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Summary

Background: Subsets of patients with severe asthma remain symptomatic despite

prolonged, high-dose glucocorticoid therapy. We hypothesized that the clinical glu-

cocorticoid sensitivity of these asthmatics is reflected in differences in peripheral

blood dendritic cell subsets.

Objective: To compare peripheral blood leucocyte populations using flow cytometry

at baseline and after 2 weeks of systemic glucocorticoid (steroid) treatment to iden-

tify immunological differences between steroid-sensitive (SS) and steroid-resistant

(SR) asthmatics.

Methods: Adult severe asthmatics (SS n = 12; SR n = 23) were assessed for their

response to 2 weeks of therapy with oral prednisolone. Peripheral blood was

obtained before and after therapy and stained for lymphocyte (CD3, CD19, CD4,

CD8 and Foxp3) and dendritic cell markers (Lineage negative [CD3, CD14, CD16,

CD19, CD20, CD56], HLA-DR+, CD304, CD11c, ILT3 and CD86).

Results: A higher median frequency of myeloid DCs (mDCs) but not plasmacytoid

DCs (pDCs) was observed in the blood of SR as compared to SS asthmatics

(P = .03). Glucocorticoid therapy significantly increased median B cell, but not T cell

numbers in both cohorts, with a trend for increased numbers of Foxp3+ Tregs in SS

(P = .07), but not SR subjects. Oral prednisolone therapy significantly reduced the

median numbers and frequencies of total DCs and pDCs in both SS and SR asth-

matics. Interestingly, the expression of HLA-DR and ILT3 was also reduced on pDCs

in all patients. In contrast, therapy increased the median frequency of mDCs in SS,

but reduced it in SR asthmatics.

Conclusions: Myeloid DC frequency is elevated in SR compared with SS asthmatics,

and mDC shows a differential response to oral prednisolone therapy.
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1 | INTRODUCTION

Asthma is characterized by airway hyperresponsiveness, T cell-

mediated inflammation, mucus hypersecretion and airway remod-

elling. Glucocorticoids (steroids) represent the cornerstone of con-

temporary asthma therapy, improving lung function and asthma

symptoms in many patients (steroid sensitive, SS). Beyond these glo-

bal features of asthma pathophysiology, however, evidence contin-

ues to accumulate about the heterogeneity of the disease in terms

of its natural history, the nature and degree of associated airways

inflammation and its responsiveness to steroid therapy.1 Indeed, it

has been evident for some time that there exists a subgroup of asth-

matic patients showing no demonstrable clinical benefit, at least in

terms of short- to medium-term improvement in lung function, in

response to physiologically appropriate systemic steroid therapy

(steroid resistant, SR). These patients are at risk of high morbidity

and mortality, and as such pose an unmet clinical need.

