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Abstract 

 
The prognosis for patients with acute liver failure is poor, as such a novel method 

for the treatment of these patients is urgently required. The Liver Group bioartificial 

liver (BAL) has been developed to meet this need. The BAL consists of an 

extracorporeal circuit, in which the patient’s plasma is processed through an 

alginate-encapsulated HepG2 cellular biomass. These cells synthesise proteins and 

perform a detoxification function, replacing that of the patient’s own liver.  

The aim of this PhD thesis was to characterise a filtration system for incorporation 

within the BAL, enabling regulatory requirements for use in patients to be met. 

Specifically, the system was to remove potential contaminants originating from the 

biomass, such as cell debris and DNA. The filtration system was to also be assessed 

for the removal of endotoxin, originating from the patient as a cofactor of their liver 

failure, to aid the patient’s recovery.  

This thesis led to the development of a protocol for the incorporation of a filtration 

system into the BAL. Assays for the detection of DNA and endotoxin within human 

plasma samples were successfully optimised for use both in vitro and in vivo. These 

assays enabled the detection of DNA and endotoxin at a lower level concentration 

of 0.1 ng/µl and 1 EU/ml, respectively, facilitating characterisation of the safety 

system to sufficient sensitivity limits required to meet regulatory guidelines.  

DNA, endotoxin and particles were consistently removed from plasma samples by 

the filtration system, whilst beneficial components of the plasma such as albumin 

and fibrinogen, native to the patient or produced by the biomass, were maintained.  

To conclude, this thesis demonstrates that the filtration system was able to remove 

potential BAL-originating contaminants, meeting regulatory guidelines to enable 

its use in patients. The filtration system also demonstrated endotoxin removal 

capacity, providing an additional functional element of this system.  
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1. Introduction 

 

To introduce the reader and lay down the context of this project, background 

information relating to this PhD thesis will be discussed. Further information on 

the function of the liver itself including its structure, key cells relevant to patients 

with liver failure and their vital role in the activity of the liver will be discussed. A 

background on liver failure and the current treatment options available will also be 

reviewed, with a focus on both currently available and work-in-progress 

extracorporeal liver support devices. I will then discuss in further detail as to why 

a quality system is of such importance in this instance, with a focus on current 

guidelines to enable this technology to progress to the next stage, what needs to be 

performed to meet these, and how this can be accomplished.  

 

 

1.1 The liver 

 

1.1.2 An introduction to the liver and its function 

 

The liver is the largest organ in the body, representing between 2% and 3% of an 

average individual’s body weight. It performs numerous functions including 

detoxification, transformation of biological molecules, excretion of waste products, 

synthesis of proteins and the production of hormones.1  

 

The liver is divided into distinct lobes, each of which are made up of individual 

lobules containing millions of hepatocytes surrounding a capillary. The liver is 

connected to the circulatory system via the hepatic artery and the portal vein, which 

carry oxygenated blood from the aorta and nutrient rich blood from the digestive 

system, respectively.1 These main blood networks subdivide into capillary 

networks named liver sinusoids which lead to individual functional units of the 

liver, lobules. Hepatocytes are responsible for carrying out the functional aspects 

associated with the liver.2 The liver is a remarkable organ which has the ability to 
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regenerate itself. It was previously demonstrated that the liver is able to return to 

its original mass after a 65% hepatectomy,3 with complete regeneration occurring 

1 year following surgery. Patients presenting with cirrhosis demonstrate worse 

regeneration than those without. Although the liver is unable to restructure each of 

the four lobes, it can reform lobules and minor anatomical structures.3  

 

 

1.1.3 Key cells of the liver and their processes   

 

The liver contains two subsets of cells, parenchymal and non-parenchymal cells. 

Hepatocytes make up the parenchymal cells of the liver and are the most abundant 

cell type within the organ, making up between 70% and 80% of the liver volume.1,4 

Hepatocytes are responsible for carrying out the liver’s functional processes, 

including the synthesis and storage of proteins and detoxification. Hepatocyte 

numbers within the average human liver vary between 1 x 1011 and 2 x 1011, 

although the liver can continue to function adequately in terms of detoxification 

and synthesis of novel agents at just 35% of this number. Non-parenchymal cells 

represent 40% of the total cell number of the liver, but only 6.5% of liver volume 

and consist of cholangiocytes (epithelial cells), Kupffer cells, liver sinusoidal 

endothelial cells and stellate cells.4  

 

Biotransformation of molecules occurs within the liver. The cytochrome P450 

family are the most important drug-metabolising enzymes present in the liver, 

catalysing the oxidation, reduction or hydrolysis of substances for elimination via 

the kidneys.  Cytochrome P450 is found primarily within the membrane of the 

endoplasmic reticulum present within hepatocytes. In addition to metabolising 

drugs, cytochrome P450 is involved in the synthesis and subsequent breakdown of 

hormones, the synthesis of cholesterol and the metabolism of vitamin D. These 

enzymes also contribute to the conjugation and subsequent clearance of bilirubin, 

a by-product of the breakdown of red blood cells and haemoglobin.5 

 

As stated above, the liver is involved in the conjugation of bilirubin. Unconjugated 

bilirubin is conjugated with a molecule of glucuronic acid, an example of 
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glucuronidation, via the enzyme glucuronyltransferase; this changes bilirubin’s 

properties to make it soluble in water enabling excretion. Conjugated bilirubin is 

excreted into the bile, passes through the gall bladder and into the intestines where 

it is further transformed and either excreted in the faeces or absorbed back into the 

hepatic circulatory system, here it is either recirculated via the gallbladder or 

transported to the kidneys where it is excreted in the urine.1  

 

1.2 Liver failure 

 

Liver failure arises when the liver is unable to perform its metabolic and synthetic 

functions to an adequate level. Liver failure is a potentially life-threatening 

condition, particularly in its acute form.  

 

1.2.1 Types of liver failure 

 

Liver failure can be categorised as acute or chronic, with a third form, 

acute-on-chronic, resulting when patients with chronic liver failure develop the 

features of acute liver failure. Cirrhosis is the primary cause of chronic liver 

failure, with long term damage resulting from multiple potential causes including 

alcohol consumption, hepatitis B or C infection and non-alcoholic fatty liver 

disease which can lead to scar tissue formation.  Scar tissue can replace the 

normal parenchyma, blocking blood flow to the organ and disrupting its function. 

Acute liver failure differs from chronic liver failure and is the result of loss of 

function of 80–90% of liver cells. It is defined as rapid onset severe liver injury 

resulting in hepatic encephalopathy and coagulopathy in individuals without 

pre-existing liver disease.6 This injury can be the result of a reaction to a 

medication, excessive alcohol consumption, or viral hepatitis. Acute liver failure 

can lead to death via hepatic encephalopathy, cerebral oedema, haemorrhage 

and/or sepsis which, subsequently, can lead to multiorgan failure.6 
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1.2.2 Complications associated with liver failure 

 

The liver is involved in the clearance of bacteria and toxins, therefore, in patients 

with liver failure, this clearance mechanism is suppressed, leading to the build-up 

of bacteria and toxins in the patient. Sepsis arises when the body severely reacts 

to infection, leading to injury of its own tissues as a result of inflammatory 

pathogenesis which can subsequently lead to potentially life-threatening organ 

injury.7  

 

 

1.2.3 Treatment options for patients with liver failure 

 

Chronic liver failure is primarily treated by removing the source of the initial 

problem, for example, treating hepatitis with anti-viral medication or terminating 

alcohol consumption in those with alcohol-induced fibrosis. In the case of acute 

liver failure, treatment options are limited. Treatment in intensive care for patients 

with acute liver failure is supportive, including plasma and blood transfusions, 

antibiotics and attempts to reduce intracranial pressure. Frequently, the only 

long-term treatment pathway to consider is that of transplantation.6 Due to the rapid 

progressive nature of acute liver failure, identification of a suitable organ for 

transplantation is rare. A report on survival rates for patients undergoing liver 

transplantation, published in September 2015 by NHS Blood and Transplant, states 

adult patients have a 90% chance of survival 1-year following, and 80% 5-years 

following, transplant.8 A total of 31 liver disease and transplant centres in the 

United States collected data between 1998 and 2013, these data demonstrated that 

only 22.3% of patients with acute liver failure received a transplant and, of 

individuals listed for a transplant who did not receive this, 42.6% did not survive.6   

 

Hepatocyte transplant has been used both as a bridge for patients with acute liver 

failure, to buy time until transplantation or, to promote regeneration of this acute 

injury.9 Liver assist devices exist and can be used either to bridge the gap between 

liver failure and transplantation of a suitable organ, or to allow time for the patient’s 

own liver to recover. These devices can be categorised into artificial and 

bioartificial devices. Artificial liver devices depend upon adsorption based on 
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physical and chemical gradients; these perform a purely detoxification function, 

Bioartificial liver devices, on the other hand, utilise cells to attempt to replicate, as 

closely as possible, the function of the native liver.10 The bioartificial approach, 

therefore, provides both detoxification and synthetic functions, and may well be 

preferable.  

 

 

1.2.3.1 Artificial liver support devices 

 

The majority of artificial liver devices are based on replacing the detoxification 

process of the patient’s own liver through the removal of both water-soluble and 

protein-bound substances. This can be performed in a number of ways, for example, 

using albumin in a dialysis set-up, performing separation and subsequent filtration 

of the patient’s blood plasma, or by using a plasmapheresis machine to undergo 

therapeutic plasma exchange.  

 

An example of an albumin-based approach is the molecular adsorbents 

recirculating system (MARS); on treatment with this system, the patient’s whole 

blood is circulated in a cross-flow system across a 50–60 kDa albumin impermeable 

membrane. A solution of 20% albumin is flowed in parallel enabling the exchange 

of materials between the patient’s blood and the albumin filtrate, the albumin 

solution is passed through a secondary circuit where toxins are removed using a 

charcoal column and anion exchange technology. This technique removes the 

build-up of bilirubin and bile acids from the patient’s blood. A meta-analysis of 

data gained through the use of the MARS has demonstrated no survival benefit 

compared with standard medical treatment.11   

 

Therapeutic plasma exchange has been used clinically since the 1960s. In this 

method the patient’s blood plasma is separated from their whole blood, this plasma 

is either replaced with plasma donated from a healthy individual (fresh frozen 

plasma; FFP) or replaced with a solution of human serum albumin. This process, 

in effect, removes any plasma-based toxins and inflammatory mediators that have 

built up in the patient’s circulatory system, replacing the patient’s lost plasma with 
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healthy plasma or albumin. A randomised controlled trial of patients undergoing 

therapeutic plasma exchange demonstrated a survival advantage and an increase in 

patients discharged from hospital compared with standard medical therapy.12  

 

The liver has many functions aside from detoxification. These include the synthesis 

and subsequent release of abundant plasma proteins such as albumin. Therefore, 

the ideal therapy for patients with acute liver failure would replicate all functions 

of the native human liver, including this synthesis of proteins, detoxification of 

ammonia, and metabolism of drugs, carbohydrates and lipids. Systems which move 

closer to this ideal incorporate a live biological aspect in the form of liver cells. 

These bioartificial liver devices will now be discussed to view their current status 

and future prospects.   

 

 

1.2.3.2 Extracorporeal bioartificial liver support devices 

 

Bioartificial liver support devices can use a range of cell types including, human 

hepatocytes, xenogeneic cells and hepatocyte-derived cell lines. Human primary 

hepatocytes present with functionality closer to that of the native human liver 

compared with various cell lines. These primary cells are difficult to obtain due to 

the lack of available organs, they also have a low in vitro survival rate, meaning 

that they are difficult to culture to a sufficient quantity.13 Xenogeneic cells pose a 

potential risk in terms of transmission of endogenous viruses and can possibly lead 

to the patient experiencing immunogenicity reactions against these cells. 

Hepatocyte-derived cell lines have been shown to lack the functionality of native 

hepatocytes,13 although, this functionality has been improved through utilising 

different culture conditions. A three-dimensional cell culture has been shown to 

more closely replicate the conditions that are seen in the native organ, and has been 

shown to produce cells with a greater functionality when compared with cells 

grown in a monolayer culture.14 

 

Currently, there are many bioartificial liver systems in development which use a 

range of cell sources. The Extracorporeal Liver Assist Device (ELAD), for which 
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clinical trials are currently underway, is one example of these. The ELAD system 

uses C3A cells derived from the HepG2 human hepatoblastoma cell line. These 

cells are suspended within a hollow fibre dialysis cartridge. As yet, early clinical 

trials do not demonstrate a survival advantage compared with standard medical 

treatment.15,16  

 

The Academisch Medisch Centrum Amsterdam (AMC-BAL) is another such 

example of an extracorporeal bioartificial liver system. This system originally 

consisted of primary porcine hepatocytes suspended in a polyester fibre matrix. In 

this system, the patient’s plasma is separated from the whole blood and the plasma 

component is passed through the matrix, where it comes into direct contact with the 

porcine cells. The effectiveness of this system was assessed in twelve patients with 

acute liver failure, all patients treated demonstrated haemodynamic stabilisation 

and improvement in intracranial pressure. Out of the twelve patients treated eleven 

made it through to transplantation and one, following two sessions of treatment 

with the AMC-BAL, required no transplant.17,18 An AMC-BAL has now been 

produced which incorporates HepaRG cells, a human liver cell line, as many 

European countries would not allow treatment with a bioartificial liver containing 

a porcine cell line, due to xenotransplantation-related risk including potential 

transmission of porcine endogenous retrovirus (PERV).19   This new AMC-BAL 

was assessed in a rat model, demonstrating increasing survival time compared with 

an acellular model and demonstrating improvement in clinical parameters of liver 

failure including decreasing hepatic encephalopathy progression and ammonia 

accumulation.19  

 

 

1.3 The Liver Group Bioartificial Liver support device 

 

The UCL Liver Group Bioartificial Liver device, which for the remainder of this 

thesis will be referred to as the BAL, uses cells encapsulated in alginate, a hydrogel 

which is both biocompatible and semi-permeable. By encapsulating cells in this 

manner, the cells may be exposed to the patient’s plasma. The BAL utilises HepG2 

cells, a hepatoblastoma cell line, as its biological component, which perform many 
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functions of the liver. One HepG2 clone has previously been used in an FDA-

approved clinical trial of ELAD in patients with acute liver failure deemed to have 

a 50% survival rate, no biocompatibility issues were observed.15 Utilising a human 

cell line bypasses potential problems arising from xenogeneic systems, such as 

immunogenicity and transmission of endogenous viruses such as PERV. The BAL 

has been assessed in vitro and in vivo in animal models including rabbit and pig.20,21 

 

It was shown that the proliferative capacity of HepG2 cells maintained consistency 

in vitro for 20 days. To enable this, cells were encapsulated into alginate 

microspheres, referred to as encapsulated liver cells (spheroids; ELS) from this 

point forward, and cultured in static culture conditions. Although their proliferative 

capacity was reduced compared with monolayer cultures, the protein production of 

these HepG2 cells was also maintained, with a maximum concentration produced 

between days 8 and 10. Proteins produced by these HepG2 cells in 3D culture 

include albumin, fibrinogen, prothrombin, α-1-acid glycoprotein (AGP) and alpha-

1-antitrypsin (α1AT). Additionally,  cells cultured in this fashion demonstrated an 

increased detoxification function compared with monolayer cells.22,23 The research 

group then went on to study the effect of a micro-gravity culture condition on the 

proliferative capacity and function of these cells. When these cells were cultured as 

ELS under rotating conditions, their viability and structure, including integrity of 

the alginate spheroids in which they were encapsulated, were maintained over a 10-

day period. Additionally, cell number demonstrated a 4.5-fold increase when 

compared with HepG2 cells grown in static culture conditions. A similar increase 

in protein production was seen with cells cultured under these micro-gravity 

conditions.23 The next stage for the group was to further attempt to mimic the 

microgravity conditions that would be experienced by cells in the native liver 

environment. The ELS were cultured within a fluidised bed bioreactor where they 

experienced a microgravity environment for an 8-day period. These culture 

conditions have previously shown to increase the mass transfer and biological 

function of cells. Once cultured, these ELS were exposed to either plasma from a 

healthy human or plasma from a patient with liver failure for an 8-hour period under 

microgravity conditions to replicate the environment in which they would act 

within the BAL. After culture in these conditions, cell viability was maintained 
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with minimum cell damage incurred. Cells were shown to conjugate bilirubin, 

synthesise urea and demonstrated increased cytochrome P450 1A activity.14  

 

 

1.3.1 Previous work on the BAL in vivo 

 

Initially, a small-scale BAL was tested within an acetaminophen-induced acute 

liver failure model in rabbits. Rabbits were used in this scenario as they are the 

larger of the ‘small’ animals and they are easily available for experimentation. In 

these experiments both healthy and liver-failure rabbits were treated with either 

empty alginate spheres or alginate encapsulated HepG2 cells (ELS) to ascertain 

whether any effect of the treatment was due to the alginate or system itself or due 

to the HepG2 cell biological component.21  

 

Following this trial and further enhancement of the biomass, the Liver Group BAL 

was assessed within a porcine model. This model used the surgically induced 

method to produce acute ischaemic liver failure. It is hypothesised that the BAL 

would run for an 8-hour period in the treatment of patients with acute liver failure, 

therefore, an 8-hour treatment time was used for this experiment.20 In this 

experiment, a control was performed using a BAL containing alginate spheres with 

no HepG2 cell component, this was again to understand whether the beneficial 

effect of the BAL was due to the cells themselves, or something else in the system. 

This experiment demonstrated that, when compared with the control artificial liver 

containing no cellular component, an improvement in multiple areas specific to 

acute liver failure was seen. These included a decrease in intracranial pressure, an 

increase in the ability of the blood to form a clot, an increase in the conjugation of 

bilirubin, a decrease in acidosis and an increase liver-specific protein synthesis.20 

 

1.3.2 Meeting regulatory requirements for the BAL 

 

Regulatory requirements and the registration process for new medical products 

vary dependent on whether the treatment in question is a ‘medicine’ (drug) or a 

‘medical device’. The MHRA define a medicine as: 
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“Any substance or combination of substances presented as having properties of 

preventing or treating disease in human beings. Or, any substance or combination 

of substances that may be used by or administered to human beings with a view to 

restoring, correcting or modifying a physiological function by exerting a 

pharmacological, immunological or metabolic action, or making a medical 

diagnosis”.24 

 

By this definition, the Liver Group BAL could be a medicinal product. Although, 

when the Medical Devices Directive definition of a medical device is observed, this 

view may change. The Medical Devices Directive define a medical device as:  

 

“Any instrument, apparatus, appliance, software, material or other article, 

whether used alone or in combination, including the software intended by its 

manufacturer to be used specifically for diagnostic and/or therapeutic purposes 

and necessary for its proper application, intended by the manufacturer to be used 

for human beings for the purpose of: diagnosis, prevention, monitoring, treatment 

or alleviation of disease,  or,  diagnosis, monitoring, treatment, alleviation of or 

compensation for an injury or handicap, or, investigation, replacement or 

modification of the anatomy or of a physiological process, control of conception, 

and which does not achieve its principal intended action in or on the human body 

by pharmacological, immunological or metabolic means, but which may be 

assisted in its function by such means.”25 

 

When these two statements are observed closely, it would seem that the Liver 

Group BAL would better fit under the definition of a ‘medical device’. As the 

Bioartifical liver, once set up and fully functional, is comprised of multiple parts; 

for example, the biomass, the filtration circuit and the COBE Spectra 

plasmapheresis machine used to separate patients plasma from their whole blood. 

It is intended to be used for the ‘treatment or alleviation of disease’, with the 

disease being acute liver failure, it is intended to temporarily replace the 

physiological processes usually performed by the liver, which fits under the 

following statement ‘replacement or modification of the anatomy or of a 

physiological process’. The only section of this definition which doesn’t quite fit 
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in with the medical device setting is the following ‘which does not achieve its 

principal intended action in or on the human body by pharmacological, 

immunological or metabolic means, but which may be assisted in its function by 

such means’, as the BAL maintains its function through metabolic processes 

undergone in the HepG2 cell biomass, although the last segment of this definition 

‘may be assisted in its function by such means’ leaves this open to interpretation.  

 

To gain Food and Drug Administration (FDA) approval, a medical device should 

demonstrate relevant clinical experience. This clinical experience is used to 

generate a benefit-risk profile for the medical device. This profile is then used to 

determine whether the medical device requires further testing and characterisation 

prior to approval. Long-term endpoints in terms of biocompatibility need to be 

assessed, for example potential carcinogenic effect of the device or chronic toxicity. 

These tests are not required in cases where the life expectancy of the patient in 

which the therapy is aimed is limited. This is due to the decreased likelihood of 

their survival to the onset of these potential effects. When designing in vivo 

experiments, biocompatibility endpoints should be identified for measurement, and 

designed in such a way as to view any adverse biological response to the device. 

Potential endpoints include toxicity and thrombogenecity.26 

 

To apply for a first-in-man study, a device must present previous in vivo animal 

study data, including relevant toxicity screening. In addition, complete information 

relating to the manufacture of the device is required, including origin certificates 

for all biologicals and consumables. Detailed protocols for its development and use 

and a full plan including protocols for its use within the clinical trial situation.13 It 

is for this reason that rigorous testing of the BAL, as per its intended use in patients, 

be performed prior to application for first-in-man studies.  

 

 

1.3.3 The need for a filtration system in the Liver Group BAL 

 

The development of an extracorporeal BAL to treat patients with acute liver failure 

by the Liver Group has led to the requirement of a fully optimised filtration protocol 
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to enable this device to be used in a clinical setting. To summarise, the BAL 

currently comprises fully functioning HepG2 liver cells contained within a 3D 

environment consisting of alginate beads stabilised via a crosslinking with calcium 

ions. Once cultured, these ELS are contained within an external chamber. The 

patient’s plasma is passed through this chamber where the ELS act to replace the 

functions that the patient’s own liver cannot perform. This allows time for 

regeneration of the patient’s own liver, or, if this is no longer a possibility, provides 

the patient with sufficient liver function to see them through until a donor organ 

becomes available for transplantation.14 A key element of this device is the removal 

of deoxyribonucleic acid (DNA), endotoxin and particulates from the patient’s 

plasma after it has been processed by the BAL. For this technology to be medicines 

and health products regulatory agency (MHRA) compliant safety measures need to 

be addressed prior to return of the treated plasma to the patient.27,28 

 

 

1.3.4 Potential contaminants within the patient-BAL circuit  

 

There are several potential components of the biomass which could yield 

contaminants during BAL perfusion. Additionally, as a result of their liver failure, 

the patient’s own plasma will accumulate harmful substances. In order for the BAL 

to meet regulatory requirements, only the removal of contaminants originating from 

the BAL itself are required; removal of any additional contaminants originating 

from the patient would provide an additional benefit, but is not a requirement of 

these safety regulations.   

 

 

1.3.4.1 DNA 

 

Cellular apoptosis, programmed cell death, occurs throughout the body as a normal 

physiological process. This process is highly regulated and precisely balances cell 

division in adult tissues, ensuring that adult tissues remain a constant size.  During 

apoptosis, the cell decreases in size and nuclear DNA is degraded into fragments, 

the cell changes structures upon its surface which signal that the cell should be 
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ingested though phagocytosis. Phagocytosis of apoptotic cells ensures that the 

cell’s contents are contained, and the organic matter recycled.29 It has been found 

that although highly controlled, small fragments of DNA generated through 

apoptosis may be present in the circulatory system as cell-free circulating DNA 

(cfDNA).30–32 In contrast to apoptosis, necrosis is the process of premature cell 

death due to injury. This process is not well controlled, with external influences 

such as trauma, infection and toxins leading to unregulated cell digestion. During 

necrosis the integrity of the cell membrane is diminished, releasing the products of 

cellular digestion into the extracellular space. The processes of apoptosis and 

necrosis both lead to the degradation of DNA, although the tightly controlled and 

random events within these processes, respectively, lead to the presence of different 

forms of DNA within the circulatory system. During apoptosis, DNA is degraded 

into 185–200 base pair fragments, whereas for necrosis, DNA degradation is not 

controlled, therefore, the fragments released vary in size, and are typically longer 

than this.31 The difference in length of cfDNA can be used as a measure of DNA 

integrity, defined as a ratio of small to large fragments of DNA. The measurement 

of this ratio can enable conclusions to be drawn as to the general cellular health of 

a sample, by providing an estimate of the ratio at which cells are undergoing 

apoptosis or necrosis.31 

 

Many cells will undergo necrosis as a result of acute liver failure, which leads to a 

higher than normal level of cfDNA.1,33 In addition to cfDNA native to the patient, 

any cell death that may occur in the biomass over the course of patient treatment 

could potentially lead to the release of DNA from the HepG2 cells into the patient’s 

plasma. As this DNA is not native to the patient, it is advised that it be removed. 

At present, there is debate as to any risk posed by cfDNA, but as the World Health 

Organisation declared DNA as a contaminant, it is essential for it to be removed 

from the patient’s plasma after treatment with the BAL in order for this system to 

meet current and potential future regulatory guidelines.3435 The actual quantity of 

cfDNA can vary in healthy individuals from 2.5 ng/ml (0.0025 ng/µl) up to 27.0 

ng/ml (0.027 ng/µl), with an average of 15 ng/ml (0.015 ng/µl).36,37 
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1.3.4.2 Endotoxin 

 

Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) make up the endotoxin 

molecule which is present within the outer cell membrane of gram-negative 

bacteria (Figure 1).  It is an amphiphilic molecule with a size of around 10 kDa, 

exhibiting an overall negative charge which is a result of phosphorylation of the 

core oligosaccharide region (Figure 1).38,39 The immune response stimulated upon 

bacteria introduction into the body can cause the disassociation of endotoxin from 

the bacterial membrane via activation of the complement pathway and phagocytic 

responses.39,40 

 

In a healthy individual, the liver acts as the primary site of endotoxin clearance. 

Small quantities of endotoxin may cross from the intestine into the circulatory 

system, where it is removed by monocytes including Kupffer cells within the liver. 

During acute liver failure the body is in an immunosuppressed state, due to the 

disruption of monocytes, neutrophils, Kuppfer cells and the complement system. 

As such, approximately 30% of patients with acute liver failure also present with 

fungal infections as the body is lacking in the mechanisms that would clear 

introduced pathogens in a healthy individual.41 During liver disease, the 

permeability of the gut membrane is increased, this can lead to leaching of 

endotoxin into the portal vein, and therefore, spread of endotoxin into the 

circulatory system.33 It has been seen that endotoxin levels are increased in patients 

with non-alcoholic fatty liver disease, compared with the healthy population. The 

marked-increases in endotoxin levels in early stage fibrosis have even been 

suggested to be used as an early indicator of liver damage, although these levels 

fluctuate, and no definitive measure of endotoxin concentration has been related to 

various stages of liver disease.42,43 In acute liver failure, both the availability and 

ability of albumin to bind and remove endotoxin from the patient’s circulation is 

irreversibly reduced, leading to a build-up of endotoxin in the patient’s circulation 

and subsequent endotoxaemia, potentially leading to sepsis. Additionally, the 

presence of high endotoxin levels within patients with acute liver failure has been 

linked to an increased chance of complications during treatment. Therefore, the 

removal of endotoxin from the patient’s plasma may provide a survival benefit..33,44 
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It is worth noting that it is unlikely that any endotoxin contamination would arise 

from the BAL biomass, and, therefore, any potential endotoxin present within the 

system would have originated from the patient themselves.27 For this reason, as 

touched upon earlier, a specific mechanism for the removal of endotoxin is not a 

regulatory requirement of this system, but is rather something that may enhance the 

patient’s survival benefit.33,44 

  

Figure 1. Molecular structure of lipopolysaccharide (LPS). The O antigen 

comprises the hydrophilic component of the molecule, consisting of a repeating unit 

specific to bacterial serotype. The core oligosaccharide region contains a short 

chain of sugar molecules, displaying diversity across bacterial species. The lipid A 

region comprises the hydrophobic internal structure and is responsible for the toxic 

effects of LPS. 

 

1.3.4.3 Particles 

 

Due to the nature of the BAL biomass, particles in the form of cell debris and 

alginate from the ELS may be present in small quantities within the plasma after 
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passing through the system. In order to prevent transmission of these to the patient 

during therapy, a method for their safe removal is required.28 

 

 

1.4 Detection of contaminants 

 

 

1.4.1 Detection of DNA in plasma 

 

DNA can be detected using a range of systems, from PCR and electrophoresis to 

using optical systems such as spectrophotometers. One such spectrophotometer is 

the NanoDrop system manufactured by Thermo Fisher, this system uses surface 

tension in combination with fibre optic technology to gain a measure of nucleic 

acid content with a sample. The technology is based the specific pattern of UV light 

absorption by nucleic acids, which is at 260 nm. The measure of optical density 

(log of incident over transmitted light) is used to calculate a specific concentration. 

The benefit of this system is that it can also provide a measure of sample purity, the 

disadvantage is that nucleic samples are recommended to be at a concentration 

above 0.4 ng/µl (400 ng/ml).  

