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A B S T R A C T

Schizophrenia is a disorder characterized by functional dysconnectivity among distributed brain regions.
However, it is unclear how causal influences among large-scale brain networks are disrupted in schizophrenia. In
this study, we used dynamic causal modeling (DCM) to assess the hypothesis that there is aberrant directed
(effective) connectivity within and between three key large-scale brain networks (the dorsal attention network,
the salience network and the default mode network) in schizophrenia during a working memory task. Functional
MRI data during an n-back task from 40 patients with schizophrenia and 62 healthy controls were analyzed.
Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes, we found that
intrinsic (within-region) and extrinsic (between-region) effective connectivity involving prefrontal regions were
abnormal in schizophrenia. Specifically, in patients (i) inhibitory self-connections in prefrontal regions of the
dorsal attention network were decreased across task conditions; (ii) extrinsic connectivity between regions of the
default mode network was increased; specifically, from posterior cingulate cortex to the medial prefrontal
cortex; (iii) between-network extrinsic connections involving the prefrontal cortex were altered; (iv) connections
within networks and between networks were correlated with the severity of clinical symptoms and impaired
cognition beyond working memory. In short, this study revealed the predominance of reduced synaptic efficacy
of prefrontal efferents and afferents in the pathophysiology of schizophrenia.

1. Introduction

Schizophrenia is a severe mental illness, with a variety of positive
and negative clinical symptoms and cognitive impairments. The dys-
connection hypothesis frames schizophrenia as a brain disorder, char-
acterized by abnormal functional integration among brain regions
(Andreasen et al., 1998; Bullmore et al., 1997; Friston et al., 2016;
Friston and Frith, 1995; Stephan et al., 2006; Weinberger, 1993). In-
creasing evidence from functional connectivity studies, which examine
correlations between fMRI timeseries across the brain, suggests that this
dysconnection involves changes in coupling between large-scale brain
networks (Fornito and Bullmore, 2015; Jiang et al., 2013; Pettersson-
Yeo et al., 2011). However, functional connectivity methods do not
reveal the causal influence of one neural system on another (Friston,

2011) and it remains unclear how the causal influences within and
between large-scale brain networks are disturbed in schizophrenia.

Several studies have performed effective connectivity analyses to
address this question (Crossley et al., 2009; Deserno et al., 2012;
Nielsen et al., 2017; Schmidt et al., 2013; Schmidt et al., 2014; Zhang
et al., 2013). Effective connectivity is the directed (causal) influence of
one neural system over another, which is inferred by modeling the
neuronal interactions that give rise to fMRI time series (Breakspear,
2004; Friston et al., 1993). Dynamic causal modeling (DCM) (Friston
et al., 2003) is a widely adopted framework for effective connectivity
analysis. Traditionally, DCM has been used to test competing hy-
potheses about brain networks comprising only a few regions
(usually < 6) and directed connections. These hypotheses are speci-
fied in the form of subgraphs or models, which are subsequently
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compared using Bayesian model selection and averaging. Following this
approach, several studies have found abnormalities in effective con-
nectivity in the fronto-temporal network (Crossley et al., 2009), the
fronto-parietal network (Deserno et al., 2012; Nielsen et al., 2017;
Schmidt et al., 2013; Schmidt et al., 2014) and the default mode net-
work (Zhang et al., 2013) during working memory tasks in schizo-
phrenia or psychosis. However, each of these studies focused on ex-
amining connectivity between regions within a single brain network and
did not examine the connectivity between large-scale networks that
contextualize functional integration in the brain.

In this study we investigated the effective connectivity within and
between three key large-scale networks during a working memory task
in schizophrenia. Working memory impairment is a common cognitive
deficit in schizophrenia (Forbes et al., 2009; Lee and Park, 2005;
Piskulic et al., 2007) and is considered to be a fundamental impairment
that underwrites schizophrenic thought disorder (Goldman-Rakic,
1994). Multiple brain regions including lateral prefrontal cortices,
posterior parietal cortices, insula and supplementary motor cortex ex-
tending to the anterior cingulate cortex (SMA/ACC) show co-activation
during working memory tasks (Chu et al., 2015; Owen et al., 2005;
Rottschy et al., 2012). These are commonly segregated into two key
large-scale networks: the frontoparietal dorsal attention network (DAN)
(Corbetta and Shulman, 2002; Fox et al., 2006) and the cingulate-op-
ercular salience network (SN) (Dosenbach et al., 2007; Menon and
Uddin, 2010; Seeley et al., 2007). Meanwhile, medial prefrontal and
medial parietal regions often show deactivation during working
memory tasks – these are part of the default-mode network (DMN)
(Andrews-Hanna et al., 2010; Buckner et al., 2008; Raichle, 2015). In
patients with schizophrenia, regions in the DAN and SN often show
decreased activation (Anticevic et al., 2013; Kim et al., 2010;
Kyriakopoulos et al., 2012), while the regions within the DMN often fail
to deactivate during working memory tasks (Anticevic et al., 2013;
Haatveit et al., 2016; Whitfield-Gabrieli et al., 2009). By including re-
gions of the DAN, SN and DMN in a single connectivity model, we set
out to investigate how the coupling between these networks is dis-
turbed in schizophrenia.

A further novel feature of this study is that we apply recent devel-
opments in hierarchical Bayesian modeling, to make inferences based
on a relatively large dataset (n = 102). In the Parametric Empirical
Bayes (PEB) framework for DCM (Friston et al., 2016), an individual
subject's connections are modeled as being sampled from a group mean,
with additive random effects and systematic intersubject variability
modeled by between-subject covariates. This hierarchical modeling of
random parametric effects offers several advantages over previous
methods. In particular, the uncertainty (variance) of estimated con-
nection strengths at the single-subject level is properly accommodated
when making inferences at the group level. This increases the sensi-
tivity of the approach and renders it robust to outlier subjects with
noisy data (Friston et al., 2016).

In this study, we used DCM – in conjunction with hierarchical
modeling – to ask whether patients with schizophrenia show abnorm-
alities in intrinsic (within-region) connectivity and extrinsic (between-
region) connectivity in three large-scale brain networks (DAN, SM,
DCM) while performing a working memory task. We further asked
whether working memory load modulates this connectivity. Finally, we
asked whether any abnormal directed connections are related to
symptom severity and wider cognitive function to establish the func-
tional validity of the effective connectivity estimates – that might be
used a biomarker or endophenotype in subsequent studies.