Several mechanisms have been proposed to contribute to steroid

non-responsiveness at the cellular level, particularly in T cells, includ-

ing overexpression of pro-inflammatory transcriptional regulators

such as NFjB and AP-1, increased expression of histone deacety-

lases, polymorphisms of the IL-10 gene, elevated expression of the

dominant negative isoform of the glucocorticoid receptor GRb, over-

expression of Th2 cytokines and vitamin D insufficiency.2-10 More

recent evidence also suggests that IL-17A overexpression can be

both a marker and a risk factor for severe and SR asthma.11-17

Notwithstanding these observations, there have been few if any

studies of the dynamic effects of systemic glucocorticoid therapy

in vivo, and in particular, whether glucocorticoids exert differential

effects on lymphocyte frequency and functional differentiation in SS

as compared with SR asthmatics, which may contribute to their dif-

ferent clinical responsiveness. Elucidating the mechanisms behind

steroid-resistant disease is vital to improving treatments for these

patients. As asthmatic inflammation is postulated to be fundamen-

tally lymphocyte driven, the cell types of particular interest, which

may play a role in differential steroid responsiveness in SS and SR

asthmatics, include lymphocytes such as CD4+ T cells including regu-

latory T cells (Tregs), CD8+ T cells, B cells and dendritic cells

(DCs).8,18 Dendritic cells are sentinels of the immune system, as they

are early sensors of “stress” or pathogens, and when such signals are

detected, they will mature and migrate to local lymph nodes to initi-

ate an adaptive immune response. DCs present antigen-derived pep-

tides (such as those derived from processed allergens) bound to

MHC molecules as well as costimulatory molecules (CD80 and

CD86) to T cells which bind to the T cell receptor (TCR) and CD28,

respectively, resulting in T cell activation and functional differentia-

tion. In contrast inhibitory receptors, such as immunoglobulin-like

transcript 3 (ILT3), are associated with a more tolerogenic DC phe-

notype, as an expression of ILT3 has been shown to promote the

generation of Foxp3+ Treg.19-21

There are 2 major subsets of DCs: myeloid dendritic cells (mDCs)

and plasmacytoid dendritic cells (pDCs). The study of DCs is relevant

to asthma as mDCs are resident in the airway mucosa and survey

the airway lumen for antigen and particulates.22 Myeloid DCs have

been shown to induce a Th2-inflammatory response in the airways

of asthmatics in response to aeroallergen exposure, which results in

eosinophilic infiltration and disease exacerbation.23 Plasmacytoid

DCs express high levels of IL-3R, CD123, and MHC class II, and very

low levels of costimulatory molecules, pDCs are specialized for pro-

duction of high levels of anti-viral type 1 interferon production and

prime Th1 effector generation.24 However, pDCs may also play a

role in generating tolerance to inhaled antigens,25 to protect the

epithelium from damage caused by aberrant T cell responses to

otherwise harmless antigens and particulates.

The aim of this study was to investigate differences in peripheral

blood DC frequency, number and phenotype in clinically defined SS

and SR asthma patients, and the impact of 2 weeks of oral pred-

nisolone treatment on these parameters. We further investigated

whether this was associated with any changes in lymphocyte fre-

quency and numbers. We hypothesized that SS patients demonstrate

a less activated, more tolerogenic DC phenotype in comparison with

SR patients reflected in the frequency of their circulating, regulatory

T cells, and that glucocorticoid treatment enhances this phenotype

in SS individuals.

2 | MATERIALS AND METHODS

2.1 | Subjects

All patients recruited provided written, informed consent (National

Research Ethics Committee 08/H0804/84). Eligible patients had a

specialist physician diagnosis of moderate to severe asthma for at

least 6 months and were managed with inhaled steroids and short-

and long-acting bronchodilators corresponding to therapy step 3 or

4 of the 2012 British Thoracic Society (BTS) guidelines on the man-

agement of asthma.26 At recruitment, all patients were required to

demonstrate airways obstruction with a pre-bronchodilator FEV1 of

<80% of the predicted value, and clear reversibility of this obstruc-

tion in response to short-acting bronchodilator (>12% improvement

following inhalation of 400 lg of salbuterol). In addition, all patients

had undergone a detailed assessment to exclude a diagnosis other

than asthma and comorbidities affecting asthma control. Patients

had not been exposed to systemic steroids for at least 4 weeks prior

to the study. Patients on immunotherapy, smokers or patients who

had symptoms and signs suggesting a respiratory tract infection or

any asthma exacerbation during the 4 weeks prior to enrolment for

the study were also excluded.

Eligible patients were characterized as steroid sensitive or resis-

tant as defined by a ≥10% or <10% improvement, respectively, in

baseline FEV1 following a pharmacodynamically standardized, a 14-

day course of oral prednisolone (40 mg/1.73 m2/d; Wockhardt UK

Ltd, Wrexham, UK).27 Ongoing inhaled therapy was not altered dur-

ing this treatment. Routine spirometry was measured before and

after the course of prednisolone using a PC based spirometer and

software (WinspiroPRO Medical International Research, Rome, Italy).

Peripheral venous blood was obtained from all study subjects and
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collected into tubes containing sodium citrate and was directly

stained as described below.