 

Electrophoresis analysis systems are now available such as the Agilent TapeStation 

which uses a gel matrix, integral dyes and a ladder to separate samples using 

molecular weight and gain outputs in terms of nucleic acid fragment size and total 

concentration. The high sensitivity system requires a minimum sample 

concentration of 10 pg/µl (10 ng/ml), and is, therefore, more sensitive in a saline 

sample than the NanoDrop system.  

 

The most sensitive method for the detection of DNA is quantitative real time 

polymerise chain reaction (qPCR). This technique monitors the amplification of 

DNA via the fluorescence either of dyes which interweave the DNA double strand, 

or through fluorescent sequence-specific probes. In brief, a sequence-specific 

primer is used as a template for DNA amplification. The PCR reaction proceeds 

through a series of cycles, each of which is broken down into three distinct stages. 
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These are initial denaturation and separation of the DNA double helix, which 

occurs at a high temperature; lowering of the temperature to allow for binding of 

the primers to the template DNA; subsequent polymerisation and extension of the 

primers carried out by DNA polymerase at a slightly increased temperature. This 

cycle is repeated a number of times, with each repeat producing a doubling of the 

DNA product. Fluorescence is detected at each cycle allowing for real-time 

detection of DNA amplification. Using a curve of known standards, an accurate 

measure of DNA concentration can be deduced, with a limit of detection of 

0.02 pg/µl (0.02 ng/ml) in saline.  

 

The Alu repeat sequence of DNA is abundant in the genome and represents more 

than 10% of human genetic material.31 It has previously been targeted using 115 

base pair primers to gain a measure of DNA released from cells undergoing 

apoptosis.31 

 

Various components present in human plasma are inhibitory to mechanisms for the 

detection of DNA, in particular PCR reactions. Al-Soud et al 200045 used a process 

of elimination to characterise plasma components with the aim of revealing specific 

factors that contribute to inhibition of DNA detection, so that this could be further 

understood and overcome. Their studies focused on inhibitors specific to PCR 

reactions. Their results demonstrated that the main component of plasma interfering 

with the PCR reaction was IgG, an abundant immunoglobulin comprising 

approximately 75% of the antibodies found in human serum.45 It was found that the 

inhibitory effect of IgG was removed upon heating the sample to 95°C prior to 

addition to the PCR reaction. Although, when this was performed in the presence 

of DNA, the opposite effect occurred, blocking amplification of the target due to 

the interaction of template DNA and IgG at high temperatures.45  It was further 

found that the inhibitory effect of IgG could be removed if the plasma was treated 

using DNA-agarose beads prior to addition to the PCR reaction mixture, this was 

due to inhibitors in the plasma binding the DNA-agarose beads. Upon observing 

the inhibitory effect of whole blood on the PCR reaction, the same group 

demonstrated that the addition of 0.4% wt./vol bovine serum albumin (BSA) 

enhanced the efficiency of PCR amplification in blood samples where haemoglobin 

was present, counteracting the negative effect of iron which at concentrations of 
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greater than 25 µM reduces DNA synthesis to <10%.46 The addition of BSA to the 

PCR reaction in Light Cycler instruments is occasionally recommended. It acts to 

coat the wall of the capillary tube, therefore, reducing binding of the reaction 

mixture to the tube itself, relieving the inhibition of DNA amplification.45 

 

In order to work with plasma, samples in question need to be treated with 

anticoagulation factors, these factors, along with the inhibitory factors already 

present in native plasma, may incur an additional inhibitory effect on the PCR 

reaction as is seen with Heparin,  which competes with the target DNA, providing 

yet another obstacle to overcome.47,48 

 

Various methods exist to isolate cfDNA including systems based on magnetic 

beads such as those manufactured by KingFisher or Roche. The Nucleospin blood 

kit, manufactured by Machery-Nagel, is suitable for use on tissues/blood samples. 

It isolates DNA or RNA by lysing cells before using a silica membrane and salt 

concentration gradient to bind DNA whilst washing away inhibitory components. 

The DNA is eluted from the column using a low salt gradient. This technique is 

ideal if the study aim is to observe whether or not DNA is present in the sample, 

but it is not suitable for use within the scope of this thesis as DNA is lost in the 

process, meaning an exact quantification of the starting concentration cannot be 

gained.30  

 

Phenol-chloroform extraction is another technique used. Here, samples are lysed, 

mixed with a phenol-chloroform mixture and centrifuged. Proteins and lipids will 

separate to the bottom of the container and DNA will remain in the supernatant. As 

with the Nucleospin blood kit, there is sample loss in the process meaning that the 

exact concentration of DNA present in the initial sample cannot be accurately 

deduced.49 

 

Due to the limitations of pre-existing technologies, it was decided to proceed with 

an excising method of DNA detection but use a novel method of DNA isolation, to 

ensure minimal sample loss in the process. To select a pre-existing method for the 

detection of DNA, and ensure this method provides a suitable sensitivity for DNA 

detection, a range of methods will be observed using known quantities of DNA in 
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saline samples to obtain the method with the most potential for further 

characterisation.  

 

 

1.4.2 Detection of endotoxin in plasma 

 

The presence of endotoxin within substances can be quantified using the Limulus 

amebocyte lysate (LAL) assay. This originated from a discovery by Frederik Bang 

in 1956 that the blood of a horseshoe crab would coagulate in the presence of gram-

negative bacteria.50,51 This discovery led to the development of the LAL assay 

which originally used amebocytes isolated from the blood of the horseshoe crab to 

test for the presence of endotoxin. Currently, there are four main types of LAL 

assay, these can either be kinetic, whereby the time taken for the reaction to occur 

is used as measure of endotoxin or endpoint, where the absolute endpoint reading 

after a pre-defined time limit is used to infer endotoxin concentration. These are the 

gel clot assay, the chromogenic assay, the fluorescent assay and the turbidimetric 

assay, all of which are based upon this clotting reaction of amebocytes isolated 

from Limulus polyphemus.52,53 

  

Methods for the detection of endotoxin have progressed from using reaction factors 

isolated directly from the horseshoe crab into using more sustainable recombinant 

factors.54 One such assay which uses this recombinant technology is the PyroGene 

recombinant Factor C assay manufactured by Lonza. This is an endpoint 

fluorescent assay approved by the FDA and considered comparable to traditional 

LAL methods; fluorescence is measured at time zero and after one hour of 

incubation, with endotoxin concentration derived as the log of fluorescence 

intensity generated from a known standard curve. In this assay, the hydrophobic 

lipid A region of the endotoxin molecule reacts with recombinant Factor C, a 

protease zymogen, which subsequently cleaves a fluorescent substrate leading to 

activation of a coagulation cascade. This lipid A region activates Factor C causing 

it to act on a fluorogenic substrate, producing a fluorescent signal, see Figure 2.52,53 

An alternative method to this, which provides an additional 10-fold sensitivity is 

the PyroGent gel clot LAL assay, also manufactured by Lonza. In the PyroGent 
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assay, endotoxin acts as a catalyst for the activation of a proenzyme, coagulase. 

Initially, activation rate is directly determined by the concentration of endotoxin 

present in the sample. Once activated, coagulase goes on to hydrolyse coagulogon 

bonds which, once hydrolysed, form a compound called coagulin which generates 

a gelatinous clot. Development of this clot is monitored by viewing the increase in 

turbidity (optical density) over time, which can be used to calculate endotoxin 

concentration referencing a known standard curve.  

 

Inhibitors in plasma have been shown to interfere with the LAL assay. There are 

different treatment processes available in the literature that can be used to overcome 

this, including diluting and heating, chloroform extraction and trifluoroacetic 

extraction. The process of diluting the sample followed by heat treating for various 

times and temperatures has been used widely and shows the most promise in terms 

of sample recovery and sensitivity. This is in part due to the lack of sample 

treatment with harsh chemicals or the transfer of sample between various tubes.55,56 

Variations of this method are discussed within the literature with DuBose et al 

198057 diluting plasma in endotoxin free water to a concentration of 1 in 3, followed 

by heating to 100oC for 10 minutes; Pearson et al in 198555 used a 1 in 10 dilution 

followed by a 10 minute heat treatment at 70oC and more recently Bailey et al 

200958 performed dilution to 1 in 10 followed by heat treatment at 75oC for 30 

minutes.58 

 

An additional complication associated with use of the LAL assay is false activation 

by β-glucans, which are soluble glucose polysaccharides, produced by many 

prokaryotic and eukaryotic organisms known as a pathogen-associated molecular 

pattern, which activate the immune system. The presence of β-glucans in 

substances being processed using the LAL assay can cause a false positive reading 

as these compounds can activate the LAL enzyme cascade. This is through the 

activation of Factor G, whereas endotoxin activation occurs via Factor C. Both the 

PyroGene and PyroGent systems from Lonza bypass this Factor G activation step 

and so are not sensitive to β-Glucan contamination and will not elicit a β-Glucan- 

related false positive result. It is for this reason that these two assays were selected 

for further characterisation for use within testing of the BAL. Both EDTA and 
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heparin are known to inhibit the LAL reaction, which poses an additional 

complication when using plasma taken from the BAL.54 

 

 

 

1.4.3 Detection of particles 

 

In order to characterise any leaching of materials from the BAL and their 

subsequent removal, techniques for the measurement of particles are required, of 

which there are several available. Regulatory requirements set out by the United 

States Pharmacopeia provide a maximum range in terms of particle size and number 

Figure 2. Principle of endotoxin (lipopolysaccharide; LPS) detection 

using the recombinant Factor C (rFC) assay. Upon activation by 

LPS, RFc, a protease, cleaves a zymogen substrate to release a 

product containing a fluorescent moiety. Fluorescence is quantified by 

detection at 380 nm excitation and 440 nm emission; signal is 

proportional to LPS concentration.  
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that is acceptable to be returned to the patient. For small volume injections this is 

3000 particles of a size greater than 10 µm and 300 particles per container greater 

than 25 µm, for large volume injectables this is 12 particles greater than 10 µm and 

2 particles greater than 25 µm/ml.28,59 Requirements set out by the European 

Medicines Agency for the development of monoclonal antibodies for injection are 

less specific, stating that solutions for injection should be “practically free from 

particles”.59–61 Certain techniques can be excluded for the analysis of alginate 

particles, cell debris and other factors which may be released from the BAL; these 

techniques include size analysis via sieving/ aerodynamic dispersion.46 Selection 

of optimal particulate analysis techniques will depend upon size distribution. Laser 

diffraction provides an effective way of observing particles in the micron range 

whereas dynamic light scattering or optical microscopy techniques such as 

NanoSight give a smaller size range in the nanometre area.62,63 Techniques such as 

small angle X-ray scattering and small angle neutron scattering provide a further 

smaller size range, these techniques use the same principle as laser diffraction but 

with a shorter light path and so generate a greater resolution, enabling the 

observation of particulates in the lower end of the Nano-scale. These techniques 

are highly specialised and require large amounts of training, sophisticated 

equipment and expertise for results analysis.63 

 Particle size analysis is complicated for irregular-shaped particles, as the majority 

of particulate size analysis techniques are based on the assumption that each particle 

is spherical in nature. A spherical particle can be described in one dimension, 

providing a single numerical result in terms of particle size. Microscopy and 

automated image analysis are the only techniques currently available that can 

describe particle size using a range of values, further complicating analysis.64 Thus 

the most suitable techniques for this application are laser diffraction, dynamic light 

scattering and optical microscopy imaging. A summary of these techniques can be 

found in Chapter 2, Table 2.  
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1.4.3.1 Optical microscopy 

 

Conventional microscopy can be used to make manual measurements of particle 

size. The accuracy of this can be enhanced with the use of analysis techniques such 

as NanoSight; which uses a laser to illuminate particles which are observed using 

a conventional light microscope. A camera records the sample and software tracks 

particle movement, analysing particle size and density via tracking Brownian 

motion.65,66,67 

 

1.4.3.2 Laser diffraction 

 

Laser diffraction provides a short analysis time and a highly accurate, reproducible 

method to gain particle size distribution from either wet or dry samples. Most 

systems use a Helium-Neon light source and have an optical system for Fourier 

transformation of diffracted light onto the detector, using light refraction as the real 

component and the absorption as the imaginary component of the Fourier equation. 

The forward diffraction of light in this instance is purely dependent upon particle 

size.68  

 

This technique requires particles in suspension to be of an appropriate 

concentration; too few particles would provide an inaccurate result whereas too 

high a particle burden would introduce error via over-estimating the scattering 

produced by fine particles. This method provides an equivalent diameter which is 

not directly related to particle volume or surface.  It may be necessary to corroborate 

results gained here with particle size distribution data from other sources such as 

microscopy to ensure accuracy.62 

 

 

1.4.3.3 Dynamic light scattering 

 

Dynamic light scattering (photo-correlation spectroscopy) looks at changes in 

intensity of light passed through a sample containing liquid due to Brownian 

motion, enabling a smaller size distribution of particles to be observed than laser 



24 | P a g e  

diffraction. The hydrodynamic diameter, which provides a value for particle size is 

gained from this; providing an absolute measurement with a lower limit of ~2 nm 

depending upon the laser intensity and power.68 Algorithms used in this process 

provide information in the form of mean size, widths and peaks. Using this 

technique particles over 3 µm in size may distort measurements, therefore, samples 

containing particles over this size require analysis via laser diffraction to 

corroborate results.69 

 

A range of different particle sizing techniques are required to gain a broad insight 

into the types of particles expected within the system and to ensure their adequate 

removal.  

  

 

1.5 Contaminant removal methods 

 

Contaminants, both biological and physical, can most often be removed by 

filtration. The process of filtration can be defined as the act of removing unwanted 

substances from any fluid.70 The four key methods for the removal of contaminants 

from fluids using filtration consist of sieving, interception, impaction and 

diffusion.71,72 Sieving refers to the process of capturing contaminants within the 

filter pores based on an absolute porosity and retention capacity, interception differs 

to this, in that particles coming into contact with filter fibres are adsorbed onto their 

surface as they pass. Impaction occurs when a large particle, due to its inertia, is 

unable to change course within the liquid in response to obstruction presented by 

filter fibres, the particle is subsequently captured by the filter fibre. Diffusion refers 

to the retention of small particles as a result of Brownian motion, these small 

particles are in the 0.1 µm size range, this motion leads to an increased chance of 

the particle coming into contact with, and being adsorbed onto, the filter fibre.73–75  

Various methods for the filtration of substances exist, the correct technique should 

be selected depending on the sample properties requiring treatment.  
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1.5.1 Dead-end filtration 

 

In this process the substance to be filtered passes directly through the filter leaving 

behind the fraction too large to pass through.  This form of filtration is used for 

both macro (2-50 µm) and micro (<2 µm) contaminants. This subset can be further 

categorised into 2 distinct methods namely surface filtration and depth filtration.70 

 

1.5.1.1 Surface filtration 

 

Surface filtration (cake filtration) is a method of dead-end filtration whereby a thin 

filter medium is used to capture particles upon the filter surface. As the particles 

load, cake formation occurs at the filter surface reducing the flow rate of the filtrate 

(see Figure 3a, page 27). This form of filtration is used mainly when the solution 

for processing contains a high particulate burden exhibiting a wide variety of size 

and shape. When solutions containing particles of a small uniform size are used, 

filter fouling is observed at a faster rate due to complete filter blockage caused by 

compact filter cake formation76. This process is not observed until a much later 

stage, if at all, when the filtrate contains particulates with a greater variation in 

shape and size as these build up to form a less compact filter cake with 

interconnecting channels enabling the solution to pass through, further increasing 

the filter efficiency. This method of filtration is typically less expensive than others 

as the filter media manufacturing technique is simpler77.  

 

 

1.5.1.2 Depth filtration 

 

Depth filtration (deep bed filtration) is a sub-form of dead-end filtration. This 

method differs from surface filtration as particles become embedded throughout the 

depth of the filter media as opposed to purely on the surface.78 Depth filters consist 

of thick cartridges which often display a gradient in porosity through the filter with 

larger pore sizes at the outer edge, decreasing towards the centre.  This maximises 

mechanical retention properties by creating tortuous paths consisting of channels 

of filter media (see Figure 3b, page 27).71 Depth filtration can be used to process 

solutions containing a high particulate burden as their thicker and varying porosity 
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nature enables retention of a greater volume of particulates before filter fouling 

occurs.79 This form of filtration is only feasible when the particle:pore size 

relationship is conducive to the process for which the cartridge was designed. Due 

to the broad range of pore sizes seen within these filters they require a reliance on 

adsorptive retention within the filter media for a proportion of their capacity. Basic 

principles of particulate adsorption observed within these filters consist of sieving, 

impaction and interception. Particles of approximately 0.5 µm in size are removed 

via a sieving mechanism within the larger porous structures towards the top of the 

filter in line with flow.80 Particles below this size are removed either by impaction 

or interception.81 During this process the filtrate only requires one filtration cycle 

to ensure unwanted contaminants are removed. Fouling of depth filters can occur 

due to particulate deposition deep within the depth of the filter fibres.78 Depth filters 

are often characterised in terms of their nominal pore size instead of an absolute 

pore size due to the interconnective and gradient nature of the media, this nominal 

pore size is based on empirically measured retention characteristics.73,74  

 

 

1.5.1.3 Cross-flow filtration 

 

In cross-flow filtration the filter membrane is in a position parallel to the flow. 

Liquid travels tangentially across the filter surface rather than into and through the 

filter as seen in dead-end filtration. Two output streams are generated, the filtrate 

stream containing the portion of fluid passed through the filter and the retentate 

stream which is recycled through the system. This process reduces the caking effect 

and prolongs the filter’s operational time. Particles that come into contact with this 

membrane are adsorbed onto the surface (see Figure 3c). This method of filtration 

is commonly used within blood purification where a pore size of 0.2–0.8 µm 

enables the retention of platelets and blood cells whilst allowing the onward 

passage of proteins and plasma.82 In contrast to depth and surface filtration, the 

filtrate is often passed over the filter multiple times in a recirculating system to 

ensure the removal of unwanted substances.76 
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Figure 3. Methods for the filtration of liquid media. A) Surface filtration, the fluid 

is passed directly over a porous membrane which retains particles greater than the 

nominal pore size. B) Depth filtration, a thick gradient of filter media containing 

channels creating tortuous paths and asperities traps particulates within the media 

as opposed to purely on the surface. C) Cross flow filtration, the filter membrane 

is situated parallel to the flow, liquid travels transiently across the surface creating 

two flows, a filtrate stream and retentate stream, particles above a nominal pore 

size are adsorbed onto the filter surface. The retentate stream is continuously 

recycled through the filter. 
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1.5.2 Filter capacity 

 

 

The retention capacity describes the capacity of the filter either before failure or as 

the pressure drop exceeds a defined level. Capacity is limited by filter fouling, 

causing the filtrate flux to fall below an acceptable threshold,83 thus limiting the 

volume passed through a given area. Fouling can occur through a number of 

mechanisms such as complete pore blockage and internal pore blockage.84 

Sufficient filter media is required to ensure capacity is not exceeded during use. 

Capacity is dictated by the surface area of the filter media.84–86 This is important to 

ascertain to ensure robustness of the filter system within the desired setting. It is 

also important to ensure that the filter can stand up to the volumetric load subjected 

to it over the full course of treatment with the BAL.  

 

 

1.5.2.1 Cake formation 

 

Filter cake is formed via the accumulation of substances on the filter surface, 

retained by the media as a solution is processed. As particle burden in the filter cake 

increases, the thickness of the cake itself follows suit leading to an increase in flow 

resistance.87 Cake formation is dependent on the ratio of filter media pore size and 

particulate size within the filtrate.85 The empirical 1/3 law states that cake formation 

occurs when the particle size within the solution is greater than 1/3 that of the media 

pore size.34 The manner in which particles are deposited can be divided into 4 sub 

categories: complete blocking; intermediate blocking; bridging and standard 

blocking.70,76 The exact mode of cake formation occurring upon a filter media can 

be calculated using the following equation: 

 d2t  / dV2     =    k1 (dt/dv)k2 

Where: v= cumulative filtrate volume 

 t = time  

 k1 and K2 = empirical constants 
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The value of K2 can be used to characterise the type of cake formation observed. 

Where k=0 displaying bridging, 1= intermediate blocking, 1.5= standard blocking 

and 2=complete blocking.88 

 

  

1.5.3 Filter aids 

 

Filter aids are substances incorporated into the filter media, used to aid function 

and prolong filter life. They consist of inert materials used in pre-treatment of the 

filter. There are two modes of function of filter-aids: firstly, a pre-coat which forms 

a layer of second medium protecting basic filter media; the second being an admix, 

which functions to improve flow rate through the filter by decreasing cake 

compressibility and increasing cake permeability. Common filter aids used are 

diatomaceous earth, perlite (a silica based substance), cellulose, asbestos, 

agricultural fibres, sawdust and rice hull. A selection of different grades of 

diatomaceous earth changes the characteristics of filtration. Finer grades increase 

clarity of the filtrate, with smaller particle sizes leading to lower process particulate 

removal, although this also decreases the flow rate able to pass through the filter at 

any given time.89,90 Charge modification chemistries can be performed on filter 

media to retain a positive charge, enhancing adsorption of negative molecules 

which would otherwise pass through the porous framework. Electrokinetic 

adsorption via the use of positively charged filter media removes bacterial cell wall, 

fungi, viruses and other negatively charged contaminants such as DNA.91,92 This 

net positive charge is maintained throughout the filter provided use within a specific 

pH range.78,81 

 

 

1.5.4 Contaminant removal methods in use in biological purification 

 

Blood filters are used during kidney dialysis, these are nominal pore sized filters 

(40 µM) and are used ensure that no products of clot formation are transferred to 

the patient. These processes do not require a more complex component such as 

depth filtration as these fluids do not contain foreign particles. Blood filters are 
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also used during surgery and blood transfusions, to ensure removal of any clots 

prior to transfusion to the patient.93 Depth charge filters are typically used within 

the purification of therapeutic antibodies, such as in the processing of 

recombinant FVIII for use in patients with haemophilia, and the processing of 

monoclonal antibodies directed against specific interleukin molecules for the 

treatment of autoinflammatory diseases.91 These filters are used to remove cells 

and cell debris, and they have also been reported to be trialled in the removal of 

host cell protein contaminants through electrostatic and hydrophobic adsorptive 

interactions.94 The incorporation of filters into bioartificial livers to remove blood 

cells prior to and post treatment have been described briefly,16,95 and, although not 

widely publicised,  details of the filter system used within the AMC-BAL can be 

observed within their patent application; here, the use of two filters to process the 

patient’s plasma following treatment with the bioartificial liver is described, the 

function of this is to remove cells and liver cell debris.96 I have been unable to 

find description of a more advanced filtration system, such as those also utilising 

a charged component, to protect the patient from the biomass itself.  

 

 

1.5.5 Optimal filter method to fit the BAL requirements and filtrate  

 

Recirculating systems required for cross-flow filtration are not practical for the 

BAL set up. The process of surface filtration is not specific enough to meet 

requirements allowing certain substances through whilst inhibiting others. 

Additionally, a recirculating system would increase the dead-volume required for 

use within the BAL circuit. Dead volume is important to consider as in order to fill 

this, additional plasma supplies, in the form of fresh frozen plasma would be 

required, increasing the volume as such also has the potential to dilute the beneficial 

effects of the BAL, as proteins synthesised and excreted from the biomass would 

be diluted further in the additional volume. With dead-end filtration, the filter can 

be connected directly into the circuit, removing the need for a dual stream of liquid 

and reducing dead-volume. Therefore, the optimal method of filtration for 

incorporation within the BAL circuit is depth filtration. This will enable the 

maximum volumetric throughput, providing a higher chance of meeting 
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requirements of BAL treatment. Addition of filter aids to the principle filter media 

as well as charge modification chemistries will also enable removal of other 

contaminants without inhibiting the thoroughfare of biomass synthesised beneficial 

proteins to the patient, although this balance will require full characterisation. 

 

 

1.6 Filters for use within the BAL 

 

To ensure that the BAL has a robust safety mechanism, both an upstream and 

downstream filter will be used. The upstream filter will be the primary filter of 

focus, this will be used to purify the plasma in terms of particles, and charged 

contaminants such as DNA and endotoxin. The downstream filter, in contrast, 

will be used as a back-up providing an absolute particle sieving capacity, ensuring 

any debris are cleared prior to plasma return to the patient.  

 

 

1.6.1 The 3M Cuno depth charge 60ZB05A filter series 

 

 

Depth charge filters with anion exchange media, carbon and other affinity resins 

will be characterised. The use of graded density media increases the capability for 

contaminant loading, prolonging filter life during the treatment phase. These filters 

possess two distinct layers - the upstream having a more open porous structure than 

the downstream layer. These layers are designed to optimise filter performance for 

different applications and can be selected independently. In addition to these 

distinct layers, they also contain a filter aid in the form of diatomaceous earth, this 

functions to enhance the filter’s retention capacity for sub-micron particles. 

Diatomaceous earth is FDA approved and used in the production of many foods 

and biologicals.97 The filter media of the 60ZB05A filter series has additionally 

been optimised using charge modification chemistries causing this media to retain 

a net positive charge. This translates to an enhanced adsorption profile of the filter 

for negatively charged molecules. As previously discussed, this translates as an  

ability of the filter to remove negatively charged substances such as endotoxin and 

DNA.91,92 The net positive charge of this filter is maintained provided use within a 
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specific pH range, which encompasses that of human plasma.78,81 These filters are 

available in a range of sizes and filter surface area, from 25 cm2 to 1040 cm2, with 

a nominal pore size of 3–0.2 µM, making them ideal for use within a scale model 

system.98 A description of these filters and their characteristics can be found in 

Table 1. 

 

 

1.6.2 The 3M Betafine™ DP filter series 

 

The 3M Betafine™ DP filter series are comprised of pleated polypropylene filter 

media, these filters are designed with absolute pore size ratings ranging from 0.2–

70 µm. The pleated nature of these filters ensures a high surface area to provide a 

great mechanical sieve retention capacity; this also enables the filter to maintain a 

consistently low pressure drop, an important component in a biological system. 

These filters  are also available in a variety of sizes, including a 3 inch filter and a 

6 inch filter, enabling these to also be used within a scale model system.99 A 

description of these filters and their characteristics can be found in Table 1.
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Table 1. Overview of available upstream and downstream filters suitable for use within the bioartificial liver.100,101  

 Filter type 
Surface area 

(cm2) 

Pore size 

nominal/absolute 

Hold-up volume 

(L) 

Maximum 

pressure drop 

(mmHg) 

Upstream 

(Depth Plus™ 

60ZB05A) 

E0025FSA 25 
3–0.2 µm 

Nominal 
0.014 

1,800 

E0170FSA 170 
3–0.2 µm 

Nominal 
0.48  

E0340FSA 340 
3–0.2 µm 

Nominal 
0.4  

E1020FSA 1020 
3–0.2 µm 

Nominal 
0.74 

Downstream 

(Betafine™ DP 

series) 

PPG 060 B 01  ~600 
0.6 µm 

Absolute 
0.3 

PPG 060 B 01  ~600 
1.2 µm 

Absolute 
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1.6.3 Considerations for scale filtration models 

 

Due to the lack of available plasma of a sufficient quantity, it will be important that 

a scale filtration protocol can be used to analyse the capacity and efficacy of the 

various filters. When assessing filters using a scaled model, it is important to assess 

these using a consistent flux to accurately replicate the exposure of the filter media 

to the plasma.72 Flux is defined as the rate of mass flow per unit area. The 

calculation of flux is complex if the orientation of the flow of the solution is not 

perpendicular to the filter surface as the equation for calculating flux is as follows: 

 

  Q = A × v × cosΘ  

Q = flux 

A = surface area 

V = velocity 

cosΘ = angle of flow relative to surface 

 

In the case of a solution flow which is perpendicular to the filter surface, Θ is equal 

to zero, meaning that cosΘ is equal to one, meaning that this equation can be 

simplified to  

 

Flux = flow rate/ unit area72 

 

This equation will be used to assess scale models at an equivalent flux to that seen 

in the full-scale filter, ensuring consistent filter media exposure to plasma samples 

as the model is up-scaled. 3M provide a guide as to the differential pressure to 

expect with increasing flux, this guide is within a water sample, and therefore we 

expect a greater flux to be seen when plasma samples are used, although the flux 

used within the filtration system is well below that used in bioprocessing and 

therefore, the additional viscosity presented by the plasma should not present a 

problem here (Figure 4).  
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Figure 4. Flux and corresponding differential pressure expectations for the 

60ZB05A filter series. The expected differential pressure increases linearly with 

increase in flux. Edited from 3M Cuno 60ZB05A product information.101
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1.7 Hypothesis and aims 

 

The overall aim of this PhD project is to characterise a filtration protocol, for 

incorporation within the extracorporeal BAL circuit that is suitable and robust 

enough to protect the patient from any potential contaminants originating from 

biomass, such as HepG2 DNA and particles such as cell debris. This filtration 

protocol will also be assessed for the removal of endotoxin originating from the 

patient as a means to aid the patient’s recovery. To enable the testing of the 

functionality of this filtration protocol, I aim to develop assays for the detection of 

DNA in human plasma samples at a level sufficient enough to meet regulatory 

requirements, along with developing assays for the detection of endotoxin within 

human plasma samples sufficient to characterise its removal from the circuit. As 

such, I propose the following hypotheses: 

Hypotheses  

 

1. A filtration system, proven to be able to remove any potential 

contaminants which may arise from the BAL biomass, including both 

physical particle contaminants and biological agents such as DNA, will 

meet regulatory requirements, thus enabling its use in patients 

2. A filtration system will also have the capacity to remove endotoxin 

contamination, thus providing an additional functional element of this 

system. This would further protect patients suffering from sepsis where 

bacterial contamination of the blood and its subsequent effects is a 

common final cause of death in patients with liver failure  

 

Together with these hypotheses, I have formulated the aims below, which I will 

address within this thesis. These aims are specific to each chapter, with the 

exclusion of Chapter 2, which dictates the materials and methods, and Chapter 7, 

which contains the overall discussion.  
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Aims: 

 

 Chapter 1 and 3: To identify potential contaminants which would be 

necessary to remove from the BAL circuit so that plasma return to the 

patient is therapeutic, without potential harmful effects arising from the 

treatment 

 Chapter 3: To define and develop suitable methodologies to assess relevant 

contaminants within both simple (e.g. saline) and complex (e.g. plasma) 

samples 

 Chapter 4: To determine both the capability and the capacity required of the 

filtration system in order for it to meet regulatory requirements for use 

within patients 

 Chapter 5: To test the filtration system on small and large scales in vitro to 

establish the parameters of its efficacy 

 Chapter 6: To prepare for, and analyse, contaminant removal from porcine 

plasma when the safety circuit is used in a porcine pre-clinical model of 

acute liver failure  
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Chapter 2 

 
 

Materials and methods 
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2. Materials and Methods 

 

2.1 Monolayer HepG2 culture 

 

HepG2 cells (ECACC Wiltshire) were used for cell culture work, unless otherwise 

stated. These cells comprise the biomass of the Liver Group BAL. 