2. Materials and methods

2.1. Participants

Patients with schizophrenia were recruited from the Department of
Psychiatry, Renmin Hospital of Wuhan University (Wuhan, China). The

Structured Clinical Interview for the Diagnostic and Statistical Manual
of Mental Disorder, 4th edition (DSM-IV) (SCID) was administered, to
confirm diagnosis. The patients also met the following inclusion cri-
teria: (1) the total score of Positive and Negative Syndrome Scale
(PANSS) was over 60, (2) duration of illness was< 5 years, (3)
18–45 years of age, (4) at least 9 years of education, (5) right-handed,
and (6) Han Chinese. Patients were excluded if they met the diagnosis
criteria of any other DSM Axis-I disorders, had severe physical illness
including cardiovascular disease, had received electroconvulsive
therapy six months prior to recruitment, or had structural changes in
the brain (such as a white matter lesion) diagnosed by a radiologist.
Healthy controls were recruited by word of mouth and bulletin board
postings both in the hospital and nearby communities. The healthy
controls, who matched the patients on age, gender and educational
level, had the same inclusion and exclusion criteria; except that healthy
controls were excluded if they or their first-relatives met any diagnosis
of a psychiatric disorder according to the DSM-IV criteria.

Fifty-one patients and 66 healthy controls were recruited. All the
patients were receiving antipsychotic medications, which were con-
verted to their chlorpromazine equivalents. Six patients and 4 healthy
controls were excluded from the data analyses due to severe head
motion during scanning (x,y,z translation> 3 mm or x,y,z rotation>
3°), 3 patients were excluded due to extremely high values in the mean
frame displacement (FD) value and 2 patients were excluded due to
extreme low scores in the 0-back performance (see details in
Methodology). Finally, 40 patients and 62 normal controls were in-
cluded in the following data analyses.

Each participant or at least one first-degree relative for each patient
provided informed consent before participation. The Ethics Committee
of Renmin Hospital of Wuhan University and the Institutional Review
Board of the Institute of Psychology, Chinese Academy of Sciences
approved the study.

2.2. Experimental design and task

The WM paradigm used a blocked design, numeric n-back task, with
numbers 0–9 as stimuli, which has been used in previous studies
(Deserno et al., 2012; Salomon et al., 2011; Wu et al., 2017). The
paradigm alternated between rest and task. Rest periods, in which
subjects were instructed to fixate on a cross at the centre of the screen,
lasted for 5 scans (i.e. 10 s). The task consisted of two conditions, 0-
back (baseline) and 2-back (WM load condition), arranged as 0-2-0-0-2-
2-2-0-0-2-2-0, each with duration of 12 scans (i.e. 24 s). Before each
block a visual cue of one scan (i.e. 2 s) was presented, indicating the
condition of the subsequent block. Each block comprised 12 stimuli,
three of which were targets, each presented for 1000 ms with a 1000 ms
interstimulus interval. Subjects were instructed to match the current
number to a target, either the number 9 (0-back) or the number pre-
sented two trials earlier (2-back).

In order to ensure compliance during the subsequent acquisition, a
training session was conducted prior to scanning. The training proce-
dure was the same as that used in our previous study (Wu et al., 2017).
In brief, the training task was similar to the formal task, though only
one 0-back and one 2-back trial were included. Accuracy was displayed
on the monitor at the end of the practice task, and patients were pro-
vided with further practice opportunities, until they clearly understood
the task.

2.3. Cognition assessments

Several cognitive assessments were conducted outside of scanning.
These included the Digit Symbol Coding task, Digit Span (forward and
backward) and Category Fluency test. The Digit Symbol Coding task
assesses information processing speed and is known to detect impair-
ments in schizophrenia reliably (Bora et al., 2010). The Category Flu-
ency test is the cognitive assessment with the second largest effect size,
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followed by the Digit Symbol Coding task (Knowles et al., 2010). The
Digit Span (forward and backward) is a general assessment of attention
and working memory capacity.

2.4. MRI data acquisition and preprocessing

MRI data were acquired from the Radiology Department of Renmin
Hospital of Wuhan University with a General Electric HDxt 3.0T
Scanner. Whole-brain functional scans were collected in 32 axial slices
using an echo-planar imaging (EPI) sequence (repetition
time = 2000 ms, echo time = 30 ms; flip angle = 90°; ma-
trix = 64 × 64; field of view = 220 mm× 220 mm; slice thick-
ness = 4 mm; and slice gap = 0.6 mm). Anatomical images were ac-
quired using a high-resolution T1-weighted sequence (repetition
time = 7.8 ms; echo time = 3.0 ms; flip angle = 7°; ma-
trix = 256 × 256; field of view = 256 × 256 mm2; slice thick-
ness = 1 mm) composed of 188 slices in a sagittal orientation.

Initial image preprocessing was performed using Statistical
Parametric Mapping (SPM12) (http://www.fil.ion.ucl.ac.uk/spm/) and
included slice timing correction, motion correction, structural and
functional image co-registration, segmentation, normalization (based
on each participant's structural image) to the Montreal Neurological
Institute (MNI) 152 template, and smoothing using a kernel with a full-
width half maximum of 6 mm. The normalized images were inter-
polated to a resolution of 3 × 3 × 3 mm3. Furthermore, based on the
head motion parameters obtained after realignment, we computed the
volume-based frame-wise displacement (FD) to quantify head motion
(Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012).

2.5. Behavioral analysis

To assess behavioral performance of the n-back task, the sensitivity
index, d′ from signal detection theory was used. The score d′ describes
sensitivity; i.e., the ability to separate signal (“true” events) and noise
(“false” events) (Stanislaw and Todorov, 1999). The score was com-
puted separately for 0-back condition and 2-back condition (d′0 and
d′2) for each participant. A repeated measures ANOVA with conditions
as within-group factor and diagnosis as between-group factor was
conducted using SPSS 20.0. Two sample t-tests were used to assess
group differences in the Digit Symbol Coding task, Digit Span task and
Category Fluency task.