2.2 | Flow cytometry

The following antibodies were used for ex vivo phenotyping of

peripheral blood obtained from asthma donors: CD3, CD4, CD8,

CD11c, CD14, CD16, CD19, CD20, CD56, CD86 and HLA-DR (SK7,

RPA-T4, RPA-T8, B-ly6, MφP9, 3G8, HIB19, 2H7, NCAM16.2, 2331

[FUN-1] and L243, respectively; BD Biosciences, Oxford, UK), ILT3

and Foxp3 (ZM4.1 and PCH101, respectively; eBiosciences, Hatfield,

UK) and CD304 (BDCA-4) (AD5-17F6; Miltenyi Biotec Bisley, UK).

Red blood cells were lysed following staining with BD FACS lysing

solution. Foxp3 staining was performed as previously described.18

Samples were subsequently processed on a FACSCalibur flow

cytometer running CellQuest Pro software (BD Biosciences), which

was also used for analysis. A live dead stain was not used as the

flow cytometry staining was performed on whole blood ex vivo.

Absolute and differential blood leucocyte counts were performed

routinely using a LH750 haematology analyser (Beckman Coulter,

CA, USA) and analysed in conjunction with flow cytometric data to

calculate cell numbers.

2.3 | Cytometric bead array

Serum samples collected from the asthmatics were analysed for the

following cytokines (IL-1b, IL-5, IL-8, IL-6, IL-13, IL-17A, IFNc, GM-

CSF and TNFa) using a cytometric bead array according to the man-

ufacturer’s instructions (BD Bioscience). The lower limit of detection

was 1.5 pg/mL.

2.4 | Statistics

Data were assessed for equivalence to a Gaussian distribution and

equality variance after which the appropriate parametric or nonpara-

metric test was performed (see individual figure legends). Differences

were considered significant at the 95% confidence level. Box-and-

whisker plots represent the median, interquartile range and 10th to

90th percentiles, with outliers outside the 10th to 90th percentiles

shown as individual points.

3 | RESULTS

3.1 | Study patients and clinical steroid
responsiveness

Clinical and demographic details of the study patients have been

published previously.28 Briefly, the asthmatic patients differentiated

as steroid sensitive (SS) or SR based on their FEV1 response to a

pharmacodynamically standardized course of oral prednisolone were

otherwise well matched in terms of age, ethnicity, sex, atopic status,

body mass index, total inhaled steroid dosage and baseline FEV1.

Mean (95% CI) FEV1 significantly improved from 56.0 (47.4%-64.6%)

to 70.8 (62.6%-79.0%) of the predicted value following prednisolone

in the SS asthmatics (P < .0001), whereas in the SR patients there

was no significant change: 61.3 (55.3%-67.3%) to 59.7 (52.8%-

66.5%) (P = .18) (Table S1). Demographic data on healthy control

subjects studied are also provided in Table S1.

3.2 | Oral prednisolone significantly increases the
number of peripheral blood B cells

Cell surface staining was performed on peripheral blood cells of sev-

ere asthmatics and healthy control subjects. No differences in the

frequency of lymphocyte populations between healthy controls and

the severe asthmatics were observed at baseline (Table 1).

Cell surface staining was also performed on SS and SR asthmatics

before and after the 2-week course of prednisolone, which was used

to define their responder status. As previously reported,28 there were

no significant differences between the groups in the median numbers

of circulating total B cells, T cells, CD4+ T cells or CD8+ T cells prior

to oral prednisolone treatment. Following treatment with oral pred-

nisolone, no significant change in the median total numbers of circu-

lating lymphocytes in the SR and SS asthmatic was seen (Figure 1A).