 

Materials 

  Complete culture media (values relate to the final concentration): 

   α- Minimum Essential Medium (MEM; Gibco #32571-028) 

   Foetal calf serum (FCS; PAA #A15-101) 

   Insulin (0.27 IU/mL) 

Penicillin/streptomycin (45 U/ml [penicillin], 45 µg/ml 

[streptomycin]) 

Bovine serum albumin (BSA)/linoleic acid (0.05 mg/ml; 

Sigma #L9530) 

Sodium selenite (0.017 µg/ml; Sigma #S5261) 

Hydrocortisone (0.364 µg/ml; Sigma #H0888) 

Thyrotropin-releasing hormone (TRH; 0.364 µg/ml; Sigma 

#P1319) 

Fungizone (1.1 µg/ml; Gibco #15290-026) 

 

  Fresh frozen plasma media: 

Fresh frozen plasma (FFP) was used instead of FCS in the 

complete culture media to produce FFP media. Heparin 

(40 IU/ml; Multiparin, CP Pharmaceuticals) was added to 

the FFP media to prevent clotting.  

  

  HepG2 Cells (passage 40–60) 

  Nunc™ cell culture flasks 

Trypan blue (2% suspended in phosphate buffered saline [PBS]; 

Sigma #T-6146) 

  PBS (Gibco) 
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  TrypLE™ Select (x1 concentration; Thermo Fischer #12563011) 

Hank’s balanced salt solution without calcium (HBSS; PAA #H15-

010) 

 

2.1.1 Cell seeding and passaging 

 

HepG2 cells were seeded into cell culture flasks at a density of 1x106 in 15 ml of 

supplemented media per T80 flask, 1.5x106 in 30 ml media per T175 flask and 

2x106 in 100 ml media per TripleFlask. Flasks were laid flat in an incubator at 37°C 

in an environment of 95% air and 5% CO2.
 Every 48 h the media was changed for 

pre-warmed complete media and cells were grown to 80% confluency. Cells were 

passaged, beginning with a 3x wash with HBSS to remove unattached cells (8 

ml/T80; 15 ml/T170; 50 ml/TripleFlask). Pre-warmed (37°C) TrypLE select was 

filter sterilised into the flask (6 ml/T80; 10 ml/T175; 25 ml/Triple) covering the 

entire monolayer; the flask was incubated at 37°C for 10 minutes allowing 

monolayer detachment. Cell suspension was transferred to a 50 ml Nunc™ tube 

and an equal volume of pre-warmed complete culture media was used to rinse the 

flask removing any remaining cells. The solution was centrifuged at 272 RCF for 

4 minutes at room temperature to pellet the cells. After removal and disposal of the 

supernatant the pellet was re-suspended in pre-warmed culture media (37°C; 2 

ml/T80; 5 ml/T175; 10 ml/Triple) and passed slowly through a 21 G needle three 

times to disperse the cells.  

 

 

2.1.2 Cell counts and viability 

 

Trypan Blue was used to stain cells and analyse viability, with viable cells 

remaining colourless and non-viable cells taking up the Trypan Blue stain. Cell 

counts were performed using a haemocytometer and a light microscope under a 

magnification of x10. 20 µl 2% Trypan blue of was added to a solution containing 

20 µl cell suspension and 160 µl HBSS. 9 µl of this solution was loaded into each 

side of a haemocytometer and cell counts were performed for each of the two sides, 

this was repeated three times. The readings were multiplied by x105 to estimate the 
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number of cells per ml, to take into account the multiplication factor of the 

cytometer (104) and the dilution factor of the cell suspension (1 in 10). Cell number 

and percentage viability were calculated from the average number of live and dead 

cells over the six total readings.  

  

 

2.2 Production of the alginate encapsulated liver cells 

 

The encapsulation of HepG2 cells within alginate spheres (ELS) was performed by 

members of the Liver Group, the fluidised bed bioreactor phase was also performed 

by other members of the Liver Group. In brief, HepG2 cells were cultured in a 

monolayer as described above until 80% confluency was reached. Cells were 

detached and encapsulated within 1% alginate spheres of approximately 500 µM 

diameter using a GeniaLab® Jetcutter™. This encapsulation was enabled by taking 

advantage of a crosslinking reaction in which the sodium ions within the alginate 

polymer chains are replaced with calcium ions enabling the joining of multiple 

polymer chains. Volumes of encapsulated cells in the range of 100 ml to 2 L were 

produced. These encapsulated cells were either cultured in a bioreactor, in which 

case the spheres were modified to contain 2% glass beads of 10–50 µm in size, to 

optimise movement of the beads within the fluidised bed bioreactor (FBB), or in 

static culture in T175 flasks. Under both culture conditions complete media was 

further enhanced by the addition of glucose (4.4 ml/ 500 ml media; Sigma #G8769). 

 

 

2.2.1 Cell counts of cells in 3D culture 

 

Materials 

  NucleoCounter® spectrophotometer (Chemometec, Sartorius UK) 

  NucleoCounter® software version 1.0 

  NucleoCasette™ (Chemometec) 

  Reagent A100 (Chemometec; #910-003) 

  Reagent B (Chemometec; #910-002) 

  16 mM EDTA/0.15M NaCl (pH 7.4; AppliChem #A1105) 
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  HBSS without calcium (PAA #H15-010) 

 

A NucleoCounter® spectrophotometer was used to estimate counts of cells within 

3D culture by measuring nuclei number. ELS (250 µl) were placed into a 1.5 ml 

microfuge tube, washed twice with 1 ml HBSS and dissolved in 1 ml 16 mM 

EDTA/0.15 M NaCl (pH 7.4) for 5 minutes at room temperature. Once dissolved 

the cells were pelleted at 13000 x g for 5 minutes and the supernatant was discarded. 

The pellet was re-suspended in 500 µl phosphate-buffered saline and vortexed to 

re-suspend the individual cells. 500 µl of cell solution was transferred to a fresh 

microfuge tube to which 0.5 ml of reagent A100 was added, this was vortexed for 

5 seconds followed by addition of 0.5 ml Reagent B and vortexing for a further 5 

seconds prior to loading into a NucleoCasette™ and insertion into the 

NucleoCounter®. The dilution factor of the ELS in PBS was taken into account 

when calculating cell numbers. This cell count was performed 5 times and the mean 

and SD were calculated.  

 

 

2.2.2 Calculating viability of cells in 3D culture 

 

 Materials 

  Fluorescein diacetate (FDA; 1 mg/mL; Sigma #F7378) 

  Propidium iodide (PI; 1 mg/mL Sigma #70335) 

  PBS supplemented with calcium (Sigma #D8662) 

 

A total of 200 µl of ELS were placed in a 1.5 ml microfuge tube and washed with 

1 ml of PBS. Following washing, ELS were suspended in 500 µl PBS to which 

20 µl of PI and 10 µl of FDA were added, the solution was agitated and left for 

90 seconds to allow cellular uptake of the stains. PBS was siphoned off using a 

pipette and cells were washed with 1 ml PBS to remove any excess stain, 500 µl 

PBS was used to re-suspend the cells. Stained ELS were transferred onto a 

microscope slide and observed using a Nikon® Eclipse microscope and DX1200 

camera with NIS Elements analysis software. Excitation and emission filters of 465 

and 515 nm, respectively, were used for FDA, and 510 and 590 nm, respectively, 
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for PI. For each repeat, two photographs were taken of the cells under the 

microscope, one using the FDA settings and one using the PI settings. By taking 

these two images of the same set of cells the pixel density obtained from each of 

these images could be used to calculate the percentage viability of the cells. The 

total FDA integral density was divided by the combined integral density of FDA 

and PI multiplied by 100. This was performed 5 times on separate images, with the 

mean and SD calculated from these repeats.  

 

 

2.3 Methods involving the extraction and quantification of DNA 

 

 

2.3.1 Mammalian crude DNA extraction for use in experiments 

 

 Materials 

  Lysis buffer pH 8.4:  200 mM NaCl 

100 mM TrisHCL 

     5 mM EDTA 

     0.2% SDS 

  100% Propan-2-ol 

  Proteinase K (100 µg/5 ml lysis buffer) 

 

Cells were cultured as described previously to 80%–100% confluency in a Nunc™ 

Triple, T175 or T80 flask. Culture media was removed and cells were washed 3x 

with HBSS (8 ml/T80; 15 ml/T175; 50 ml/Triple). An equal ratio of lysis buffer for 

each flask size was added along with 100 µg lyophilised proteinase K /5 ml lysis 

buffer. The solution was incubated for 4 hours at 37°C. Alternatively, excess cells 

obtained from passaging were centrifuged at 1200 RPM for 4 minutes and the 

supernatant was discarded, 10 ml of lysis buffer containing 20 µg lyophilised 

proteinase K/1 ml cell pellet was added, incubating for 4 hours at 37°C.  An equal 

volume of propan-2-ol to lysis buffer was added and mixed gently for 5 minutes, 

the solution was transferred to a 50 ml Nunc™ tube where the resulting DNA 

aggregate was lifted above the liquid level using a pipette and allowed to dry for 15 
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mins. The aggregate was transferred to a fresh PCR grade microfuge tube and re-

suspended in PCR grade water via pipetting and vortexing. A heated block at 37oC 

was used for 15 minutes if necessary to encourage re-suspension of DNA. 

Concentration and total quantity of DNA obtained was assessed using NanoDrop 

analysis.  

  

2.3.2 NanoDrop analysis of DNA concentration  

 

 Materials 

  PCR grade water 

  NanoDrop 1000 spectrophotometer 

  NanoDrop analysis software version 3.8.1 

 

A NanoDrop spectrophotometer was used to assess the concentration of DNA in 

samples re-suspended in water, observing absorbance ratios at 260/280 nm and 

260/230 nm. A 1.5 µl sample was used for each analysis and repeats of N=5 were 

performed unless a wide variance was observed in which case this number was 

increased. The purity of the sample was also assessed for protein and chemical 

contamination via the 260/280 nm and 260/230 nm ratios, respectively, with ratios 

of 1.8 and 2.0 deemed pure. NanoDrop software was used to collect results. The 

mean and SD was used to gauge total concentration.  

 

 

2.3.3 Quantitative Polymerase Chain Reaction (qPCR) 

 

2.3.3.1 Preparation of proteinase K aliquots 

 

 Materials  

  Proteinase K (Sigma Aldrich #P2308) 

TTE buffer:  

   50 mM Tris base 

   1 mM EDTA 
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   2.5% Tween 20 

 

Lyophilised proteinase K was re-suspended in TTE buffer at a concentration of 

1 mg/ml. Aliquots containing 32 µl of the proteinase K suspension were transferred 

to a lyophiliser for 4 hours, or until the sample was fully dehydrated. Proteinase K 

aliquots were stored at –20 oC until further use. Upon use, the powder was 

re-suspended in an appropriate volume of TTE buffer and mixed using a pipette.  

 

 

2.3.3.2 Plasma pre-treatment 

 

 Materials 

  PCR grade water 

  TTE buffer:  

   50 mM Tris Base 

   1 mM EDTA 

   2.5% Tween 20 

  Proteinase K 

 

Samples for qPCR analysis were diluted 1 in 500 in PCR grade water. 20 µl of 

sample was added to 20 µl of TTE buffer containing 3.2 µg of proteinase K. 

Samples were heated at 50°C for 2 hours. TTE buffer (160 µl) was added to the 

sample and transferred to a block set at 95°C for 15 minutes to denature the 

proteinase K. The sample was briefly centrifuged to collect droplets of 

condensation (in samples where protein contamination was low this pre-treatment 

step was omitted and the sample was diluted directly to 1 in 5,000).  

 

 

2.3.3.3 qPCR analysis of DNA concentration  

 

 Materials  

PCR mix (Per 20 µl tube) 

10 µl Hot start Taq (Qiagen 203205) 
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1 µl 115 base pair forward primer 0.0025 µM  

(5’CCTGAGGTCAGGAGTTCGAG 3’) 

1 µl 115 base pair reverse primer 0.0025 µM  

(5’CCGGAGTAGCTGGGATTACA 3’) 

0.5 µl Sybr Green 1 in 20,000 dilution (Biogene 1765) 

2.5 µl 0.025 M MgCL2 (Sigma M1028-1M) 

 

QPCR with 1 set of Alu repeat primers, engineered to produce 115 base pair Alu 

repeat amplicons, was used to assess DNA quantity in water, saline, plasma or 

culture media samples. The qPCR reaction was performed in duplicate or triplicate 

in 20 µl PCR tubes, each tube contained 15 µl of PCR mix and 5 µl of sample. 

Samples were run against a 5 point standard curve containing HepG2 DNA, 

isolated using the protocol above, logarithmically diluted in the range of 0.02 to 

200 pg/µl to determine the absolute DNA concentration in each sample. Samples 

were analysed on the Rotor Gene™ 3000 PCR machine using the following cycle: 

 

95°C 15 minutes hold 

95°C 15 seconds 

64°C 30 seconds 

72°C 30 seconds 

72°C    10 minutes* 

 

*A melt curve was performed where the temperature increased from 45°C to 95°C 

at a rate of 1°C per minute. 

As each plasma sample was diluted 1 in 5,000 this technique provided a limit of 

detection of 0.1 ng/µl within plasma samples.  

 

 

 

 

40 Cycles 
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2.4 Methods involving the extraction and quantification of endotoxin 

 

2.4.1 Extraction of endotoxin from bacterial culture  

  

 Materials  

  E.coli stock 

  LB Broth 

  SDS buffer pH 6.8 

100 mM TrisHCL 

   5 mm EDTA 

   4% SDS 

 Proteinase K (10 mg/ml, Sigma Aldrich) 

 DNAse (10 mg/ml; Sigma Aldrich) 

 RNAse (10 mg/ml; Sigma Aldrich) 

 Propan-1-ol (Sigma Aldrich) 

 

On overnight culture of E.coli 5 ml of Luria Broth (LB) was started by inoculating 

5 ml of LB with a single E. coli colony grown on LB media on a petri dish, this 

inoculation was incubated in a shaking incubator at 37 °C and 200 rpm. The process 

was repeated, upscaling to gain 4 litres of E.coli stock. The bacteria were pelleted 

in a micro centrifuge at 10,600 x g for 10 minutes, followed by lyophilisation of 

the pellet. The lyophilised pellet was ground to a fine powder with a pestle and 

mortar, to this SDS buffer and proteinase K were added. This solution was heated 

at 60oC for 3 hours. Propan-1-ol was added to the solution, vortexed and samples 

were sonicated in a 37oC water bath for a further 15 minutes at 65oC. Samples were 

centrifuged at 20,600 x g for 10 minutes, the pellet was further processed twice 

with propan-1-ol, repeating the centrifuge steps to remove contamination. 

Endotoxin was re-suspended in saline and the concentration was measured using 

the PyroGene recombinant Factor C assay.  
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2.4.2 PyroGene recombinant Factor C assay of endotoxin concentration 

 

 Materials 

  PyroGene® recombinant Factor C assay (Lonza 50-658U) 

   Recombinant Factor C enzyme solution (R50-658) 

   Fluorogenic substrate (S50-658) 

   Assay buffer (B50-658)  

   E. coli endotoxin standard (O55:B5, E50-643) 

LAL reagent water (W50-640) 

  0.1 M NaOH in 60% ethanol 

  10ml endotoxin free glass tubes, baked for 3 hours at 250°C 

Endotoxin free, sterile filtered pipette tips (Starlabs®) 

Endotoxin free, sterile clear 96 well plate (Nunc®) 

Hyclone tissue culture water endotoxin free 

Plate sealer 

Fluorescence microplate reader, FLUOstar Omega® (BMG 

Labtech) 

  MARS data analysis software (BMG Labtech) version v3.01 R2 

 

A Class 2 microbiological safety  cabinet was used to perform all endotoxin assays 

to ensure minimal contamination. All glassware was baked at 250°C for 3 hours 

before use. Prior to use the tissue hood was sterilised using UV-light and trigene 

following which surfaces were exposed to 0.1M NaOH in 60% ethanol for 6 hours 

after which surfaces were wiped with endotoxin-free water. This was performed to 

break down any LPS molecules and ensure all surfaces were free from endotoxin 

contamination.  

 

Endotoxin standards were prepared using the reconstituted lyophilised Lonza 

endotoxin standard to gain logarithmic dilutions of 10, 1, 0.1, 0.01 and 

0.001 EU/ml. Plasma samples were prepared for analysis by dilution of the sample 

1 in 200 in endotoxin-free water followed by heat treating at 70°C for 20 minutes. 

Culture media samples were diluted 1 in 10 followed by heat treating at 70°C. 

Saline samples were analysed neat. Samples for assessment were snap frozen upon 
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collection and stored at –80oC until required for analysis, at which point they were 

defrosted at room temperature within the tissue cabinet. The PyroGene® 

recombinant Factor C assay, including endotoxin standards, was cold-stored, and 

used within four weeks of opening, as per the manufacturer’s instructions, 

excluding the fluorescence buffer which, once prepared, was used immediately.  

 

To ensure separation of endotoxin and accurate sample reading, each sample and 

standard were vortexed for 1 minute prior to addition to a 96-well plate. 100 μl of 

samples, standards and blank were added to the 96-well place in triplicate and 

incubated for 10 minutes at 37°C. Whilst the plate was incubating the fluorescence 

buffer was prepared in the following ratio: 

 

1x fluorescence enzyme 

4x Assay buffer 

5x Fluorogenic substrate 

 

At timed intervals 100 µl of fluorescence buffer was added to each well and 

fluorescence was measured immediately at 37°C using 380 nm excitation and 440 

nm emission wavelength using the Omega Labtech Fluorostar plate reader to gain 

a reading for blank fluorescence. The plate was incubated within the plate reader 

for one hour at 37°C after which the fluorescence was reanalysed. Mars data 

analysis software was used to export the data. The initial blank values were 

subtracted from the one-hour reading values to normalise results. Endotoxin 

concentration was determined by plotting a standard curve. The dilution effect for 

plasma and culture media samples was taken into account when calculating the 

final endotoxin concentration in EU/ml.  

 

 

2.5 Particulate analysis 

 

Particle analysis was performed using one of three methods, NanoSight, 

Mastersizer or Zetasizer depending on the particulate burden and size distribution 
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of the sample in question. A detailed breakdown of the measurement limits and 

characteristic for each measurement method can be seen in Table 2.  

 

 

2.5.1 Sample preparation 

 

For some particulate analysis techniques particle density within a sample was 

required to meet a certain threshold, therefore, sample preparation was performed 

to reach this density. Samples were pooled via aliquoting 2 ml into a microfuge 

tube and centrifuging at 16,100 RCF (13,200 RPM) in an Eppendorf centrifuge 

5415R. Supernatant was carefully removed with a pipette and a further 2 ml of 

sample was added to the same tube, the process was repeated until the desired 

concentration was obtained. Depending on sample type, a wash step was 

performed. For media samples this consisted of adding 2 ml MilliQ water to the 

tube, re-centrifuging and removing the supernatant. A saline wash in the same 

manner preceded this for plasma samples. Alginate samples were not washed. 

Samples were re-suspended in a volume of 0.5–1 ml sterile filtered water. The 

original sample volume and volume of water used to re-suspend were recorded 

allowing the original sample concentration to be determined. 

 

 

2.5.2 NanoSight nanoparticle tracking analysis 

 

 Materials 

  NanoSight Optical system 

NanoSight nanoparticle tracking analysis (NTA) analysis software 

version 2.3 

 

Liquid samples of 0.2 ml were analysed using the NanoSight particle sizing optical 

system. To gain accurate particle concentration, a particle density above 1x107 

particles/ml was required. Particles were observed under Brownian motion to 

distinguish individual particles from background noise. The particle size range for 

this technique is 0.01–2 µm (Table 2) 
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2.5.3 Mastersizer laser diffraction 

 

 Materials 

  Mastersizer 2000 laser system 

  Mastersizer 2000 operating software version 5.60 

 

Liquid samples of 80 ml were analysed directly, without concentration, using the 

Malvern Mastersizer particle sizer. This technique uses laser diffraction and 

obscuration to calculate the size of particulates within a sample in a range of 0.02 

to 2000 µm (Table 2).  

 

 

2.5.4 Zetasizer dynamic light scattering 

 

Materials 

 Zetasizer Nano S series 

 Zetasizer analysis software version 7 

 

Liquid samples of 0.5 ml were assessed for particle distribution using the Zetasizer 

Nano series particulate sizer. This technique uses dynamic light scattering to gain 

an average particle size in terms of the Z-average (overall average size) for the 

sample and can detect particles in the range of 0.003–10 µm (Table 2).  
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Table 2. An overview of methods for the analysis of particles in liquid media. 

Method Technique 
Quantitative 

vs. Qualitative 

Volume 

required 
Particulate size 

Particulate 

concentration 

required for 

analysis 

Sample 

pre-treatment 

NanoSight 
Optical 

microscopy 
Quantitative 0.3 ml 0.01–2 µm >1x103 

Multiple 

centrifuge 

Mastersizer 
Laser 

diffraction 
Qualitative 70 ml 0.02–2000 µm 

Defined as 

obscuration 

threshold 

Neat sample 

Zetasizer 
Dynamic light 

scattering 
Qualitative 0.5 ml 0.003–10 µm ~>1x105 

Multiple 

centrifuge 
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2.6 Biochemical assays 

 

2.6.1 Enzyme-linked immunosorbent assays  

 

A sandwich enzyme-linked immunosorbent assay (ELISA) was used to assess the 

albumin, α-1-antitrypsin, α-1-glycoprotein and fibrinogen concentration pre- and 

post-filtration.  

 

 Materials 

  Primary antibody (Albumin: Dako cat# A0001, polyclonal rabbit) 

Secondary HRP-linked antibody (Albumin: Abcam cat # ab24458-

200, mouse anti-human serum albumin) 

  96 well Nunc Immuno coated plates (Fisher cat. # DIS-971-030J) 

Coating buffer pH 9.7 

  0.318 g Na2CO3 

 0.586 g NaHCO3 

 200 ml distilled water 

PBS-Tween pH 7.4  

 40 g NaCL 

 1 g KCl 

 7.2 g Na2HPO4.2H2O 

 1 g KH2PO4 

 5000 ml distilled water 

 500 µl Tween 20 

Blocking buffer 

 1.25 g powdered milk 

 25 ml PBS tween 

OPD solution 

 2 OPD tablets (Dako #s204530) 

 12 ml distilled water 

 6 µl H2O2 
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Stopping reagent 

1 M H2SO4 

  

The primary antibody was diluted in coating buffer to give a final concentration of 

10 µg/ml, 100 µl was added to each well of an Immuno 96 microwell plate. The 

plate was wrapped in cling film and left refrigerated overnight at 4oC.   

 

The plate was washed 3 times with PBS Tween and left dry briefly using a plate 

washer. Binding sites were blocked by adding 100 µl blocking buffer and 

incubating at room temperature for 1 hour. 100 µl of each sample (diluted in PBS), 

standard (200 ng/ml; 100 ng/ml; 50 ng/ml; 25 ng/ml; 12.5 ng/µl; 6.25 ng/µl) and 

quality control were added in triplicate, followed by incubation at 37oC for 90 

minutes. Quality control was produced internally using 24 hour conditioned media 

from 70% confluent HepG2 cells. 

    

The plate was washed 3 times with PBS Tween and left dry using the plate washer.  

The secondary antibody was diluted in blocking buffer to give a final concentration 

of 0.5 µg/ml.  100 µl of this solution was added to each well and the plate incubated 

on the bench for a further hour. The plate was washed 5 times with PBS tween and 

left dry.  

 

A total of 100 µl OPD solution was added to each well at timed intervals to begin 

the colour development reaction. The plate was incubated at room temperature 

under tin foil until sufficient colour had developed. 50 µl of 2 M sulphuric acid was 

added at timed intervals to stop the reaction, inhibiting further colour development. 

The absorbance intensity was read at 492 nm using a Manta plate reader. A standard 

curve was generated and used to determine the concentration of each sample.  
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2.6.2 Biochemistry analysis of plasma samples  

 

Samples collected from experiments were analysed for the concentration of specific 

biological molecules (proteins, lipids and ions), in addition to the ELISAs described 

above.  

 

These additional analyses included: proteins, aspartate transaminase; alanine 

transaminase; IgG; IgM; IgA; ions, calcium, phosphate and sodium; lipids, HDL, 

LDL and total triglycerides; glucose; bilirubin. These were measured using 

biochemistry analyses. These assays were kindly performed by individuals at the 

Clinical Biochemistry department at the Royal Free Hospital, London.  

 

 

2.7 Plasma Preparation for use in experiments 

 

To prevent plasma clotting during filtration experiments heparin sodium was added 

to plasma at a concentration of 20 units (U)/ml. In plasma collected from the Cobe 

Spectra plasmapheresis machine (apheresis machine) or FFP, a citrate assay was 

performed to analyse the quantity of citrate present in the plasma sample. A 

sufficient quantity of CaCl2 was added to the plasma to counteract the effect of the 

citrate. Heparin was added prior to this to ensure the plasma did not clot. In the case 

of plasma collected from patients with acute liver failure, these procedures were 

followed along with the use of full personal protective equipment to ensure safety.  

 

 

2.7.1 Citrate assay  

 

Plasma used for these experiments was either from patients undergoing total 

exchange using either an apheresis machine for clinical purposes or through 

donations of FFP. For the majority of experiments, plasma was assessed for clarity 

and visually cloudy plasma was rejected as this was indicative of high cell death 

typically following a specific treatments that may have been undergone by the 

patient prior to plasmapheresis. Plasma obtained from these instances caused the 
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filters to prematurely block, which is why this plasma was rejected. Each batch of 

plasma obtained was analysed for citrate levels. Citrate was neutralised prior to use 

with alginate ELS, as citrate chelates calcium ions, incubating the ELS in plasma 

containing citrate would cause the migration of calcium ions from the ELS into the 

plasma, causing the ELS to dissolve.  

 

Materials: 

   Biosentec citrate assay Kit 

   1 M Perchloric acid 

   UV Spectronic UNICAM Spectrophotometer 

   Vision 32 software 

 

Protein was removed from plasma samples prior to performing the citrate assay, 1 

volume of sample was mixed with 1 volume 1M Perchloric acid and centrifuged 

for 5 minutes at 10,000 x g at room temperature. The supernatant was diluted to a 

range of 0.03-0.4 g/L citrate. Disposable cuvettes were used to analyse the sample, 

reagents were added to the cuvette in volumes following the table below.  

 

Citrate assay reagent volumes, all volumes are per 1.5 ml cuvette. 

 Blank Sample 

R1 (30 ml – Buffer pH 7.8) 0.5 ml 0.5 ml 

R2 (6 ml – NADH 10 mg) 0.1 ml 0.1 ml 

R3 (0.6 ml - L-MDH 270U / L-LDH 565U) 0.01 ml 0.01 ml 

Water 0.5 ml 0.45 ml 

Sample 0 0.05 ml 

Mix and read* at 340 nm OD1Blank OD1Sample 

R4 (3.2 ml – CL 10 U) 0.01 ml 0.01 ml 

Mix, wait 10 min and read* 340 nm OD2Blank OD2Sample 

 

*Before the addition of R4, absorption was measured at 340 nm by performing a 

scan from 300–400 nm, this was taken as the blank value. Following this the sample 

was mixed and incubated at room temperature for 10 minutes followed by a second 

scan (sample scan). This was performed in triplicate for each sample. 
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The values of optical density OD1 and OD2 for the blank and each sample were 

used to calculate citrate concentration via the formula below providing a 

concentration in g/L: 

 

Citrate g/L = ((OD1Sample-OD2Sample)-(OD1Blank-OD2Blank) ×0.68302) x2 

 

The dilution factor of the sample was accounted for in the end calculation. The mM 

of citrate present in the sample were calculated (1 mM citrate = 192.1 mg/l). 

