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The problem of asymmetric water-entry of a wedge with the vortex sheet shed from its
apex is considered within the framework of the ideal and incompressible fluid. The effects
due to gravity and surface tension are ignored and the flow therefore can be treated as
self similar, as there is no length scale. The solution for the problem is sought through
two mutually dependent parts using two different analytic approaches. The first one is
due to water entry, which is obtained through the integral hodograph method for the
complex velocity potential, in which the streamline on body surface remains on the body
surface after passing the apex, leading to a non physical local singularity. The second one
is due to vortex sheet shed from the apex, and the shape of the sheet and the strength
distribution of the vortex are obtained through the solution of Birkhoff-Rott equation.
The total circulation of the vortex sheet is obtained by imposing the Kutta condition
at the apex, which removes the local singularity. These two solutions are nonlinearly
coupled on the unknown free surface and the unknown vortex sheet. This poses a major
challenge, which distinguishes the present formulation of the problem from the previous
ones on water entry without vortex sheet and ones on vortex shedding from a wedge
apex without a moving free surface. Detailed results in terms of pressure distribution,
vortex sheet, velocity and force coefficients are presented for wedges of different inner
angles and heel angles, as well as the water entry direction. It is shown that the vortex
shedding from the tip of the wedge has profound local effect, but it weakly affects the
free surface shape, overall pressure distribution and force coefficients.

1. Introduction

In a wide context, water-entry refers to that in which a solid body penetrates through
the free surface of a liquid at large relative speed, in the sense either the body moving
towards the liquid or the other way round. This problem has a wide range of applications
in many engineering fields. Slamming of marine vehicles, impact of green water on ship
decks or offshore platforms and extreme waves including tsunami on the coastline are well-
known examples (Faltinsen (2005)). Impact is typically characterized by a short duration,
during which velocity and the free surface shape change rapidly both temporally and
spatially. It may generate high pressure peaks and large pressure gradients. The severe
fluid loading on the structure can lead to its damage or even destruction.
Water entry problems have been extensively investigated using wedge geometry. In

addition to direct applications of its results to improve the design of ship hulls, half-
submerged propellers, high-speed planing boats and seaplanes etc, the investigations of
such a geometry can also reveal some important features and provide better understand-
ing of fluid flows in more general situations. When a symmetric wedge enters a horizontal
water surface vertically, the generated flow will be also symmetric, and no flow will cross
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the tip of the wedge. In other cases including asymmetric wedges or oblique entries, the
cross flow will occur at the tip of the wedge and the physics of the flow will be changed.
Experiments done by Judge et al. (2004) revealed that under certain conditions flow
detachment can occur, and this could change flow features completely, especially in the
local area. Another important effect of flow asymmetry is that a vortex sheet is shed
from the tip, which significantly changes the configuration of the flow near the apex. As
in the case without free surface (Pullin (1978), Xu (2016)), the shed vortex leads to the
formation of a re-circulation region. These aspects are expected to have some important
consequences, especially in the area near the wedge apex. However, these effects have not
been carefully considered in the previous works on water entry and they are the main
purpose of the present study.
There is a large body of work on water entry of a wedge without taking into account

of vortex shedding. The theories based on the incompressible velocity potential for solid-
body impact with a liquid were first proposed by von Karman (1929) and Wagner
(1932). The former assumed an undisturbed free surface while the latter introduced a
correction for the contact point of the body surface and the free surface. Many practical
problems have been solved on the basis of these theories. A particular feature in the
Wagner theory is that a body is usually replaced by an equivalent plate. The width of
the plate is obtained from the horizontal distance between the two contact points of the
body with the free surface. It changes with time and needs to be found as part of the
solution. The Wagner theory has been found very effective in many cases. However, it
predicts an infinite velocity and pressure at the contact point and a jet is usually absent.
This drawback has been corrected in further development of the Wagner theory in the
framework of the matched asymptotic method. Various impact problems have then been
solved through this method by Armand & Cointe (1987), Howison, Ockendon & Wilson
(1991), Korobkin & Puknachov (1988), Korobkin (2004), Howison, Ockendon & Oliver
(2004) and Oliver (2007). A different modification for the conventional Wagner theory
is to take into account the body shape and not to replace it with an equivalent plate
as it is done by Zhao, Faltinsen & Aarsnes (1996) using a boundary-integral equation
method and Mei, Liu & Yue (1999) using a conformal mapping technique.
Water entry problem has also been solved based on a fully nonlinear model. For a

wedge at constant entry speed, when the flow is assumed to be potential, gravity and
surface tension effects are ignored, the problem becomes self-similar. Mathematically,
the temporal variable can be incorporated into the spatial variables. The boundary
conditions on the unknown free surface no longer involves explicitly time but they
remain fully nonlinear. The complete solution for such a formulation was obtained by
Dobrovol’skaya (1969) for a symmetric wedge entering the free surface vertically. Chekin
(1989) generalized Dobrovol’skaya’s approach to the problems of the oblique water entry
of a wedge and an inclined flat plate. More recently, this problem was considered by
Semenov & Iafrati (2006) and Semenov & Yoon (2009), Semenov & Wu (2012) using
integral hodograph method (IHM), and by Iafrati (2000) and Xu, Duan & Wu (2008,
2010) using a numerical method. In all these works, the streamline from the tip is attached
to the wedge surface and no vortex shedding is taken into account. As a result singularity
in velocity and pressure at the wedge apex has appeared. This is obviously a consequence
of the pure irrotational flow assumption. In real fluids the streamline will not bend over
the corner. Instead, it will separate from the tip and create a re-circulation region. This
is obviously due to the viscous effect which is not included in the pure irrotational
flow. In order to resolve the velocity singularity at the tip Chekin (1989) proposed a
model with the cavity at the tip, however no numerical results were provided. Riccardi &
Iafrati (2004) included the pointed vortex shedding from the apex of the wedge during
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water entry. However, the free surface was kept flat and the potential on the free surface
remained to be zero.
In the present study we address the problem of asymmetric water entry of a wedge

with the attached flow on the leeward side and the vortex shedding from the wedge apex.
The problem is solved within certain ranges of the wedge heel angle and the direction of
the incoming velocity relative the body, confined by some constrains. The first constrain
is an obvious geometrical one, which requires that the deadrise angles on both sides of the
wedge are positive, or the wedge surface is not in touch with water before the wedge apex
does.The second one is the angle between the incoming flow direction and the leeward side
of the wedge should not exceed a critical value. Beyond this critical value the liquid will no
longer in touch with the surface of the leeward side, or the flow becomes detached, as was
observedin experiment by Judge et al (2004). Within these constrains the mathematical
model with the fully nonlinear free surface conditions on its exact position together with
vortex shedding from the wedge apex is adopted. The vortex shedding is considered in
the form of vortex sheet, or vortex line in the present two dimensional case, starting from
the wedge apex. The tangential velocity across the vortex line is discontinuous. The total
complex velocity potential is split into two components. The first one is principally about
the irrotational flow generated by body motion during water entry. The IHM developed
previously for free surface flows (Semenov &Wu (2012)) without vortex is used. However,
such a solution alone leads to a singularity at the wedge apex. Thus the second part of
the solution is due to the vortex sheet started from wedge apex. The method for the
vortex sheet follows the formulation of Moore (1975), whose detailed application to a
wedge without the free surface was made by Pullin (1978). Unlike the work of Pullin,
however, the incoming flow to the wedge here is not a prescribed one but is the one due
to water entry. Due to the nonlinearity of the boundary condition, these two components
of the problem cannot be solved separately, and they have to be solved simultaneously.
In particular, using the dynamic and kinematic boundary conditions on the free surface,
the problem is reduced to a system of an integral and an integro-differential equations
in the parameter plane, in terms of the velocity magnitude and the velocity angle to the
fluid boundary, respectively. The motion of the vortex sheet is governed by Birkhoff-Rott
(B-R) integro-differential equation (Rott (1956); Birkhoff (1962)), which expresses the
fact that the points of the vortex sheet move with the induced fluid velocity and the
corresponding to each of these points the circulation remains unchanged. The coupled
systems of equations from the free surface boundary conditions and B-R equations are
then solved numerically through successive approximations.
In the following sections the derivation of the integro-differential equations based on

IHM and B-R equations are first presented, followed by the numerical method for solving
these equations. Results are then provided, in particular near the wedge apex, through
the streamlines, vortex-sheet shape, size and location of the re-circulation region and
the pressure distribution along the wedge. Discussions are made, including the effects
of shedding vortex on the local flow and the free surface, aiming to give some insights
into the flow structure and pressure distribution near the wedge apex when the vortex
shedding effect is included.