The median total numbers of circulating B cells, as defined by CD19+

cell surface expression, significantly increased in both groups post-

prednisolone without significant change in the median total numbers

of circulating T cells (as defined by CD3+ cell surface expression),

CD4+ T cells or CD8+ T cells (Figure 1B). Prednisolone therapy was

also associated with a trend towards an increase in the median total

number of circulating Foxp3+ T regulatory cells in the SS, but not the

SR asthmatics (Figure 1C). This staining was performed ex vivo on

whole blood to ascertain that we were looking at “real” Treg popula-

tions, as it has been reported that Foxp3 can be induced in T effector

cells by activation. Therefore, in a number of severe asthmatics, we

included in the staining protocol antibodies specific for CD25 and

CD127, as cells that are CD25high and CD127low are reported to

represent Treg cells with suppressive function.29 The Foxp3+ CD4+ T

cells that we identified as Tregs had >90% of cells falling in the gate

CD25hiCD127lo, whereas the Foxp3- T cells had only 2.9% of cells

TABLE 1 The frequency of lymphocytes is similar between severe
asthmatics and healthy controls

Healthy Severe asthma P value

CD19+ lymphocytes 7.32 (5.7-8.9) 8.45 (7.2-9.8) .37

CD3+ lymphocytes 59.70 (50.1-69.3) 58.99 (55.1-62.9) .87

CD4+ T cells 62.15 (55.3-67.0) 65.10 (61.1-69.06) .47

CD8+ T cells 29.91 (23.2-36.7) 30.04 (26.2-33.9) .97

CD3+/CD19+ ratio 8.96 (5.9-12.0) 8.41 (7.1-9.7) .70

Foxp3+ CD4+ T cells 7.99 (7.2-8.8) 7.88 (6.9-8.8) .46

n = 10 n = 35

Healthy controls and severe asthmatics were assessed at baseline for

lymphocyte populations including B Cells (CD19+), T cells (CD3+) and for

T regulatory cells (Foxp3+CD4+ T cells). Data are shown as mean � 5%-

95% confidence intervals.
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falling in the gate (Figure S1A). Also, when the frequency of CD4+

Foxp3+ cells was correlated with the frequency of CD127loCD25hi T

cells, there was a significant positive correlation between these 2

populations (r = .752 P < .0001) strongly suggesting that we are

looking at “true” Treg cells (Figure S1B). The MFI of Foxp3 in the

Foxp3+ Treg cells is also shown, although no difference was

observed between the 2 groups (Figure S1C).

No difference in the eosinophil and neutrophil numbers was pre-

viously reported between SS and SR asthmatics pre-steroids.28 Here

we show that there is a significant reduction in the ratio of eosino-

phils to neutrophils in both SS and SR asthmatics after prednisolone

treatment (Figure 1D).

3.3 | Increased frequency of myeloid dendritic cells
in the peripheral blood of steroid-resistant as
compared to steroid-sensitive asthmatics

Dendritic cells (DCs) are sentinels of the immune system; DCs were

characterized as being lineage cocktail (CD3, CD14, CD16, CD19,

CD20 and CD56) negative and HLA-DR+ cells. Two major DC sub-

sets, myeloid and plasmacytoid (mDC and pDC, respectively), can be

distinguished based on cell surface expression of 2 well-characterized

molecules CD11c for mDCs and CD304 (BDCA-4; Neuropilin 1) for

pDCs30 (Figure 2A). The median frequency of CD11c+ mDCs, within

the Lineage-HLA-DR+ gate, was significantly elevated in the periph-

eral blood of the SR as compared to the SS asthmatics, whereas

there was no significant difference in the median frequencies of

CD304 pDCs between the 2 patient groups (Figure 2B). This

resulted in a trend (P = .09) towards an increased ratio of mDC:pDC

cells in the SR as compared to the SS asthmatics (Figure 2C).

We also measured cell surface expression of HLA-DR and the

costimulatory molecule CD86 on mDCs and pDCs, as well as that of

the Immunoglobulin-like transcript 3 (ILT3), an inhibitory receptor

implicated in promoting tolerance in T cells.19-21 Myeloid DCs

expressed significantly higher surface CD86 and HLA-DR, as mea-

sured by median fluorescence intensity, but lower surface ILT3 as

compared to pDCs (Figure 3A; P < .001 in each case). We observed

no significant difference, however, in the median intensity of expres-

sion of these cell surface molecules in the SS vs SR asthmatic

patients (Figure 3B).