 

 

2.7.2 Calcium requirement for citrated plasma  

  

Materials 

   1 M Calcium chloride (CaCl) sterilised  

 

3 moles of calcium bind 2 moles of citrate, therefore, a sample containing 2 mM of 

citrate must be neutralised with 3 mM of calcium. In addition to this a further 

1.56 mM CaCl was added to maintain ELS integrity.  

 

 

2.7.3 Heparin addition to plasma 

  

 Materials 

  Heparin sodium 5000 IU/ml (Wockhardt UK Ltd) 

 

To prevent plasma clotting during filtration experiments, heparin sodium was 

added to plasma at a concentration of 20 U/ml prior to addition of CaCl.  
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2.7.4 Heparin analysis using activated partial thromboplastin time (APTT) in 

plasma samples  

 

The concentration of heparin present in saline and plasma samples was analysed 

using the APTT assay. This was kindly performed by members of the Haematology 

department at the Royal Free Hospital, London. The plasma used for these 

experiments was FFP (plasma from healthy patients to ensure normal clotting 

activity), further processing was performed to deplete this plasma of platelets by 

centrifugation twice at 2000 x g for 12 minutes.  

 

Briefly, plasma samples for analysis using APTT were collected in citrated blood 

collection tubes. Plasma was incubated at 37°C with cephalin, a phospholipid and 

kaolin, a contact activator, calcium was added to initiate the clotting cascade. The 

time between the addition of calcium and the formation of a fibrin clot is recorded 

and a measure of heparin concentration is achieved using a reference database 

specific for each laboratory.  

 

 

2.7.5 Spiking of plasma samples with DNA 

 

 Materials 

  FFP 

  Apheresis System isolated plasma 

  Bioline human genomic DNA (#BIO-35025) 

  Isolated DNA as per protocol above 

 

Neat plasma samples, either FFP or obtained from the Apheresis System were 

spiked with known quantities of DNA and vortexed briefly to mix. Samples were 

incubated for 1 hour prior to use to allow time for any inhibitory effect of the plasma 

to manifest.  
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2.7.6 Spiking of plasma samples with endotoxin 

 

 Materials 

  FFP 

  Apheresis System isolated plasma 

 E. coli O55:B5 endotoxin (Lonza) 

  Isolated endotoxin as per protocol above 

 

Neat plasma samples, either FFP or from the Apheresis System were spiked with 

known quantities of endotoxin and vortexed for 1 minute to mix. Samples were 

incubated for 1 hour prior to use to allow time for any inhibitory effect of the plasma 

to manifest.  

 

 

2.8 Assembly of Filtration circuit 

  

2.8.1 Pre-use treatment of filters 

 

Prior to use the upstream capsule filters were autoclaved for 30 minutes at 126°C 

and rinsed with sterile filtered water. The volume of water required for rinse is 

proportional to filter size at 54 L/m2. A breakdown of quantities required can be 

seen in Table 3. The filter must not contain air during use, therefore, on addition of 

water, the output was clamped off and a syringe placed into the outlet port whilst 

the upper void of the filter was filled using a flow rate of 90 ml/min. Once air was 

clear of the top side of the filter, the pump was paused and syringe removed and 

replaced with a male cap; the clamp downstream of the filter was removed and the 

pump restarted, allowing the water to pass through the filter media. 

 

The downstream filter did not require a pre-use rinse; it was supported via a clamp 

stand. Both filter types were rinsed with sterile saline prior to addition of plasma, 

ensuring the media in both filters was fully wetted prior to use, and no air entered 

the system.  Both models of filter were used in a single direction of flow.  
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2.8.2 Filter circuit set-up 

 

The circuit was set up with either filter individually or with both filters in series in 

a sterile environment (Class 2 safety cabinet). 4.8 mm internal diameter 1.6 mm 

wall thickness tubing was used to connect pressure transducers and filters to each 

other and the outlet. This tubing was connected to 2.4 mm wall thickness 

Santoprene tubing used in the pump head itself. The filters were connected via a 

sanitary fitting flange, fitted with a silicone O ring, and held together using a 

reusable nylon flange clamp. Pressure transducers were attached to the circuit via 

male and female luer fittings. The set-up of the filters and circuit varied depending 

upon the purpose of the experiment (see Figure 5, Figure 6, Figure 7 and Figure 8). 

 

 

2.8.3 Running the filter system 

 

Plasma or culture media was pumped through the filters at a flux of 

0.176 ml/min/m2, pressure and flow rate were observed at regular intervals 

throughout the experiment. T-piece connectors were used in various places for 

sample collection. 

 

Table 3. Filter size, relevant pre-use rinse and maximum usage parameters: 

 

 

Downstream 

60ZB05A scalable 

capsule filter 

surface area size 

Volume of sterile 

filtered water 

required for 

rinse (ml) 

Maximum 

flow rate 

(ml/min) 

Maximum 

differential  

Pressure 

(mmHg) 

25 cm2 135 115  1,012  

170 cm2 918 - 1,800  

340 cm2 1,836 - 1,800  

1020 cm2 5300 - 1,800  
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2.8.4 Small-scale filter circuit set-up 

 

Plasma flowed from a reservoir through the Watson Marlow peristaltic pump, the 

upstream 25 cm2 depth charge filter and mini downstream 0.6µm porosity filter in 

series and was subsequently collected via within an outlet reservoir. Pressure was 

recorded prior to the upstream filter and at the output of the downstream filter to 

calculate pressure drop across the two filters (Figure 5). 

 

 

 

 

 

Figure 5. Set-up of the small scale filtration circuit. A small scale circuit was used 

to assess filter efficacy using small quantities of plasma.  
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2.8.5 Set up of the mini columns and scaled-down bioartificial liver circuit 

  

Materials 

2 Watson Marlow multi-channel pumps 

ELS or empty alginate beads (control) 

Plasma (FFP; liver failure), culture media or saline 

 

The mini columns were set up as depicted in Figure 6 and Figure 7. Briefly, a 

reservoir containing plasma was placed beneath the mini columns, plasma was 

pumped from the reservoir up through the ELS-containing mini column, fluidising 

the cells, the mini column output was split into two circuits, one returning to the 

reservoir at high speed, the other a low flow rate filtration circuit, for this circuit 

the plasma passed through a pressure transducer prior to flowing through the 

upstream 25 cm2 filter, a second pressure transducer was placed before the 

downstream 0.6 µm filter. A second sample port was present after the downstream 

0.6 µm filter before the plasma returned to the reservoir.  

A multi-channel Watson Marlow pump was used to run the mini column circuit.  A 

linear flow rate of 0.6 mm/second was calibrated prior to each use to enable 

sufficient fluidisation of the ELS within plasma. 

 

A second Watson Marlow pump was used to power the filtration circuit. This circuit 

was calibrated to ensure that a flux of 0.176 ml/min/m2 over the filter was used. The 

upstream 25 cm2 and mini downstream 0.6 µm filters were used for these mini 

column experiments.  

 

Each column was primed with media or plasma prior to addition of the ELS. The 

ELS were washed in the same solution as was in the column. Time 0 samples were 

taken after incubation of the ELS in plasma for 10 minutes to allow equilibration 

of ELS with the plasma. Throughout the experiment, samples were taken through 

the septum at sample port 1 and sample port 2 (pre and post filter; Figure 6) using 

a needle, samples were snap frozen in liquid nitrogen using cryovials for analysis 

of biological components (proteins, ions and lipids) and introduced contaminants 

(DNA and endotoxin) at a later date. 



63 | P a g e   C h a p t e r  5  

 

 

  

 

 
Figure 6. Small scale bioartificial liver mini column filter circuit. A scale model 

of the filtration circuit was used to assess filter efficacy. Plasma was pumped 

through the mini columns containing encapsulated liver cells, mini column output 

was split into two streams, one directly linked to the reservoir and the other passed 

through the filter circuit, containing the upstream 25 cm2 and downstream 0.6µm 

filters.  
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Figure 7. Mini column experiment set-up. ELS were fluidised in the mini column 

using plasma, prior to the plasma being transferred to the filter circuit containing 

the upstream 25 cm2 and downstream 0.6µm filters. 

 

2.8.6 Filtration circuit set-up in line with the bioreactor 

 

The filter circuit was set up with the bioreactor in place (see Figure 8). A Y-piece 

was used in the top of the bioreactor to separate the output into two, one to 

recirculate back to the reservoir at a high flow rate and the other through the 

filtration circuit at 90 ml/minute prior to returning to the reservoir (patient). Blood 

filters were used in the top of the bioreactor to prevent any ELS entering the filter 

system. Sample ports in the form of T pieces were added with sterile septa 

connectors to enable sample collection.  
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A bioreactor infected with bacteria was used to test the capacity of the upstream 

depth charge and downstream filters. The biomass was acidified to pH 2 for 1 hour 

with HCl to kill any bacteria followed by neutralisation with NaOH. Plasma was 

pumped through the chamber and around both circuits at an initial rate of 

90 ml/min. Samples were taken from the initial plasma before contact with the 

chamber, post-chamber pre-filters, post-upstream filter, post-upstream and 

downstream filters and post-both filters downstream for both DNA and endotoxin 

analysis. 

 

Figure 8. Set up of the filter series within the bioartificial liver (BAL) circuit. The 

BAL chamber is fluidised via a pump inlet; two outlet ports are generated at the top 

of the chamber- one returning to the reservoir, one passing through the filter circuit 

where pressure transducers are connected to continuously measure the pressure 

drop across the filters. Sample ports are present to sample at different points in the 

circuit. The yellow half of the image depicts the BAL set-up and the grey depicts the 

filter safety circuit set-up.   
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2.9 Statistical analysis 

 

Sample replicates are stated within the figure legends throughout this thesis. The 

majority of data are presented as mean +/- SD unless stated otherwise. Where 

results refer to the absolute concentration of samples, these data have taken into 

account the dilution factor of said samples and present the results as would be seen 

in the neat sample.  

 

Microsoft Excel was used to collect data, in the case of calculating concentrations 

of substances based on a standard curve, this was also performed in Excel; data 

were exported to IMB SPSS, which was used to perform statistical analysis. 

 

In the case of comparing data for two variables, these data were analysed for 

statistical significance using either the paired two-tailed Student’s T-test or the 

unpaired two-tailed Student’s T-test, depending on the form of the data. Where 

more than two variables were to be compared, a one-way analysis of variance 

(ANOVA) was performed to assess statistical significance between and within 

variables, this was followed, as needed, by post hoc analyses using the Bonferroni 

procedure to determine where the significance, if any, lay. The choice of statistical 

analyses is specified along with the P-value in figure legends, where appropriate.  

 

In Tables and Figures, statistically significant P-values are expressed using an 

asterisk (*), this refers to significance at a level of P<0.05. Where there were not 

enough materials available to enable multiple repeats of experiments to be 

performed, for example the lack of available liver failure plasma samples, this has 

been stated; analysis for statistical significance in this instance was not calculated, 

this has been made clear in any conclusions drawn from these data. 

 

 

. 
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3. Development of assays for the detection of DNA and endotoxin 

in plasma 

 

3.1 Introduction 

 

To enable the characterisation of a filtration protocol for incorporation within the 

Liver Group extracorporeal BAL circuit, assays for the detection of any potential 

contaminants in the form of HepG2 DNA originating from biomass must be 

developed.20 As this filtration protocol will also be assessed for the removal of 

endotoxin originating from the patient, an efficacious assay is also required to 

detect endotoxin.33,102  

These DNA and endotoxin assays need to be suitable for use in both simple (e.g. 

saline) and complex (e.g. plasma) samples. Additionally, these assays are required 

to have a detection level sufficient to meet regulatory requirements for the BAL to 

be considered for use in humans.103,104,105  

Although assays for the detection of both DNA and endotoxin exist, and currently 

many different options for analysing these substances are available, mixed results 

are reported when these are used in human plasma samples. Human plasma, being 

a highly diverse mix of various proteins, cytokines and salts, contains many 

inhibitors for various reactions; as such, true detection of contaminants in this 

media is a difficult task.46,57  

 

This chapter will discuss the characterisation of DNA and endotoxin assays to 

determine their suitability for use in the assessment of the filtration system. It will 

discuss the identification of optimal assays, their further characterisation and 

enhancement through the use of sample pre-treatment. The overall aim is to gain 

the most sensitive limit of detection possible, whilst maintaining the integrity and 

consistency of the selected assays.    
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3.2 Materials and Methods 

 

 

3.2.1 Detection of DNA using the Agilent TapeStation system 

 

 Materials 

  Agilent genomic DNA screen tape 

  Agilent 2200 TapeStation 

  Agilent 2200 TapeStation software version A.02.02 

  PCR grade water 

  Sample buffer 

 

The Agilent 2200 TapeStation was used to assess the quantity and fragment size of 

DNA in diluted plasma samples. This assay separates DNA by molecular weight 

using electrophoresis, the software compares the bands produced against a sample 

of known concentration and size, from 10 pg/µl–1000 pg/µl. Doubling dilutions of 

plasma in PCR grade water from 1 in 2 down to 1 in 8192 were assessed. A total 

of 1 µl of sample and 10 µl of sample buffer were added to 0.1 ml PCR tubes, 

centrifuged briefly and vortexed for 5 seconds followed by a further centrifuge to 

pellet any droplets. These samples were processed using the Agilent genomic DNA 

screen tape. Results were analysed and DNA concentration calculated from the 

DNA ladder using the Agilent 2200 TapeStation analysis software.  

 

 

3.2.2 Detection of endotoxin using the PyroGent assay 

  

Materials 

PyroGent-5000 kinetic turbidimetric LAL assay (Lonza, N283-06) 

  PyroGent -5000 LAL reagent 

  PyroGent-5000 LAL reconstitution buffer 

  E. coli O55:B5 endotoxin 

0.1 M NaOH in 60% ethanol 

  10 ml endotoxin-free glass tubes, baked for 3 hours at 250°C 
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Endotoxin free, sterile filtered pipette tips (Starlabs®) 

Endotoxin free, sterile clear 96 well plate (Nunc®) 

Hyclone tissue culture water, endotoxin free 

Plate sealer 

  Fluorescence microplate reader, FLUOstar Omega (BMG Labtech) 

  MARS data analysis software (BMG Labtech; version 2.10)  

 

The PyroGent assay was used to assess the quantity of endotoxin present in plasma 

samples. In the presence of endotoxin, reagents within the PyroGent assay clot, 

causing the sample to turn cloudy. The time taken for this to occur is used to 

calculate endotoxin concentration in samples using a known standard curve.  A 

Class 2 biological safety tissue cabinet was used to perform all endotoxin assays, 

and was decontaminated as described in Chapter 2. Endotoxin standards were 

prepared using the Lonza endotoxin standard to gain concentrations of 10, 1, 0.1, 

0.01 and 0.001 EU/ml. Samples to be analysed were diluted to an appropriate 

concentration in endotoxin-free water. To ensure even dispersion of endotoxin in 

the sample, each sample and standard were vortexed for 1 minute prior to addition 

to a 96-well plate.  

 

The plate reader was set to specific measurement parameters: 

Change in time (seconds): 60  

Measurement filter (nm): 340 

Change in measure of optical density: 30  

Number of reads: 100 

 

100 μl of samples, standards and blank were added to the 96-well place in triplicate, 

avoiding the introduction of bubbles as this would disrupt the assay. The plate was 

incubated for at least 10 minutes at 37oC. Whilst the plate was incubating, the 

reagent buffer was re-suspended, 100 μl was added to each well. Measurements 

were started and the plate was left in the plate reader for 1 hour and 40 minutes 

until each of the 100 measurements had completed. Endotoxin concentration was 

determined from the standard curve, with time taken for the solution to become 

turbid inversely proportional to endotoxin concentration.  
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3.2.3 Perchloric acid treatment of plasma samples 

 

Materials 

 0.2 M perchloric acid (Sigma Aldrich #311421) 

 0.2 M NaOH (Sigma Aldrich #795429) 

 15 mM tris-HCL (Sigma Aldrich #T5941) pH 7.5 

 

Samples were treated with an equal volume of 0.2 M perchloric acid and incubated 

at 37oC for 20 minutes. Samples were centrifuged to remove denatured proteins 

and the supernatant was transferred into a fresh sterile Nunc tube. The solution was 

neutralised using an equal volume of NaOH to the original volume of perchloric 

acid and was further diluted in a double quantity of tris-HCL.    
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3.3 Results 

 

3.3.1 DNA assay development 

 

FFP or plasma collected from the apheresis machine was used in these experiments; 

spiked with known quantities of DNA for each of the three methods observed. The 

breakdown of each technique assessed can be seen in Table 4.   

 

 

3.3.1.1 NanoDrop 

 

Using the NanoDrop spectrophotometer, a dilution of 1 in 10,000 plasma in water 

was required to inhibit plasma protein interference, as clarified using the 260 nm 

and 280 nm ratios to calculate purity. Plasma samples spiked with known quantities 

of DNA were analysed and provided a limit of detection, taking into account 

dilution factor of the original plasma sample, of 20,000 ng/µl (Table 4).  

 

 

3.3.1.2 Agilent TapeStation 

 

Using the Agilent TapeStation system, a 1 in 256 dilution of plasma in water was 

required to prevent interference. Taking the original sensitivity of the assay into 

consideration this provided an endpoint limit of detection of 2560 ng/µl DNA 

(Table 4). 

 

  

3.3.1.3 qPCR 

 

qPCR was performed on known concentrations of DNA in plasma to generate a 

standard curve, Bioline human genomic DNA was amplified using ALU repeat 

primers targeting 115 base pair sequences in the human genome. Initial analysis of 

qPCR in plasma samples showed a 1 in 10,000 dilution necessary to fully prevent 
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inhibitory effects of plasma proteins. With an assay sensitivity of 0.02 pg/µl this 

provided an endpoint limit of detection of 0.2 ng/µl, surpassing other methods 

observed. A further range of dilutions were assessed, spiked with concentrations of 

DNA decreasing logarithmically from 200 pg/µl to 0.02 pg/µl to generate various 

standard curves, these were plotted against a water standard, with a 1 in 5,000 

dilution demonstrating the lowest dilution factor that corresponded with the water 

standard curve (Figure 9).  

 

 

Figure 9. qPCR analysis of DNA standard curves in a range of diluted plasma 

samples. Plasma samples were spiked with known concentrations of DNA in a 

linear fashion, samples were diluted to varying degrees and analysed using qPCR 

compared with a water control. A dilution of 1 in 5,000 demonstrated the closest 

linearity compared with water standard curve. N=1. R2 represents the coefficient 

of correlation for the standard curves.  
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Table 4. Assays for the detection of DNA and their corresponding sensitivity in 

water and plasma samples. Limit of detection (LoD) refers to the lowest 

concentration at which the reaction can detect DNA, taking into account dilution 

factor of the sample.  

 

Method  Sensitivity in 

assay mix (pg/µl) 

Dilution factor in 

plasma 

End LoD  

(ng/µl) 

NanoDrop  2,000  1 in 10,000 20,000  

Agilent 

TapeStation  

10,000  1 in 256 2560  

qPCR  0.02  1 in 5,000 0.1  

 

 

3.3.2 Developing the qPCR assay further 

 

To ensure that the assay developed would be robust in detecting HepG2 DNA, a 

crude lysis was performed on confluent monolayer HepG2 cells to release DNA in 

such a way as to best represent what could occur in the biomass. DNA isolated via 

this method was analysed against highly purified human genomic DNA from 

Bioline. Twenty base pair primers were used to target 115 base pair Alu repeat 

sequences within the human genome. Hotstart taq polymerase was used to catalyse 

the reaction and Sybr Green double strand detection to detect DNA amplification 

in real time. It was seen that DNA extracted from HepG2 cells provided consistent 

results when analysed using qPCR to that of highly pure human DNA from Bioline 

(Figure 10). Standards were produced using HepG2 DNA and were used for further 

characterisation of the qPCR assay.  
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Figure 10. qPCR analysis of Bioline and HepG2 DNA standard curves in water. 

Bioline and HepG2 DNA standards were produced in water in a linear fashion and 

analysed using qPCR. N=1. R2 represents the coefficient of correlation for the 

standard curves.  

 

 

3.3.2.1 Plasma pre-treatment 

 

Proteinase K was used as a pre-treatment method for plasma to reduce any 

inhibition from residual protein following sample dilution. Plasma samples were 

spiked with HepG2 DNA to provide an endpoint concentration of 20 pg/µl. Plasma 

samples were diluted 1 in 5,000 in PCR-grade water. DNA spiked samples were 

subjected to different treatments: either dilution alone; dilution with a proteinase K 

treatment of one of two concentrations (32 or 3.2 µg/20 µl sample); or dilution, 

proteinase K treatment and a centrifuge step. Samples were diluted prior to 

proteinase K treatment as heat treatment of the proteinase K reaction mix caused 

agglomeration of the plasma samples. It was seen that although the difference was 

not significant, samples without a proteinase K treatment and the samples that 

contained a centrifuge step produced a lower % recovery of DNA than those in 

which a proteinase K step was used in absence of a centrifuge step, Figure 11.  
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Figure 11. Effect of different proteinase K (PK) treatment methods on DNA 

recovery from plasma samples. Neat plasma samples containing known quantities 

of DNA were treated with either 3.2 µg or 32 µg of PK with (low PK + centrifuge; 

high PK + centrifuge, respectively) or without (low PK; High PK, respectively) 

centrifuging at 13,000 x g for 10 minutes, samples were analysed for DNA 

concentration using qPCR. There was no significant difference in recovery of DNA 

between treatments. Water control contains DNA and no PK. N=4, average +/- 

standard deviation. Significance was assessed using a one-way ANOVA and a 95% 

level of confidence, P= 0.64. 
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3.3.2.2 Plasma dilution 

 

Using the proteinase K pre-treatment, a repeat of the previous experiment was 

performed, whereby a range of plasma dilutions were spiked with a logarithmic 

range of  DNA concentrations and assayed using qPCR, comparing the standard 

curves produced against that of DNA in water. Starting at a 1 in 10 dilution, 

inhibition of plasma on the qPCR reaction was still evident; the dilution factor was 

increased to 1 in 100 reducing inhibition slightly, but still without displaying 

linearity. The dilution of plasma was further increased until an acceptable r2 value, 

and a standard curve produced matching that of water was achieved. This dilution 

was 1 in 5,000, as previously demonstrated without the proteinase K pre-treatment 

method (results not shown). The standard curve produced following proteinase K 

treatment provided a better match to that of DNA in water than the curve of the 

same dilution without this pre-treatment.  We tested samples spiked with 2 pg/µl 

DNA with and without proteinase K treatment. It was shown that recovery of DNA 

following proteinase K treatment was significantly greater compared with samples 

undergoing no pre-treatment, Figure 12.  
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Figure 12. Effect of proteinase K (PK) treatment on revealing levels of DNA 

present in plasma samples. Neat plasma samples containing known quantities of 

DNA were diluted in water with or without PK treatment to assess whether PK 

treatment enhanced DNA recovery from the sample. A significant difference was 

seen in the recovery of DNA from PK pre-treated samples compared with those 

without. N=4, average +/- standard deviation. Significance was assessed using a 

paired Students T Test with a 95% level of confidence; *P<0.05.  

 

To view whether the detection limits of the qPCR reaction in plasma could be 

extended any further, the qPCR reaction was tested down a further 10-fold to a 

lower limit of 0.002 pg/µl in the diluted sample. It was seen that there was no 

significant difference between the non-template control (NTC) and the 0.002 pg/µl 

sample, therefore, the limit at which the standard curve would be run to, and the 

lower limit of detection remained 0.02 pg/µl (see Figure 13).  
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Figure 13. Efficacy of qPCR at detecting low quantities of DNA in plasma. qPCR 

was performed on diluted plasma samples containing 0.002 pg/µl DNA. There was 

no difference between the amplification of the non-template control (NTC) and 

DNA samples meaning that qPCR could not accurately assess this low level of DNA 

in plasma. N=4, average +/- standard deviation. Significance was assessed using 

an unpaired Students T Test with a 95% level of confidence; P= 0.15. 

 

 

3.3.2.3 Consistency of the DNA assay across plasma samples 

 

Once an optimal plasma dilution was obtained, a demonstration of assay 

consistency using both fatty and non-fatty plasma obtained from different donors 

and blood groups was required. Standard curves were produced from four patient 

samples; qPCR and plasma treatment were performed on different days for each 

sample to ensure repeatability of the results. These four standard curves produced 

were consistent with each other and with the water comparison, all samples 

provided an r2 value of >0.99, see Figure 14.  
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Figure 14. DNA assay consistency across different plasma samples. Plasma taken 

from four healthy volunteers was linearly spiked with known quantities of DNA 

from 0.02–200 pg/µl, treated with proteinase K and analysed using qPCR to 

generate a standard curve for each sample. Consistent qPCR amplification was 

seen between individual plasma samples and the water control. N=2 within sample 

replicates; S1–S4 represent plasma samples obtained from different volunteers. R2 

represents the coefficient of correlation for the standard curves. 

 

3.3.2.4 Consistency of the DNA assay at detecting low levels of DNA 

 

The next stage of assay characterisation was to ensure consistency of the assay at 

detecting low levels of DNA. 8 plasma samples were diluted and spiked with 2 

pg/µl of DNA; treated with proteinase K and analysed by qPCR against a water 

standard curve. All samples demonstrated a good, consistent recovery of DNA at 

this low concentration with no significant difference in DNA quantity recovered by 

the qPCR reaction, Figure 15.  
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Figure 15. Assessing the efficacy of the DNA assay for detecting low levels of 

DNA. A) Plasma samples obtained from 8 donors were spiked with DNA, diluted 

and proteinase K treated, DNA recovery from the samples was calculated using 

qPCR to assess inter-plasma variability of the assay. No significant difference was 

seen between any of the samples or the individual samples and the water control. 

Significance was assessed using a one-way ANOVA and a 95% level of confidence, 

P= 0.65 between groups; B) DNA recovery results from the 8 plasma samples were 

combined and compared with the water control. Significance was assessed using 

an unpaired Student’s T-test and a 95% level of confidence, P=0.52. All values are 

average +/- standard deviation.  

 

 

A) 

B) 
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3.3.2.5 Consistency of the DNA assay in the presence of anticoagulants 

 

To ensure the qPCR assay was not inhibited by the use of anticoagulants which will 

be used in future chapters to prevent plasma samples from clotting, qPCR was 

performed in the presence of these factors to estimate any inhibitory effect on DNA 

recovery. Vacutainers containing either heparin, citrate or EDTA were filled with 

DNA-free water, DNA was added to give a final concentration of 250 ng/µl. The 

samples were diluted 1 in 5,000 and analysed using qPCR. Neat DNA-containing 

anticoagulant samples were additionally frozen at -20oC for 24 hours and 

reanalysed to view any effect of cold-storage on DNA recovery. It was seen that no 

negative effects were produced with use of the anticoagulants on qPCR reaction. 

This result was true for both fresh and frozen samples, Figure 16.  

 

 

 

Figure 16. Efficacy of the DNA assay in the presence of anticoagulants.  

Anticoagulated plasma was spiked with known quantities of DNA, samples were 

either frozen or assessed directly. Samples were diluted and proteinase K treated, 

DNA concentration was analysed using qPCR to assess whether the presence of 

anticoagulant, or the process of sample freezing, impacted the efficacy of the DNA 

assay. No significant difference was detected between anticoagulant or unfrozen/ 

frozen samples. N=4, average +/- standard deviation. Significance was assessed 

using a one-way ANOVA and a 95% level of confidence, P= 0.24. 
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3.3.3 Endotoxin assay for plasma samples 

 

The PyroGent and PyroGene endotoxin assays were used to quantify endotoxin in 

plasma samples. These assays detect endotoxin using two different methods, 

kinetic and endpoint, respectively.  

 

 

3.3.3.1 The PyroGent assay 

 

3.3.3.2 Dilution and heat treatment methods to enhance assay efficacy in 

plasma samples 

 

To view if the dilution and subsequent heat treatment of plasma samples had an 

effect on endotoxin recovery, samples were diluted to either 1 in 10, 1 in 20, 1 in 50 

or 1 in 100 followed by heat treatment at 70oC for 20 minutes. Recovery of 

endotoxin increased with increasing dilutions, with an approximately 50% recovery 

seen with a 1 in 100 dilution, see Figure 17.  