2. Formulation of the problem and the solution procedure

We consider the flow of an ideal incompressible fluid, generated by water entry of a
wedge of inner angle 2α. Gravity and surface tension effects are neglected. The pressure
on the free surface is assumed to be constant and equal to the atmospheric pressure Pa.
The definitions of the geometric parameters are shown in figure 1a. The origin of the
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Figure 1. (a) Asymmetric water-entry of a wedge: (a) similarity plane z = x+ iy; (b) the
parameter plane.

Cartesian coordinate system xy is fixed at the wedge apex. The liquid is assumed to
move toward the stationary solid wedge with velocity V which forms an angle γ∞ with
the x-axis. Then, the free surface elevation at x = ±∞ approaches Y∞ = V t sin γ∞. The
symmetry line of the solid wedge forms a heel angle δh with the y-axis. It follows from
the geometry of the problem that the right and left sides of the solid wedge form angles
βR = π/2− α+ δh and βL = π/2 + α+ δh, respectively, with the x-axis. The problem is
symmetric only when γ∞ = 90◦ and δh = 0.
A stagnation point A is expected to appear on the windward side of the wedge, where

the incoming zero streamline splits into two along the body surface, moving in opposite
directions. In the case without vortex sheet (Semenov & Wu (2012)), when the flow
moves towards the apex C of the wedge, the liquid accelerates to an infinite speed and
turns around the sharp corner. Then, it decelerates on the leeward side. Although such
flow configuration is mathematically possible in an ideal fluid, it does not reflect the real
physics locally. For real liquid with viscosity, the boundary layer will lead to vorticities
shed from the body and both the velocity and pressure at the apex will remain finite. To
model this in an ideal liquid, a free shear layer starting from the apex can be introduced
(Rott (1956)). Across the layer, the tangential velocity will be discontinuous. The vortex
sheet will roll up into a spiral-like shape, as observed in the problem of an infinite wedge
in unbounded flow domain (Pullin (1978)).
Here, we will consider the effect of spiral vortex effect during water entry. The problem

is self-similar since there is no length scale. Therefore, the time-dependent problem in
the physical plane Z = X+ iY can be written in the stationary plane z = x+ iy in terms
of the self-similar variables x = X/(V t) and y = Y/(V t), where t is time starting from
the moment of impact. The complex velocity potential W (Z, t) = Φ(Z, t) + iY (Z, t) for
the self-similar flow is written in the form

W (Z, t) = V 2tw(z) = V 2t [ϕ(x, y) + iψ(x, y)] . (2.1)

where ϕ(x, y) and ψ(x, y) are the velocity potential and the stream function in the simi-
larity plane. We may decompose the complex potential of such flow into two components

w(z) = w1(z) + w2(z), (2.2)

where w1(z) is the complex potential due to water entry without vortex sheet and w2(z)
is the complex potential due to the spiral vortex sheet. The complex potential w1(z) has
singularity at the apex of the wedge. Introduction of the complex potential w2(z) is to
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ensure that there will be no singularity in w(z), and the velocity at the apex will be
finite. This means that a singularity at point C exists in w2(z), which has the same order
as that in w1(z).

2.1. General approach for solving free surface problems.

In order to determine the function w(z) we introduce a parameter plane, or zeta -plane,
as suggested by Joukovskii (1890) and Michell (1890). Then, the complex velocity, or
strictly speaking the conjugate of the complex velocity, dw/dz, and the derivative of the
complex potential, dw/dζ, are found as the functions of the parameter zeta in the form
as

w(ζ) = w(0) +

ζ∫
0

dw

dζ
dζ, z(ζ) = z(0) +

ζ∫
0

dw

dζ
/
dw

dz
dζ. (2.3)

Further development of this method was done by Chaplygin (see chapter 4 in Gurevich
(1965)), who suggested to analyse singular points of a complex function and then to find
it using Liouville’s theorem, instead of using the conformal mapping in an explicit form.
We choose the first quadrant of the ζ-plane as the parameter region corresponding to the
physical domain to derive expressions for the complex velocity, dw/dz, and the derivative
of the complex potential, dw/dζ, as functions of the variable ζ = ξ + iη. Conformal
mapping allows us to fix three points in the parameter region arbitrarily, which are
chosen as O, B and D in the present problem, as shown in figure 1b. The first two are
the intersections of the free surface with the body surface and the last one is at infinity.
In this parameter plane, the positive imaginary axis (η > 0, ξ = 0) corresponds to the
free surface, and the positive real axis (ξ > 0, η = 0) corresponds to the wetted part of
the wedge. The points ζ = a and ζ = c are the images of the stagnation point A and the
wedge apex C in the similarity plane, respectively. The values of a and c are not known
and have to be determined as part of the solution.
According to (2.2), we may write

dw

dz
=
dw1

dz
+
dw2

dz
=
dw1

dz
F (z), (2.4)

dw

dζ
=
dw1

dζ
+
dw2

dζ
=
dw1

dζ
F (z), (2.5)

where

F (ζ) =

(
1 +

dw2

dz
/
dw1

dz

)
=

(
1 +

dw2

dζ
/
dw1

dζ

)
. (2.6)

This indicates that the potential w1 is chosen as the reference potential, as dw1/dz and
dw1/dζ can be obtained from the solution of the problem without vortex sheet (Semenov
&Wu (2012). Moreover, from (2.4) and (2.5) it follows that the derivative of the mapping
function,

dz

dζ
=
dw

dζ
/
dw

dz
=
dw1

dζ
/
dw1

dz
(2.7)

is directly linked to the reference potential w1 only.
In order to derive an expression for the derivative of the complex potential, dw/dζ,

we analyse the behaviour of the velocity potential along the free surface. It is useful to
introduce the unit vectors n and τ in the normal and tangential directions of the fluid
boundary, respectively. The normal vector points out of the fluid region while the spatial
arc length coordinate s along the surface increases in the direction of τ , along which the
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fluid region is on the left (figure 1a). With this notation,

dw = (vs + ivn)ds, (2.8)

where vs and vn are the tangential and normal velocity components, respectively. Let θ be
the angle between the velocity vector on the surface and τ , which means θ = arg(vs+ivn).
Taking the magnitude of (2.4) and the argument of equation

dw

ds
=
dw1

ds
+
dw2

ds
=
dw1

ds
F (ζ),

we can obtain

v(η) =

∣∣∣∣dwdz
∣∣∣∣
ζ=iη

= v1(η)vF (η), (2.9)

θ(η) = arg

(
dw

ds

)
= arg

(
dw1

ds

)
+ arg[F (ζ)ζ=iη] = θ1(η) + θF (η), (2.10)

where

v1(η) =

∣∣∣∣dw1

dz

∣∣∣∣
ζ=iη

, θ1(η) = arg

(
dw1

ds

)
ζ=iη

,

vF (η) = |F (ζ)|ζ=iη , θF (η) = arg [F (ζ)]ζ=iη .

2.2. Complex potential due to water entry.

The problem of impact between the liquid wedge and solid wedge without vortex
sheet, in which a singularity exits at the wedge apex, has been solved by Semenov & Wu
(2012). There the expressions for the complex velocity and the derivative of the complex
potential as well as the mapping function z = z(ζ) were derived, and the flat free surface
problem was treated as a special case of a liquid wedge with an inner angle π. In the
present notations, the expression for the complex velocity, dw1/dz, takes the form

dw1

dz
= v0

(
ζ − a

ζ + a

)(
ζ + c

ζ − c

)1−2α/π

exp

− i

π

∞∫
0

d ln v1
dη

ln

(
iη − ζ

iη + ζ

)
dη − iβL

 , (2.11)

where v0 = v(η)η=0 is the velocity magnitude at point O. It can be clearly seen that
the complex velocity has a singularity of the order (ζ − c)2α/π−1 at point ζ = c which
corresponds to the wedge apex. Through analysing the behaviour of the angle of the
velocity, θ1 = arg(vs + ivn), relative to the boundary, the derivative of the complex
potential, dw1/dζ, was obtained in the form

dw1

dζ
= Kζ2µ1/π−1 ζ

2 − a2

(ζ + 1)2
exp

 1

π

∞∫
0

dθ1
dη

ln
(
ζ2 + η2

)
dη

 , (2.12)

where K is a real factor.
From (2.11) and (2.12) the derivative of the mapping function can be obtained as

dz

dζ
=
K

v0
ζ2µ1/π−1 (ζ + a)2

(1 + ζ)2

(
ζ − c

ζ + c

)1−2α/π

exp

 1

π

∞∫
0

dθ1
dη

ln
(
η2 + ζ2

)
dη

+
i

π

∞∫
0

d ln v1
dη

ln

(
iη − ζ

iη + ζ

)
dη + iβL

 . (2.13)
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(2.11) - (2.13) contain the parameters a, c, K and the functions v1(η) and θ1(η),
which are to be determined from physical considerations and the dynamic and kinematic
boundary conditions on the free surface. At infinity, the complex velocity tends to
exp(−iγ∞). Taking the argument of (2.4) and accounting for (2.11), we have

arg

(
dw

dz

)
ζ=i

= arg

(
dw1

dz

)
ζ=i

+ arg[F (ζ)]ζ=i = arg

(
dw1

dz

)
ζ=i

+ θF (η)η=1 = −γ∞.