3.4 | Prednisolone treatment significantly
decreased total dendritic cells and plasmacytoid
dendritic cells frequencies

As shown in Figure 4, a 2-week course of oral prednisolone resulted

in a significant reduction in the median frequencies of total DCs in

the leucocyte population of both SS and SR asthmatics (Figure 4A).

This was reflected in a reduction in the median absolute number of

total DCs in SR asthmatics (P < .01), but not in SS asthmatics

(P = .23; Figure 4B). There was a significant reduction in the median

absolute number and frequency of pDCs in both SS and SR asthmat-

ics. In contrast, quite different effects of prednisolone were

observed on mDCs in the two severe asthma groups. In the SR asth-

matics, there was a significant reduction in the median frequency

and number of peripheral blood mDCs following prednisolone ther-

apy. Conversely, in the SS asthmatics, there was a significant

increase in the median frequency (P < .05), which is most likely due

to the decreased frequency of pDCs in the Lineage-HLA-DR+ gate.

This is reflected in the lack of change in the median absolute number

(P = .77) of mDCs following prednisolone therapy (Figure 4A and B).

Interestingly, these changes in DC subtypes resulted in a significant

increase (P < .001) in the median overall ratio of mDCs to pDCs in

the SS, but not the SR patients (Figure 4C).
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The expression of surface CD86, HLA-DR and ILT3 was also

measured on peripheral blood mDCs and pDCs from the SS and SR

asthmatics before and after prednisolone therapy (Table 2). Steroid

therapy was associated with reduced expression of ILT3 and HLA-

DR on pDCs in both the SS and SR asthmatics, whereas there was

no significant effect on CD86 expression. There was no significant

effect of steroids on the ILT3 expression on mDCs. There was, how-

ever, a suggestion of a differential effect of prednisolone on mDC

cell surface expression of CD86 and HLA-DR in the SS, as compared

with the SR asthmatic patients: there was a trend towards reduced

expression of CD86 (P = .088) and HLA-DR (P = .065) on mDCs in

the SS patients which was not observed in the SR patients (Table 2).

3.5 | Steroid treatment does not significantly alter
the serum cytokine profile

Steroids are known to alter cytokine secretion by multiple cell types,

and these cytokines in turn can regulate lymphocyte and dendritic

cell populations. The concentration of a number of cytokines in the

serum of healthy and severe asthmatics (pre- and post-steroids) was

therefore investigated to explore whether these might reflect and/or

contribute to the differences observed in the frequency of Tregs and

DCs in the peripheral blood. A range of cytokines was assessed; how-

ever, the cytokines IL-1b, IL-5, IL-21, IFNc and GM-CSF were unde-

tectable in the majority of samples assessed. Interestingly, the

healthy control subjects had significantly higher IL-13 in their serum

as compared to the severe asthmatics (P = .0002), whilst conversely,

asthma patients had higher levels of IL-6 and IL-8 as compared to the

healthy controls (both P < .0001; Figure 5A). However, there was no

significant difference in the quantities of cytokines in the serum of

SS and SR asthmatics at baseline. Treatment of SR asthmatics with

prednisolone resulted in a significant reduction in the cytokines IL-6,

IL-8 and IL-23p40, which was not observed in the SS; however, this

may be due to the lower number of SS individuals (Figure 5B). These

differences, whilst of interest, do not obviously explain the differ-

ences observed in the DC and Treg populations reported here.