84 | P a g e   C h a p t e r  5  

 

 

Figure 17. Efficacy of the PyroGent endotoxin assay in spiked plasma collected 

from two extraction methods. Fresh frozen plasma (FFP) or plasma collected from 

Optia plasmapheresis (Optia) were spiked with 10 EU/ml of endotoxin before being 

diluted to varying degrees and analysed for the presence of endotoxin using the 

PyroGent endotoxin assay, to estimate the variance in efficacy of this assay over a 

range of plasma dilutions and to assess whether plasma source impacted endotoxin 

detection. A significant reduction in endotoxin recovery between each of the plasma 

dilutions and the water sample was seen (*P<0.05). No significant difference was 

seen in endotoxin recovery between FFP and Optia plasma (1 in 10 P=0.42; 1 in 

20 P=0.69; 1 in 50 P=0.22; 1 in 100 P=0.39). Control values were as expected. 

N=4, average +/- standard deviation. Significance between plasma dilutions and 

water samples were assessed using a one-way ANOVA and a 95% level of 

confidence. Significance between endotoxin recovery in FFP and Optia samples at 

each dilution were assessed using an unpaired Students T test and a 95% level of 

confidence.  

 

To establish whether the plasma would still present its inhibitory effect following 

dilution and heat treatment, and to denature plasma proteins, prior to endotoxin 

addition, plasma was diluted either 1 in 10, 1 in 20, 1 in 50 or 1 in 100 and heat 

treated at 70oC for 20 minutes prior to addition of 10 EU/ml of endotoxin and 

incubation for 1 hour at 37oC. The samples were analysed with the PyroGent 

endotoxin assay and endotoxin recovery ranged from 70–120% with no false 
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positive results in the blank plasma controls. At the lower dilutions of plasma from 

plasmaphereses more accurate recovery of endotoxin was demonstrated than with 

FFP, see Figure 18.  

 

 

Figure 18. Efficacy of endotoxin detection using the PyroGent endotoxin assay 

in denatured plasma spiked with endotoxin. Fresh frozen (FFP) or plasma 

collected from Optia plasmapheresis (Optia) was diluted to varying degrees and 

heat treated at 70oC for 20 minutes to denature plasma proteins, prior to the 

addition of 10 EU/ml endotoxin. Endotoxin recovery from the samples was assessed 

using the PyroGent endotoxin assay to view whether denaturation of plasma 

proteins improved efficacy of endotoxin detection. At 1/50 and 1/100 dilutions 

endotoxin recovery was similar to control. N=2, average +/- high low values.  

 

 

3.3.3.3 Perchloric acid treatment of plasma: effect on endotoxin assay 

efficacy 

 

Plasma samples were spiked with 10 EU/ml of endotoxin and subjected to 

perchloric acid treatment as detailed above. It was seen that less than 10% of 

recovery of endotoxin occurred using this method see Figure 19.  
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Figure 19. Efficacy of endotoxin detection using the PyroGent endotoxin assay 

in endotoxin-spiked plasma pre-treated with perchloric acid. Fresh-frozen (FFP) 

or Optia plasmapheresis-obtained (Optia) plasma samples were spiked with 

10 EU/ml endotoxin (hashed horizontal grey line), treated with perchloric acid and 

neutralised using NaOH in an attempt to enhance detection of endotoxin. Endotoxin 

could not be detected above the limit of detection of the assay (1 EU/ml; black 

hashed horizontal line) following this treatment. N=2, average +/- high low values.  

 

 

3.3.3.4 Proteinase K treatment of plasma samples: effect on endotoxin assay 

efficacy 

 

Plasma samples were spiked with 10 EU/ml of endotoxin and subjected to 

proteinase K treatment as detailed above. Recovery of endotoxin was low with a 

considerable sample to sample variability, see Figure 20.  
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Figure 20. Efficacy of endotoxin detection using the PyroGent endotoxin assay 

in endotoxin-spiked plasma pre-treated with proteinase K (PK). Plasma samples 

were spiked with 10 EU/ml endotoxin (hashed horizontal grey line) and treated 

with PK in an attempt to enhance detection of endotoxin using the PyroGent 

endotoxin assay. Recovery was considerably lower than expected, compared with 

the water control; recovery was slightly improved with plasma dilution. Black 

horizontal hashed line represents lower limit of detection. N=2 within-sample 

repeats, average +/- high low values.  

 

 

3.3.4 The PyroGene assay 

 

3.3.4.1 Albumin interference 

 

Albumin is present in human plasma at a high concentration, and is demonstrated 

to interfere with assays for the detection of DNA and endotoxin. To investigate the 

extent to which albumin had an inhibitory effect on the PyroGene assay, endotoxin 

was incubated in saline with and without albumin at a concentration of 40 g/L. 

Samples were taken every hour over a 6 hour period to determine the extent of 

inhibition at different time points. The inhibitory effect of albumin occurred 

consistently after a 20 minute incubation time, see Figure 21 .  



88 | P a g e   C h a p t e r  5  

 

 

Figure 21. Efficacy of endotoxin detection using the PyroGene endotoxin assay 

in the presence and absence of albumin. Endotoxin was incubated with saline +/- 

40 g/L albumin, hourly samples were analysed for endotoxin concentration using 

the PyroGene endotoxin assay to view whether physiological levels of albumin 

interfered with detection of endotoxin. Presence of albumin considerably decreased 

recovery of endotoxin compared with the saline sample. N=2, average =/- high low 

values.  

 

 

 

3.3.4.2 Proteinase K treatment using the PyroGene assay 

 

Saline containing albumin at a concentration of 40 g/L was spiked with endotoxin 

and subjected to proteinase K treatment as detailed above. The use of proteinase K 

treatment had a positive effect on the recovery of endotoxin, although recovery did 

not match that of the saline control, see Figure 22.  
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Figure 22. Effect of proteinase K (PK) treatment on the efficacy of detection of 

endotoxin in albumin samples using the PyroGene endotoxin assay. 40 g/L 

albumin saline samples were spiked with endotoxin. Samples were pre-treated with 

PK for a period of 2 or 18 hours in an attempt to enhance detection of endotoxin. 

Recovery of endotoxin was considerably higher in samples treated with PK for 

2 hours compared with those treated for 18 hours and those without PK treatment. 

PK treatment did not negatively impact on endotoxin recovery from saline only 

samples. N=2; average +/- high low values.  

 

 

3.3.4.3 Refining the PyroGene assay  

 

The LAL assay was applied to analyse consistency across patient samples. 3 

different FFP samples were diluted 1 in 200, spiked with endotoxin (1 EU/ml) and 

heat treated at 70°C for 20 minutes. The recovery from FFP samples was shown to 

be lower than that for water, but no significant difference was observed between 

the plasma samples, see Figure 23. 
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Figure 23. Efficacy of the PyroGene endotoxin assay in diluted and heat treated 

endotoxin-spiked plasma. Plasma obtained from 3 donors was diluted 1 in 200 in 

endotoxin-free water, spiked with 1 EU/ml of endotoxin, heat treated at 70°C for 

20 minutes and analysed using the PyroGene endotoxin assay, compared with 

water samples treated in the same way to view whether plasma pre-treatment 

enhanced endotoxin recovery. Endotoxin recovery from plasma was significantly 

lower than water (P<0.05), no difference in plasma sample-to-sample recovery 

was observed. N=2 within sample replicates, average +/- high low for individual 

samples and average +/- standard deviation for combined samples. Significance 

between combined samples and water was assessed using the unpaired Student’s T 

test and a 95% level of confidence.  
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3.4 Discussion 

 

3.4.1 DNA assay 

 

3.4.1.1 An assay for the detection of DNA in plasma  

 

The use of qPCR to assess DNA quantity in plasma samples enabled the 

development of an assay protocol suitable for use in plasma down to a lower limit 

of detection of 0.1 ng/µl. This lower limit of detection was calculated from the 

qPCR reaction having a sensitivity of 0.02 pg/µl, and plasma samples requiring a 

dilution factor of 1 in 5,000 for the reaction to be reliable in this media. Dilution of 

plasma in this manner provided the smallest dilution at which plasma components 

ceased interfering with the qPCR reaction. It was clear at dilutions above this factor 

that various plasma components were inhibiting the reaction, seen as consistently 

higher Ct values, translating to a decrease in template DNA seen by the reaction 

mix, and a failure to produce an acceptable standard curve. The inhibitory effect of 

plasma has been widely observed with IgG, the primary source of this 

interference.45,55,56 This assay was rigorously tested using plasma samples obtained 

from different donors, through different methods, on different days and at both high 

and low concentrations ensuring an effective and robust assay that will be 

continuously used throughout this project. 

 

Citrate chelates calcium ions required to maintain ELS integrity. For this reason, 

heparin is used as the anticoagulant for any plasma that comes into contact with the 

BAL. It is known that heparin has an inhibitory effect on qPCR reactions, we have 

demonstrated here that there was no significant difference in DNA recovery in the 

presence of heparin compared with DNA control at a 1/5,000 dilution.45,48 One 

further issue the BAL may pose to the qPCR reaction is the increase in calcium ions 

present in the plasma required to maintain integrity of the ELS. Calcium ions are 

known to inhibit qPCR at a concentration double that of magnesium in the reaction 

mix, this is due to the calcium ions competing with magnesium chloride as a 

co-factor for the DNA polymerase.46 Magnesium chloride is present in the qPCR 
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reaction mix at a final concentration of 0.0031 M, following addition of sample; 

physiological levels of calcium chloride are approximately 0.002 M, lower than the 

value at which it would inhibit a qPCR reaction.106 Due to the high dilution factor 

of the plasma performed in order to gain accurate results, this may not present an 

issue, but it is important to note and will be explored further in future chapters, with 

the use of a consistent control, to ensure the analysis of DNA in human plasma 

samples via qPCR is robust, particularly in the presence of the BAL-treated plasma, 

in which calcium is used to maintain integrity of the biomass.  

 

 

3.4.1.2 Application of the DNA assay sensitivity to BAL requirements 

 

As discussed in Chapter 1, the exact concentrations of DNA considered acceptable 

within medical devices and drugs are unclear. Based on in vivo studies of 

decellularised scaffolds, the maximum level of DNA contamination to avoid 

immunogenicity in terms of an adverse host cell response was less than 50 ng of 

double stranded DNA per mg of extracellular matrix dry weight.104 It has been 

reported that average human plasma samples are 80 mg dry weight per ml of liquid. 

The DNA detection method described above was assessed to view whether it would 

theoretically meet sensitivity limits required to detect 50 ng DNA per 80 mg dry 

plasma. The DNA detection limit achieved using the proteinase K treatment 

protocol is 0.1 ng/µl, equal to 100 ng/ml, which equates to 100 ng of DNA in 80 

mg dry plasma weight. Therefore, 100 ng of DNA per 80 mg of plasma dry weight 

provides a value of 1.2 ng of DNA per mg of dry weight plasma. This is well below 

the limit for provoking an immune response described above (50 ng/mg of dry 

weight for decellularised scaffolds104), suggesting that the limit of detection for this 

qPCR method is more than sensitive enough detect DNA at the minimal 

concentration at which it might provoke an immune response.  

 

In addition to the sensitivity limits discussed above, to ensure that this assay is 

sensitive enough for use within the BAL setting, it is important to gain an 

understanding of the concentration of DNA expected to be released from the 

system. To do this the DNA concentration of HepG2 cells is used to calculate the 
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total quantity of DNA found within the BAL biomass, this is related to the total 

volume of liquid in which this DNA could potentially release into. Goepfert et al 

2011107 analysed DNA concentration in HepG2 cells, stating that the modal number 

of HepG2 cells is 55, equating to a DNA level per cell of 7.83 pg.107 At high cell 

density the BAL will contain up to 1x1011 cells, equating to 7.83x1011 pg of DNA 

per 7 litres of plasma (as would be the quantity within the BAL-patient system) or 

1.1x105 pg/µl of DNA. Using our qPCR assay with a limit of detection of 0.1 ng/µl, 

this system can detect as little as 0.08% cell death occurring within the BAL 

biomass at a high cell concentration in a circulating system containing 7 litres of 

fluid. At a low cell density the BAL will contain 7x1010 cells in 7 litres of plasma, 

or 5.48x1011 pg of DNA. This equates to 7.83x104 pg/µl of DNA, meaning 

detection of 0.13% cell death at low cell densities. The upper limit of qPCR is 1000 

ng/µl, so by further diluting the sample DNA can be detected in plasma passed 

through the BAL at cell deaths from 100% to 0.08%. This demonstrates the 

suitability of this assay for use in future work, as presented in Chapters 4–6.  

 

 

3.4.2 An assay for the detection of endotoxin in plasma 

 

3.4.2.1 The PyroGent assay  

 

The PyroGent assay recommends a 1 in 10 dilution for plasma samples, with a 

lower limit of detection of 0.001 EU/ml in testing situations only. We found that 

by diluting and heating plasma, approximately 50% recovery of endotoxin could 

be produced using this assay, although results were highly variable with different 

patient plasma samples, as can be seen from the large error bars.  Upon treatment 

with perchloric acid, less than 50% recovery of endotoxin was produced. The pH 

of the samples were analysed prior to use with the PyroGent assay and a Tris-HCL 

buffer was used to ensure the pH remained stable, therefore, inhibition was unlikely 

to be due to the pH of the sample being incompatible with the assay reagents. An 

alternative reason as to why the assay may not work could be the high concentration 

of salt produced from the neutralisation of the perchloric acid with the NaOH, this 

may disrupt the enzyme within the PyroGent system.108 Results demonstrated that 
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proteinase K treatment of samples for use with this detection assay proved 

ineffective at producing desirable results. As sufficient results were not generated 

with this assay, a literature search was performed for alternative methods, the 

PyroGene recombinant Factor C assay was selected for characterisation.52  

 

 

3.4.2.2 The PyroGene assay 

 

The PyroGene assay is a recombinant Factor C assay, selected for further 

characterisation after reviewing current literature.52 Using the endotoxin protocol 

described in the methods section, the limit of detection for endotoxin in plasma 

taking into account the dilution factor is 2 EU/ml. When this assay was used in 

media samples containing 10% FFP, the sensitivity of this assay was increased to 

0.2 EU/ml, due to there being 10-fold less dilution. The defined acceptable 

endotoxin concentration for a medical device as per the FDA guidelines is 

device-dependent but either, 0.5 EU/ml or 20 EU/device.109 For the BAL to meet 

regulatory requirements, its components must adhere to this regulation prior to 

treatment of the patient. This means that the filters themselves, the biomass and any 

associated tubing, chambers and connectors must be lower than this limit. As the 

filters can be rinsed and analysed for endotoxin concentration using saline or water, 

the lower limit of detection here would be 0.01 EU/ml, providing sufficient 

coverage for regulatory testing. Within the biomass itself, the testing would be 

performed in the growth medium in which the cells were maintained prior to 

transfer to the patient’s plasma, therefore, the lower limit of detection for this is 

0.2 EU/ml, lower than the required limit of detection for regulatory testing. This 

assay will be used for the detection of endotoxin in all future work.  
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4. Characterising a small scale filtration system for use within a 

bioartificial liver 

   

4.1 Introduction 

 

As its functional component, the liver group BAL uses HepG2 cells encapsulated 

in alginate, a hydrogel which is both biocompatible and semi-permeable.20 By 

encapsulating cells in this manner, the cellular biomass may be directly exposed to 

the patient’s plasma during treatment. The process of BAL treatment may lead to 

leaching of contaminants such as cell-free DNA, cell debris, and alginate particles 

from the biomass into the patient’s plasma. It is essential that these contaminants 

are removed from the patient’s plasma before it is returned to their circulatory 

system. For this reason, a method for the removal of DNA and particles from the 

patient’s plasma after it has been processed by the BAL and prior to return to the 

patient is required for this technology to meet regulatory guidelines for use in 

patients, as described in Chapter 1.27,59,28  

 

The presence of high endotoxin levels within the plasma of patients with acute liver 

failure has been linked to an increased chance of complications during 

treatment.33,44 As such, in addition to contaminants originating from the BAL 

biomass, the filtration system will be assessed for the removal of endotoxin 

originating from the patient’s own plasma, providing an additional functional 

element of this system, with the aim of further protecting these patients from 

bacterial contamination of the blood and its subsequent effects, which are a 

common final cause of death in patients with liver failure.33   

 

Inhibitors in plasma have been shown to interfere with assays for the detection of 

DNA and endotoxin. DNA and endotoxin measurements will be used in this chapter 

to assess the efficacy of the filtration system on a small scale.  

 

The use of a depth filter, as identified in Chapter 1, within the BAL circuit will 

enable a high volumetric throughput, providing a greater chance of this filtration 

meeting requirements of a BAL treatment cycle. The 3M Cuno depth charge 
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60ZB05A filter series contain anion exchange media, carbon and other affinity 

resins and a net positive charge to enable removal of negatively charged biological 

components such as DNA and endotoxin. This filter series is available in a variety 

of scales, the smaller scales of which will be characterised in this chapter.97  

 

The aims of this chapter are to determine both the capability and the capacity 

required of the filtration system in order for it to meet regulatory requirements and 

be suitable for use within patients, and to assess the filtration system on a 

small-scale in vitro to establish the parameters of its efficacy.  
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4.2 Methods 

 

 

4.2.1 Characterising DNA release from HepG2 cells in plasma 

 

The number of cells per volume of plasma that may observed under BAL conditions 

was calculated as 1.4x107 cells/ml (as a high cell density BAL contains 1x1011 cells 

and the circuit would contain 7 L of plasma: 1x1011/7000=1.2x107). From this, cell 

seeding densities for cell death within the BAL were calculated including situations 

in which: 100%, 50%, 30% 10% and 0.1% of cell death occur. Using these numbers 

the expected concentration of DNA released into the BAL under each condition 

was calculated. Cells were seeded at these densities into 1 ml pooled plasma 

samples which were subjected to a number of freeze-thaw cycles to ensure cell 

death. Each sample was analysed using qPCR, as described in Chapter 2, and DNA 

release from cells was quantified. 

 

4.2.2 Characterising DNA release from ELS in plasma and media to calculate 

worst case and expected scenarios 

 

 Materials 

  ELS 

  Complete FFP alpha-MEM media 

  Plasma 

  Cell major mixer in 37°C incubator 

 

ELS were placed into 50 ml Nunc tubes containing either cell growth media or 

plasma at known volumes. Cells were incubated at 37°C, mixing gently to simulate 

expected conditions within the FBB. Samples were taken from the initial media 

prior to addition of ELS, after 10 minutes allowing equilibration between alginate 

and media and after 8 and 24 hours of incubation. These samples were analysed for 

DNA concentration using qPCR. A worst case scenario was also performed where 

ELS were freeze/thawed prior to addition to FFP media to provide a 100% cell 

mortality comparison.  
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4.3 Results 

 

 

4.3.1 DNA release 

 

4.3.1.1 DNA release from monolayer HepG2 cells  

 

The release of DNA from monolayer cells seeded into plasma were compared 

against expected values calculated using cell concentration and chromosome 

number (C number) of the HepG2 cell line. The observed DNA concentration was 

greater than that expected (Figure 24), perhaps representing a proportion of cells in 

S or G2 phase of the cell cycle.  The increase in observed DNA concentration would 

unlikely be due to existing DNA levels in the plasma, as the control sample tested 

negative for the presence of DNA.  

 

Figure 24. Quantification of DNA release from monolayer HepG2 cells subjected 

to freeze-thaw cycles. HepG2 cells were seeded into plasma at densities 

representing different scenarios of cell death within the bioartificial liver. DNA 

release from cells was quantified using qPCR and compared with calculated 

expected values. An increase in observed DNA released was seen compared 

expected values. N=4 samples, average +/- standard deviation. 
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4.3.1.2 DNA release from ELS in plasma 

 

Day 12 ELS (i.e. ready to use in the BAL) incubated in plasma and subjected to a 

gentle rotation within a 37°C incubator 24 hours produced samples at 0, 8, and 24 

hours. A 100% mortality comparison was gained using freeze/thaw cycles. Samples 

incubated in plasma show a release of DNA into plasma, with the worst case 

scenario producing a DNA level equal to that of the calculated expected for this 

scenario (Figure 25). After 8 and 24 hours of treatment, cell death was calculated 

in the samples working back from the 100% cell death control.  

8 hour plasma samples: 100% cell death control: 39.5 ng/µl DNA released 

    8 hour plasma sample: 0.22 ng/µl DNA released  

      (0.22/39.5)*100 = 0.56% cell death 

24 hour plasma samples: 100% cell death control: 39.5 ng/µl DNA released 

    8 hour plasma sample: 0.57 ng/µl DNA released  

      (0.57/39.5)*100 = 1.44% cell death 
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Figure 25. Quantification of DNA release from encapsulated liver cells (ELS) 

under gentle incubated rotation for 24 hours. Day 12 ELS were incubated in 

plasma and subjected to a gentle rotation within a 37°C incubator for 24 hours to 

quantify expected DNA release from ELS under bioartificial liver treatment 

conditions. DNA release occurred linearly over the 24 hour period. Inset: cells 

incubated in plasma were freeze/thawed to induce cell death in order to calculate 

a reference value for DNA release from a 100% cell mortality control. N=4, 

average +/- standard deviation.  

 

 

4.3.2 Particle release from empty alginate spheres in serum-free cell culture 

media using the upstream 170 cm2 and downstream 1.2 µm filters in series 

 

A total of 18 litres of culture media from a Day 0–5 media change performed on a 

culture of empty alginate spheres was passed through the upstream 170 cm2 and 

downstream 1.2 µm filters in series. This media change was used as it is likely to 

represent the greatest particle burden. Samples were taken following filtration with 

the upstream 170 cm2 filter alone, the downstream 1.2 µm filter alone and both 

filters in series. Samples were analysed using NanoSight, Zetasizer and Mastersizer 

particulate sizing technologies.  
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4.3.2.1 Mastersizer analysis 

 

Samples from each condition were analysed using the Mastersizer analysis 

software. MilliQ water was used as a comparison. The results demonstrated 

removal of particulates in the 10 µm–600 µm range (this was within the 

measurement range of the Mastersizer [0.02–2000 µm]). Data shown here are a 

percentage of sample volume. A peak of particles at the higher end of the 

spectrum was seen, this was also observed in the MilliQ water control (Figure 

26).  

 

 
Figure 26. Particle size analysis of Day 5 empty alginate bead conditioned culture 

media using a Mastersizer. Culture media (18 litres) from a Day 5 media change 

of empty alginate beads was passed through the upstream 170 cm2 and downstream 

1.2 µm filters in series. Samples were taken following the 170 cm2 filter alone, the 

1.2 µm filter alone and both filters in series to assess alginate particle removal by 

the filters. Removal of particles in the 10–600 µm region was observed.  N=1.  
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4.3.2.2 Zetasizer analysis 

 

Results produced from Zetasizer analysis corroborate the Mastersizer data, 

showing a reduction in average particle size from the pre- and post-filtered samples 

(Figure 27). It is worth noting that the measurement range of this system is 0.003–

10 µm.  

 

Figure 27. Particle size analysis of Day 5 empty alginate bead conditioned culture 

media using a Zetasizer. Culture media (18 litres) from a Day 5 media change of 

empty alginate beads was passed through the upstream 170 cm2 and downstream 

1.2 µm filters in series to assess alginate particle removal by the filters. Samples 

were compared with the pre-filter sample. A decrease in average particle size was 

observed seen between the pre- and post-filter samples. N=1, average +/- standard 

deviation of N=4 within-sample replicates.   
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4.3.2.3 NanoSight analysis 

 

A decrease in particle size was seen from the pre-filter samples to both post-filter 

samples, with the upstream 170 cm2 filter displaying reduction of particles down to 

<0.3 µm, and the downstream 1.2 µm filter to <1 µm (Figure 28).  The measurement 

range of this system is 0.01–2 µm (10–2,000 nm). 

 

 

Figure 28. Particle size analysis of Day 5 empty alginate bead conditioned culture 

media using a NanoSight particle sizer. Culture media (18 litres) from a Day 5 

media change of empty alginate beads was passed through the upstream 170 cm2 

and downstream 1.2 µm filters in series to assess alginate particle removal by the 

filters. Samples were assessed using a NanoSight particle sizer. A decrease in 

number of larger (>400 nm) particles was observed seen between the pre- and 

post-filter samples. N=1 experiment, results presented are average of N=10 

within-sample replicates. 

 

 

4.3.3 Volumetric capacity of the filtration system 

  

The volumetric capacity of the upstream 170 cm2 filter and the downstream 1.2 µm 

filter were analysed in series. This was performed by gaining a large quantity of 

human plasma and using a ‘brute force’ approach to challenge the filters until the 

maximum volumetric capacity was reached. 40 litres of plasma were passed 

through the filters in series, with a considerable pressure increase seen at the last 5 

litres (Figure 29).  
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Figure 29. Volumetric capacity of the filter system as assessed using pressure 

drop across the upstream 170 cm2 and downstream 1.2 µm filters in series. The 

upstream 170 cm2 and downstream 1.2 µm filters were challenged with 40 L of 

plasma. Pressure drop was measured across the filters to assess filter blockage and 

ascertain total volumetric capacity. Pressure drop began to increase after the 

filters had processed 30 L of plasma. N=1.  

 

Following this, to further enhance the safety of this device, a smaller nominal pore 

sized filter was selected for further characterisation, the 0.6 µm downstream filter.  

 

 

4.3.4 Simultaneous DNA and endotoxin from plasma removal by the 

filtration system  

 

During initial experiments into filter capacity, plasma was collected and used to 

test the volumetric capacity and DNA and endotoxin removal capabilities. The 

DNA capacity of a 25 cm2 filter was assessed with 3 DNA spikes in plasma. A 

breakthrough in filter efficiency was observed after filtration of 1186 ml plasma, 

containing 0.312 mg DNA. Additionally, filter blockage as assessed by an increase 
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in pressure and total reduction of flow after 2 litres of plasma had been processed. 

Retrospectively it was realised plasma used in this experiment was obtained from 

donors undergoing a specific clinical treatment leading to the death and lysis of red 

blood cells at large volume in the plasma donated, as would not be seen for patients 

presenting with acute liver failure – for all experiments performed onwards plasma 

donated from these patients was omitted.  

 

DNA and endotoxin were introduced to the 170 cm2 filter in 3 separate spikes 

scaled up from the 25 cm2 experiment, all of which were introduced during the 

filtration of 3.5 litres of plasma from a single patient. DNA totalled 4.243 mg 

(equivalent to 5.4 x 108 HepG2 cells). Endotoxin was introduced at 1.2 EU/ml, just 

under the quantity thought to be present in patients with liver failure, which is 

approximately 1.84 EU/ml.43,110 It was seen that the 170 cm2 removed DNA and 

endotoxin consistently from the plasma to below the limit of detection (Figure 30). 
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Figure 30. Simultaneous removal of DNA and endotoxin from plasma by the 

upstream 25 cm2 scale filter. 2 L of fresh frozen plasma spiked with HepG2 DNA 

and endotoxin was passed through the upstream 25 cm2 filter to assess its capacity 

for the simultaneous removal of A) DNA and B) endotoxin. DNA and endotoxin 

were consistently removed to below the limit of detection (hashed horizontal line) 

for the full 2 L sample. N=2, average +/- high low values.  
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4.3.5 Mini column experiments in healthy plasma 

 

A series of experiments were performed using mini columns and healthy human 

plasma collected from FFP donations. These experiments were designed to provide 

a scaled-down model of the BAL, as it would be in a clinical setting, incorporating 

the filtration circuit. The upstream 25 cm2 and downstream 0.6 µm filters were used 

for these experiments. This was repeated using four different filtration sets, four 

mini columns and four plasma samples. 

 

The number of cells per ml of ELS was reduced during the course of the 

experiment, as expected, but the percentage viability was maintained (Figure 31). 

AFP production significantly increased over the course of the 8 hour experiment 

demonstrating production of AFP by the HepG2 cells. Glucose levels decreased 

over the 8 hour time period, demonstrating metabolism by the cells (Figure 32, page 

110).  
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Figure 31. Cell number and viability of encapsulated liver cells (ELS) subjected 

to a healthy plasma scale bioartificial liver (BAL) treatment incorporating the 

filtration system. ELS were fluidised within mini columns connected to the 

filtration system using healthy plasma for 8 hours. Cell number and viability were 

assessed prior to and post-8 hour treatment to view whether the BAL set-up 

negatively impacted cellular health. Cell number was significantly reduced during 

the course of the experiment (top) but viability was maintained (bottom). N=4, 

average +/- standard deviation; A) *P<0.05; B) P=0.65. Significance was 

assessed using the paired Student’s T test and a 95% level of confidence.  

 

 

* 
A) 

B) 



110 | P a g e   C h a p t e r  5  

 

 

Figure 32. α-fetoprotein (AFP) production and glucose consumption by 

encapsulated liver cells (ELS) subjected to a healthy plasma scale bioartificial 

liver (BAL) treatment incorporating the filtration system. ELS were fluidised 

within mini columns connected to the filtration system using healthy plasma for 8 

hours. Hourly samples were taken to estimate AFP production and glucose 

consumption by the ELS. A) AFP production significantly increased from baseline 

to 8 hours (P<0.05). B) Glucose levels significantly decreased from baseline to 8 

hours (P<0.05). N=4, average +/- standard deviation. Significance between the 

baseline (0 hour) and 8-hour timepoints were analysed using a Paired Student’s 

T test and a 95% level of confidence.  

 

Large protein molecules were selected for assaying over the 8 hour treatment period 

to view whether the filter had any effect on their levels present in plasma. IgM, IgG 

and IgA were analysed by the clinical biochemistry team at the Royal Free Hospital. 