By letting ζ = i in (2.11), which corresponds to infinity in the self similar plane, the
following equation is obtained

−2 tan−1 1

a
+

(
2− 4α

π

)
tan−1 1

c
− 1

π

∫ ∞

0

d ln v1
dη

ln

∣∣∣∣η − 1

η + 1

∣∣∣∣ dη+θF (1)+α−δh−π2+γ∞ = 0.

(2.14)
In the physical plane, the wetted length of the right side of the wedge in the self similar
flow is v0V t. The length of the segment OC in the similarity plane is then |zO| = v0.
Hence, the following equation is obtained∫ c

0

∣∣∣∣dzdζ
∣∣∣∣
ζ=ξ

dξ = v0. (2.15)

An additional condition is obtained by enforcing the fact that the y−coordinates of the
free surface on the right- and left-hand sides have to be the same at infinity. This gives

ℑ
(∮

ζ=i

dz

dζ
dζ

)
= ℑ

(
πiRes

ζ=i

dz

dζ

)
= ℑ

[
πi lim

ζ→i

d

dζ

(
dz

dζ
(ζ − i)2

)]
= 0.

By taking into account (2.13) and performing the integration through the residue method
we get

−
(µ1

π
− 1
)
− 1

1 + a2
+

1

π

∫ ∞

0

dθ1
dη

dη

η2 − 1
= 0. (2.16)

From (2.14) - (2.16) the parameters a, c, K can be found if the functions v1(η) and θ1(η)
are specified.

2.2.1. Dynamic boundary condition on the free surface.

The Bernoulli equation in the physical plane linking point O and an arbitrary point
in the flow domain gives

∂Φ

∂t

∣∣∣∣
Z

+
V ′2

2
+
P

ϱ
=
∂Φ

∂t

∣∣∣∣
Z=0

+
V 2
0

2
+
Pa

ϱ
. (2.17)

where P and V ′ are the pressure and velocity at the arbitrary point of the fluid domain,
ϱ is the density of the liquid. By taking advantage of self-similarity of the flow defined
in (2.1), and using the spatial coordinate of arc length, s = S/(V t), Semenov & Iafrati
(2006) reduced this equation to the following

v2∗ − v2 − 2(ϕ− ϕ∗) + 2
dϕ

ds
s = 0 (2.18)

Here, the subscript ∗ together with s = 0 refers to the intersection points O and B
respectively for the right and left free surfaces. By taking the derivative of (2.18) with
respect to s, and using dϕ/ds = vs and vs = v cos θ, the following differential equation is
obtained

dθ

ds
=
v + s cos θ

s sin θ

d ln v

ds
. (2.19)
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Multiplying both sides of (2.19) by ds/dη and taking into account that θ(η) = θ1(η) +
θF (η), v(η) = v1(η)vF (η), we obtain the following integro-differential equation:

dθ1
dη

=
v1vF + s cos(θ1 + θF )

s sin(θ1 + θF )

(
d ln v1
dη

+
d ln vF
dη

)
− dθF

dη
. (2.20)

where the arc length coordinate s = s(η) can be obtained by integrating (2.13)

s(η) = −
∫ η

0

∣∣∣∣dzdζ
∣∣∣∣
ζ=iη′

dη′ = −K
∫ η

0

η′(2µ1−1)

v1(η′)

η′2 + a2

(1− η′2)2

× exp

[
1

π

∫ ∞

0

dθ1
dη′′

ln
∣∣η′′2 − η′2

∣∣ dη′′] dη′, 0 < η < 1, (2.21)

for the free surface on the right hand side and

s(η) =

∫ ∞

η

∣∣∣∣dzdζ
∣∣∣∣
ζ=iη′

dη′, 1 < η <∞, (2.22)

for the free surface on the left hand side.

2.2.2. Kinematic boundary condition on the free surface.

The kinematic boundary condition in terms of the velocity magnitude v and angle β =
− arg(dw/dz) for this kind of self-similar flow problem has the following form Semenov
& Iafrati (2006)

1

tan θ

d ln v

ds
=

d

ds

[
arg

(
dw

dz

)∣∣∣∣ . (2.23)

This equation is obtained using the fact that the acceleration of the fluid particle is
orthogonal to the free boundary of constant pressure. Substituting the complex velocity
in (2.11) into (2.23) and multiplying both sides of the result by ds/dη = |dz/dζ|ζ=iη, the
following integral equation for the function d ln v1/dη is obtained

− 1

tan(θ1 + θF )

d ln v1
dη

+
1

π

∫ ∞

0

d ln v1
dη′

2η′

η′2 − η2
dη′ (2.24)

=
1

tan(θ1 + θF )

d ln vF
dη

− dθF
dη

+
2a

a2 + η2
+

(
2α

π
− 1

)
2c

c2 + η2
.

The integral equations (2.20) and (2.24) together with equations (2.14), (2.15) and (2.16)
make it possible to determine the functions θ1(η) and v1(η), and the parameters a, c and
K if the functions θF (η) and vF (η) are known. Once these functions are found, the contact
angles between the wedge sides and the free surface, µ1 and µ2 can be determined as
follows:

µ1 = lim
η→0

θ1(η), µ2 = π − lim
η→∞

θ1(η). (2.25)

The former is explicitly required in the expression for the derivative of the complex
potential in (2.12).

2.3. Complex potential of the vortex sheet.

We consider the vortex sheet as a cut in the fluid domain. The liquid on both sides
of the cut has the same normal velocity component but their tangential components
are different. Similar to that proposed by Moore (1975), we describe the position of
the vortex sheet in the similarity plane by a complex function Z0(Γ, t), where Γ is the
circulation obtained by integration of the vortex strength from the centre of the spiral
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(point E in figure 1a) to point Z0, and Γ = ΓC at point C is the total circulation.
This formulation has made use of the fact that point Z0 can be written as a function
of Γ , as when Z0 is followed, since dΓ/dt = 0 (e.g., p.30, Saffman (1993)), or Z0 always
corresponds to the same Γ . We may introduce the parameter λ = 1−Γ/ΓC which changes
from λ = 0 at point C to λ = 1 at point E. Then, the vortex sheet in the similarity plane
can be written as z0(λ) = Z0/(V t). The line ζ0(λ) is the image of the vortex sheet z0(λ)
in the parameter plane.
We will build such an expression for the complex potential w2(ζ) whose imaginary

part equals zero along the real and imaginary axes of the parameter plane. Then, the
normal velocity due to w2(ζ) on the fluid boundary is zero, which means that the required
impermeable condition on the wedge surface is satisfied.
A concentrated vortex of circulation γ∗ at point ζ0 = ξ0 + iη0 in the parameter plane

creates the logarithmic complex potential w∗(ζ, ζ0) = γ∗/(2πi) ln(ζ − ζ0). Due to the
simple geometry of the parameter region, we can obtain the potential w∗

total(ζ, ζ0) which
has constant imaginary part along the positive real and imaginary axes by adding the
image vortexes of the same strength at points −ζ0, ζ0 and −ζ0, or

w∗
total(ζ, ζ0) = w∗(ζ, ζ0) + w∗(ζ,−ζ0) + w∗(ζ, ζ0) + w∗(ζ,−ζ0)

For vortex distribution γ′ along a segment ds, γ∗ in the above equation can be replaced
by γ′ds. Following this principle, the sheet with varying strength, the complex potential
can be written as

w2(ζ) = − J

2πi

∫ 1

0

{
ln [ζ − ζ0(λ)]− ln

[
ζ − ζ0(λ)

]
− ln

[
ζ + ζ0(λ)

]
+ ln [ζ + ζ0(λ)]

}
dλ

(2.26)
in which dλ = −γ′ds has been used and therefore the integration is performed with
respect to λ. This gives

dw2

dζ
= − J

2πi

∫ 1

0

(
1

ζ − ζ0(λ)
− 1

ζ − ζ0(λ)
− 1

ζ + ζ0(λ)
+

1

ζ + ζ0(λ)

)
dλ, (2.27)

where J = ΓC/(V
2t). It is well known that the right-hand side of (2.27) is discontinuous

across the vortex sheet. It takes different values according to the Plemelj formula

dw2

dζ

∣∣∣∣
ζ=ζ0(λ)

= −J

[
±1

2

(
dζ0
dλ

)−1

(2.28)

+
1

2πi
P

∫ 1

0

(
1

ζ − ζ0(λ)
− 1

ζ − ζ0(λ)
− 1

ζ + ζ0(λ)
+

1

ζ + ζ0(λ)

)
dλ

]
,

as a point ζ0(λ) on the sheet is approached by ζ from the ± side. Symbol P in (2.28)
indicates the Cauchy principal value integral.