2.6. GLM analysis

A general linear model (GLM) was constructed with regressors for
each of the two task conditions (0-back and 2-back) as well as the in-
struction cues for the task blocks. To regress out motion and physio-
logical noise (e.g., of cardiac and respiratory origin), additional cov-
ariates were included to model: (1) six head motion parameters
obtained by rigid body head motion correction and (2) five principal
components from an anatomically defined noise VOI (composed of
white matter and cerebrospinal fluid), an approach that has been shown
to accurately describe physiological noise in grey matter (Behzadi et al.,
2007). Finally, a highpass filter with a cutoff of 250 s (0.004 Hz) was
implemented to remove low frequency drifts while retaining most task-
related frequencies.

At the group level, random-effects group analyses were conducted
using an ANOVA, with diagnosis as a between-group factor and task
condition as a within-group factor. If not mentioned otherwise, sig-
nificant effects in fMRI analyses were defined by a corrected voxel-level
family-wise error (FWE) threshold of p < 0.05.

2.7. Dynamic causal modeling

2.7.1. VOI selections
Regions that showed differential activation between the patients

and control groups in the context of WM (i.e., a significant interaction
between diagnosis and task) or activation/deactivation in association
with the task (i.e., a significant main effect of task) were considered as
volumes of interest (VOI) for use in subsequent DCM analysis.
Furthermore, in order to focus on the three networks of interest, i.e.,
dorsal attention network (DAN), salience network (SN), and default-
mode network (DMN), preexisting templates were used as masks to
identify peak voxels in the core regions in each of the three networks
(Shirer et al., 2012). This procedure defined four nodes for the DAN: the
bilateral frontal eye field (FEF) and the bilateral superior parietal lobule
(SPL); three nodes for the SN: the SMA/ACC, the left anterior insula (AI)
and the right AI; two nodes for the DMN: the medial prefrontal cortex
(MPFC) and the posterior cingulate cortex (PCC). The group-level VOI
locations are listed in Table 2. These were obtained by intersecting
functional defined templates (Shirer et al., 2012) with regions showing
a significant interaction between diagnosis and task or main effect of
task at a lesser conservative threshold of cluster-level FWE p < 0.05
(cluster-defining threshold p = 0.001). We then searched for the local
maximum within the group-level VOI and summarized the regional
response with the first eigenvariate of (confound-corrected) voxels
within a 6 mm radius. For the participants in which no supra-threshold
voxels were identified, the first eigenvariate was extracted from a 6 mm
sphere centered at the group-level maximum.

2.7.2. Individual level DCM specification and inversion
DCM is a framework for specifying, estimating and comparing

generative models of imaging time series. Here we used the basic (de-
terministic) model for fMRI, in which a vector z ∈ ℝn represents mass
neural activity of each brain region at a given time. The derivative of z
with respect to time z ̇ can be written as:

=z f z u θ̇ ( , , )n

where u is the experimental input and θn are neuronal coupling para-
meters that determine the strength of connections within and between
brain regions. This function is approximated using:

= + +z A u B z Cu̇ ( Σ )j j
j( )

where parameter matrix A ∈ ℝn × n represents the connectivity within
and between each of the n regions (which in this study is the average
connectivity of 0-back and 2-back conditions), B(j) ∈ ℝn × n is the
modulatory effect of experimental manipulation j on each connection
and C ∈ ℝn × J is the direct driving influence of each of the J experi-
mental conditions on each region. The predicted neuronal activity en-
ters a haemodynamic model that incorporates a model of neurovascular
coupling and the subsequent BOLD response. This provides the pre-
dicted fMRI time series that one would expect to measure, given the
connectivity parameters θn = (A,B,C).

We specified a DCM for each participant. Model specification in-
volved setting prior variances on the parameters in matrices A, B and C,
where a prior variance of zero ‘switches off’ a connection and a non-
zero prior variance ‘switches on’ a connection – so that it can be in-
formed by data. Here, there were two experimental inputs (J = 2): the
main effect of task (all 0-back and 2-back events) and working memory
load (contrasting 0-back with 2-back). Task entered the model as a
driving input (by setting the appropriate priors in matrix C). Working
memory load entered the model as a modulatory input on each region's
self-connection (i.e., intrinsic connection) by setting the appropriate
priors on matrix B. The self-connections regulate a region's response to
its inputs; i.e., they provide gain control in the model, akin to inhibitory
inter-neurons – and consequent excitation-inhibition balance – in the
brain. Thus, we modeled working memory load as modifying the sen-
sitivity of each region to input from the rest of the network.

Each subject's model was inverted, providing estimates of the con-
nection strength parameters θ(n) which best explained the observed
data. The resulting posterior densities were normally distributed, with
expected values and covariance (uncertainty). Model estimation
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additionally provided the free energy approximation to log model evi-
dence F, which scores the quality of each model in terms of accuracy
and complexity:

≅ = −F p y mlog ( | ) accuracy complexity

where y is the data and m is the model. One uses the free energy F to
compare competing models, in order to find the least complex model of
the data that accurately explains the most variance.

2.7.3. Empirical Bayes for group DCM
Having fitted each subject's DCM to their data, we next performed a

second level analysis to estimate the group mean and the effect of di-
agnosis for each connection. This used recently developed routines for
modeling connectivity at the group level (Parametric Empirical Bayes)
in the context of DCM (Friston et al., 2016). Parametric Empirical Bayes
(PEB) is a between-subject hierarchical or empirical Bayesian model
over parameters that models how individual (within-subject) connec-
tions relate to group or condition means. This hierarchical approach
treats each connection as a random (between-subject) effect, which is
modeled by adding a random Gaussian variation to subject-specific
predictions, based upon the group mean connectivity as well as be-
tween-subject effects such as diagnosis or age. This parametric random
effects modeling is important because, unlike a classical test (e.g. t-test),
it uses the full posterior density over the parameters from each subject's
DCM – both the expected strength of each connection and the asso-
ciated uncertainty (i.e. posterior covariance) – to inform the group-level
result (i.e., group differences).

A PEB model has the following form:

= +θ η ϵ(2) (3)

= +θ θΓ ( ) ϵ(1) (2) (2) (2)

= +y θΓ ( ) ϵi i i
(1) (1) (1)

Starting with the last line, the observed fMRI data yi for subject i is
generated by function Γi(1), which here is the subject's DCM, with
parameters θ(1) and observation noise ϵi

(1). The contribution of the PEB
framework is that the DCM parameters θ(1) are themselves represented
by a group or second-level model, written on the second line of the
equation. The second level function Γ(2) has parameters (e.g., average
connection strengths) θ(2), plus between-subject variability ϵ(2). Finally,
these second level parameters have priors, with mean η, as specified on
the first line of the equation.

