decomposed with complex embeddings (Kunegis et al., 2012; Xie et al., 2015).
Still, unlike our work, it is not real data that is decomposed in the complex domain.

In deep learning, Danihelka et al. (2016) proposed an LSTM extended with an associative
memory based on complex-valued vectors for memorization tasks, and Hu et al. (2016) a
complex-valued neural network for speech synthesis. In both cases again, the data is first
encoded in complex vectors that are then fed into the network.

Conversely to these contributions, this work suggests that processing real-valued data
with complex-valued representation, through a projection onto the real-valued subspace,
can be a very simple way of increasing the expressiveness of the model considered.

6.2 Knowledge Graph Completion

Many knowledge graphs have recently arisen, pushed by the W3C recommendation to use
the resource description framework (RDF) (Cyganiak et al., 2014) for data representation.
Examples of such knowledge graphs include DBPedia (Auer et al., 2007), Freebase (Bollacker
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et al., 2008) and the Google Knowledge Vault (Dong et al., 2014). Motivating applications
of knowledge graph completion include question answering (Bordes et al., 2014b) and more
generally probabilistic querying of knowledge bases (Huang and Liu, 2009; Krompaß et al.,
2014).

First approaches to relational learning relied upon probabilistic graphical models (Getoor
and Taskar, 2007), such as bayesian networks (Friedman et al., 1999) and markov logic net-
works (Richardson and Domingos, 2006; Raedt et al., 2016).

With the first embedding models, asymmetry of relations was quickly seen as a problem
and asymmetric extensions of tensors were studied, mostly by either considering indepen-
dent embeddings (Franz et al., 2009) or considering relations as matrices instead of vectors
in the RESCAL model (Nickel et al., 2011), or both (Sutskever, 2009). Direct extensions
were based on uni-,bi- and trigram latent factors for triple data (Garcia-Duran et al., 2016),
as well as a low-rank relation matrix (Jenatton et al., 2012). Bordes et al. (2014a) propose
a two-layer model where subject and object embeddings are first separately combined with
the relation embedding, then each intermediate representation is combined into the final
score.

Pairwise interaction models were also considered to improve prediction performances.
For example, the Universal Schema approach (Riedel et al., 2013) factorizes a 2D unfolding
of the tensor (a matrix of entity pairs vs. relations) while Welbl et al. (2016) extend this
also to other pairs. Riedel et al. (2013) also consider augmenting the knowledge graph
facts by exctracting them from textual data, as does Toutanova et al. (2015). Injecting
prior knowledge in the form of Horn clauses in the objective loss of the Universal Schema
model has also been considered (Rocktaschel et al., 2015). Chang et al. (2014) enhance the
RESCAL model to take into account information about the entity types. For recommender
systems (thus with different subject/object sets of entities), Baruch (2014) proposed a non-
commutative extension of the CP decomposition model. More recently, Gaifman models
that learn neighborhood embeddings of local structures in the knowledge graph showed
competitive performances (Niepert, 2016).

In the Neural Tensor Network (NTN) model, Socher et al. (2013) combine linear trans-
formations and multiple bilinear forms of subject and object embeddings to jointly feed
them into a nonlinear neural layer. Its non-linearity and multiple ways of including in-
teractions between embeddings gives it an advantage in expressiveness over models with
simpler scoring function like DistMult or RESCAL. As a downside, its very large number
of parameters can make the NTN model harder to train and overfit more easily.

The original multilinear DistMult model is symmetric in subject and object for every
relation (Yang et al., 2015) and achieves good performance on FB15K and WN18 data sets.
However it is likely due to the absence of true negatives in these data sets, as discussed in
Section 5.3.2.

The TransE model from Bordes et al. (2013b) also embeds entities and relations in the
same space and imposes a geometrical structural bias into the model: the subject entity
vector should be close to the object entity vector once translated by the relation vector.

A recent novel way to handle antisymmetry is via the Holographic Embeddings (HolE)
model by Nickel et al. (2016b). In HolE the circular correlation is used for combining
entity embeddings, measuring the covariance between embeddings at different dimension
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shifts. This model has been shown to be equivalent to the ComplEx model (Hayashi and
Shimbo, 2017; Trouillon and Nickel, 2017).

7. Discussion and Future Work

Though the decomposition proposed in this paper is clearly not unique, it is able to learn
meaningful representations. Still, characterizing all possible unitary diagonalizations that
preserve the real part is an interesting open question. Especially in an approximation setting
with a constrained rank, in order to characterize the decompositions that minimize a given
reconstruction error. That might allow the creation of an iterative algorithm similar to
eigendecomposition iterative methods (Saad, 1992) for computing such a decomposition for
any given real square matrix.

The proposed decomposition could also find applications in many other asymmetric
square matrices decompositions applications, such as spectral graph theory for directed
graphs (Cvetković et al., 1997), but also factorization of asymmetric measures matrices
such as asymmetric distance matrices (Mao and Saul, 2004) and asymmetric similarity
matrices (Pirasteh et al., 2015).

From an optimization point of view, the objective function (Equation (10)) is clearly
non-convex, and we could indeed not be reaching a globally optimal decomposition using
stochastic gradient descent. Recent results show that there are no spurious local minima
in the completion problem of positive semi-definite matrix (Ge et al., 2016; Bhojanapalli
et al., 2016). Studying the extensibility of these results to our decomposition is another
possible line of future work. The first step would be generalizing these results to symmetric
real-valued matrix completion, then generalization to normal matrices should be straight-
forward. The two last steps would be extending to matrices that are expressed as real part
of normal matrices, and finally to the joint decomposition of such matrices as a tensor. We
indeed noticed a remarkable stability of the scores across different random initialization of
ComplEx for the same hyper-parameters, which suggests the possibility of such theoretical
property.

Practically, an obvious extension is to merge our approach with known extensions to
tensor factorization models in order to further improve predictive performance. For ex-
ample, the use of pairwise embeddings (Riedel et al., 2013; Welbl et al., 2016) together
with complex numbers might lead to improved results in many situations that involve
non-compositionality. Adding bigram embeddings to the objective could also improve the
results as shown on other models (Garcia-Duran et al., 2016). Another direction would be
to develop a more intelligent negative sampling procedure, to generate more informative
negatives with respect to the positive sample from which they have been sampled. This
would reduce the number of negatives required to reach good performance, thus accelerat-
ing training time. Extension to relations between more than two entities, n-tuples, is not
straightforward, as ComplEx’s expressiveness comes from the complex conjugation of the
object-entity, that breaks the symmetry between the subject and object embeddings in the
scoring function. This stems from the Hermitian product, which seems to have no standard
multilinear extension in the linear algebra literature, this question hence remains largely
open.
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8. Conclusion

We described a new matrix and tensor decomposition with complex-valued latent factors
called ComplEx. The decomposition exists for all real square matrices, expressed as the
real part of normal matrices. The result extends to sets of real square matrices—tensors—
and answers to the requirements of the knowledge graph completion task : handling a
large variety of different relations including antisymmetric and asymmetric ones, while
being scalable. Experiments confirm its theoretical versatility, as it substantially improves
over the state-of-the-art on real knowledge graphs. It shows that real world relations can
be efficiently approximated as the real part of low-rank normal matrices. The generality
of the theoretical results and the effectiveness of the experimental ones motivate for the
application to other real square matrices factorization problems. More generally, we hope
that this paper will stimulate the use of complex linear algebra in the machine learning
community, even and especially for processing real-valued data.
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