2.4. Kutta condition.

From (2.4) and (2.11) it can be seen that complex velocity has a singularity of the
form (ζ − c)2α/π−1 as ζ → c,

dw

dζ
=

(
dw1

dζ
+
dw2

dζ

)
/
dz

dζ
=

(ζ − c)2α/π−1

fz(ζ)

(
dw1

dζ
+
dw2

dζ

)
, 0 < α < π/2, (2.29)

where fz(ζ) = (ζ−c)2α/π−1dz/dζ is an analytical function at point ζ = c. This singularity
in the complex velocity is to be removed by the vortex sheet, which leads to a finite value
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of dw/dz as ζ → c. Therefore, substituting (2.27) into (2.28), we should impose

dw1

dζ

∣∣∣∣
ζ=c

− J

2πi
P

∫ 1

0

(
1

c− ζ0(λ)
− 1

c− ζ0(λ)
− 1

c+ ζ0(λ)
+

1

c+ ζ0(λ)

)
dλ = 0 . (2.30)

This is the well-known Kutta condition from which the total circulation, J , is determined.

2.5. Birkhoff - Rott integral equation for the evolution of the vortex sheet.

Following the formulation of Moore (1975) and also that in Pullin (1978), the equation
of motion of the two-dimensional vortex sheet, Z0(Γ, t), in the physical plane is

∂Z0

∂t

∣∣∣∣
Γ

=
1

2

[(
∂W

∂Z

)+

+

(
∂W

∂Z

)−
]
, (2.31)

in which the left hand side is the Lagrangian velocity of the sheet and the right hand side
is the induced Eulerian complex velocity at the same point Z0. It differs from the complex
velocity of the liquid particles at the point Z0 on both sides of the sheet. In other words,
the induced velocity of the sheet equals the average of local particle velocities on both
sides of the sheet. As the vortex strength remains constant when following the movement
of the same point Z0 on the vortex sheet, (2.31) automatically satisfies the continuity
conditions of normal velocity and pressure across the sheet Saffman (1993). Substituting
z0(λ) = Z(Γ, t)/(V t) and w =W/(V 2t) into (2.31), we have in the similarity plane

z0(λ) + (1− λ)
dz0
dλ

=

(
dw

dz

)
ind

, (2.32)

where(
dw

dz

)
ind

=
(ζ0(λ)− c)2α/π−1

fz[ζ0(λ)]

(
dw1

dζ

∣∣∣∣
ζ=ζ0

(2.33)

− J

2πi
P

∫ 1

0

(
1

ζ0(λ)− ζ0(λ′)
− 1

ζ0(λ)− ζ0(λ′)
− 1

ζ0(λ) + ζ0(λ′)
+

1

ζ0(λ) + ζ0(λ′)

)
dλ′
)
,

and fz0(ζ0) = fz(ζ)ζ=ζ0 is the average speed corresponding to right hand side of (2.32)
in the self similar plane. This integro-differential equation will then be solved in the
parameter plane in which the shape of the vortex sheet z0 is written as z0[ζ0(λ)].

(2.33) contains a singular factor (ζ0(λ)−c)2α/π−1. However, due to the Kutta condition
in (2.30), the complex velocity at the wedge apex is finite when approaching on the
windward side, and is zero on the leeward side, which will be shown later. (2.30) and
(2.32) determine the circulation and the shape of the vortex sheet, which subsequently
completely determines the derivative of the complex potential, dw2/dζ. Thus, it gives a
closed system of equations derived in section 2.2 for the problem of water-entry of the
wedge with the vortex sheet.

2.6. Leading order of the B-R equation at the wedge apex.

In order to determine velocities of the liquid on both the windward and leeward sides
of the sheet near the wedge apex, we consider the leading order of (2.32). Following Rott
(1956) and Pullin (1978), we use (2.30) to replace (dw1/dζ)ζ=c and to rewrite (2.32)
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and (2.33) in the following form

z0(λ) + (1− λ)
dz0
dλ

=
(ζ0(λ)− c)2α/π

fz[ζ0(λ)]
(2.34)

× J

2πi

{
P

∫ 1

0

(
1

[c− ζ0(λ′)][ζ0(λ)− ζ0(λ′)]
− 1

[c− ζ0(λ′)][ζ0(λ)− ζ0(λ′)]

)
dλ′

+

∫ 1

0

(
− 1

[c+ ζ0(λ′)][ζ0(λ)− ζ0(λ′)]
+

1

[c+ ζ0(λ′)][ζ0(λ) + ζ0(λ′)]

)
dλ′
}

Here, the terms in the integrand have been combined and as a result the term (ζ−c)−1 has
been cancelled in the equation. We also notice that the second integral is non-singular.
Near ζ0 = c or λ = 0, we seek a solution valid to the leading order of λ, which we

assume is of the form similar to that in Pullin (1978)

ζ0 = c+K∗λµ + higher order terms (2.35)

where K∗ is a complex constant and µ > 0. Then, keeping the leading orders in λ on the
left and right hand sides of (2.34) and focusing attention on the first integral containing
the singular terms, we obtain

dz0
dζ0

dζ0
dλ

=
(ζ0(λ)− c)2α/π

fz(ζ0)
JG[ζ0(λ)], (2.36)

where dz0/dζ0 = dz/dζ|ζ=ζ0
and

G[ζ0(λ)] = − J

2πi
P

∫ 1

0

(
1

[c− ζ0(λ′)][ζ0(λ)− ζ0(λ′)]
− 1

[c− ζ0(λ′)][ζ0(λ)− ζ0(λ′)]

)
dλ′.

(2.37)
Substituting λ = λ(ζ0) from (2.35) in (2.37), the two integrals can be written as below∫ ζ∗

0

dλ

dζ ′0

dζ ′0
(ζ ′0 − c)(ζ ′0 − c− (ζ0 − c))

=
1

µ

(
1

K∗

) 1
µ
∫ ζ∗

c

0

dζ ′c

ζ ′c
2− 1

µ (ζ ′c − ζc)
, (2.38)

∫ ζ∗

0

dλ

dζ ′0

dζ ′0
(ζ ′0 − c)(ζ ′0 − c− (ζ0 − c))

=
1

µ

(
1

K
∗

) 1
µ
∫ ζ∗

c

0

dζ ′c

ζ ′c
2− 1

µ (ζ ′c − ζc)
, (2.39)

where ζc = ζ0 − c, ζ∗c = ζ∗ − c and ζ∗ is close to c since we consider the leading order
and use (2.35). Following Gakhov (1990) the leading order of the function G(ζ0) can be
obtained as

G(ζ0) =
1

2iµ
(ζ0 − c)

1/µ−2

{
cot [(2− 1/µ)π]

(
1

K∗

)1/µ

− exp [−i (2− 1/µ)π]

sin [(2− 1/µ)π]

(
1

K
∗

)1/µ
}

+G∗(ζ0) (2.40)

where (ζ0 − c)2−1/µG∗(ζ0) → 0 for ζ0 → c. The first term in curl brackets of (2.40)
corresponds to (2.38) and the second to (2.39). Substituting this result into (2.36), using
(2.35) and (2.13) and equating powers of the leading order in λ we can obtain 1/µ =
2(1− α/π) and