In this study, the first (within-subject) level of the model is the
standard deterministic DCM for fMRI, where the parameters correspond
to effective connectivity (please see above). The second (between-sub-
ject) level model Γ(2) is simply a GLM with the form:

= ⊗θ X I βΓ ( ) ( )P
(2) (2)

where X ∈ ℝS × C is the design matrix (S is the number of subjects, C is
the number of covariates), IP is the identity matrix of dimension P
(where P is the number of connection parameters in the DCM) and the
operator ⊗ is the Kronecker product that duplicates each element of the
design matrix for each DCM parameter. In other words, this model al-
lows for every between subject-effect to be expressed at every within-
subject effect. The parameters of the GLM are β ⊂ θ(2). Thus, we had
one β parameter representing the effect of each (between-subject)
covariate on each DCM connection. The priors on these second level
parameters were set to match the priors of the first level parameters. In
order to identify differences between patients with schizophrenia and
normal controls, we included two covariates of interest in the design
matrix X: the group mean and diagnosis. We also included the working
memory performance indexed by the ratio between d′2 score and d′0
score and the interaction between diagnosis and performance as nui-
sance covariates, in order to exclude the potential influence of perfor-
mance components on the group mean and diagnosis effect.

The between-subject variability ϵ(2) with precision Π(2) was para-
meterized using a single precision parameter γ:

Nϵ ~ (0, Σ )(2) (2)

= = ⊗ + −− I Q e QΠ Σ ( )S
γ(2) (2)

0 1
1

where Q0 is the lower bound on precision, which takes on a small po-
sitive value, and the precision parameter γ ⊂ θ(2) scales a precision
component Q1. Here, we used the defaults in SPM, which sets Q1 to

−( )pCβ
1 1

, where pC is the prior covariance matrix of a single subject's
DCM parameters and β = 16.

To summarize, the PEB model estimates the effect of each covariate
on each connection (both the group mean and any group differences),
as well as estimating the between-subject variability. The parameters of
the PEB model were estimated using a standard variational Laplace
procedure, as is usually applied in DCM.

2.7.4. Bayesian model reduction
To evaluate how the connectivity of patients with schizophrenia

differs from that of normal controls, we used Bayesian model compar-
ison to explore the space of possible hypotheses (models), where each
hypothesis or model assumes that a different combination of the con-
nections could exist across participants or show phenotypic variance.
Candidate PEB models were obtained by removing one or more (second
level) parameters from the full PEB model (described above) to produce
reduced forms of the full model that differed only in their priors. We did
this using Bayesian model reduction (BMR) that enables the evidence
and parameters of nested (reduced) models to be derived directly from
a full model. This provides an efficient search of the model space by
scoring each reduced model, based on its log model-evidence or free
energy; for details, see (Friston et al., 2016). The (greedy) search al-
gorithm used BMR to iteratively prune connection parameters from the
full PEB model, until model-evidence started to decrease. The para-
meters of the best 256 pruned models were then averaged, weighted by
their evidence (Bayesian Model Averaging).

To summarize the DCM analysis pipeline, we first specified a DCM
for each subject and fitted it to their data, providing estimates of the
connectivity parameters. These subject-specific estimates (expected
values and covariance) were taken to the group level and modeled
using a Bayesian GLM (i.e., a PEB model). The parameters of the GLM
represent the group average of each connectivity parameter, as well as
any group differences between patients and controls. We than used
Bayesian model reduction to search over hundreds of reduced PEB
models with different combinations of connections (and group differ-
ences). The best models from this search were combined using Bayesian
model averaging. We report these averages in the Results section.

2.8. Clinical correlates of differentiated connections

Having identified the connections that differed between patients
and controls in the working memory task, we next asked whether the
strength of these connections correlated with the severity of symptoms
in patients. As we had a large number of variables, we did not include
these in the PEB model directly; instead, we used a (post hoc) canonical
variates analysis (CVA; Sui et al., 2012) to identify linear relationships
between the two sets of measures (strength of effective connectivity and
clinical symptoms). This resulted in pairs of significantly correlated
canonical variables (i.e., latent connectivity and symptom profiles).
Using the same analysis, we asked whether our cognitive scores could
be predicted by the effective connectivity.

2.9. Effect of antipsychotic medication

In order to ameliorate the confounding effect of antipsychotic
medication on group differences, we included the chlorpromazine
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equivalents of antipsychotic medication as a nuisance covariate – in
addition to the nuisance covariates above (working memory perfor-
mance and interaction between diagnosis and performance) – in the
between subject design matrix. The main effects of group were un-
changed when including antipsychotic medication as a between subject
effect. We present the effect of the antipsychotic medication and other
nuisance covariates on effective connectivity in the supplementary
materials (Fig. S1). We also include the chlorpromazine equivalents of
antipsychotic medication into the CVA models while exploring the
clinical correlates of differentiate connections.

3. Results

3.1. Behavioral results

There were no group differences in the age, gender composition,
educational level and head motion (all p > 0.05, Table 1). Repeated
measures ANOVA using d′ score with the task condition as the within-
group factor and diagnosis as the between-group factor revealed a
significant main effect of task (F = 256.03; df = 1; p < 0.001), sig-
nificant main effect of diagnosis (F = 46.74; df = 1; p < 0.001) and a
significant interaction effect between task and diagnosis (F = 21.42;
df = 1; p < 0.001); with the patients showing worse performance in
the 2-back condition compared to the normal controls (Table 1). Two-
sample t-tests also indicated impaired cognitive functions measured by
the Digit Symbol Coding task, Digit Span task and Category Fluency
task in patients with schizophrenia (all p < 0.001) (Table 1).

3.2. Brain activation following GLM analysis

There was a significant main effect of task in the bilateral lateral
prefrontal cortices, lateral posterior parietal cortices, the ACC, the AI,
the MPFC and the PCC, the thalamus and cerebellum (p < 0.05,
whole-brain voxel-wise FWE correction) across healthy controls and
patients with schizophrenia (Fig. 1), showing that the regions com-
prising the DAN, the SN and the DMN were engaged by this task. No
main effect of diagnosis was found (p < 0.05, whole-brain voxel-wise
FWE correction). A significant task by diagnosis interaction was found
in the left FEF, left inferior frontal gyrus, left SPL, ACC, left caudate and
left precuneus (p < 0.05, whole-brain voxel-wise FWE correction)
(Fig. 1). Using a more liberal statistical threshold, a task by diagnosis

interaction could also be found in the MPFC and the left AI (p < 0.05,
cluster level FWE correction). Fig. 2 shows the activation parameter
estimates for each condition in the peak coordinates of the regions that
were entered into the following DCM analyses.