Time (hours) 

Time (hours) 
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It was seen that there was no significant difference in the quantity of any of these 

molecules at any point over the 8 hour treatment period (Figure 33). 

 

Additional proteins were also assayed, including albumin, alpha-1-antitrypsin, 

alpha-1-acidglycoprotein and fibrinogen. There was no significant difference in the 

presence of albumin, or alpha-1-acidglycoprotein over the 8 hour period. Alpha-1-

antitrypsin demonstrated an initial decrease from baseline pre-experiment levels to 

the first hour of recirculation, but no further reduction following. The concentration 

of fibrinogen initially peaked at the one-hour sample, and proceeded to steadily 

decrease over the 8 hour treatment period (Figure 34, page 113).  
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Figure 33. Maintenance of immunoglobulin levels through an 8-hour healthy 

plasma scale bioartificial liver (BAL) treatment incorporating the filtration 

system. ELS were fluidised within mini columns connected to the filtration system 

using healthy plasma for 8 hours. Hourly samples were taken to assess 

maintenance of immunoglobulin levels. A) No significant difference was seen in 

total protein concentration from baseline to 8 hours (P=0.13). B) No significant 

difference was seen in IgM concentration from baseline to 8 hours (P=0.98). C) 

No significant difference was seen in IgA concentration from baseline to 8 hours 

(P=0.98). D) No significant difference was seen in IgG concentration from baseline 

to 8 hours (P=0.98). N=4, average +/- standard deviation. Significance was 

analysed using a paired Student’s T test (baseline and 8 hour values) with a 95% 

level of confidence.  
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Figure 34. Plasma protein levels through an 8-hour healthy plasma scale 

bioartificial liver (BAL) treatment incorporating the filtration system. ELS were 

fluidised within mini columns connected to the filtration system using healthy 

plasma for 8 hours. Hourly samples were taken to estimate plasma protein levels 

using ELISAs specific to human antigen. A) No significant difference was seen in 

albumin concentration from baseline to 8 hours (P=0.60 baseline vs. 8 hours). B) 

An initial decrease in apha-1-antitrypsin (A1At) concentration from baseline to 1 

hour was seen, remaining consistent over the remainder of the 8 hour treatment 

period (P=0.59). C) No significant difference was seen in alpha-1-acid 

glycoprotein (AGP) concentration from baseline to 8 hours (P=0.10). D) 

Fibrinogen initially increased from baseline to the one hour sample, it steadily 

declined over the remainder of the 8 hour treatment period (P=0.07 baseline vs. 8 

hours). N=4, average +/- standard deviation. Significance was analysed using a 

paired Student’s T test with a 95% level of confidence for baseline vs. 8 hour values. 

 

Further biochemical parameters were measured at baseline and at hourly intervals 

over the eight hour treatment period. It was seen that there was a significant increase 

in the concentration of sodium ions and a significant decrease in the concentration 

of calcium ions present in the plasma from baseline to the one hour sample (Figure 

35A and C). No additional change was seen between 1 and 8 hours. Additionally, 

potassium demonstrated a steady decrease, with a significant difference seen when 
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comparing the pre-filtration value with the 8 hour time point (Figure 35B). The 

concentration of phosphate ions showed a significant increase from baseline to the 

one hour time point, following this the level slowly declined over the remainder of 

the eight hour period (Figure 35D).  

 

Figure 35. Plasma ion levels through an 8-hour healthy plasma bioartificial liver 

(BAL) scale treatment incorporating the filtration system. Encapsulated liver 

cells were fluidised within mini columns connected to the filtration system using 

healthy plasma for 8 hours. Hourly samples were taken to estimate any change in 

plasma ion levels over the treatment period. A) Sodium ion concentration 

significantly increased from baseline to 8 hours (P<0.05). B) Potassium 

concentration significantly decreased from baseline to 8 hours (P<0.05). C) 

Calcium concentration significantly decreased from baseline to 8 hours (P<0.05). 

D) Phosphate concentration increased from baseline one hour, there was no 

significant difference between baseline and 8 hours (P=0.75). N=4, average +/- 

standard deviation. Significance was analysed for baseline vs. 8 hours using a 

Student’s T test with a 95% level of confidence. 

 

Plasma lipid levels were also assessed for the samples over the 8 hour treatment 

period. Assays were performed for the detection of high density lipoprotein, low 

density lipoprotein and total triglyceride concentration. Total triglyceride 
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concentration remained stable throughout the eight hour treatment period, with no 

change from the baseline value seen until the 8 hour time point. Here a lower 

concentration of triglyceride was observed (Figure 36C). No significant change 

from baseline was seen in either high density lipoprotein or low density lipoprotein 

(Figure 36A and B).  The change in urea concentration was also assessed. Urea 

concentration steadily increased over the 8 hour period with a significant increase 

seen between baseline and 8 hour time points (Figure 37).  

 

Figure 36. Plasma lipid levels through an 8-hour healthy plasma scale 

bioartificial liver (BAL) treatment incorporating the filtration system. ELS were 

fluidised within mini columns connected to the filtration system using healthy 

plasma for 8 hours. Hourly samples were taken to estimate any change in plasma 

lipid levels over the treatment period. A) No significant difference was seen in high 

density lipoprotein (HDL) concentration from baseline to 8 hours (P=0.06). B) No 

significant difference was seen in low density lipoprotein (LDL) concentration from 

baseline to 8 hours (P=0.29). C) No significant difference was seen in total 

triglyceride concentration from baseline to 8 hours (P=0.09). N=4, average +/- 

standard deviation. Significance was analysed for baseline vs. 8 hours using a 

Student’s T test with a 95% level of confidence. 
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Figure 37. Plasma urea levels through an 8-hour healthy plasma bioartificial 

liver (BAL) scale treatment incorporating the filtration system. ELS were fluidised 

within mini columns connected to the filtration system using healthy plasma for 

8 hours. Hourly samples were taken to estimate any change in urea levels over the 

treatment period. Urea levels increased steadily with a significant increase seen 

between baseline and 8 hours (P=0.02). N=4, average +/- standard deviation. 

Significance was analysed for baseline vs. 8 hours using a Student’s T test with a 

95% level of confidence. 

 

 

4.3.6 Mini column experiment in liver failure plasma 

 

The mini column experiment performed in healthy human plasma was repeated 

with plasma from a patient presenting with liver failure who had undergone 

therapeutic plasma exchange using a plasma apheresis system. The experiment 

using this liver failure plasma was again designed to provide a scaled-down model 

of the BAL, as it would be in a clinical setting, incorporating the filtration circuit. 

Upstream 25 cm2 and downstream 0.6 µm filters were used. 

 

As was seen in the healthy plasma mini column experiments, a decrease in cell 

number was seen from the beginning to the end of the experiment, with no change 

in viability (Figure 38). The encapsulated cell morphology was maintained 

throughout the 8 hour treatment period, as assessed by microscopy, see Figure 39 

(page 119). Conjugated, unconjugated and total bilirubin were measured, with 

samples taken pre- and post- filters to view whether bilirubin present in the liver 
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failure plasma was removed by the filters. There did not seem to be a difference in 

the levels of bilirubin pre- and post- filtration (Figure 40; page 120). Additionally, 

in samples taken over the 8 hours, no DNA was present in any sample (including 

the time 0), suggesting continual removal by the filter system (Figure 41; page 121). 

 

The levels of alanine transaminase (ALT) and aspartate aminotransferase (AST), 

markers of liver injury, were also assayed. For both proteins, there was a reduction 

seen between baseline and one hour of treatment. No further decrease was seen 

following this (Figure 42; page 122).   
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Figure 38. Cell number and viability of encapsulated liver cells (ELS) subjected 

to a liver failure plasma scale bioartificial liver (BAL) treatment cycle including 

filtration circuit. ELS were fluidised within mini columns connected to the filtration 

system using liver failure plasma for 8 hours. Cell number and viability were 

assessed prior to and post-8 hour treatment to view how liver failure plasma 

impacted cellular health. A) Cell number was significantly reduced during the 

course of the experiment (P<0.05). B) Cell viability was maintained from 0 to 8 

hours (P=0.83). N=4, average +/- standard deviation. Significance was assessed 

using the paired Student’s T test and a 95% level of confidence.  
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Figure 39. Morphology of encapsulated liver cells (ELS) subjected to a liver 

failure plasma bioartificial liver (BAL) scale treatment cycle including filtration 

circuit.  ELS were fluidised within mini columns connected to the filtration system 

using liver failure plasma for 8 hours, ELS morphology was viewed pre- (A) and 

post- (B) 8 hours using optical microscopy (x10) to estimate any detrimental effect 

of BAL treatment on ELS integrity. ELS integrity was maintained through 8 hours 

of treatment.  
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Figure 40. Plasma bilirubin levels through an 8-hour liver failure plasma 

bioartificial liver (BAL) scale treatment incorporating the filtration system.  

Encapsulated liver cells were fluidised within mini columns connected to the 

filtration system using liver failure plasma for 8 hours. Bilirubin levels were 

assessed prior to and during the 8 hour treatment to estimate any change. A) Levels 

of conjugated bilirubin decreased over the course of the experiment. B), Levels of 

unconjugated bilirubin decreased over the 8 hours. C) Total bilirubin decreased 

over the 8 hours. N=2, average values. 
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Figure 41. Plasma DNA levels through an 8-hour liver failure plasma 

bioartificial liver (BAL) scale treatment incorporating the filtration system.  

Encapsulated liver cells were fluidised within mini columns connected to the 

filtration system using liver failure plasma for 8 hours. DNA levels were assessed 

during the 8 hour treatment to estimate any change using qPCR. DNA was 

consistently below the limit of detection (hashed horizontal line). N=4. 

 

  

 



122 | P a g e   C h a p t e r  5  

 

 

Figure 42. Plasma alanine transaminase (ALT) and aspartate transaminase 

(AST) levels through an 8-hour liver failure plasma bioartificial liver (BAL) scale 

treatment incorporating the filtration system. Encapsulated liver cells were 

fluidised within mini columns connected to the filtration system using liver failure 

plasma for 8 hours. AST and ALT levels were assessed prior to and during the 8 

hour treatment to estimate any change. A) ALT concentration decreased from 

baseline to 1 hour, with no further decrease between 1–8 hours. B) AST 

concentration decreased from baseline to 1 hour, with no further decrease between 

1–8 hours. N=4, average +/- standard deviation. Significance was assessed using 

the paired Student’s T test and a 95% level of confidence.  
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Figure 43. Photographic detail of the set-up of an N=4 mini column experiment 

within a Class 2 biological safety cabinet. Encapsulated liver cells were fluidised 

within mini columns containing liver failure plasma and connected to the filtration 

system for 8 hours.  
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4.4 Discussion 

 

4.4.1 The required capacity of the filtration system for DNA  

 

qPCR proved effective at detecting both DNA released from individual and 

encapsulated HepG2 cells in plasma. Observation of HepG2 cells alone in plasma 

showed a higher DNA concentration than was expected. After a literature search it 

was seen that this increased DNA quantity may be due to cells currently undergoing 

S or G2 phase of the cell cycle, at which point the quantity of DNA present in the 

nucleus would be double the expected value.111 DNA release from ELS under 

gentle rotation with an incubator for 24 hours was only 1.5% of that observed from 

encapsulated cells in which 100% cell death was analysed. We can use this value 

to gain an idea of DNA release from cells within the BAL under treatment 

conditions, and in a scenario of 100% cell death using the quantity of DNA present 

in a HepG2 cell, which as determined using the model chromosome number of 55 

provides 7.83 pg/cell.111 

 

 If cell death occurred at 1.5% during an 8 hour treatment cycle, the quantity of 

DNA to be removed by the filters would be: 

At high cell densities: (1x1011 x  7.83 pg/DNA in a cell111 x 0.015) =  

11.7 mg DNA 

 At low cell densities: (7x1010 x 0.015) = 8.22 mg DNA 

Compared with:  

 100% cell death at high densities = 783 mg DNA  

 100% cell death at low densities = 548 mg DNA 

To ensure the safety of this device, the filter system needs to have the capacity to 

remove 783 mg of DNA to represent the worst case scenario of 100% cell death 

and subsequent total DNA release into the system. As the volume of cells required 

to analyse this is so high, analysis of this will be performed in subsequent chapters 

using a 13.6 x smaller scale model, whereby the filter will be challenged with 58 mg 

of DNA.  
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4.4.2 Removal of alginate particles by the filtration system 

 

The use of three separate particulate analysis techniques could, potentially, provide 

a thorough way to analyse and corroborate data. Unfortunately, due to the multiple 

components found in plasma samples, and the tendency of plasma to clot when 

stored frozen, as is required to use the particle analysis machines, it is difficult to 

accurately analyse plasma samples for particle concentration. Although samples 

can be assessed to view the relative reduction in particle size and burden, results do 

not provide enough detail to enable full conclusions to be drawn. Culture media 

from a Day 5 media change treated with the filtration system demonstrated 

consistent reduction in particle size and number. Mastersizer analysis specifically 

demonstrated removal of particulates in the 10 µm–600 µm range. A peak of 

particles around 1,000 µm was seen, which was also observed in the MilliQ water 

control, this was likely caused by microbubbles within the system, the 

manufactures recommend using a MilliQ water control, as was done here, to define 

this.112 The Mastersizer analysis process has drawbacks in that the absolute number 

of particles cannot be quantified as this technique uses obscuration of light to 

determine the percentage composition of a sample within specified size brackets, 

rather than gathering data regarding individual particles.62,112  Zetasizer and 

NanoSight software were also used to analyse samples, Zetasizer analysis provided 

a similar disadvantage in that a distribution of the concentration of particles by size 

could not be obtained, although this analysis did demonstrate a reduction in the 

average particle size from 12 µm in the initial sample to <2 µm post-upstream and 

<1 µm post-downstream filter. NanoSight analysis provides an ideal in terms of 

particle size and the concentration  of particles within that size bracket, although it 

can only measure particles up to 2 µm in diameter and therefore, would not detect 

those larger particles shown to be present in the pre-filter sample by Mastersizer 

analysis.66,113  
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4.4.3 Capacity of the filtration system for plasma, DNA and endotoxin 

 

It is essential to know the total volumetric capacity of the filters to calculate the 

optimal filter size and the number of filters which might be required for a full BAL 

treatment cycle. At a flow rate of 60 ml/min, as would be seen in the BAL circuit 

returning to the patient, 3.6 litres of plasma would need to pass through the filters 

per hour, equating to 28.8 litres of plasma over an 8 hour treatment cycle.20 The 

total volumetric capacity of the filter must, therefore, exceed this; alternatively a 

number of filters could be used in parallel during the treatment cycle to meet this 

requirement.  

 

After initial plasma-filter experiments it was evident there may be a problem with 

the plasma we were using, due to samples being particularly cloudy prior to 

filtration and becoming clear post-filtration. Using this plasma, the capacity of the 

filter was highly reduced. Retrospectively the cloudy plasma was identified as a 

result of dead blood cells due to therapeutic treatment of the patient prior to total 

plasma exchange.114 For future work these patients were excluded from the study, 

as this plasma does not represent anything that would come into contact with the 

BAL in clinical practice.   

 

The volumetric capacity of the 170 cm2 upstream filter and the 1.2 µm downstream 

filter were analysed in series using a ‘brute force’ approach. 40 litres of plasma 

were passed through the filters in series, with a pressure increase seen at the last 

5 litres, demonstrating that the volumetric capacity of the filters can exceed the 

28.8 litres required of an 8 hour BAL treatment cycle.  It is difficult to assess the 

total volumetric capacity on more than one occasion, due to the lack of availability 

of sufficient quantities of plasma, therefore, this experiment was only performed 

once. As the 1.2 µm downstream filter demonstrated a very low pressure drop on 

multiple occasions, to further enhance the safety of the filtration system, a smaller 

pore sized filter, 0.6 µm, was selected for further use.  

 

The 25 cm2 filters were initially analysed using FFP spiked with both endotoxin 

and HepG2 DNA, to gain an indication as to the removal capacity of these filters. 

This was repeated to view whether the equivalent occurred in the 170 cm2 filter 
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scaling up the quantities of DNA and endotoxin used accordingly, to assess whether 

simultaneous challenge with these two substances impacted the filter’s efficacy for 

their removal. It was seen that the 170 cm2 removed all DNA and endotoxin from 

the plasma to below the limit of detection. This removal of 4.234 mg DNA 

(equivalent of DNA released from the BAL during an 8-hour treatment, scaled 

down for the 170 cm2 filter) and 4,200 EU (just below the approximate total of a 

patient with liver failure, which is approximately 5,520 EU in a 70 kg human with 

3 litres of plasm115) demonstrated the potential of the filter system to remove DNA 

and endotoxin contamination simultaneously.  Low levels of DNA and endotoxin 

were used here for this initial experiment. The efficacy of the filter system at 

removing higher levels of these contaminants will be discussed in the next chapter. 

 

 

4.4.4 Maintenance of plasma proteins by the filtration system in a scale BAL 

model 

 

The 25 cm2 upstream filter and mini 0.6 µm downstream filters were used in scale 

BAL experiments. The 25 cm2 upstream filter has 13.6x less surface area than the 

full-scale 340 cm2 upstream filter, therefore to ensure the correct flux was used in 

these experiments as would be seen in the full-scale, the flow rate of the large-scale 

filters was re-calculated using for use in the mini-column experiments. This was as 

follows:  

60 ml/min divided by 13.6 = 4.4 ml/min  

4.4 ml/min = 264 ml/hour passing through the filter system  

 

Four replicates of the mini column experiments were performed, involving four 

different filter four different plasma samples. Over the course of the experiment the 

number of cells per ml of ELS was reduced, but the percentage viability was 

maintained, suggesting the plasma and filtration circuit did not have a detrimental 

effect on cell health. This decrease in number of cells/ml is not seen in vivo 

experiments,20,116 this is unlikely due to leaching of cells from the ELS, as this was 

not observed using light microscopy. The decrease in number may be due to 

swelling of the ELS when moving from culture media to plasma, which would 
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cause a decrease in cells/ml of alginate, or due to sampling error at the end of the 

experiment, although the former appears more likely as this effect was also 

observed in the liver failure plasma experiment.  

 

Increase in AFP over the 8 hours demonstrated the ELS functionality, additionally, 

glucose levels decreased over the suggesting active cell metabolism.  

 

The concentration of large protein molecules assayed, (IgM, IgG and IgA) over the 

8 hour treatment period did not change. Additionally, there was no significant 

difference in the presence of albumin, AGP or A1AT over the 8 hour period. 

Fibrinogen concentration initially peaked at the one-hour sample, and proceeded to 

steadily decrease over the 8 hour treatment period. This initial peak may be due to 

the leaching of fibrinogen from the ELS into the plasma, as these cells synthesise 

fibrinogen.22 Fibrinogen is a smaller molecule than IgM, 340 kDa compared with 

950 kDa in size117 with an isoelectric point of, 5.1-6.3 compared with IGM’s 5.5–

7.4.117 Due to this, it seems unlikely that the subsequent decrease in fibrinogen 

concentration was due to its removal from the plasma by the filtration system, as 

there was no effect on the concentration of IgM. It is possible that between the 

collection of samples and the analysis of these proteins, some clotting occurred 

within the plasma samples which could have altered the level of fibrinogen present 

for analysis.118 

  

Further biochemical parameters demonstrated a significant increase in the 

concentration of sodium ions and a significant decrease in the concentration of 

calcium ions present in the plasma from baseline to the one hour sample with no 

additional change seen between 1 and 8 hours. This is likely due to sodium ions 

present in the alginate leaching into the plasma and calcium ions present in the 

plasma being cross-linked with the alginate monomers.23 The change in 

concentrations of these ions were minor, and all except calcium fell within the 

reference for healthy samples: 135–147 mmol/L for sodium; 3.5–5.5 mmol/L for 

potassium; 0.90–1.45 for phosphate. The reference value for calcium is 2.25–2.75 

mmol/L, this is considerably lower than the 13.5 mmol/L seen in our experiment. 

This is likely due to the addition of calcium to plasma to counteract the effect of 

citrate prior to addition to the ELS, and is something to be aware of for future 
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experiments.119 Urea concentration significantly increased from baseline to 8 hours, 

the maintenance of urea synthesis by HepG2 cells has been previously reported so 

this result is as expected and demonstrates the functionality of the biomass.14,22,120  

 

 

4.4.5 Liver failure mini column experiments 

 

As was seen in the healthy plasma mini column experiments, a decrease in cell 

number was seen from the beginning to the end of the experiment, with no change 

in viability or bead morphology, demonstrating that the liver failure plasma had no 

detrimental effect on the stability of the encapsulated HepG2 cells. It was 

interesting to see that the decrease in cell number over the 8 hour period was similar 

to that observed in healthy plasma, suggesting that incubation in this liver failure 

plasma did not cause additional cell death over the treatment period. Conjugated, 

unconjugated and total bilirubin were measured, there did not appear to be a change 

in levels of bilirubin pre- and post- filtration it is difficult to see from these results 

whether the biomass itself had any effect on the concentration of any of these forms 

of bilirubin, as has been previously demonstrated.14,20 Although relatively large at 

584 kDa, unconjugated bilirubin is an uncharged molecule, whereas conjugated 

bilirubin is charged, a result of its carboxyl group, making it soluble in water,117,118 

no difference was observed in the levels of either of these compounds pre- and post-

filtration. The levels of ALT and AST, markers of liver injury, were also assayed. 

As expected the levels were high, as is seen in liver injury.1  

 

The next chapter will look at the full-scale filters, along with additional experiments 

required before this filtration system can proceed to in vivo use.  
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Chapter 5 

  
 

Characterising a full-scale 

filtration protocol for use 

within a bioartificial liver 
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5. Full-scale filters 

 

5.1 Introduction 

 

This chapter discusses the use of the full-scale filters, namely the upstream 340 cm2 

60ZB05A depth charge filter and the downstream 0.6 µm filter. The main aim of 

this chapter was to assess the full-scale filter combination for suitability of use 

within the full-scale BAL circuit. This was performed to ensure that these full-scale 

filters were fit for purpose to continue into in vivo experiments.  

 

 

5.1.1 Requirements of the full-scale filter 

 

It is essential to know the total volumetric capacity of the filters to calculate optimal 

filter size and filter number required in the bioartificial liver circuit. At a flow rate 

of 60 ml/min 3.6 litres of plasma would pass through the filters every hour of 

treatment. It is hypothesised to treat a human patient with acute liver failure, an 8 

hour treatment cycle with the BAL would be required.20 

 

 In terms of treatment times: 

8 hours of treatment would mean a total of 28.8 litres of plasma passing 

through the filters over this period. 

 

The actual quantity of the plasma within the BAL-patient circuit in a treatment-

scenario is 7 litres. This is broken down into 3 litres of plasma within the biomass 

and associated BAL circuit, 3 litres of plasma within the patient115 and 1 litre of 

plasma comprising the dead volume of the filtration circuit. This 7 litres will be 

within a recirculating system, where the filters will be constantly challenged with 

plasma that has flowed through the biomass and patient. Therefore, the total 

volumetric capacity of the filter must exceed 28.8 litres for use in vivo. In previous 
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chapters, a 40 litre volume of plasma was passed through the 170 cm2 filter, 

surpassing this quantity.  

 

 

5.1.2 Additional safety testing in these filters 

 

The reduction of tetrazolium salts found in 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, MTT (pale yellow), to coloured (dark blue) formazan 

compounds can be used to determine the metabolic activity of cells in culture. The 

production of this coloured compound can be measured using a wavelength of 

570 nm, the greater the metabolic activity of the cells, the greater the production of  

formazan compounds from the tetrazolium salts.121 This leads to an increase in 

absorbance at 570 nm, conversely, when cells are less metabolically active, less 

blue compound is produced leading to a decreased absorbance. In this way, the 

metabolic activity can be inferred by relating the values achieved to a positive 

control. This method can be used to gain an understanding of cytotoxicity, as when 

cells are exposed to a cytotoxic environment their metabolic activity decreases..122 

This method would provide a simple way to gain an indication as to whether 

filtration of plasma has any detrimental effect on HepG2 cells encapsulated in 

alginate.  
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5.2 Methods 

 

 

5.2.1 MTT toxicity assay 

 

Patient plasma samples were processed using the upstream 340 cm2 and 

downstream 0.6 µm filters in series, as described in detail in Chapter 2. Samples of 

plasma were obtained prior to, and post, filtration for use in the assay.  

 

Day 12 ELS were obtained, cells were washed briefly with plasma and BSA-free 

culture media to remove traces of plasma originating from the cell culture process. 

Cell counts were performed and an appropriate volume of cells were seeded into 

96 well plates. An appropriate volume of either filtered plasma, unfiltered plasma 

or a culture media control was added to each of the cell samples. Cells were 

incubated in the solution at 37oC for a total of either 8 or 24 hours. At this point an 

MTT assay was performed on the cells as described below.  

 

 

 MTT assay  

 

 Materials  

 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT)  

Sterile PBS 

4mM HCl in isopropanol 

96 well clear flat bottomed culture plate 

Spectrophotometer at 450nm and analysis software (Omega Readers 

spectrophotometer, Manta analysis software) 

 

0.75 mg/ml stocks of MTT were prepared in PBS and stored in single use aliquots 

at -20°C until required.  
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Liquid was aspirated from the HepG2 cells which were previously incubated in 

either culture media (control), filtered plasma or unfiltered plasma for either 8 or 

24 hours, 100 µl of each sample was added in triplicate to a 96 well plate. 100 µl 

of MTT (diluted 0.75 mg/ml in PBS) was added to each well and incubated at 37ºC 

for 3 hours, until the formation of blue crystals at the base of the 96 well place could 

be seen with the naked eye. Liquid was aspirated from the wells with caution taken 

not to dislodge the crystals, 100 µl of acidified isopropanol was added to each well, 

and the plate was sealed with a plate sealer and placed on an orbital shaker for 30 

minutes to dissolve the crystals. The absorbance was read using the 

spectrophotometer at 570 nm. The value produced is inversely proportional to the 

metabolic activity occurring, with high values representing low metabolic activity. 

Readouts were normalised using cell number and transformed to a percentage of 

the control (cells incubated in culture media) to gain a reference of metabolic 

activity.  
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5.3 Results 

 

5.3.1 Toxicity testing of the full-scale filters 

 

5.3.1.1 Testing filters for the presence of pre-existing endotoxin 

 

The upstream 340 cm2 and downstream 0.6 µm filter were analysed for the presence 

of pre-existing endotoxin contamination. Samples were collected from the initial 

filter rinse and snap frozen in liquid nitrogen for subsequent analysis during the 

preparation of six of each type of filter.  

 

Samples taken from the first 50 ml of water flushed through the filter, the last 50 

ml of the water wash and 1 litre into the saline rinse were analysed using the 

PyroGene endotoxin assay. All samples collected were below the limit of detection, 

confirming that the filters did not contain any endotoxin contamination (Figure 44).  
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Figure 44. Assessing the upstream 340 cm2 and downstream 0.6 µm for the 

presence of pre-existing endotoxin. Samples were taken from the initial water and 

saline flush and analysed using the PyroGene Endotoxin assay. Both filters tested 

negative for endotoxin contamination. Hashed horizontal grey line represents the 

lower limit of detection. N=6, values shown are average +/- standard deviation.  

 

 

5.3.1.2 Testing empty alginate beads for the presence of endotoxin 

 

To ensure that no endotoxin contamination within the BAL would originate from 

the alginate itself, empty alginate beads were used to ascertain this. Empty beads 

were set up using the mini columns, and were recirculated in saline for 8 hours. A 

sample was taken every hour to measure the level of endotoxin using the PyroGene 

endotoxin assay. The endotoxin level recovered was 5–10 fold below limit of 

detection (0.01 EU/ml) consistently over the 8 hour period (Figure 45). This 

demonstrates that the alginate spheres themselves should not present a 

contamination issue.  
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Figure 45. Assessing alginate for the presence of pre-existing endotoxin 

contamination. Empty alginate spheres recirculated in saline for 8 hours tested 

negative for the presence of endotoxin at each hourly interval. Hashed horizontal 

grey line represents the lower limit of detection. N=4, values shown are average 

+/- standard deviation.  

 

 

5.3.1.3 Testing media samples taken from Day 12 of the ELS biomass culture 

for the presence of endotoxin 

 

Media samples were taken from four of the full-scale ELS FBB biomass cultures 

at Day 12. Samples were diluted 1 in 10 and analysed for the presence of endotoxin 

using the PyroGene endotoxin assay. Three out of the four samples tested provided 

negative results, these were FBB A, B and C (below the limit of detection, 0.1 

EU/ml; Figure 46) and one provided a positive result, FBB D.  

 

It was later seen that FBB D, which had tested positive for the presence of 

endotoxin at Day 12, had succumbed to a bacterial infection. This bacterial 

infection was likely to have been pre-existing at the time of sample collection, and 

therefore, the cause of this positive endotoxin result. The positive product control 

for each of these experiments provided an as expected return of endotoxin.   
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Figure 46. Levels of endotoxin in Day 12 FBB media samples. Media samples 

were taken at Day 12 from four full-scale FBB experiments and analysed for the 

presence of endotoxin. FBB A, B and C tested negative, FBB D tested positive. FBB 

D’s positive result was likely due to bacterial infection. Hashed horizontal grey line 

represents the lower limit of detection. Results presented are the average of three 

media samples taken from each FBB on Day 12.  