K∗ =

[
2J(1− α/π)2

|fz(ζ)ζ=c|2

] 1
4−4α/π

× exp

(
iπ

2− 2α/π

)
. (2.41)



12 Y. A. Semenov, G.X. Wu

Substitution of (2.41) into (2.30) gives

G(ζ0) =
1√
2J

(ζ0 − c)−2α/π |fz(ζ0)|+G∗(ζ0). (2.42)

The complex velocity on the ± sides of the vortex sheet near ζ = c, given by (2.29) can
be expressed in terms of function G(ζ0)(

dw

dζ

)±

=
(ζ − c)2α/π−1

fz(ζ0)
J

[
±1

2

(
dζ0
dλ

)−1

+ (ζ0 − c)G(ζ0)

]
. (2.43)

By using (2.35) and (2.41), the first term in the brackets can be determined as
(dζ0/λ)

−1 = −(ζ0 − c)1−2α/π|fz(ζ0)|
√

2/J . Substituting this into (2.43), we obtain
velocity near the apex on the leeward and windward sides of the wedge respectively as(

dw

dζ

)+

=
(ζ0 − c)2α/π

fz(ζ0)
JG∗(ζ0), (2.44)

(
dw

dζ

)−

=

√
2

J

|fz(ζ0)|
fz(ζ0)

+
(ζ0 − c)2α/π

fz(ζ0)
JG∗(ζ0) =

√
2J exp−iβL +

(ζ0 − c)2α/π

fz(ζ0)
JG∗(ζ0).

(2.45)
From (2.44) it follows that the leeward side of the wedge apex is a stagnation point while
the non-dimensional speed on the windward side is

√
2J . This result in fact satisfies the

Bernoulli equation. From (2.45) it can also be seen that the vortex sheet leaves the wedge
apex tangentially to the windward surface, as found by others for similar problems Pullin
(1978), Jones (2003).
The leading-order of the function ζ0 = ζ0(λ) for small λ is

ζ0(λ) = c+

[
2J(1− α/π)2

|fz(ζ)ζ=c|2

]1/(4−4α/π)

expiπ/(2−2α/π) λ1/(2−2α/π) + · · · . (2.46)

which is to be used to determine position of the first node in numerical solution of the
integral equation (2.32), as discussed below.

3. Results and discussion

3.1. Numerical method

The system of equations derived in section 2 is solved numerically by iteration through
the method of successive approximations. By following the formulation of the problem,
the numerical procedure divides equations into two blocks. The first block contains (2.14)
- (2.16) and integral equations (2.20) and (2.24) determining the flow potential w1(ζ) at
a given potential of the vortex sheet, w2(ζ). The second block contains (2.30) and (2.33),
(2.34) determining the flow potential of the vortex sheet, w2(ζ), at a given potential w1(ζ).
It has been found in the calculation that starting with w2(ζ) ≡ 0, 5 − 10 iterations are
usually required between these two blocks to reach a tolerance of max |λ(s)k+1−λ(s)k| <
10−4 between two successive iterations, where s is the arc length variable along the vortex
sheet.
The first block of equations including integral equations (2.20) and (2.24) are solved

numerically through an internal iteration procedure. Conditions in (2.14), (2.15) and
(2.16) are imposed at each iteration. In discrete form, the solution is sought on two sets
of points. The first set, 0 < ηj 6 1, j = 1, ..., N , corresponds to the segment OD of the
free surface and the points are distributed in such a way, that the segment size increases
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geometrically away from O. The second set of points 1 < ηj < η2N , j = N + 1, ..., 2N ,
corresponding to BD, is chosen in similar way starting from point B. Typical values
η1 = 10−5 and η2N = 105 are chosen. The successive approximations used here follow
those in Semenov & Iafrati (2006) and Semenov & Wu (2012) for solving self-similar
water entry problems without vortex sheet.
The solution at the intersection of the free surface and body surface is computationally

very challenging due to the singularity in the derivative of the complex potential at
point O (η = 0) with the order 2µ1/π − 1 < 0, as can be seen in (2.12), and due
to the improper integral with upper limit at η = ∞ corresponding to point B. The
singular natures at these intersection points depend on the values of the contact angles
µ1 and µ2, respectively, which in turn depend on the function θ(η), or its limits at
η → 0 and η → ∞, respectively. For a given discretisation along the η−axis discussed
above, the corresponding arc length coordinates s1 = s(η1) and s2N = s(η2N ) nearest to
contact points O and B in the similarity plane can be obtained using (2.21) and (2.22),
respectively as

s1 = −πKa2 exp
(
2

π

∫ η2N

η1

dθ1
dη

ln ηdη

)
η
2µ1/π
1

2v0µ1
(3.1)

s2N = πK
η
−2µ2/π
2N

2vBµ2
(3.2)

where vB is the velocity magnitude at point B. Then, the arc length coordinates sj =
s(ηj), j = 2, ..., 2N − 1 are obtained by using (2.21) and (2.22).
(2.32) in the second block of equations is the integral equation with respect to complex

function ζ0(λ) determining the vortex sheet location in the parametric plane, and in the
similarity plane z0 = z[ζ0(λ)]. (2.32) also determines the circulation distribution along
this line. It is a rather complex problem to solve (2.32) and (2.33) directly. Instead we
split this equation in the complex domain into two equations in real domain. For this
purpose, it is useful to introduce the angle

δv = βv + θv, (3.3)

where δv is the slope of the vortex line, βv = − arg(dw/dz)ζ=ζ0(λ) is the angle of the
induced velocity to the x−axis obtained from (2.33) and θv is the angle of the induced
velocity to the vortex line. By using the fact that dw/ds = vτ+ivn and dz/ds = exp(iδv),
the induced velocity can be presented in terms of its tangential and normal components
as follows

eiδv
(
dw

dz

)
ind

= vτ + ivn (3.4)

By multiplying the left hand side of (2.32) eiδv and separating the real and imaginary
parts, we can obtain the following equation

dλ

ds
=

1− λ

vτ −ℜ(z0eiδv )
, (3.5)

and the equation for the angle of the induced velocity to the vortex line

θv = arctan

(
vn
vτ

)
= arctan

(
ℑ(z0eiδv )

(1− λ)ds/dλ+ ℜ(z0eiδv )

)
(3.6)

where s is the arc length coordinate of the vortex line starting from the wedge apex.
For the vortex sheet given by the function δv(s), its position in the similarity plane
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can be determined by the following equation

z0(s) =

∫ s

0

eiδv(s
′)ds′ (3.7)

The image function ζ0 = ζ−1(z0) in the parameter plane, where ζ−1(z) is the inverse
mapping function, is determined from the following differential equation

dζ0
dz0

=
1

(dz/dζ)ζ=ζ0

. (3.8)

When the functions δv(s), z0(s) and ζ0 = ζ−1(z0) are found, the variation of the
circulation along the vortex sheet, λ(s), is obtained from the internal iteration procedure
involving (3.4) and (3.5) only. New approximation for the function δv is then obtained
from (3.3) and (3.6)to continue the iterations.
When solving (3.5) and (3.6) we may use the method in Smith (1968) which was also

adopted by Pullin (1978) for flow passing the tip of a wedge in the unbounded fluid
domain. The method divides the spiral vortex sheet which turns infinitely about a centre
zE into two parts. The first external part is the vortex sheet with 0 < λ < λm, where
(1−λm)J is the circulation at the end point of this part, and the second inner part with
λm < λ < 1 for which the circulation (1− λm)J is lumped into an isolated concentrated
vortex at point zE , or at point ζE in the parameter plane.
In the discrete form, the solution is sought on a set of points si, i = 1, ...,M distributed

along the spiral, the initial shape of which is chosen as

δvi =

{
δv0 + δvM1

(si/sM1
)0.25, i = 1, ...,M1

δvM1
+ 2πNc[(si − sM1

)/(sM − sM1
)]2, i =M1 + 1, ...,M.