4 | DISCUSSION

The present study sought to determine whether differences could

be detected in circulating leucocyte populations between disease

severity-matched SS and SR asthma patients. Our findings support

our original hypothesis that SS patients demonstrate a less activated

DC phenotype and that glucocorticoid treatment enhances this phe-

notype in SS individuals in comparison with SR patients. Specifically,

we observed that a significantly higher frequency of mDCs was pre-

sent in the peripheral blood of SR as compared to SS asthmatics at

baseline. Although prednisolone treatment resulted in an increased

frequency of circulating mDC in the SS cohort, these cells demon-

strated a trend towards a less stimulatory phenotype with reduced

expression of HLA-DR and CD86, as well as a trend for an increase

in the circulating Foxp3+ Treg population, which contrasted with our

observations in the SR cohort. Thus, we demonstrate that significant

differences resided within the mDC compartment, both at baseline

and following 2 weeks of oral prednisolone therapy, which appears

to reflect a more activated immune phenotype in SR as compared to

SS patients. Importantly, both the SS and SR received the same regi-

men of oral prednisolone (14-day course of oral prednisolone at

40 mg/1.73 m2/d), and there was no difference in the inhaled mean

equivalent inhaled glucocorticoid dosages taken by both groups

(P = .60) as shown previously28; therefore, the differences observed

here are likely due to the 2-week course of prednisolone.

Several of the outcomes examined in this study revealed no dif-

ferences between SS and SR patients, or confirmed independent

observations in different disease cohorts. For example, the
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frequencies of B cells and T cells in the peripheral blood of SS com-

pared with SR severe asthmatics were comparable at baseline. A sig-

nificant increase in the frequencies and total numbers of B cells was

observed in both the SS and SR asthmatics following oral steroids

which, as far as we are aware, has not been previously observed in

patients with asthma. However, an earlier study observed a similar

change in patients with multiple sclerosis post-methylprednisolone

treatment.31 Although of significant interest, as these changes

occurred in both SS and SR populations, they may not be indicative

of important mechanisms underlying the clinical benefit of steroids

in asthma. These data are in contrast to a recent publication which

showed that that there was an increase in the numbers of B and T

cells in the peripheral blood 24 hours after oral steroids which

reverted to baseline within 7 days,32 although in that study a differ-

ent steroid regimen was employed as compared to our study, and a

day 14 time-point was not addressed.

A major observation arising from the current study is that a sig-

nificantly higher frequency of mDCs was present in the peripheral

blood of SR as compared to SS asthmatics at baseline, resulting in

an increase in the ratio of mDCs/pDCs. There was also a trend for

mDCs to exhibit higher expression of CD86 and HLA-DR, but lower

expression of the inhibitory receptor ILT3 than pDCs. These data

suggest, along with earlier independent studies, that mDCs are bet-

ter able to initiate immune responses due to their higher expression

of HLA-DR and CD86.33 Thus, the ratio of mDCs to pDCs may have

important implications in the context of allergic and asthmatic dis-

ease. Models of allergic airway disease suggest that whilst both

mDCs and pDCs take up allergen, the pDC population may preferen-

tially induce tolerance to an inhaled allergen.25,34 Additionally, pDCs

play an important role in combating respiratory infections (a common

trigger of asthma exacerbations), and in children, the number of

peripheral pDCs has been reported to be inversely correlated with

symptoms of lower respiratory infections,35 so changes in the ratio

of mDC:pDC could impact asthma exacerbations.

Myeloid DCs have been shown to initiate Th2-mediated disease

leading to eosinophilic lung inflammation in mice.23 Recently two

independent studies have also proposed that a subset of murine

mDCs (CD11b+) play a vital role in the induction of Th17 responses

in the mucosal tissue by secreting Th17-polarizing molecules such as

IL-23p19, IL-6 and TGF-b.36,37 These data may be of relevance to

steroid refractory asthma, as IL-17A expression is elevated in both

the airways and cultured peripheral blood of more severe asthmatics,

implicating IL-17A in steroid-resistant disease.11,13-17 Asthmatics

have enhanced effector responses associated with disease, and this
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F IGURE 3 Expression of surface CD86,
ILT3 and HLA-DR on myeloid (mDCs) and
plasmacytoid (pDCs) dendritic cells in the
peripheral blood of steroid-sensitive (SS)
and steroid-resistant (SR) asthmatics.
Expression of costimulatory and inhibitory
receptors on DCs was assessed by flow
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at baseline prior to glucocorticoid
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Data assessed by paired t test **P < .01,
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may plausibly result from an increased frequency and/or stimulatory