 

 

5.3.1.4 Testing filtered plasma for metabolic effects on HepG2 cells 

 

To view whether filtration of the plasma using the filter series had any detrimental 

effect on the HepG2 cells encapsulated in alginate, an MTT metabolic assay was 

performed. Samples were obtained from plasma prior to filtration and after 

filtration with both the upstream 340 cm2 and downstream 0.6 µm filters for 

analysis. This was performed using four different patient plasma samples and four 

different sets of filters. It was seen that following incubation of the encapsulated 

HepG2 cells for a period of either 8 hours (as is the treatment time in the BAL) or 

24 hours, no significant difference was produced with respect to change in 

metabolic activity of cells incubated in non-filtered plasma compared with filtered 

plasma, Figure 47.  
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Figure 47. Metabolic activity of encapsulated liver cells (ELS) following 

incubation in filtered plasma. . ELS were incubated in filtered or non-filtered 

plasma for a period of 8 or 24 hours to view whether plasma filtration had any 

detrimental effect on metabolic activity of the ELS. There was no significant 

difference in ELS metabolic activity between filtered or non-filtered plasma at 

either 8 (P=0.19) or 24 hours (P=0.15). N=4, results are average +/- standard 

deviation, Significance was assessed using the Paired Students T-test at a 95% level 

of confidence.  

 

 

5.3.2 Heparin removal using the full-scale filters 

 

The full-scale filters were primed with 10 IU/ml heparin in saline using a 

recirculating system. A significant decrease was seen in the concentration of 

heparin in the sample prior to filtration and after one hour of recirculation, no 

further decrease was seen between one and three hours of recirculation (Figure 

48A). Following priming of the filters, heparinised plasma was recirculated through 

the same filters enabling analysis of any additional removal of heparin. It was seen 

that there was no change in heparin concentration from the pre-filtration sample 

compared with the filtered sample after 8 hours of recirculation (Figure 48B).  
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Figure 48.Heparin priming of the upstream 340 cm2 filter. A) Filter priming. 10 

IU/ml heparin-saline was recirculated through the upstream 340 cm2 filter, a 

significant reduction in heparin concentration was seen pre- and post-filtration 

(p<0.05). B) Heparin concentration was maintained over 8 hours of recirculation 

in filtered plasma following priming of the filters with heparin-saline.  Values 

presented are average +/- standard deviation (n=4, A) and average +/- high/low 

value (n=2, B). Significance for A was assessed using ANOVA with a 95% level of 

confidence; *p<0.05.  
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5.4 Discussion 

 

5.4.1 Examining filter output for the presence of pre-existing endotoxin 

 

To enable the filtration system to pass MHRA and FDA regulatory standards as a 

medical device, it needs to adhere to the requirements for a maximum endotoxin 

concentration. The defined acceptable endotoxin concentration for a medical 

device, as per the FDA guidelines is 0.5 EU/ml or 20 EU/device,109 dependent upon 

the nature of said device, therefore, the output of the filters, prior to coming into 

contact with patient plasma will need to be below this value.  

 

Five filters of each type, upstream 340 cm2 and downstream 0.6 µm, were analysed 

for the presence of pre-existing endotoxin. Samples were taken during the initial 50 

ml of the recommended pre-use water rinse and the initial first 1 L of the saline 

rinse, which were performed prior to use of the filters with plasma. All samples 

taken from all 5 filters returned negative results for the presence of endotoxin. As 

3M market their 60AB05A filter series for the purification of biologicals this was 

as expected.101 

 

 

5.4.2 Endotoxin contamination of empty alginate beads 

 

Raw materials used in the production of the biomass need to be cleared for potential 

endotoxin contamination to enable the BAL to meet MHRA and FDA 

guidelines.27,103,109 It has been previously reported that standard laboratory alginate 

presents a source of endotoxin contamination, as high as 10 EU/ml.123 Methods are 

available for the purification of alginate, which can reduce its bioburden to the level 

of the solvent in which it is dispersed.124 Alginate used to produce cells within the 

BAL has undergone previous purification prior to use, but, to ensure that no 

endotoxin contamination within the BAL would originate from the alginate itself, 

empty alginate spheres were tested for endotoxin content. Empty alginate spheres 

were recirculated in sterile saline for 8 hours, samples were taken hourly to measure 
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the level of endotoxin. The endotoxin level recovered was 5–10 fold below limit of 

detection (0.01 EU/ml) consistently over the 8 hour period, demonstrating that the 

alginate beads themselves should not present a contamination issue.  

 

 

5.4.3 Endotoxin within the BAL biomass 

 

The biomass also required assessment for potential endotoxin contamination to 

enable it to meet the regulatory requirements outlined above. All cell culture media 

and disposables used in the culture of the biomass are endotoxin free, therefore, 

there should be no endotoxin present within the biomass, unless a bacterial 

infection is observed. To assess this, media samples taken from various FBB 

experiments on Day 12 of the culture process were tested for endotoxin. Three out 

of the four samples analysed, FBB A, B and C, tested negative (below the limit of 

detection, 0.1 EU/ml) and one, FBB D, tested positive. It was later seen that FBB 

D had succumbed to a bacterial infection (this infection was not apparent when 

sample D was collected) which was likely the cause of this positive result. This 

proved a useful positive control, demonstrating the assay was capable of detecting 

endotoxin in the early stages of a bacterial infection in the BAL.  

 

 

5.4.4 The effect of filtered plasma on the metabolic activity of ELS 

 

To view as to whether filtering of plasma had any detrimental effect on the 

metabolic activity of encapsulated HepG2 cells, an MTT assay was performed. ELS 

were used in these experiments, as opposed to monolayer HepG2 cells, to better 

represent the conditions that would be seen within the BAL circuit. When cells are 

exposed to a cytotoxic environment their metabolic activity decreases, this decrease 

in metabolic activity can be observed using the MTT assay.122 This method has 

been described previously as an alternative to the thymidine assay to measure 

cellular toxicity.121,122,125 Samples were obtained from plasma prior to filtration and 

after filtration with both filters. Following incubation of the encapsulated HepG2 

cells for a period of either 8 hours (as is the treatment time in the BAL20) or 24 
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hours, no significant difference was observed with respect to change in metabolic 

activity of cells incubated in non-filtered plasma compared with filtered plasma 

(Figure 47, page 139). The values produced were as expected following the 

incubation of cells with plasma.20 These results suggest that the process of filtration 

should not have any detrimental effect on the health of the HepG2 cells within the 

BAL biomass.  

 

 

5.4.5 Process for heparin priming  

 

It is extremely important in the setting of the BAL in vivo that heparin concentration 

is maintained at an optimal level, to prevent any clot formation during in vivo 

experiments.20 Heparin must be used as the anticoagulant of choice for use with the 

BAL due to alternative methods chelating calcium ions from the alginate ELS, 

causing them to break down and release the individual HepG2 cells within the BAL 

system.14  

 

Upon upscaling from the 170 cm2 surface area filters characterised in previous 

experiments to the 340 cm2 surface area filters to be used in vivo, a doubling in 

filter surface is seen. This translates as a greater surface area for the removal of 

particles, and charged substances. As heparin has a strong negative charge,117 and 

previous chapters demonstrate that it is removed initially by the filters, it was 

important to ascertain whether the heparin priming protocol used in previous 

chapters will continue to be effective with the increased surface area seen here.  

 

The great negative charge of heparin is the basis behind its anticoagulant activity, 

contributing to its powerful electrostatic interaction with thrombin.117 Most 

commercially available heparin has a molecular weight of around 12–15 kDa, 

which is relatively low compared with a molecule of endotoxin which is generally 

above 100 kDa,27 but is similar to the size of a 200 base pair DNA fragment, as is 

produced when cells undergo death by apoptosis, which is 12 kDa.31  
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It was seen that initially ‘priming’ the filters with saline containing heparin at a 

concentration of 10 IU/ml lead to no further heparin removal when plasma-

containing heparin was recirculated. After searching the literature I am yet to find 

an exact reason as to why this may be, as it was previously demonstrated that 

priming these filters with heparin produced no detrimental effect on their capacity 

to remove DNA and endotoxin, using this charge chemistry. 

 

The next chapter, Chapter 6, will investigate the use of the upstream 340 cm2 and 

downstream 0.6 µm filters, described here, in the translational setting, in vivo. 

Additional complications associated with moving into the in vivo setting will be 

explored along with further testing of these full-scale filters in a pre-clinical trial.   

  



145 | P a g e  

 

  

Chapter 6 

 
 

Translating the filtration 

circuit for use within an  

in vivo setting  
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6. Translating the filtration circuit for use within an in vivo 

setting 

 

6.1 Introduction 

 

This chapter describes the use of the filtration circuit within the bioartificial liver 

device in vivo in a porcine model, along with the challenges which were met 

moving the system into this environment.  

 

 

6.1.1 The process of in vivo testing 

 

In vivo testing of medical devices and drugs is a requirement prior to their use in a 

human population. It is used to gain information primarily on the safety and 

efficacy of the product. Various models are available for testing of the medical 

device, including healthy models, to ensure the device presents no toxicity to the 

patients, and liver-failure models.  

 

Animal models of acute liver failure can be divided into two distinct areas: surgery, 

such as devascularisation of the liver, thereby inducing ischaemic acute liver failure 

and partial hepatectomy; induced pharmacological damage using toxins such as 

paracetamol and thioacetamide.126,127 The choice of a suitable method for inducing 

acute liver failure is difficult as all methods have drawbacks, such as individual 

animals having varying tolerability to hepatotoxins, and the effectiveness of 

surgery being operator-dependant. The induction of ischaemic acute liver failure 

by devascularisation of the liver presents a predictable model that can be relevant 

for the instability of patients presenting with acute liver failure.126,127 

 

With regard to the choice of animal model suitable for experimentation and 

induction of acute liver failure, this is dependent upon the current status of the 

technology as to whether a large or small animal model should be used.  
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Porcine models present an ideal environment for testing the BAL as they have a 

large liver volume relative to their size. The size of a porcine liver can range 

between 0.9 to 1.3 kg, which is close to the 1.2 to 1.5 kg seen in humans.127 

  

 

6.1.2 Additional complications faced when moving from the bench to the in 

vivo setting  

 

Additional complications are faced when moving technology from the laboratory 

bench to the in vivo setting. Due to the pre-existing complex nature of the Liver 

Group BAL it is important to keep the filtration circuit as simple as possible whilst 

still maintaining full functionality. The filtration circuit explored in this thesis has 

been designed with this in mind.  

 

In vivo testing currently being performed on the Liver Group BAL is within a 

surgically-induced acute ischaemic liver failure porcine model. Modifications to 

existing contaminant-testing protocols need to be performed for use within this 

setting. As the qPCR reaction described in previous chapters is specific for human 

DNA, a porcine-specific equivalent was required to ensure that full quantification 

of DNA could be observed, as opposed to only quantifying DNA originating from 

the biomass. Previously, Martin et al 2009 demonstrated the use of porcine-specific 

primers to analyse the quantity of porcine DNA present in feedstuffs. They elected 

to target a mitochondrial rRNA gene due its increased sensitivity compared with 

single or low copy nuclear DNA targets.128 The primers they developed are specific 

to the mitochondrial 12S rRNA gene and are designed to amplify a 75 base pair 

fragment and will only amplify porcine DNA.128 These primers will be explored 

for efficacy of use within porcine plasma in the in vivo setting in this chapter.  

 

An additional complication of moving from lab bench to in vivo studies may be the 

presence of residual PFC within the ELS biomass, which will be used within the 

BAL.20 As PFC is a large molecule of approximately 0.25 µm in size,129 and the 

nominal porosity of the upstream filter (the 60ZB05A filter series) is in the range 

of 0.2–3 µm72,100 it may present a problem if not all is removed prior to use of the 
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BAL with the filtration circuit. Therefore, PFC will also need to be assessed to 

ensure it produces no detrimental effect on the filters.  

 

 

6.1.3 Current Liver Group Bioartificial liver experiments   

 

The current animal study being performed by the Liver Group to assess the BAL is 

within a surgically induced acute ischaemic liver failure model. These experiments 

are being performed in pigs, and the filtration system is being utilised as part of the 

extracorporeal BAL circuit. The use of the filter set-up in a remote venue, as would 

occur in human patients, meant that certain protocols were required to prepare the 

filters for transportation and subsequent use within the closed BAL system in the 

in vivo setting. This chapter discusses the addition of these protocols, and the 

further characterisation of assays optimised in Chapter 3 to ensure their 

effectiveness in porcine plasma and this translational setting.  

As such, the aim for this chapter was to assess the suitability of the filter system for 

use within an in vivo model and to develop protocols for the preparation of these 

filters, and the subsequent quality checks following use in such a scenario. 
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6.2 Materials and Methods 

 

 

6.2.1 Extraction and quantification of porcine DNA for use in experiments 

 

 Materials: 

  Lysis buffer pH 8.4:  200 mM NaCl 

100 mM TrisHCL 

     5 mm EDTA 

     0.2% SDS 

  100% Propan-2-ol 

  Proteinase K (100 µg/5 ml lysis buffer) 

 

Sections of pork were obtained from a local butcher and cut into 1 g segments. 

Segments were mixed with DNA-free saline, crushed to a fine paste using a pestle 

and mortar and transferred to a microfuge tube. Lysis buffer was added to the 

microfuge tube at a volume two times that of the cell mixture, with 100 µg 

lyophilised proteinase K per 5 ml lysis buffer. The solution was incubated for 4 

hours at 37°C. Following incubation, an equal volume of propan-2-ol was added to 

the lysed tissue solution and mixed gently for 5 minutes to precipitate the porcine 

DNA. The solution was transferred to a 50 ml Nunc™ tube where the resulting 

DNA aggregate was lifted above the liquid level using a pipette and allowed to dry 

for 15 mins. The aggregate was transferred to a fresh PCR grade microfuge tube 

and re-suspended in PCR grade water via pipetting and vortexing, where DNA 

proved difficult to dissolve, the solution was placed within a heated block at 37oC 

for 15 minutes after which pipetting and vortexing was repeated. The concentration 

and total quantity of DNA obtained was assessed using NanoDrop analysis, as 

described in Chapter 2, Materials and Methods.  
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6.2.2 Analysis of porcine and human DNA concentration within porcine 

plasma using qPCR 

 

Plasma for assessment using qPCR was pre-treated with proteinase K, as detailed 

in Chapter 2, Materials and Methods.  

 

 

qPCR using porcine or human primers  

 

 Materials  

 

PCR mix (Per 20 µl tube) 

10 µl Hot start Taq (Qiagen #203205) 

Porcine primers: 

 1 µl 75 base pair amplicon forward primer 0.0025 µM 

  (5’ CCTCCTCAAGCATGTAGT 3’) 

1 µl 75 base pair amplicon reverse primer 0.0025 µM  

  (5’ GTTACGACTTGTCTCTTCGTGCA 3’) 

Human primers: 

1 µl 115 base pair amplicon forward primer 0.0025 µM  

(5’ CCTGAGGTCAGGAGTTCGAG 3’) 

1 µl 115 base pair amplicon reverse primer 0.0025 µM  

(5 CCGGAGTAGCTGGGATTACA 3’) 

0.5 µl Sybr Green 1 in 20,000 (Biogene #1765) 

2.5 µl 0.025 M MgCL2 (Sigma #M1028-1M) 

 

QPCR was performed specific for the detection of either human or porcine DNA. 

For the detection of human DNA, 1 set of Alu repeat primers, engineered to produce 

115 base pair Alu repeat amplicons, were used to assess DNA quantity. For the 

detection of porcine DNA, primers previously designed by Martin et al 2009128 

specific for the amplification of a 75 base pair fragment of the porcine-specific 12S 

rRNA gene were used. The qPCR reaction was performed in duplicate or triplicate 

in 20 µl PCR tubes, each tube containing 15 µl of PCR mix and 5 µl of sample. 

Samples were run against a 5 point standard curve containing either HepG2 DNA 
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or porcine DNA, isolated using the protocol above, logarithmically diluted in the 

range of 0.02 to 200 pg/µl to determine the absolute DNA concentration in each 

sample. Samples were analysed on the Rotor Gene™ 3000 PCR machine using the 

following cycle: 

 

95°C 15 minutes hold 

95°C 15 seconds 

64°C 30 seconds 

72°C 30 seconds 

72°C    10 minutes* 

 

*A melt curve was performed where the temperature increased from 45°C to 95°C 

at a rate of 1°C per minute. 

 

As each sample was diluted 1 in 5,000 this technique provided a limit of detection 

of 0.1 ng/µl.  

 

 

6.2.3 Small scale testing of filter system as per use in the in vivo setting 

 

Components were assessed using a scale-filter circuit. Reservoir bottles were used 

in place of the Cobe Spectra plasmapheresis (apheresis) machine and animal model. 

Plasma was passed from the input reservoir using the peristaltic pump, through the 

upstream 25 cm2 filter and downstream mini 0.6 µm filter. Once filtered, liquid was 

subsequently collected via the outlet. Pressure was recorded pre-upstream and post-

downstream filter to calculate pressure drop across the two filters. 

 

 

6.2.3.1 Calculating scale of the 25 cm2 filter for use of appropriate quantities 

of testing material 

 

The 25 cm2 filter presents with 13.6 times less surface area than the full-scale 

340 cm2 filter; to ensure the correct flux is used in these experiments, the flow rate 

40 Cycles 
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of the large-scale filters is re-calculated using this scale to find the correct flow rate 

for use in the small-scale experiments. This is as follows:  

 

60 ml/min divided by 13.6 = 4.4 ml/min to be used 

4.4 ml/min is the equivalent of 264 ml/hour 

 

To mimic conditions of an 8 hour treatment period, 2.117 litres of pig plasma is 

required if we only want the plasma to be seen by the filter once. The filter is primed 

with heparin prior to use, as previously described in Chapter 2. Due to the short 

half-life of heparin, an additional heparin bolus was required 4 hours into the 

experiment.  

 

 

6.2.3.2 Using porcine plasma to test the scaled-down filter circuit 

 

Pig blood was obtained from an abattoir, this was passed through the apheresis 

machine to separate the plasma component from the whole blood.  

 

This porcine plasma was spiked with human DNA and endotoxin at high 

concentrations. The upstream 25 cm2 scale-filter and downstream mini 0.6 µm filter 

were used for this experiment.  

 

The DNA concentration required for spiking the plasma was calculated as the total 

DNA quantity present in the BAL scaled down by 13.6 (as per the scale model 

above). In total, there are 1x1011 cells present within a high-cell BAL; each HepG2 

cell contains 7.83 pg of DNA, leading to 7.83 x 1011 pg DNA in total in the 

biomass.111 Scaling this down by 13.6 leads to a total of 5.8x1010 pg/DNA in the 

small-scale system which is equal to 58 mg/DNA in the 2.11 litres of plasma, 

providing an end concentration of 22 ng/µl.  

 

An endotoxin concentration of 2,000 EU/ml which is equivalent to 4.24 million 

endotoxin units in the 2.11 litres of plasma was used to challenge this scale system. 

This is considered a high quantity of endotoxin and presents a worst-case scenario.  
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6.2.3.3 Testing of PFC effect on the filter in a small scale 

 

A total of 480 ml saline and 20 ml PFC were mixed using magnetic stirrer at fast 

speed. The PFC-saline solution was recirculated through the filter for 3 hours at 

4.4 ml/min providing an equivalent flux to a 60 ml/min flow rate through the 

340 cm2 filters as would be seen in the BAL. This allows for the solution to pass 

through the filters at least 1.5 times.   

 

 

6.2.4 Preparing the filters for delivery to the in vivo experiments 

 

To prepare the filters for shipping to South Africa, where the in vivo experiments 

were being performed all filters were autoclaved for 15 minutes at 121°C. 

Following this the 0.6 µm filters required an initial rinse with 1 litre of sterile tissue 

culture water, and the 340 cm2 filters required a 2 litre rinse. This was performed 

by flowing sterile water through the filters using a Watson Marlow peristaltic 

pump, ensuring that all air was removed from the filters and displaced with liquid. 

This water rinse was followed by an equivalent volume of saline, to replace the 

water in the filter with a sterile saline solution.  

 

After washing the filters and rinsing with saline, heparin was used to prime the 

60ZB05A filters, as described in Chapter 2. Filters for shipping were stored in 

heparinised saline containing Pen Strep and Fungizone to ensure no contaminant 

growth during transit.  
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6.2.5 The filtration circuit for use within an in vivo setting 

 

The filtration circuit was modified for use within an in vivo setting.  This circuit 

was designed to be incorporated within the existing apheresis machine and BAL 

set-up.  

 

In the BAL, whole blood is taken from the animal model and processed via the 

apheresis machine, the blood cells are separated from the plasma and the plasma is 

passed into the biomass chamber of the BAL. This plasma passes into the bottom 

of the chamber, acting to fluidise the ELS, maintaining them within a microgravity 

environment. The output from the biomass chamber is split in two, one side is 

recirculated at a high flow rate back through the chamber, so the plasma comes into 

contact with the biomass multiple times. The second stream passes through the 

slow-circuit filter system. In the filter system the plasma passes through the initial 

340 cm2 filter and then through the downstream back-up 0.6 µm filter before being 

returned back to the apheresis machine. Once returned to the machine the BAL-

processed, filtered plasma is reintroduced to the whole blood and fed back to the 

animal model at a controlled flow rate (see Figure 50). 

 

The controlled flow rate used within the porcine liver failure model is 60 ml/min. 

The plasma must pass through both the 340 cm2 filter and the downstream 0.6 µm 

filter before being passed back to the animal. Modifications of this circuit from 

previous in vitro analyses include the addition of three bypass circuits. The first of 

these (blue, see Figure 49) bypasses only the 340 cm2 filter, in case of any blockage 

as determined by an increase in pressure build up at pressure transducer 1. The 

second is a bypass circuit for only the 0.6 µm filter. This is in place in case the 340 

cm2 filter is fully functional but there is a build-up of pressure in this downstream 

filter, as determined by pressure transducer 2. The last bypass circuit bypasses the 

full filter system, in case of a problem with both filters. Two reservoirs are in place 

in this circuit to ease the flow of liquid through the system, these provide an excess 

drainage point in case of a decrease in flow rate through the filters and additionally 

a buffer providing extra fluid to maintain flow through thee circuit in case of a lack 

of fluid input (see Figure 49).
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Figure 49. Filtration system model for incorporation into the in vivo bioartificial liver circuit.  Plasma is pumped through the circuit 

using a controlled flow rate of 60 ml/min, passing through both the upstream 340 cm2 filter and downstream 0.6 µm filter before return 

to the animal. 
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Figure 50. In vivo bioartificial liver (BAL) model including filtration system. Plasma is extracted from whole blood using the Cobe 

Spectra and flowed through the BAL. The BAL output is split in two, one stream is recirculated at a high flow rate back through the 

BAL, the second passes through the filter system, filtered plasma is reintroduced to the whole blood and fed back to the animal model 

at a controlled flow rate. 
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6.3 Results 

 

6.3.1 Characterising the qPCR assay for use in porcine plasma 

 

To enable identification of both DNA originating from the biomass and DNA 

originating from the porcine animal model during in vivo experiments a qPCR assay 

specific to porcine DNA was characterised. Two qPCR reactions were performed 

using porcine primers specific to the mitochondrial 12S rRNA gene.128 One 

reaction was performed in a sample containing human DNA extracted from HepG2 

cells and the other in a sample containing porcine DNA extracted from pork. A 

standard curve from 0.02 to 200 pg/µl was produced and no cross reactivity was 

seen between the human DNA and porcine primers. The porcine primers 

successfully amplified the porcine DNA maintaining linearity throughout the 

standard curve. The cross-reactivity of human primers with porcine DNA was also 

tested, again, two qPCR reactions were performed using human primers, one in a 

sample containing human DNA extracted from HepG2 cells and the other in a 

sample containing porcine DNA extracted from pork. As with the porcine-specific 

primers, no cross reactivity was seen between the human primers and porcine DNA 

(Figure 51). 
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Figure 51. Cross-reactivity of the porcine DNA-specific qPCR assay. A) Porcine 

primers successfully amplified porcine DNA, no cross-reactivity was seen between 

human DNA and porcine primers. B) No cross reactivity was seen between the 

human primers and porcine DNA. 

 

 

6.3.2 Testing of PFC effect on the scale-filter  

 

To view whether any PFC contamination from the transport of the ELS would have 

any detrimental effect on the pressure of the filters, PFC in saline was recirculated 

through the filter for 3 hours at 4.4 ml/min. A slight increase in pressure was seen 
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in the upstream filter following the water wash, as expected, due to the difference 

in net charge between water and saline. Following this pressure remained consistent 

and well below the recommended maximum limit for this filter series of 

1800 mmHg. The volume of PFC seen by the filter equates to 472 ml going through 

the large filter when this is scaled up, this demonstrated that the presence of PFC 

in the solution presented no negative effect with regard to pressure of the filters 

(see Figure 52).  

 

 

 

Figure 52. Effect of PFC in saline on filtration pressure. A PFC-saline solution 

was recirculated through the filtration circuit for 3 hours. Presence of PFC in the 

filtrate did not result in an increase in pressure of either the upstream 25 cm2 filter 

or downstream 0.6 µm filter. N=1. 
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6.3.3 Testing the filtration of pig plasma spiked with DNA and Endotoxin 

using a scale-model 

 

Using a scaled-down model for the filtration of porcine plasma the removal of 

DNA, endotoxin and the capacity of the filter to fulfil a full 8 hour simulated 

treatment phase was assessed.  

 

Porcine plasma was spiked with human DNA at a concentration equivalent to what 

would be released if 100% cell death occurred within the bioartificial liver, scaled 

down to suit this scale experiment. No human DNA was observed in the porcine 

plasma prior to addition of the HepG2 DNA spike, as expected, and the correct 

quantity of DNA was recovered from the porcine plasma post-DNA spike and 

pre-filtration (Figure 53). Samples were collected hourly and no DNA was present 

in any of these filtered samples, demonstrating that the filter had removed all traces 

of DNA This equates to a total of 58 mg/DNA in 2.11 litres of plasma which is 

equivalent to 100% DNA which could be present in the BAL if all DNA was 

released from the cellular biomass, scaled down for the 25 cm2 filters (Figure 53).  

 

Endotoxin was also used to spike the porcine plasma at a high concentration of 

2000 EU/ml. This equates to a total of 4.22 million EU in the 2.11 litres of plasma. 

This was to ensure that the filter was robust enough to perform in a worst-case 

scenario. A total of 80% of endotoxin was shown to be recovered from the initial 

spiked plasma sample. Following filtration, no endotoxin was detected in any of 

the samples taken at hourly intervals demonstrating that the filter successfully 

removed the full endotoxin load (Figure 54).  

 

Pressure drop for both the upstream and downstream filters was maintained 

throughout the eight hour experiment at less than 35 mmHg, with no build-up in 

pressure observed that could indicate fouling of the filters (Figure 55; page 163).  
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Figure 53. Effective capacity of the filtration system for the removal of DNA from 

plasma. The filtration system was challenged with porcine DNA-spiked plasma in 

a recirculating set-up for 8 hours. Samples were taken hourly over the 8-hour 

period. The scale filter system successfully removed 58 mg of porcine DNA from 

2.11 litres of plasma. Plasma control relates to plasma prior to introduction of the 

DNA spike. Time 0 represents the DNA-spiked plasma before filtration. The figure 

inset focuses on the lower end of the detection limit, the horizontal hashed line 

represents the lower limit of detection.  N=4; data are average values +/- standard 

deviation. 
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Figure 54. Effective capacity of the filtration system for the removal of endotoxin 

from plasma. The filtration system was challenged with porcine DNA-spiked 

plasma in a recirculating set-up for 8 hours. Samples were taken hourly over the 

8-hour period. The scale filter system successfully removed 4.22 EU from 2.11 

litres of plasma.   Plasma control relates to plasma prior to introduction of the 

endotoxin spike. Time 0 represents the endotoxin-spiked plasma before filtration. 

The figure inset focuses on the lower end of the detection limit, the hashed 

horizontal line represents the lower limit of detection. N=4; data are average 

values +/- standard deviation.  
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Figure 55. Effect of 8 hours of plasma treatment on physical parameters of the 

filtration system; pressure drop. Pressure drop across the upstream 25 cm2 and 

downstream 0.6 µm scale filters did not increase over 8-hours of plasma re-

circulation. N=1.  

 

 

6.3.4 DNA levels in the BAL-treated pig without the filtration circuit 

 

An in vivo experiment was performed in a porcine model of the BAL without the 

filtration circuit present. Samples taken from this experiment were provided for 

analysis. Samples were taken of the porcine plasma prior to treatment, mid-way 

through treatment and at the end of the treatment cycle. Using a porcine-specific 

qPCR assay it was seen that porcine DNA was present in all three samples. A slight 

reduction in concentration of the porcine DNA was seen at the end of the 

experiment, potentially representing dilution of the porcine DNA with the liquid 

within the BAL system (Figure 56a). The samples were analysed using qPCR 

specific for human DNA. As expected, no human DNA was present in the samples 

pre-BAL treatment. The concentration of human DNA increased slightly between 

mid-way through the treatment and end of treatment, this may be due to cell death 

within the BAL leading to the release of DNA into the porcine plasma (Figure 56b).  
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Figure 56. Porcine and human DNA levels in BAL-treated porcine 

plasma without the filtration circuit. Plasma samples prior to, mid-way 

through and following in vivo treatment with the BAL were assessed for the 

presence of porcine and human DNA. A) Porcine DNA was detected 

consistently in all 3 samples, as expected. B) Human DNA was detected in 

the BAL-treated porcine plasma sample, as expected. N=1 experiment, 

values are average of N=4 within-sample replicates +/- standard deviation. 