3.3. Task independent connectivity across conditions – and their group
differences

After specifying and estimating DCMs, we assembled the parameters
from each subject's model (matrix A). These parameters represent the
average connectivity over 0-back and 2-back conditions. We fitted a
PEB model to the posterior density over these parameters to estimate
the group mean of each connection strength, and the effect of diagnosis
on each connection (see methods). Fig. 3 shows the group mean across
all subjects. The left panel shows the parameter estimates before and
after Bayesian model reduction, in terms of their posterior means (grey
bars) and 95% confidence intervals (pink lines). It can be seen that
some parameters were removed, because they were not necessary to
explain the data. The right panel shows this reduced model as a sche-
matic. Our main interest regarded differences between subjects, so we
will just make one observation about this result: it is apparent that most
regions had reciprocal excitatory influences on one another (green ar-
rows), with the exception of the DMN (regions MPFC and PCC). Con-
nections entering the DMN were generally inhibitory (red arrows),
whereas outgoing connections from the DMN were generally excitatory.
Thus, the model suggests that deactivation of the DMN during working
memory tasks can be explained by inhibition of the DMN by the DAN
and SN.

Fig. 4 shows group differences in connectivity. The left panel il-
lustrates the corresponding parameter estimates from the PEB model
before and after Bayesian model reduction. Only a restricted set of
parameters survived model reduction, which is illustrated in the right
hand panel. Specifically, the patients with schizophrenia had decreased
inhibitory self-connections (intrinsic connections) within the DAN re-
gions; in particular left FEF and the left SPL, where the differences were
negative (parameters 1 and 11 in Fig. 4 and Supplementary Table 1).
Note that these parameters are log scale parameters such that a nega-
tive difference corresponds to a smaller self-inhibition; namely, a re-
lative disinhibition in patients. Thus, we could be confident that left
FEF and left SPL were more readily excited by afferent activity in pa-
tients with schizophrenia than controls. There were also small differ-
ences in extrinsic connections, demonstrated by coupling among re-
gions in the DAN (bilateral FEF and lSPL) and between regions of the
DAN and the other networks. Patients had reduced coupling from lFEF
to rFEF compared to controls (parameter 3 in Fig. 4 and Supplementary
Table S1). However, we could not determine the sign of the other ex-
trinsic (between-region) connections in the DAN, as their 95%

Table 1
Demographic and clinical characteristics.

Patients Controls p Value

(n = 40) (n = 62)

Gender (male/female) 21/19 35/27 0.84a

Age (years) 23.40 ± 4.22 23.58 ± 4.90 0.85
Education (years) 12.98 ± 2.93 13.47 ± 1.59 0.33
mean FD (mm) 0.07 ± 0.03 0.06 ± 0.02 0.1
0-Back (d-prime score) 3.81 ± 0.46 4.08 ± 0.29 0.001
2-Back (d-prime score) 2.32 ± 0.90 3.26 ± 0.56 < 0.001
Digit symbol coding 52.08 ± 10.23 70.89 ± 10.14 < 0.001
Digit span: forward 7.93 ± 1.23 9.00 ± 0.99 < 0.001
Digit span: backward 4.58 ± 1.28 6.27 ± 1.42 < 0.001
Category fluency 18.05 ± 3.52 21.74 ± 4.35 < 0.001
PANSS
Total 2.90 ± 10.23 – –
Positive 22.55 ± 3.59 – –
Negative 19.23 ± 5.20 – –
General 41.13 ± 6.41 – –

Chlorpromazine equivalents
(mg/d)

414.10 ± 236.74 – –

Duration (months) 26.28 ± 20.49 – –

Note: mean FD, mean frame-wise displacement; PANSS, Positive and Negative Symptom
Scale; a, Chi-square test; −, no value.

Table 2
Locations of volumes of interests.

Regions MNI coordinates Effect Network

x y z

L.FEF −33 0 57 Interaction DAN
L.SPL −27 −60 45 Interaction DAN
R.FEF 30 3 57 Interaction DAN
R.SPL 33 −66 57 Interaction DAN
L.SMA/ACC −9 12 63 Interaction SN
L.AI −45 18 −3 Interaction SN
R.AI 33 21 0 Task SN
MPFC −9 48 −15 Interaction DMN
PCC −6 −48 27 Task DMN

Abbreviation: AI, anterior insula; DAN, dorsal attention network; DMN, default mode
network; FEF, frontal eyes field; MPFC, medial prefrontal cortex; PCC, posterior cingulate
cortex; SMA/ACC, supplementary motor cortex extending to anterior cingulate cortex;
SN, salience network; SPL, superior parietal cortex.
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confidence intervals included zero (parameters 2, 19, 21, 23, 66 in
Fig. 4 and Supplementary Table S1). Given that these small differences
in extrinsic connections were not pruned during Bayesian Model Re-
duction, we could be confident that despite being small effects in-
dividually, they collectively contributed to the model evidence. Strik-
ingly, we found that patients with schizophrenia had stronger extrinsic
connectivity within the DMN, specifically in the direction from PCC to
MPFC. This accords with the hypothesis that patients with schizo-
phrenia fail to deactivate their DMN during externally directed tasks.
For clarity, Fig. 5 plots the strength of the connections that showed
between-groups effects.

3.4. Modulatory effects on connections and their group differences

Fig. 6 shows the group mean effect of WM load before and after
model reduction. We found a strong effect of working memory load on
the self-connections (intrinsic connections) of all the regions of the DAN
(parameters 1–4) but on none of the remaining regions. These effects
were negative, meaning that self-inhibition was reduced during higher
working memory load (i.e. greater excitation with 2-back relative to 0-
back conditions). We did not find any group differences in the mod-
ulatory effect of working memory load between patients and controls.