(3.9)

to get a tight spiral, as suggested by Pullin (1978). Here, δv0 = βL−π, Nc is the number
of coils of the sheet, sM is the length of the spiral, and points si = sM [1 − cos(π/2(i −
1)/(M − 1))] are distributed in such a way to provide higher density of the points si
close to the apex. The angle δM1 value M1 determining the intermediate length sM1 and
the total spiral length, sM vary depending on the flow configuration. The initial length
of the spiral varies in the range sM = (0.05− 0.5)lO, depending on the angles δh, α and
γ∞. Here, lO is the wetted length of the leeward side of the wedge. The initial points z0i
and ζ0i are set from (3.7) and (3.8)
The position of the lumped isolated vortex is determined from the centroid of the last

coil of the sheet, i.e.

zE =
1

sM − s∗

∫ sM

s∗
z0(s

′)ds′, (3.10)

where arc length coordinate s∗ is chosen to satisfy the equation δvM − δv(s
∗) = 2π. By

following Pullin (1978), the integral in (2.33) may be approximated as(
dw

dz

)
ind

=
(ζ0(λ)− c)2α/π−1

fz(ζ0)

[
dw1

dζ

∣∣∣∣
ζ=ζ0

(3.11)

− J

2πi

M∑
j=1

∫ λj

λj−1

(
1

ζ0 − ζ0(λ′)
− 1

ζ0 − ζ0(λ′)
− 1

ζ0 + ζ0(λ′)
+

1

ζ0 + ζ0(λ′)

)
dλ′

− J(1− λM )

2πi

(
1

ζ0 − ζE
− 1

ζ0 − ζE
− 1

ζ0 + ζE
+

1

ζ0 + ζE

)]
.

Each of the M integrals are evaluated at midpoints ζk−1,k
0 = (ζk−1

0 + ζk0 )/2 using the
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trapezoidal rule. The Cauchy principal value of the integral at j = k in the first term is
of higher order as 1/(ζk−1,k − ζ0)/2 is an odd function, and it can then be ignored as it
is a higher order term.
An under relaxation procedure is adopted to achieve the convergence of the iteration

process determining the slope of the sheet. At the k + 1 iteration, we have

δ
k+1

vi = rδk+1
vi + (1− r)δkvi, (3.12)

where the relaxation parameter is chosen in the range from r = 0.001÷ 0.01. Then, the
shape of the vortex sheet at the (k + 1)th iteration is obtained as

zk+1
0i = zk0i + exp[i(δ

k+1

vi + δ
k+1

vi−1)/2](s
k
i − ski−1), (3.13)

and the arc length of each segment sk+1
i − sk+1

i−1 of the sheet is determined from sk+1
i =

sk+1
i−1 + |zk+1

0i − zk+1
0i−1|. At each kth iteration of the vortex sheet, the parameters λki are

determined from (3.4) and (3.5).

3.2. Convergence of the numerical method

The solution of the system of integral equations (2.20) and (2.24) is obtained with the
number of nodes N = 100 on the free surface, and M = 700 on the vortex sheet. These
two numbers have been found sufficiently large through comparison with the results
from N = 200 and M = 1400. The convergence process of the solution for 2α = 60◦

and 2δh = 20◦ is shown in figure 2. Iteration starts from the initial shape given by (3.9)
with M1 =M/4 and δvM1 = βR. The inner part of the vortex sheet is chosen to be tight
and is expected to expand during the iteration. It can be seen that after 1500 iterations
the rings have expanded and the shape of the inner spiral part becomes more elliptical
than circular. The shapes at k = 13000 and 26000 almost coincide as can be seen form
figure 2b. A large number of iterations is required due to the small value of the relaxation
parameter r = 0.001 chosen to prevent self crossing of the vortex sheet, which can lead
to the breakdown of the calculation.
The number of coils of the vortex sheet, Nc is another parameter of the numerical

procedure. It should be chosen large enough to minimize the effect of approximation
of the inner part of the vortex sheet by lumping vortex at the centre of the spiral. In
figure 3 are shown the shape of the vortex sheets and pressure distribution on the wedge
sides corresponding to Nc = 4, 5 and 6. The sheet shapes are in good agreement overall.
Some difference may be still visible when approaching to the centre of the spiral. This
is obviously caused by the truncation of the coil number, and larger error is expected
at the place where the truncation is made. The difference of the sheet shape near the
coil centre does not have visible effect on the pressure distribution. In fact the pressure
distributions from Nc = 5 and 6 are almost the same, as can be seen in figure 3b. In
further computations Nc = 5 is chosen, which is satisfactory for the purpose of the study
below.
The behaviour of the vortex strength, in the form of γ′ = −dλ/ds, and velocity

magnitudes on both sides of the sheet are shown in figure 4 as the functions of the
polar angle χ about the centre of the spiral (point E) measured from x−axis. It can be
seen that these results exhibit the oscillatory behaviour. As may be seen in the figure, at
the maxima of the sheet strength the velocity magnitudes on both sides of the sheet take
its minima values, while at the minima of the sheet strength, the velocity magnitudes
reach its maxima values. The same behaviour was observed by Pullin (1978) for the flow
over the wedge without free surface. Following Moore (1975), Smith (1968) and Pullin
(1978) where details can be found, the oscillatory behaviour of vortex strength is also
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Figure 2. Convergence of the vortex sheet for the wedge 2α = 60◦ and the heel angle δh = 20◦:
(a) the initial shape (solid line) and after k = 1500 iterations (dashed line); (b) the same for
k = 6000 (dotted line), k = 13000 (dashed line) and k = 26000 (solid line).
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Figure 3. Effect of the coils number, Nc, (a) on the shape of the vortex sheet and (b) the
pressure distribution for the wedge angle 2α = 60◦ and the heel angle δ = 20◦: Nc = 6,
J = 0.354, λM = 0.684 (solid line and solid circle); Nc = 5, J = 0.355, λM = 0.654 (dashed line
and opened circle); Nc = 4, J = 0.355, λM = 0.592 (dotted line and solid square.)

related with the shape of the sheet which exhibits ellipticity that may be defined as the
ratio of the largest radius to the smallest one over one complete turn. This may be seen
in figure 3 and in other results given below.

3.3. Numerical results for asymmetric water entry of the wedges

In the context of figure 1a, the flow is symmetric with respect to axis of the wedge
for γ∞ = 90◦ and δh = 0, and is asymmetric in all other cases. The wedge heel angle
may vary in the range bounded by some constraints. For a positive δh, the deadrise angle
on the left hand side, π − βL > 0, should remain to be positive, or π/2 − α − δh > 0.
For the deadrise angle on the right hand side of the wedge, βR, it should be less than a
critical angle β∗

R, beyond which the fully attached solution, or the leeward side remain in
contact with water, might not exist or might not be physical. Semenov & Yoon (2009)
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Figure 4. Variation of vortex strength along the vortex sheet (solid line) and velocity
magnitude on the ′+′ (dashed line) and ′−′ sides of the sheet for the case shown in figure 3

.

found that the critical angle β∗
R = γ∞ ±∆, where the value ∆ is in the order of a few

degrees, and its exact value depends on the flow configuration. If we use β∗
R ≈ γ∞ then

the constrain is α− δh > 0 for the case of vertical entry, and the range of the heel angles
is approximately 0 < δh < α.
The free streamlines and vortex sheet for the wedge angle 2α = 30◦ are shown in figure

5 for the heel angles δh = 5◦ and 14.2◦. The second case corresponds approximately to
the limit heel angle β∗

R. The enlargement near the apex clearly shows the streamline
separation from the wedge apex and the spiral vortex sheet. There are also two stagnation
points. One is point A on the windward side as shown in figure 1a, from which the zero
streamline splits and one of them moves towards the wedge apex and then separates from
the apex, enclosing the re-circulation region. The other stagnation point occurs on the
leeward side. This is generated by reattachment of the zero streamline the wedge side.
The zero streamline and some of the closed streamlines inside the re-circulation region
almost coincides with some parts of the vortex sheet line. In fact the zero streamline leaves
windward side tangentially, which is the same as the vortex sheet. Along the streamline
its normal velocity is zero by definition. From (3.4) and (2.45), we can have the velocity
normal to the vortex line near the apex and it tends to zero at the apex. This leads
to that two lines almost coincide near the apex, as shown in figure 5. In fact figure 5
further shows that these two lines remain close to each other until it becomes close to
the leeward surface of the wedge. This suggests that the normal velocity of the vortex
sheet has remained to be small. Near the body surface, the zero streamline reattaches to
the wedge surface while the vortex line bends to form a spiral line. For flow without the
vortex sheet Semenov & Wu (2012), the zero streamline will always stay on the body
surface even when it turns at the wedge apex. There are no closed streamlines and the
streamlines near y−axis from y = −∞ will bend near the wedge apex and then move to
y = ∞.
The size of the spiral vortex region in figure 5b for the heel angle α = 14.2◦ is about
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Figure 5. Streamline pattern (solid line) and the vortex sheet (dashed line) for the wedge
2α = 30◦: (a) δh = 5◦, J = 0.064, λM = 0.257 and (b) δh = 14.2◦., J = 0.429, λM = 0.431