capacity of their mDCs; additionally, asthmatics have been demon-

strated to have lower numbers of Foxp3+ Tregs.38-40 Our earlier

study reported reduced circulating Foxp3+ T cells in SR compared to

SS individuals.18 Here we report a trend towards an increase in the

circulating Foxp3+ Treg population following oral steroid therapy in

SS patients, which supports and extends earlier independent work

showing increased Foxp3 expression and numbers of Foxp3+ cells

following systemic steroid therapy of moderate/mild asthmatics or

patients with immune thrombocytopenic purpura.41,42 Notably this

was not observed in SR asthmatics, suggesting that failure to

enhance the frequency of Treg cells by steroids may be a factor con-

tributing to clinical resistance, although further studies are warranted

to strengthen this observation. These would include, in addition to

studying a greater number of subjects, the inclusion of additional

markers to define Tregs (such as CTLA-4, LAP, GARP or LAG3) and

assays of suppressive function. Nevertheless, these data are also

consistent with the hypothesis that therapies that increase or main-

tain the Foxp3+ Treg population, such as vitamin D, provide greater

therapeutic benefit.18,43,44

An unexpected, but interesting observation from this study is

that for certain immune parameters, the response of SR asthmatics

to prednisolone treatment is similar to that of SS asthmatics, such as

the reduction in the number of B cells, and pDCs, whilst others

clearly show a different pattern of regulation by prednisolone. This

includes the effects on Tregs and on mDCs discussed further below,
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F IGURE 4 Reduced frequencies and numbers of dendritic cells (DC)s in the peripheral blood of asthmatics following prednisolone therapy.
Steroid-sensitive (SS) and steroid-resistant (SR) asthmatics were assessed before and after a 2-week course of oral prednisolone therapy (A)
frequencies and (B) total numbers of total DCs, mDCs and pDCs; (C) the ratio of CD11c+ as compared to CD304+ DCs in the peripheral blood
of steroid-sensitive (SS; white) and steroid-resistant (SR; grey) severe asthmatics before and after 2 weeks of prednisolone therapy. Data
assessed by Mann-Whitney U test *P < .05, **P < .01, ***P < .001

TABLE 2 Expression of immunoglobulin-like transcript 3 (ILT3) and costimulatory molecules on dendritic cells (DC)s before and after
corticosteroid therapy

Steroid sensitive

P value

Steroid refractory

P valuePre-steroids Post-steroids Pre-steroids Post-steroids

pDCs

ILT3 expression 63.44 (48.56-78.32) 43.64 (32.3-55.0) .028 60.33 (48.8-71.87) 31.89 (26.4-37.4) <.0001

CD86 expression 21.59 (9.9-33.31) 19.55 (3.2-35.9) .693 14.13 (10.5-17.7) 17.74 (11.6-23.7) .251

HLA-DR expression 105.0 (82.3-127.7) 76.03 (51.2-100.8) .012 112.2 (89.7-134.7) 80.28 (62.6-97.9) .032

mDCs

ILT3 expression 27.82 (21.0-34.6) 26.38 (22.0-30.8) .700 27.24 (21.4-33.1) 26.37 (22.0-30.8) .781

CD86 expression 63.19 (50.1-76.3) 51.29 (38.8-63.8) .088 57.72 (41.9-98.7) 52.82 (41.9-67.4) .258

HLA-DR expression 170.1 (130.4-209.9) 129.2 (98.9-159.4) .065 161.6 (107.1-216.1) 132.2 (111.3-153.0) .262

Mean fluorescence intensity (MFI) of cell surface expression of CD86, HLA-DR and inhibitory receptor ILT3 on pDCs (CD304+; top) and mDCs

(CD11c+, bottom) before and after 2 weeks of prednisolone therapy. Data are shown as mean � 5%-95% confidence intervals.
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as well as the reduction in the serum inflammatory cytokine produc-

tion in the SR but not in the SS. Thus, we conclude that steroid

resistance appears to be associated with a differential response to

steroids at the immunological level rather than no response.