Fig. 1. Regions showing a significant main effect of task condition and regions showing a significant interaction effect (between diagnosis and task condition). Left: Colors indicate T-
statistics. Warm colors represent greater activation in the 2-back condition and cool colors represent less activation (i.e., greater deactivation) in the 2-back compared with the 0-back
condition. Right: Interaction contrast, where hotter colors indicate larger effects. Colors indicate F-statistics. Thresholded at p < 0.05 (cluster level FWE corrected) for visualization
purposes. These regions were projected on a cortex using BrainNet Viewer (www.nitrc.org/projects/bnv/). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Estimated activation contrast parameters for the peak coordinate of the volumes of interest (VOI) used in subsequent DCM. The grey bars represent the estimated effect size and
the pink lines represent 90% confidence interval. In the right lower panel, the locations of VOIs are shown in the cortex using BrainNet Viewer (www.nitrc.org/projects/bnv/). Red balls
represents the DAN regions, the green balls the SN regions and the blue balls if, the DMN regions. For abbreviations, please see Table 2. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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3.5. Clinical correlates of differentiated connections

Returning to the connections showing group differences in effective
connectivity, we performed a CVA analysis to ask whether the severity
of clinical symptoms in schizophrenia could be predicted from the es-
timated connectivity. There was a significant canonical correlation
(p = 0.04, Chi-square = 52.7, df = 36) (Supplementary Fig. S2, left
panel) although this became insignificant after excluding the effects of
age, gender, education level and dosage of antipsychotic medicine
(p = 0.08, Chi-square = 48.5, df = 36). The connections that con-
tributed the most to this relationship (had the largest absolute cano-
nical weights) were the left FEF self-connection and the left SPL self-
connection.

In addition, the connection strengths predicted impaired processing
speed (digit symbol task), attention and working memory (digit span
forward and backward task), and executive function (verbal fluency
task) within the patient group (p = 0.04, Chi-square = 52.6, df = 36)
(Supplementary Fig. S2, right panel), even after excluding the effects of
age, gender, education level and dosage of antipsychotic medicine
(p = 0.05, Chi-square = 51.3, df = 36). The connections that con-
tributed the most to this association were the left FEF self-connection
and the connections between left and right FEF. These same tests of
cognitive function were also given to the control subjects, and the
connection strengths could also predict the scores collapsed across
groups (p = 0.05, Chi-square = 51.0, df = 36). This result suggests
that the connectivity parameters identified using DCM capture varia-
bility in more general cognitive abilities than the specific WM task used

during scanning.

4. Discussion

This study investigated the effective connectivity of three large-
scale networks; i.e., the dorsal attention network, salience network and
default-mode network, during a working memory task. By capitalizing
on recent developments in the hierarchical modeling of effective con-
nectivity, we identified parameters that reliably distinguished patients
with schizophrenia from controls. Our main findings were: in patients
(i) self-inhibition in regions of the dorsal attention network was de-
creased across task conditions, implicating disinhibition – and a failure
of excitation-inhibition balance – in the pathophysiology of schizo-
phrenia; (ii) the connection from the PCC to the MPFC was increased
across task conditions, which extends our knowledge from correlations
(functional connectivity) to directed connectivity; (iii) the between-
network connections involving the prefrontal cortex were altered across
task conditions; (iv) the connections that differentiated patients from
controls correlated with the severity of clinical symptoms and impaired
cognition beyond working memory, suggesting that the physiological
changes in connectivity have a clinical and cognitive predictive va-
lidity.

4.1. Impaired self-inhibition in schizophrenia

We found that self-inhibition in the DAN regions (left FEF and the
left SPL) was impaired across task conditions in patients with

Fig. 3. The group mean effective connectivity (average of 0-back and 2-back conditions). The left panel shows the posterior estimates of the second level models before (Full model) and
after Bayesian model reduction (Reduced model), in terms of their posterior means (grey bars) and 95% Bayesian confidence intervals (pink lines). The self-connections in the reduced
model are indicated using the blue arrows. The parameters along the horizontal axis constitute the connections. For a list of these parameters, please see the Supplementary Table S1. The
right panel shows the connections from the reduced model in a schematic. The green arrows represent the positive extrinsic effective connectivity and the red arrows represent the
negative extrinsic effective connectivity. The size of the arrow reflects the relative strength of connectivity. For abbreviations of the region names, please see Table 2. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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schizophrenia. From the perspective of predictive coding, these changes
may reflect an aberrant precision or salience of prediction errors at the
associated levels of the cortical hierarchy. To briefly reprise, in pre-
dictive coding, neuronal representations in higher levels of cortical
hierarchies generate predictions of representations in lower levels.
These top-down predictions are compared with representations at the
lower level to form a prediction error (usually associated with the ac-
tivity of superficial pyramidal cells). This mismatch signal is passed
back up the hierarchy, to update higher representations (associated
with the activity of deep pyramidal cells). This recursive exchange of
signals suppresses prediction error at each and every level to provide a
hierarchical explanation for sensory inputs (Bastos et al., 2012). Besides
predicting the content of our sensations, the brain also has to predict
the context in terms of expected or subjective precision. The brain may
solve this generic problem by modulating the gain or excitability of
neuronal populations reporting prediction errors (Clark, 2013; Friston
et al., 2014). In the DCM framework, this gain is parameterized as the
self-inhibition of superficial pyramidal cells within a cortical source
(Ranlund et al., 2016). During the n-back task, the participant implicitly
predicts whether the next stimulus is the same as the previously pre-
sented stimulus and a prediction error may emerge while comparing the
current stimulus with the previously presented stimulus. In this context,
the impaired self-connections in the dorsal attention network in pa-
tients with schizophrenia reflect a disinhibition in the superficial pyr-
amidal cells in the constituent dorsal fronto-parietal regions. The dis-
inhibition of the dorsal attention network in patients with
schizophrenia may correspond to aberrant precision, which is thought
to be encoded by the postsynaptic gain of neurons reporting prediction

error (Adams et al., 2013). This aberrant precision or postsynaptic gain
control may explain impaired working memory performance.