Hashed horizontal line represents the lower limit of detection. 
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6.3.5 Analysis of samples from the BAL-treated pig including the filtration 

circuit 

 

Samples were brought back from an in vivo experiment for analysis. This in vivo 

experiment was performed in a porcine acute liver failure model, treated with the 

BAL containing the filtration circuit. Samples were taken at intervals over the 

treatment period with ‘time 0’ representing the sample taken prior to filtration at 

the experiment start. A consistent reduction in particle number was seen, although 

a reduction in total particle size could not be ascertained (Figure 57).  

 

Pressure data were also collected for subsequent analysis during this experiment. 

Pressure transducers, as depicted in Figure 49 (page 155), were used to collect 

pressure from before the upstream 340 cm2 filter (pressure transducer 1), between 

the filters (pressure transducer 2) and after the downstream 0.6 µm filter (pressure 

transducer 3; Figure 58; page 167). Pressure remained constant throughout the 

treatment duration and well below the recommended maximum limit (1,800 

mmHg101).   
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Figure 57. Particle reduction by the filtration system in vivo. Particle analysis 

was performed using NanoSight analysis in porcine plasma obtained from an in 

vivo experiment. There was a consistent decrease in particle number after 

treatment with the filtration system. N=1; data are average of N=5 within-sample 

replicates ± standard deviation.  
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Figure 58. Effect of 8-hours of in vivo BAL treatment on the pressure drop of the 

filtration system. Pressure drop across the upstream 340 cm2 filter and 

downstream 0.6 µm filter was continually assessed over 8-hours of in vivo 

treatment with the BAL. Pressure drop remained consistently low (<70 mmHg). 

N=1.   
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6.4. Discussion 

 

6.4.1 Developing a new qPCR assay for use in pig plasma 

 

To enable the detection of DNA originating from the pig in the in vivo BAL 

experiments, the use of primers specific to porcine DNA was required. Martin et al 

2009 demonstrated the use of just such primers to analyse the quantity of 

porcine-specific DNA present in feedstuffs. The primers they developed target the 

mitochondrial 12S rRNA gene.128 These primers were designed to amplify a 75 

base pair fragment of this 12S rRNA gene. A mitochondrial rRNA gene was chosen 

due to this demonstrating improved sensitivity compared with single or low copy 

nuclear DNA targets.128  

 

To test the cross-reactivity of human primers with porcine DNA, two qPCR 

reactions were performed using human primers, one in a sample containing human 

DNA extracted from HepG2 cells and the other in a sample containing porcine 

DNA extracted from pork. No cross reactivity was seen between the human primers 

and porcine DNA. This enabled plasma obtained from the in vivo experiments to 

be analysed separately for DNA originating from the pig and DNA originating from 

the BAL biomass itself. Due to the nature of the liver failure model, we expected 

large quantities of porcine DNA to be present within any plasma samples taken 

throughout the in vivo experiments.  

 

 

6.4.2 Additional checks on pressure levels in the filtration system 

 

It is unlikely that anything more than a few parts-per-million of PFC would be 

present in the biomass following transport and preparation for treatment, but due to 

the properties of PFC (non-miscible in water130), it was important to check its effect 

on performance of the filtration system. The effect of PFC on pressure-drop of the 

filters was assessed to ensure that any residual PFC left over from the transport of 

the ELS did not have a detrimental effect on the filter.129,72 Both upstream and 

downstream filters were recirculated with saline containing PFC over a three hour 
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period. Pressure pre- both the upstream and downstream filters remained constant 

over the three hour period, no detrimental effect on the filters with regard to 

pressure was seen (Figure 52; page 159). 

  

 

6.4.3 A scale model of the BAL filtration circuit using pig plasma spiked with 

DNA and Endotoxin  

 

To ensure that the filters were effective in porcine plasma, a scaled-down model of 

the filtration circuit used within the BAL, as used described in Chapter 4. This 

model was used to assess the sufficient removal of DNA, endotoxin and the 

capacity of the filter to fulfil a full 8 hour simulated treatment phase without a 

detrimental effect on pressure drop.  

 

This model was intended to replicate a worst-case scenario of 100% cell death 

within the bioartificial liver, to ensure that the full filtration system would be able 

to cope with this in the setting of porcine plasma in the in vivo experiments. The 

correct quantity of DNA was recovered from the initial DNA-spiked plasma 

sample, demonstrating the efficiency of the qPCR assay (Figure 53; page 161). No 

human DNA was detected in any of the eight post-filter plasma samples taken at 

hourly intervals during the treatment cycle. This demonstrates that the filter was 

able to remove the total of 58 mg of human DNA used as challenge in the 2.11 

litres of porcine plasma. When this value is up scaled to gain a scale value for the 

340 cm2 filter, this represents removal of 100% of DNA present in the BAL itself.  

 

As well as challenging the scale filtration circuit with the addition of DNA, a large 

quantity of endotoxin was also used to spike the porcine plasma. The concentration 

of endotoxin used was 2000 EU/ml in a total volume of 2.1 litres of plasma, 

equating 4.24 million EU. This high quantity was to ensure that the filter is robust 

enough to perform in a worst-case scenario. Recovery of endotoxin from the 

original spiked plasma sample was 80%. Although  this is not perfect, it is as 

expected from an endotoxin assay as they are known for providing erratic results 

and being difficult to use to quantify the endotoxin content in plasma samples, with 
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studies quoting a 2-fold margin of error.52,54,131 Following filtration, samples 

collected at hourly intervals over the 8 hour treatment period demonstrated no 

presence of endotoxin after flow through the filter. These results demonstrate the 

filter’s capacity for sufficient endotoxin removal over the treatment period (Figure 

54; page 162). Endotoxin levels in patients with liver failure, although consistently 

higher than healthy controls, are highly variable and mixed results have been 

published in the literature.42,132 In one paper, in patients with alcoholic hepatitis, 

plasma endotoxin levels have been reported to be 184.4 +/- 159.4 pg/ml, which is 

approximately 1.84 EU/ml.43,110 This equates to a total of 5,520 EU in a 70 kg 

human with 3 litres of plasma.115 Therefore, these results suggest that the capacity 

of the scale-model of the filtration system for endotoxin removal is sufficient to 

remove that originating from the patient and in a worst-case scenario, from an 

external contaminating source. 

 

It is worth noting that the filters were primed with heparin prior to use, this 

‘priming’ was seen to have no detrimental effect on the filter’s capacity for DNA 

and endotoxin removal, despite maintaining the level of heparin within the system, 

a highly negatively charged molecule.117 One potential reason for this may be the 

way in which heparin was utilised as an anticoagulant. Heparin mediates 

inactivation of activated factor X and thrombin by binding antithrombin via a high-

affinity pentasaccharide, it is the high charge density present in this region that 

mediates the electrostatic reaction with thrombin.117,118 This binding could 

potentially mask heparin’s negative charge from detection by the filters.  

 

Pressure drop for both the upstream and downstream filters was maintained at a 

constant level throughout the eight hour experiment, with no build up in pressure 

representing fouling of the filters observed (Figure 55; page 163). This suggests 

that the volumetric capacity of both filters for plasma is sufficient to see through a 

full eight hour BAL treatment cycle.  
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6.4.4 Testing the quantity of DNA present during treatment with the BAL 

without the filtration system in place 

 

An in vivo experiment was performed in a porcine model utilising the BAL without 

the filtration circuit in place. Samples were taken from this experiment and 

transported back to the UK for analysis. Samples of porcine plasma prior contact 

with the BAL, mid-way through the treatment cycle and at the end of the treatment 

cycle were obtained. These samples were analysed using porcine-specific qPCR 

and human-specific qPCR to detect the quantity of porcine DNA and human DNA, 

respectively, present in these samples. 

 

As was expected, porcine plasma prior to treatment with the BAL contained no 

human DNA. Upon comparing the porcine-DNA-specific samples both 

pre-treatment, mid-way through treatment and at the end of treatment it was seen 

that the quantity of porcine DNA present decreased slightly, a dilution effect of the 

porcine plasma during the experiment for a combination of reasons including from 

the saline that is constantly fed into the system, providing a set level of heparin 

throughout the surgical procedure, and the healthy plasma used to prime the BAL 

circuit prior to connection with the liver-failure porcine model. In regard to human 

DNA present within the samples, following treatment with the biomass, human 

DNA was detected in the two plasma samples that were taken mid-way through 

treatment and at the end of treatment. The quantity of human DNA detected in the 

porcine plasma increased from the beginning to the end of the treatment period. 

This increase potentially represents cell death and subsequent DNA release from 

HepG2 cells within the BAL. 

 

By viewing the concentration of human DNA present in the porcine plasma at the 

end of the treatment period, this can be worked back to determine a theoretical 

percentage of cell death that may have occurred within the biomass over the 

treatment period. This quantity was calculated using the modal number, namely the 

number of chromosomes actually present in the cell type, for HepG2 cells, which 

is 55.111 Using this number, and the value for the quantity of DNA present in a 

human 46-chromosome cell, 6.55 pg30,111, the total quantity of DNA present within 
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the biomass can be calculated using the number of cells present within this 

particular BAL run, 1.46 x 107.   

 

DNA in a HepG2 cell: (6.55 pg of DNA per cell / 46) * 55 provides 7.83 pg 

of DNA present in a single HepG2 cell  

Quantity of HepG2 DNA in the BAL experiment:  

7.83 * 1.46 x 107 = 1.14x108 pg of HepG2 DNA 

Concentration of HepG2 DNA in the full in vivo BAL system: 1.14x108 

/ 7000 (ml of plasma in system) = 1.6 x 104 pg/ml DNA  

Percentage of cell death within the system: 16 pg/µl of DNA would be 

present in total if 100% cell death occurred within the bioartificial liver. A 

concentration of 0.25 pg /µl of DNA was seen in the samples, working back 

this equates to 1.56% cell death within the biomass 

 

This result should be interpreted with caution as it does not account for DNA that 

may have been degraded already in the BAL system, for DNA that may adhere to 

tubing, and it does not provide an analysis of cell viability. This result could be 

further corroborated using viability data and a cell count to gain percentage viability 

of cells and an absolute cell number at the end of the experiment. In an ideal 

scenario, samples would be taken throughout the treatment phase and analysed to 

assess the viability of the biomass to ensure sufficient cell viability for use within 

the treatment phase. During the pre-clinical trials, these measurements were taken 

prior to treatment initiation, mid-treatment and post-treatment, cell viability was 

reduced by only 6% following 8 hours of BAL treatment in liver failure models.116 

The next chapter will go on to explore this and further questions raised in the 

preceding chapters.  
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7. General discussion and future work 

 

 

This PhD project set out to characterise a filtration protocol which could be 

incorporated within the Liver Group extracorporeal BAL circuit. It was required to 

be pre-prepared for use in a remote location, as would be the case when treating 

patients. The filtration protocol was to protect the patient from any potential 

contaminants originating from the BAL, which included cell debris, alginate 

particles and HepG2 DNA, whilst maintaining beneficial plasma components that 

are both native to the patient and produced by the BAL, such as albumin and 

fibrinogen.14 As an additional functional aspect, the filtration system was to be 

assessed for endotoxin removal capability, which may originate from the patient, 

to enhance the therapeutic potential of the BAL. To enable this, assays for the 

detection of the contaminants, DNA and endotoxin, within plasma samples were 

successfully characterised and used to assess the capacity of the filtration system in 

vitro using small- and full-scale models, before progressing to pre-clinical trials. 

Here we will discuss the pros and cons of the data presented in this thesis, along 

with suggestions for future work.   

 

 

7.1 The detection of contaminants in plasma 

 

In order to characterise a variety of contaminants, several assays were required to 

be developed that would be functional in plasma samples. These were 

successfully quantified in Chapter 3, and will be discussed in further detail below.  

 

 

7.1.1 DNA 

 

Due to the nature of BAL treatment, there is the potential for DNA released from 

the HepG2 cell biomass to come into contact with the patient’s plasma; this is 

required to be removed by the filtration system prior to plasma return to the 

patient.35 A method for the detection of human DNA in plasma samples was 
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required to assess efficacy of the filtration system for the removal of this 

contamination. A DNA assay was developed using a combination of plasma 

pre-treatment with proteinase K and a 1/5,000 dilution, prior to quantification using 

qPCR. This assay used DNA isolated from HepG2 cells as a standard and was 

shown to be consistent in various plasma samples, and in the presence of 

anticoagulants; the assay had a limit of detection of 0.1 ng DNA\µl plasma 

(Chapter 3).  

 

A literature search of regulatory guidelines, including those set by the MHRA, 

EMA and WHO, was performed to identify an absolute limit for the presence of 

extracellular DNA contamination in medical devices. These guidelines for the 

quantity of DNA allowed to be present within medical devices and drugs are not 

specific, although DNA is listed as a contaminant and the quantity is required to be 

reduced.35,130 With the advent of new cell-based therapeutics, it will be of 

importance to keep up to date with any subsequent guidelines to ensure that the 

BAL continues to fulfil these as they evolve. As discussed in Chapter 3, the 

detection limit of the DNA assay is 100 ng DNA/ml plasma, equating to 1.2 ng 

DNA/mg dry plasma weight, demonstrating that the DNA assay is efficacious at 

detecting DNA to approximately 50-fold lower than the limit of provoking an 

immune response, which has been reported to be 50 ng/mg.104,134  

 

It was calculated that the DNA assay would be able to detect a lower range of  

0.08–0.13% of cell death occurring within the BAL in a circulating system 

containing 7 litres of fluid, as would be seen during treatment.115 A theoretical 

estimate as to the health of the BAL during patient treatment could be gained from 

this, although, due to the large volume of plasma in the system, and as cell death 

during treatment is likely to occur gradually, it is unlikely that DNA would disperse 

evenly in the system, as would be required for an accurate measure.  
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7.1.2 Endotoxin 

 

Patients presenting with acute liver failure are in an immunosuppressed state, with 

a decreased ability to remove endotoxin, leading to endotoxaemia and potentially 

subsequent sepsis.41 Sepsis is a key cause of death in patients with end-stage liver 

failure, and is established as a result of the patient’s immune system reacting to 

these increased levels of endotoxin in the circulation.7,135  For this reason, the 

filtration system was assessed for the removal of endotoxin originating from the 

patient to enhance their recovery. As such, a method for the detection of endotoxin 

in plasma samples was required.   

 

Using the PyroGene assay, with pre-treatment of plasma consisting of 1/200 

dilution in endotoxin-free water and heat treatment at 70oC for 20 minutes, a limit 

of detection of 2 EU/ml plasma, or 0.2 EU/ml of media samples containing 10% 

FFP was achieved.52 Although endotoxin recovery from plasma samples was 

approximately 20% lower than that achieved in the positive product control, this is 

as is seen in the literature. One group has published a method for the detection of 

endotoxin detection in hyaluronic acid (HLA)-based medical devices. Here, they 

demonstrated that recovery of endotoxin from HLA was 2-fold less than in water 

prior to digestion of HLA, a lower recovery than was seen in our assay, showcasing 

the difficulty of accurately quantifying endotoxin.136 Additionally, the PyroGene 

assay characterised in this thesis is now approved for use in regulatory testing by 

the United States Pharmacopeia, providing that suitable validation is performed. 

The validation performed in this thesis may well be sufficient for this purpose.137 

 

 

7.1.3 Particles 

 

Unfortunately, due to the multiple components found in plasma samples, and the 

tendency of plasma to clot when stored frozen,118 it was difficult to accurately 

analyse plasma samples for particle concentration. A consistent reduction in 

particle size and total number was observed using both Mastersizer and NanoSight 

analysis techniques, but results do not provide enough detail to enable full 
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conclusions to be drawn and these techniques were used with caution. Using 

Mastersizer analysis, large particles were seen to be present in the plasma samples, 

thought potentially to be plasma clots or agglomeration of alginate.138 These 

particles may interfere with results produced by the Mastersizer, as they would 

obscure detection of smaller particles. These larger particles were not seen with 

NanoSight analysis, as the maximum particle size suitable for this detection method 

was 2 µm (as described in Table 2, page 52). For future analyses, these samples 

could be filtered using a 2 µm filter, the filtrate analysed using the NanoSight and 

the retentate re-suspended and analysed with the Mastersizer, ensuring no 

interference from either end of the median particle distribution.  

 

 

7.2 Capacity of the filtration system for DNA, endotoxin, particles and 

plasma 

 

Aims of this thesis included the identification of potential contaminants necessary 

to remove from the BAL circuit, to ensure treatment is therapeutic, without 

potential harmful effects arising; determining both the capability and the capacity 

required of the filtration system in order for it to meet regulatory requirements for 

use within patients, and the testing of this system on small and large scales in 

vitro to establish the parameters of its efficacy. These were assessed in Chapters 4 

and 5, where potential contaminants were identified and the suitability of the 

filtration system to remove these in order to meet regulatory guidelines was 

demonstrated, as determined using small- and large-scale models, discussed 

below.  

 

The quantity of DNA that could potentially be released from the BAL under 8-hour 

treatment conditions was calculated to be 8.22–11.7 mg, compared with 548–783 

mg DNA in the whole biomass. In Chapter 6 the filters were challenged with an 

equivalent quantity of full BAL-DNA content using a 13.6 x scaled down model, 

demonstrating 100% removal of DNA contamination. This supports the suitability 

of the filters for use in a full-scale BAL setting, and suggests that they would be 

efficacious at protecting the patient in a worst-case scenario.  
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In patients with alcoholic hepatitis, there is reported to be in the around 5,520 EU 

present in an average 65 kg patient with 3 L of plasma.43,110 The upstream filter 

achieved successful removal of 4.24 million endotoxin units from plasma, 

demonstrating robustness of the filtration system to support endotoxin removal 

originating from the patient and in a worst-case scenario from an external 

contaminating source. Multiple systems are in development for the removal of 

endotoxin from patients with liver failure. The ADVanced Organ Support system, 

which is based on albumin dialysis, has been assessed in a two-hit porcine model 

of endotoxaemia, here they use change in pH and temperature to remove endotoxin 

from albumin in the recirculating system.139 Although systems such as this could 

theoretically be used in combination with the BAL, they would result in an 

additional complex circuit, which would exhibit a further hold-up volume and 

require greater quantity of FFP to treat the patient. An advantage of the filtration 

system presented here, is that this is used in line with the existing BAL circuit, with 

no need for additional resources.  

 

The filtration system demonstrated consistent reduction in both particle size and 

total number, although, as discussed earlier, these results should be viewed with 

caution as the methods for particle analysis had substantial drawbacks, with regard 

to sample storage prior to analysis, and the limits of the techniques themselves. 

Additional methods to characterise particles in plasma would be beneficial to 

corroborate results gained in this thesis, these are discussed below, along with 

future work that could be performed here.   

 

The volumetric capacity of the filters, with regard to a suitable measure of pressure 

drop, was also demonstrated, showing that the volumetric capacity of both filters 

in series is sufficient to see through an 8-hour BAL treatment cycle.116 Due to the 

availability of sufficient quantities of plasma, this full-scale volumetric capacity 

experiment could unfortunately not be repeated. Pressure analysis from the 

filtration system in vivo would provide additional support to corroborate this result, 

hopefully demonstrating the efficacy of the filters in an 8-hour in vivo BAL 

treatment.  
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7.3 Examining the filtration system for any detrimental effect on plasma 

 

The upstream 25 cm2 filter and mini downstream 0.6 µm filter were used in 

scaled-down mini column experiments replicating the BAL in healthy and liver 

failure plasma. Cell functionality in the form of AFP production, glucose 

metabolism and urea production was confirmed in healthy plasma, as has been 

described previously.14,22 These experiments demonstrated consistent maintenance 

of plasma proteins following processing for 8 hours with the filtration system, 

whilst DNA released from the ELS was consistently removed over the 8-hour 

period, as could be seen when compared to ELS incubation in plasma without the 

filtration system. This suggests that the filter’s affinity for DNA does not negatively 

impact the concentration of beneficial plasma proteins, either produced by the 

biomass or the patient themselves.  

 

An MTT assay demonstrated that the processing of plasma using the filtration 

system did not negatively impact ELS metabolism over an 8- or 24-hour incubation 

period. This suggests that the process of filtering plasma does not negatively 

interfere with the useful biomass products. It would be beneficial in future work to 

assess this further, for example using cytokine analysis.20 Examining any potential 

toxic effects of these filters, or of plasma processed using these filters, could be 

performed to further support regulatory applications, including cytokine assays and 

lymphocyte proliferation studies to estimate any detrimental effect of the filters 

themselves.43  

 

 

7.4 Regulatory requirements of the filtration system 

 

As previously discussed, to enable the BAL to meet MHRA and FDA regulatory 

guidelines as a medical device, it needs to adhere to maximum endotoxin and 

particles quantities, along with demonstrating DNA removal 

capabilities.24,27,28,105,109  
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The filtration system demonstrated consistent removal of DNA to below the limit 

of detection of the qPCR assay. An upper limit in terms of capacity of the filtration 

system for DNA was not reached, including testing the system with DNA quantity 

equivalent to 100% of DNA present in the BAL biomass. Human DNA 

concentration from the end of an in vivo BAL treatment without the filtration circuit 

in place was used to determine approximate cell death within the biomass over the 

treatment period. If used in future, this could be corroborated using viability 

analysis and cell counts at the end of the experiment to gain an overview of cell 

health within the BAL over the course of treatment. Although, this does not account 

for DNA that may have been degraded already in the BAL and assumes an equal 

distribution of DNA within the plasma. In the pre-clinical trials, samples are taken 

at beginning, mid-point and end of the treatment phase and analysed for viability, 

this information could be used in future to predict BAL health, enabling early 

termination of treatment in case of any mass cell death.116   

 

All BAL components are required to have a maximum endotoxin concentration 

which is below the limits for a medical device stipulated by the FDA (0.5 EU/ml 

or 20 EU/device).109 Both the upstream and downstream filters, and the empty 

alginate spheres  tested negative for the presence of endotoxin, meeting these 

regulatory requirements.101 The biomass was also assayed for endotoxin 

contamination at Day 12 of culture. One BAL experiment tested positive for 

endotoxin, and following this was seen to be contaminated with bacteria. This result 

demonstrates that there may be potential to use the endotoxin assay as a test for 

bacterial contamination throughout the biomass culture, as will be discussed later.  

 

Regulatory requirements set out by the United States Pharmacopeia state that 

solutions for injection should not exceed 12 particles greater than 10 µm/ml, or 2 

particles greater than 25 µm/ml.105 The filtration system reduced particle number 

and size in an in vivo BAL experiment to <0.6 µm, with a 4-fold reduction in total 

particle number. Additionally, in vitro, the filtration system was seen to reduce 

alginate particle size from 12 µm to <1 µm using Zetasizer analysis. Although these 

results should be observed with caution due to the limitations of the particle 

analysis systems, this suggests that the filtration system should enable the BAL to 

meet these regulatory requirements.  
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7.5 Future work 

 

The results presented here have demonstrated the suitability of this filtration system 

for incorporation within the Liver Group BAL. The filtration system removed 

contaminants from plasma to a level sufficient for the system to meet regulatory 

guidelines, and progressed to in vivo experimentation; however, further questions 

could be answered if additional time were available. These are discussed below.  

 

Assays for the detection of HepG2 and porcine DNA were characterised, enabling 

identification of DNA origin in BAL-treated plasma samples in vivo. An estimate 

of cell death within the BAL was gained using HepG2 DNA concentration, this 

could be performed in vivo in a porcine model as there was no assay cross-reactivity 

between HepG2 DNA and porcine DNA; however, when this device is used in 

humans, the qPCR reaction would detect all human DNA, not only that originating 

from the BAL. Therefore, the characterisation of a quantitative assay specific to the 

HepG2 cell line would be beneficial. This could be normalised by corroborating 

data with absolute cell numbers to provide a method of characterising cell death 

within the BAL in humans. Cell-free DNA assays can be used as cancer 

biomarkers, to detect both the presence of cancer and its characteristics, which can 

guide treatment choice, demonstrating the feasibility for detecting specific cell 

characteristics within human plasma samples.140 Short tandem repeat (STR) 

analysis could be looked into for detecting any HepG2 DNA, whereby probes are 

targeted to the STR regions specific to these cells, and PCR is performed to detect 

their presence.141 Although, this technique is more complex than the DNA assay 

described in this thesis, requires looking at multiple loci, and may not be 

transferable to cell-free DNA.  

 

The endotoxin assay presented here detected bacterial contamination of the BAL 

biomass, before this was apparent visually, this assay could be used as an early 

biomarker for the presence of infection within the BAL, enabling termination of 

the cell culture process in the case of an early stage infection. This would save 

valuable resources in this instance and would offer an additional safety guard to 
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ensure no contamination from BAL to patient. A similar method has been reported 

in the literature, whereby a biomarker for early diagnosis of sepsis was observed; 

here, it has been shown that endotoxin activity levels in patients with sepsis are 

positively associated with disease severity.142,143 

 

Due to the limits of both NanoSight and Mastersizer analyses, and the potential of 

alginate and plasma to agglomerate during storage and transport accurate particle 

quantification proved difficult. Further methods to characterise particles present in 

plasma samples would be beneficial to provide additional data on the efficacy of 

the BAL for their removal. In particular, a method for the detection of alginate 

particles within plasma samples would support the efficacy of this system for 

removing BAL-originating contamination. Mass spectrometry has been used to 

identify alginate particles in complex samples, specifically pigs faeces, and could 

offer potential for the detection of alginate in plasma here, although samples 

required complex pre-treatment prior to analysis.138  

 

The final aim of this thesis was to prepare for, and analyse, contaminant removal 

from porcine plasma when the safety circuit was used in a porcine pre-clinical 

model of acute liver failure. This was performed on N=1, demonstrating reduction 

in particle size and quantity. It would be interesting and valuable to collate the 

remaining data from the filtration system in vivo, including pressure analysis and 

samples from pre- and post-filtration for DNA, endotoxin and particle 

quantification. This would be beneficial to support the results gained in this thesis 

and would provide further insight into the efficacy of the BAL in vivo, along with 

information on any complications encountered in this setting. Although, as already 

discussed, results of particle analysis should be interpreted with caution, due to the 

nature of sample transport prior to performing particle detection assays, and due to 

limitations of the assays themselves. Due to the affinity of the filter for endotoxin, 

it would also be interesting to observe whether the filtration system alone would 

demonstrate any therapeutic activity in a model of sepsis. Currently, National 

Institute for Health and Care Excellence guidelines recommend antibiotic treatment 

and intravenous fluid resuscitation in this instance.135 As endotoxin is implicated in 

sepsis, and has been shown to be a positive predictor of sepsis severity, its removal 
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using the filtration system provides a therapeutic benefit, as has been demonstrated 

with albumin dialysis systems.139  

 

7.6 Conclusion 

 

The data presented in this PhD thesis support the hypothesis that a filtration system, 

proven to be able to remove any potential contaminants which may arise from the 

BAL biomass, will meet regulatory requirements, thus enabling its use in patients; 

additionally, data presented here also support the second hypothesis that this 

filtration system will also have the capacity to remove endotoxin contamination, 

providing an additional functional element of this system. 

 

Assays for the detection of DNA and endotoxin in human plasma were successfully 

identified, providing a limit of detection sensitive enough to assess the BAL for 

compliance with regulatory standards. These assays were used to assess the 

capacity of the filtration system for removal of contaminants throughout this thesis. 

In vitro testing of the filters demonstrated removal of significant quantities of DNA 

and endotoxin, whilst leaving the concentration of beneficial plasma proteins 

unchanged. Additionally, a combination of the two filters also provided a consistent 

reduction in particle size and number. The removal of these contaminants, DNA 

and particles, may be sufficient for the BAL to meet regulatory guidelines for 

particle and DNA concentration, although further investigation using different 

particle analysis techniques would be beneficial to support this. Additionally, 

individual components of the BAL and filtration system tested negative for the 

presence of endotoxin, providing further evidence of their suitability to progress to 

clinical trials. This thesis described additional barriers to overcome whilst 

progressing to in vivo use, such as the development of a porcine-specific DNA 

assay, along with defining standard operating procedures to enable the use of the 

filtration system in a remote location, as would be the case in humans.  

 

To conclude, a filtration system was proven to reduce potential contaminants, 

including both physical particle contaminants and biological agents such as DNA, 

which may arise from the BAL biomass, to the extent at which the BAL can meet 
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regulatory requirements, thus enabling its use in patients. The filtration system also 

demonstrated the capacity to remove endotoxin contamination, providing an 

additional functional element of this system which would further protect patients 

suffering from sepsis.   
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