In the present study, 2 weeks of prednisolone treatment caused

a significant reduction in the frequency of total DCs, as well as

pDCs, in the peripheral blood of severe asthmatics. This corresponds

with other studies in patients suffering from autoimmune disease

where intravenous methylprednisolone treatment caused a reduction

in the frequency of plasmacytoid DCs in the peripheral blood.25,31,45

This is proposed to reflect the susceptibility of pDCs to glucocorticoid-

induced apoptosis,46 although additional effects of steroids on DC

homing cannot be ruled out.

The most notable differential response to oral prednisolone

treatment in SS and SR patients was observed at the level of mDCs.

There was a significant increase in the frequency of circulating

mDCs in SS asthmatics following steroid therapy alongside a trend

for decreased CD86 and HLA-DR expression on these cells, likely to

render the SS mDCs less stimulatory. The reduction in the expres-

sion of CD86 and HLA-DR is presumed to occur as a direct conse-

quence of the prednisolone treatment on the mDCs, as has been

shown previously in vitro.47 Notably, this change in the frequency of

SS mDCs post-steroids was not reflected in a change in the overall

number, and this may therefore largely reflect the profound inhibi-

tion of pDCs post-prednisolone. Although there was a significant fall

in the median frequency and number of mDCs in the peripheral

blood of SR asthmatics following steroid therapy, there was no sig-

nificant effect on costimulatory molecule expression, so the cells are

likely to remain highly stimulatory. We can only speculate as to the

reasons for the differential effects of oral prednisolone treatment on

mDC populations in SS vs SR asthma patients: it is likely to include a

complex outcome of the effects of steroids on the numbers of

mDCs produced in bone marrow, those recruited into lymph nodes

and tissues and potentially also cell survival.48 Whether, and how,

each of these steps is differentially regulated in SS vs SR asthma is,

as far as we are aware, not clearly delineated and represents an

important area for future research, beyond the scope of the present

study. A limitation of the current study is that the data are from the

peripheral blood only. A recent study reported differences in myeloid

DC in the sputum of children with steroid-treated asthma as com-

pared to age-matched healthy children, although differences pre-

and post-steroid treatment were not reported.49 To gain a full

insight into what is happening in our patients, it would have been

informative to have studied bronchoalveolar lavage (BAL) samples in

parallel with peripheral blood from the same individual, pre- and

post-prednisolone treatment. However, bronchoscopy with BAL car-

ries risks and side effects, especially in severe asthmatics, and was

not therefore part of the current study design.

Another limitation of the current study is the paucity of DC

markers that were utilized, and with hindsight, it would have been

informative to have included, at the very least, the markers CD1c

and CD141 to further differentiate mDC subpopulations into con-

ventional type 1 (cDC1s) and conventional type 2 (cDC2s).50-52 Very

recent studies highlight more extensive panels of antigens that can

be used to further dissect mDc populations.53 Thus, it would have

been informative to have investigated whether, and how, pred-

nisolone targeted these different type of mDC populations.

Collectively, these data demonstrate the differential effects of

2 weeks of oral prednisolone therapy on circulating leucocyte popu-

lations as well as the contrasting effects of this therapy on SS and

SR severe asthmatics with novel differences seen in mDCs between

the 2 types of severe asthmatic. We believe the data from this study

warrant further investigations in severe asthma as to whether the

differential effects of oral prednisolone on mDCs, as well as Foxp3+

Tregs, have a translational impact as a biomarker of clinical respon-

siveness to steroids.
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F IGURE 5 A reduction in serum IL-6, IL-8 and IL-23p40 in SR asthmatics after prednisolone treatment. Serum cytokine concentrations
were assessed by cytometric bead array in (A) healthy controls (white) and severe asthmatics (grey) and (B) steroid-sensitive (SS; white) and
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