This disinhibition in schizophrenia is also in line with theories of N-
methyl-D-aspartate receptor (NMDA-R) hypofunction in psychosis (Abi-
Saab et al., 1998; Coyle et al., 2003; Gilmour et al., 2012; Olney et al.,
1999; Stephan et al., 2006). The glutamatergic NMDA-R, which is ex-
pressed more densely in superficial cortical layers, is one of the pre-
dominant neurotransmitter receptors involved in gain modulation
(Stephan et al., 2006). NMDA-R hypofunction on fast-spiking and par-
valbumin-contained interneurons, which are gamma-aminobutyric acid
(GABA)-ergic cells, is thought to lead to a failure in the regulation of the
firing rate of pyramidal glutamatergic cells through inhibitory GA-
BAergic input and thus causes an excitatory-inhibitory imbalance in
prefrontal cortex (Carlen et al., 2012; Lewis et al., 2012; Ranlund et al.,
2016). The cellular excitation–inhibitory imbalance may lead to dis-
turbances in the neural synchrony of large-scale cell ensembles and give
rise to dysconnectivity phenomena at the level of neural ensembles and
large-scale brain networks in schizophrenia (Braun et al., 2016; Phillips
and Silverstein, 2003; Uhlhaas and Singer, 2012). In the current study,
we indeed noted decreased inter-regional connections involving regions
showing disinhibition (in particular the connectivity between the left
and right FEF). Furthermore, it should be noted that these changes were
observed in the context of a working memory task, which is in line with
the role of NMDA-R hypofunction in the cognitive impairments in-
cluding attention allocation and working memory (Carlen et al., 2012;
Monaco et al., 2015; Murray et al., 2014).

Fig. 4. The group difference (patients versus controls) of effective connectivity (average of 0-back and 2-back conditions). The left panel shows the posterior estimates of the second level
models before (Full model) and after Bayesian model reduction (Reduced model), in terms of their posterior means (grey bars) and 95% Bayesian confidence intervals (pink lines). The
parameters along the horizontal axis constitute the connections. For a list of these parameters, please see the Supplementary Table S1. The right panel shows connectivity differences with
strong evidence in a schematic. The green line represents the increased effective connectivity in patients with schizophrenia and the red line represents the decreased effective con-
nectivity. The differences in the self-connections are indicated by individual arrowheads directed at the relevant nodes. The size of arrow reflects the quantitative differences in
connectivity. The connections showing salient effect are highlighted using their indices from the graph (and Table S1). Abbreviations for the region names are provided in Table 2. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Altered effective connectivity within the DMN in schizophrenia

The connection from PCC to MPFC was greater in the schizophrenic
subjects than the controls. This finding extends our prior knowledge by
demonstrating that in addition to the altered functional connectivity
within the DMN in schizophrenia (Whitfield-Gabrieli et al., 2009), the
causal configuration of directed coupling between neural populations is
altered. This finding is also similar to Wu et al.'s (2014) study but our
finding was obtained from a larger DCM model that makes it possible to
investigate the effective connectivity between regions from different
brain networks. We also note a Granger causality study, in which di-
rected functional connectivity from the PCC to the MPFC was increased
during 2-back conditions in schizophrenia; however, the sign of the
connectivity was not reported (Pu et al., 2016). With DCM, inferences
about both the direction and valence (i.e., excitatory or inhibitory) of

connections among neuronal sources (Friston et al., 2013), may extend
our understanding of extrinsic connectivity within the DMN. Our results
suggest that greater activity in the MPFC may come about due to de-
creased inhibitory influences from the PCC. Therefore, this finding
provides a new explanation for the commonly observed hyperactivity in
the MPFC (a failure of deactivation) in patients with schizophrenia
(Whitfield-Gabrieli et al., 2009; Wu et al., 2014; Zhang et al., 2013).

This finding is also compatible with a recent observation, in which
the reduced sensitivity to both extrinsic (excitatory) and intrinsic af-
ferents in the MPFC during a picture-viewing task paradigm with a long
rest period was found in schizophrenia (Bastos-Leite et al., 2015). A
difference between their results and those of our current study is that
our patients showed reduced sensitivity to the extrinsic (inhibitory)
afferent to the MPFC during a working memory task. Although there are
several methodological differences (such as the task paradigm, model

Fig. 5. Connections showing evidence for group differences. The vertical axis represents the connection strength. For self-connections, the parameters are log scaling parameters, which
can be converted to units of Hz by: y =−0.5 ∗ exp(x). Where x is the log scaling parameter, −0.5 Hz is the prior and y is the self-connection strength in units of Hz.
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inversion and model space) between the two studies, both of these
studies suggest that the medial prefrontal cortex fails to modulate its
sensitivity to posterior parietal afferents. In the theoretical framework
of the dysconnection hypothesis, the symptoms of schizophrenia are
generally construed as false inferences (e.g., hallucinations and delu-
sions), which reflect an aberrant encoding of salience or precision at
various levels in cortical hierarchies: please see above and (Adams
et al., 2013; Corlett et al., 2010; Fletcher and Frith, 2009). This failure
to modulate the postsynaptic sensitivity to afferents from the PCC in the
MPFC could be construed as a selective failure of attention to the at-
tributes (or mnemonic representations) that would normally be en-
gaged by the task. This interpretation also speaks to the role of the DMN
in attention and memory (Broyd et al., 2009; Raichle, 2015).

4.3. Weaker extrinsic connectivity between networks in schizophrenia

Understanding the dialogue between the DMN and the task-positive
networks (DAN and SN) may be a crucial factor in understanding the
functional architecture of the brain and its abnormalities (Raichle,
2015). We identified a common pattern in the functional integration
among networks across both of the groups (Fig. 3). Specifically, there
were negative connections, both from the left DAN regions and the ACC
of the SN, to the DMN regions. The DMN regions reciprocated positive
connections to these DAN and SN regions. This pattern was also found
in a recent Granger causality study during a working memory task (Pu
et al., 2016) and in our DCM study during rest (Zhou et al., 2017). This
pattern suggests a hierarchical relationship among these networks, and
that patients with schizophrenia have the same fundamental cortical
hierarchy as controls in the context of working memory.