twice larger than that in figure 5a for α = 5◦. The distance between the stagnation point
on the windward side and the wedge apex is also larger in the latter. This is clearly
because the flow will be more asymmetric at large δh. A large cross flow then leads to a
larger circulation. This is reflected in figure 5 by J = 0.064 for case (a) and J = 0.429 for
case (b). A common feature for both cases in figure 5 is that the size of the spiral vortex
region is much smaller than the wetted length of the leeward side of the wedge. This is
because even though the magnitude of the velocity leaving the windward in (2.45) may
be comparable with the entry speed, especially in case (b), it turns very fast and forms a
spiral with small radius. As the vortex sheet is far away from the free surface, its effect
on the free surface is rather small. In figure 5 the free surface for the flow with vortex
sheet is shown by the solid line, while for the attached flow without vortex sheet it is
shown by the dashed line with symbols. The difference between them is hardly visible,
and they virtually coincide.
In figure 6 the pressure distributions on the wedge corresponding to the flow with and

without vortex sheet are compared for the cases shown in figure 5. It is clearly seen that
pressure distributions coincide almost everywhere except a small region near the apex.
Together with its small effect on the free surface previously, the effect of the spiral vortex
is very much limited to the local area. However, precisely in the local area near the
apex, the presence of the vortex sheet is crucial. It has completely changed flow pattern,
discussed previously. Here the vortex-free solution gives infinite pressure at the apex, or
the solution is singular there. The inclusion of the vortex sheet removes this unphysical
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Figure 6. Pressure coefficient along the left (s < 0) and right (s > 0) hand sides of the wedge
for the wedge 2α = 30◦: (a) δh = 5◦ and (b) δh = 14.2◦. The dashed lines correspond to the
flow model without vortex sheet.

singularity, and the pressure at the apex becomes finite, as shown in figure 6 for both
cases. In the enlargement it can be seen as s increases from s = 0 on the leeward side, the
pressure drops to its minimal value and then increases. From the analysis of the results
it is found that the point of the minimal pressure coefficient is close to the location at a
normal distance closest to the centre of the spiral. By comparing figure 6 a) and b) it is
seen that the larger heel angle, the larger drop of the local pressure on the leeward side
occurs.
In figure 6 b), the vortex free solution with singularity at the apex (dashed line) predicts

negative pressure coefficient on the whole leeward side (s > 0) of the wedge. We should
notice that this is in the context that δh = 14.2◦ corresponds to the limit discussed
above. In contrast of this, the solution with vortex sheet predicts local positive maximum
near the stagnation point on the leeward side of the wedge, where the zero streamline
reattaches the body surface at the right angle, which can be seen through the enlargement
of the streamline patterns in figure 5b. The pressure on the leeward side is very sensitive
to the heel angle near its limit value. Therefore, a slight increase of the heel angle further
decreases the pressure coefficient rapidly, making the pressure coefficient negative along
the whole leeward side of the wedge. In such a case no converged solutions could be
obtained. For wedge angles 2α = 60◦ and 90◦ the free surface shape and streamline
patterns are shown in figure 7. For the larger wedge and heel angles, the stagnation point
on the windward side moves further away from the apex. There is also a larger cross flow
at the wedge apex. This results in a larger size of the separation region with a larger
overall circulation on the leeward side. The shape of the closed streamlines inside the
separated zero streamline look similar in figure 7(a) and (b), but the radius is larger for
the larger heel angle. The effect of the vortex sheet on the free-surface shape remains
to be small and the difference between the solutions with and without vortex sheet is
virtually invisible. In figure 8 are shown the pressure distributions on the wedge for the
cases shown in figure 7. For the larger wedge and heel angles the pressure drops rapidly
on the leeward side and reaches its minimum near the centre of the spiral. Away from
apex, the pressure distribution virtually coincides with that obtained from the previous
solution of water-entry problem without vortex sheet (Semenov & Wu (2012)).
The values of the pressure coefficient at the apex, cpC , minimal pressure on the leeward
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Figure 7. Streamline pattern (solid line) and the vortex sheet (dashed line) for the wedge
angles: 2α = 60◦ (a) δh = 10◦, J = 0.083, λM = 0.436 and (b) δh = 27◦, J = 0.724, λM = 0.592;
2α = 90◦ (c) δh = 20◦, J = 0.169, λM = 0.535 and (d) δh = 37◦, J = 0.801, λM = 0.627.

side of the wedge, cpmin, the total circulation, J , and the parameter λM are shown in
Table 1 for wedges of different inner angles and heel angles. It can be seen from the table
that the pressure coefficient at the wedge apex and the minimal pressure coefficient on the
lee-ward side decreases while the total circulation increases as the heel angle increases.
The force on the wedge are evaluated through integration of the pressure distribution
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Figure 8. Pressure coefficient along the windward (s < 0) and and leeward (s > 0) sides of the
wedge at 2α = 60◦, (a) δh = 10◦ and (b) δh = 27◦. The dashed lines correspond to the flow
model without vortex sheet.

2α δh cpC cpmin J

30 0 1.30 - 0
30 5 1.06 -5.80 0.0637
30 10 0.785 -7.10 0.181
30 14.2 0.398 -8.90 0.429
60 0 1.780 - 0
60 10 1.28 -3.51 0.0826
60 20 0.442 -6.36 0.336
60 27 -0.253 -10.2 0.724
90 0 2.71 - 0
60 10 2.20 -2.33 0.0397
90 20 1.29 -8.75 0.169
90 30 0.320 -16.5 0.415
60 37 -1.23 -26.2 0.801

Table 1. Some detailed results for vertical water entry of various wedges.
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∗
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and 90◦, respectively. The solid and dashed lines correspond to results with and without vortex
sheet respectively.

along its sides. The drag is defined as the force component along the incoming velocity
direction. Its coefficient, Cd, can be written as:

CD = CR sin(γ∞ − βR) + CL sin(βL − γ∞) (3.14)

where

C{R,L} =
2

ρV 2
y H

2

∫ V{O,B}t

0

P (S)dS =
1

h

∫ {c,∞}

{0,c}
cp[s(ξ)]dξ,

are the coefficients of the forces normal to the right and left hand sides of the wedge,
respectively. The y-component of the incoming velocity, or Vy = V sin γ∞ has been used
as a reference velocity. The moment coefficient, CM , about the wedge apex is

CM =
2

ρV 2
y H

2

∫ VOt+VBt

0

(SO − S)P (S)dS =
1

h2

∫ ∞

0

(v0 − s)cp[s(ξ)]
ds

dξ
dξ, (3.15)

where

H = Vyth, SO = v0V t, h = sin γ∞[cotβR + cotβL], cp =
2(P − Pa)

ρV 2
y sin γ∞

.

It can be seen from figure 9 that the vortex sheet also has a small effect on the force
coefficients. This is of course expected taking into account that the effect of the vortex
sheet on the pressure distribution is very much localized.
The free surface shape and streamline patterns are shown in figure 10 for the case of

oblique entry at 2α = 90◦ and 2α = 120◦. The wedges are symmetric about the y−axis.
The stagnation point on the windward side can be clearly seen, and it moves further
away from the apex for the larger oblique angles. The cross flow over the apex creates
separation region similar to that observed for vertical entry of the heeled wedge. For the
wedge of angle 2α = 90◦ the inflow velocity angle γ = 45◦ is close to the limit oblique
angle for which the attached solution might be found. For larger oblique angle, or larger
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2α γ∞ cpC cpmin J

90 90 2.70 - 0
90 80 2.36 0.229 0.211
90 70 2.08 -4.75 0.399
90 60 1.40 -11.3 0.737
90 50 0.724 -15.5 0.973
90 45 -0.291 -20.9 1.245
120 90 4.59 - 0
120 80 4.29 4.21 0.199
120 70 3.87 3.76 0.444
120 60 3.48 -3.54 0.628
120 50 3.03 -12.3 0.773
120 40 1.79 -19.9 1.026
120 30 0.907 -48.5 1.303

Table 2. Some detailed results for oblique water entry of various wedges.

horizontal component of the velocity the separation region becomes larger. However, its
size remains relatively small in comparison with the wetted length of the wedge. Similar
results are shown for the wedge angle 2α = 120◦ and the inflow velocity angles γ = 70◦

and 30◦. The latter is close to the limit oblique angle. At a given wedge angle the size
of the separation region increases as the horizontal component of the inflow velocity
increases, and it becomes largest at the limit oblique angle γ∞. The size is of course
also affected by the wedge angle itself. If we compare these two limiting cases in figure
10, (cases (b) and (d)), it can be seen that the size of separation region for the wedge
of angle 2α = 90◦ at γ = 45◦ is about twice of that for 2α = 120◦ at γ = 30◦. It is
partly because the effort for the flow to turn around apex decreases when the wedge
angle 2α→ 180◦, while it is also related to γ∞. The pressure distributions corresponding
to the cases in figure 10 are shown in figure 11. In all the cases the effect of the vortex
sheet is localized near the apex, and away from the apex the pressure almost coincides
with that corresponding to the attached flow.
The pressure coefficient at the apex and the minimal pressure coefficient on the leeward

side as well as the total circulation are shown in Table 2.

4. Conclusions

The problem of asymmetric flow due to water-entry of the wedge with the rolled-up
vortex sheet shed from the apex is considered. The integral hodograph method has been
employed to determine in an explicit form the complex potential and the flow singularities
corresponding to vortex-free flow. This provides an incoming flow for the vortex sheet
shed from the wedge apex, whose solution is obtained from the Birkhoff-Rott integral
equation which determines the vortex sheet dynamics. Numerical results are obtained for
wedges of a range of inner, heel and oblique angles.
The obtained flow patterns show the formation of the recirculation/separation region

with a stagnation point on the leeward side of the wedge due to the reattachment of the
streamline shed from the apex to the body surface. The size of the separation region
is estimated based on the area bounded by the zero streamline linking the wedge apex
and the stagnation point on the leeward side. The region inside this streamline increases
when the overall flow is more asymmetric and the velocity at apex on the windward side
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Figure 10. Streamline pattern (solid line) and the vortex sheet (dashed line) for the oblique
water-entry of the wedge: 2α = 90◦ (a) γ∞ = 60◦, J = 0.737, λM = 0.477 and (b) γ∞ = 45◦,
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Figure 11. Pressure distribution along the windward (s < 0) and and leeward (s > 0) sides
of the wedge for oblique entry at 2α = 90◦, (a) γ∞ = 60◦ and (b) γ∞ = 45◦, and 2α = 120◦,
(c) γ∞ = 70◦ and (d) γ∞ = 30◦. The dashed lines correspond to the flow model without vortex
sheet.

becomes larger. However, the size of the separation region is relatively small, compared
with the wetted length of the leeward side of the wedge. Thus the vortex sheet has small
effect on the free surface and its principal effects are on the velocity and the pressure near
the apex, as well as the flow configuration inside the flow separation region. The vortex
sheet removes the singularity in the attached flow solution, leading to a finite pressure
and velocity at the apex. The location of the minimal pressure is found to be on the
leeward side of the wedge near the apex, and is near the point with minimal distance to
the centre of the spiral sheet.
The vortex sheet shed from the apex exhibits a shape more elliptical than circular,

which is similar to that found by Pullin (1978) for flow past a wedge in an unbounded fluid
domain without the free surface. The vortex strength along the spiral sheet undergoes an
oscillatory process together with the velocity magnitudes on the both sides of the sheet,
and the magnitudes of their oscillations decay toward the centre of the spiral.

This work is supported by Lloyd’s Register Foundation (LRF) through the joint
centre involving University College London, Shanghai Jiaotong University and Harbin
Engineering University, to which the authors are most grateful. LRF supports the
advancement of engineering-related education, and funds research and development that
enhances safety of life at sea, on land and in the air.



26 Y. A. Semenov, G.X. Wu

REFERENCES

Armand, J. L. & Cointe, R. 1987 Hydrodynamic impact analysis of a cylinder. J. Offshore
Mech. Artic Engng 9, 237–243.

Birkhoff, G. 1962 Helmholtz and Taylor instability. In Proc. Sympos. Appl. Math., XIII,
55-76. Providence, R.I.

Chekin, B.S. 1989 The entry of a wedge into incompressible fluid. Prikl. Matem. Mekhan. 53,
pp. 300–307.

Dobrovol’skaya, Z.N. 1969 Some problems of similarity flow of fluid with a free surface. J.
Fluid Mech. 36, 805–829.

Faltinsen, O. M. 2005 Hydrodynamics of High-speed Marine Vehicles. 454p. Cambridge
University Press.

Fraenkel, L. E. & McLeod, J. B. 1997 Some results for the entry of a blunt wedge into
water. Phil. Trans. R. Soc. London A. 355, 523–535.

Gakhov, F.D. 1990 Boundary Value Problems. 561p. Dover Publication Inc.
Gurevich, M. I. 1965 Theory of jets in ideal fluids. Academic Press, 585p.
Howison, S. D., Ockendon, J. R. & Wilson, S. K. 1991 Incompressible water - entry

problems at small deadrise angles. J. Fluid Mech. 222, 215 – 230.
Howison, S. D., Ockendon, J. R. & Oliver, J. M. 2004 Oblique slamming, planing and

skimming. J. Engng Maths. 48, 321–337.
Judge, C., Troesch, A. & Perlin, M. 2004 Initial water impact of a wedge at vertical and

oblique angles. J. Eng. Math. 48, 279 – 303.
Iafrati A. 2000 Hydrodynamics of Asymmetric Wedges Impacting the Free Surface. European

Congress on Computational Methods in Applied Sciences and Engineering. ECCOMAS
2000. Barselona, 11-14 Sept.

Jones, M. A. 2003 The separated flow of an inviscid fluid around a moving flat plate. J. Fluid
Mech. 496, 405 – 441.

Joukovskii, N.E. 1890 Modification of Kirchhof’s method for determination of a fluid motion
in two directions at a fixed velocity given on the unknown streamline. Matemat. sbornik
XV (in Russian).

von Karman, T. 1929 The impact of seaplane floats during landing. Washington, DC:NACA
Tech. Note 321.

Korobkin, A.A., & Puknachov, V.V. 1988 Initial Stage of Water Impact. Ann. Rev. Fluid
Mech. 159 -185.

Korobkin, A. A. 2004 Analytical models of water impact. Eur. J. Appl. Maths. 15, 821–838.
Mei, X., Liu, Y. & Yue, D.K.P. 1999 On the water impact of general two-dimensional sections.

Appl. Ocean Res. 21, 1-15.
Michell, J.H. 1890 On the theory of free stream lines. Phil. Trans. Roy. Soc. A. 181 DOI:

10.1098/rsta.1890.0006.
Moore, D. W. 1975 The rolling up of a semi-infinite vortex sheet. Proc. Roy. Soc. A. 345.
Oliver, J.M. 2007 Second-order Wagner theory for two-dimensional water-entry problems at

small deadrise angles. J. Fluid Mech., 572, pp. 59 – 85.
Pullin, D. I. 1978 The large-scale structure of unsteady self-similar rolled-up vortex sheets. J.

Fluid Mech. 88(03), 401 – 430.
Riccardi, G. & Iafrati, A. 2004 Water impact of an asymmetric floating wedge. J. Engn

Math. 49, 19 – 39.
Rott, N. 1956 Diffraction of a weak shock with vortex generation. J. Fluid Mech., 1(1), pp.

111 – 128.
Saffman, P.G. 1993 Vortex Dynamics. 326p. Cambridge University Press.
Semenov, Y. A. & Iafrati, A. 2006 On the nonlinear water entry problem of asymmetric

wedges. J. Fluid Mech. 547, 231 – 256.
Semenov, Y. A. & Yoon, B-S. 2009 Onset of flow separation for the oblique water impact of

a wedge. Phys. of Fluids 21, 112103.
Semenov, Y.A. & Wu, G.X. 2012 Asymmetric impact between liquid and solid wedges. Proc.

Roy. Soc. A. 469. DOI: 10.1098/rspa.2012.0203.
Smith, J. H. B. 1968 Improved calculations of leading edge separation from slender delta wings.

Proc. Roy. Soc. A. 306, 87–90.



Water-Entry of a Wedge 27

Xu., L. 2016 Numerical study of viscous starting flow past wedges. J. Fluid Mech. 801, 150-165.
Xu, G.D., Duan, W.Y., & Wu, G.X. 2008 Numerical simulation of oblique water entry of

an asymmetrical wedge. Ocean Engineering, 35, 1597–1603.
Xu, G.D., Duan, W.Y., & Wu, G.X. 2010 Simulation of water entry of a wedge through free

fall in three degrees of freedom. Proc. Roy. Soc. A. 466, 2219–2239.
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