The regions in DAN and SN typically show increased activation
during external attention-demanding tasks, such as working memory
tasks; and the DMN regions often show decreased activity (deactiva-
tion) during these attention-demanding tasks but show increased acti-
vation during internal orientation activities in healthy individuals. This
activation in the DAN and SN – as well as this deactivation in the DMN –
are robust and ubiquitous across cognitive neuroimaging studies (Toro
et al., 2008). The competition relationship between the task-activation
networks and the task-deactivation network has been described as anti-
correlation (Fox et al., 2005), which exists both during task perfor-
mance and rest (Spreng et al., 2010). The anti-correlation may reflect a
fundamental functional characteristic of the brain; to effectively switch
between internal and external modes of attention (Fox et al., 2005;
Whitfield-Gabrieli and Ford, 2012). In this study, through the use of a
generative model describing how neuronal activity gave rise to the
observed BOLD responses, we were able to make inferences about the
causal interactions that underlie these commonly observed anti-corre-
lations. We found the most parsimonious model (the simplest and most
accurate) was one in which the DMN was inhibited by the SN and DAN
during the task. The commonly observed anti-correlations can therefore
be explained by an asymmetric causal relationship between the DMN
and other networks.

We also observed subtle differences in the strength of between-
network connections in patients versus controls. Specifically, we found
that the connectivity from the MPFC (DMN region) to the right FEF
(DAN region) and the connectivity from the right FEF to the ACC (SN
region) were altered in patients, although the differences were subtle.
These findings suggest that directed interactions between networks are
disrupted in schizophrenia, although these effects were small or harder

Fig. 6. The group mean effect of working memory load. This reflects the contextual modulation of (intrinsic regional) connectivity (i.e., matrix B in the DCM state equation). The left
panel shows the posterior estimates of the second level models before (Full model) and after Bayesian model reduction (Reduced model), in terms of their posterior means (grey bars) and
95% Bayesian confidence intervals (pink lines). Only self-connections were included in this model. The right panel shows the connections with strong evidence in this reduced model as a
schematic. Abbreviations for the region names are provided in Table 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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to identify than the effects within networks (self-connections in the DAN
and the PCC to MPFC connection in the DMN).

4.4. Contextual modulatory effect in self-connections

We found an effect of WM load specifically in the DAN regions, with
less self-inhibition (greater disinhibition) in the context of the 2-back
relative to the 0-back condition. This task-specific effect suggests that
both the patients and the controls could adjust or optimize the excit-
ability of superficial pyramidal cells in the DAN regions, in response to
context of incoming stimuli. However, we did not find strong evidence
to support a difference between patients and controls in the effect of
WM load. This suggests that the self-connections of these regions were
modulated by the WM load to a similar extent between patients and
controls. Although the modulatory effect was similar for both groups,
the baseline connectivity did show a between-group effect, meaning
that the same modulatory effect would have a larger or smaller con-
sequence in each group (see supplementary materials for an example).

4.5. Clinical implications

We found that the connections that showed strong evidence for a
diagnosis effect could predict the severity of clinical symptoms in
schizophrenia. The connections that contributed the most to this re-
lationship were intrinsic self-connections in the left FEF and SPL self-
connection. The implicit effects on neuronal message passing and belief
propagation is a recurrent theme in predictive coding (and Bayesian
brain) explanations of psychotic symptoms in schizophrenia (Corlett
et al., 2011; Fletcher and Frith, 2009; Powers Iii et al., 2015). In pre-
dictive coding formulations, intrinsic disinhibition corresponds to an
increase in the precision afforded prediction errors at higher (associa-
tion cortex) levels in the cortical hierarchy that generate top-down
predictions. This has been proposed to reflect a compensatory response
to a failure to attenuate sensory precision at a lower (sensory) level
(Adams et al., 2013). In our case, greater intrinsic disinhibition of the
dorsal attention network was positively correlated with the severity of
clinical symptoms in patients with schizophrenia.

In addition, these diagnostic connections predicted impaired cog-
nition in processing speed (digit symbol task), attention and working
memory (digit forward and backward task) and executive function
(verbal fluency task) in patients with schizophrenia. These findings
echo the notion that working memory impairment is an important as-
pect of schizophrenic thought disorder (Arnsten, 2013) and potentially
underlies several of the cognitive impairments observed in schizo-
phrenia (Goldman-Rakic, 1994; Silver et al., 2003). It should be noted
that these connections were identified after regressing out working
memory performance as measured by the n-back task. This suggests
that these cognitive and clinical measures reflect changes in effective
connectivity in schizophrenia, which are associated with abnormal
behavior and impaired cognition.

It should be noted that all patients were taking antipsychotic med-
icine at the time of scanning. Although we modeled the effect of
medication within the schizophrenia group (in terms of chlorpromazine
equivalents), we cannot discount a contribution of medication to the
main effects of diagnostic group (because control subjects were not
medicated). However, to the extent that medication varied within the
patients with schizophrenia, we accounted for the implicit effects on
effective connectivity within the schizophrenia cohort (which was sig-
nificant in some connections – see Fig. S1). After modeling the quan-
titative effect of antipsychotic medicine, we still detected significant
correlations between connectivity and clinical symptoms or cognitive
scores. However, we note that antipsychotic medication influences es-
timates of functional (Lui et al., 2010), effective (Schmidt et al., 2013),
and possibly structural (Shepherd et al., 2012) connectivity. Medication
may serve to modulate and normalize frontoparietal connectivity in
patients experiencing first-episode psychosis (Lui et al., 2010). To

further determine the effect of antipsychotic medicine on effective
connectivity, a longitude study on drug-naïve patients with schizo-
phrenia may be necessary.

5. Conclusion

The main finding of the current study is that the intrinsic and ex-
trinsic connections in three key large-scale brain networks, especially
those involving prefrontal cortex, were altered in patients with schi-
zophrenia. Previous findings of altered correlations in the BOLD time
series of patients with schizophrenia may be explained by differences in
asymmetric causal interactions between brain regions. Furthermore,
the neuronal coupling parameters estimated using DCM were correlated
with patients' clinical symptoms and impaired cognitive function. These
findings provide neuroimaging evidence for the dysconnection hy-
pothesis (and aberrant predictive coding) by emphasizing the role of
excitatory–inhibitory imbalance in neural ensembles, which may lead
to the dysconnectivity phenomena observed in large-scale brain net-
works. These findings emphasize the importance of reduced synaptic
efficacy of prefrontal efferents and afferents in the pathophysiology of
schizophrenia. With the advantages of PEB in analysing large-scale
networks (Razi et al., 2017), future studies could extent the current
study by adding subcortical and cerebellar regions (e.g. thalamic,
caudate nuclei) to explore how associated subgraphs interact with each
other and whether these interactions fail in patients with schizophrenia.

Acknowledgements

This work was supported by funding from the National Natural
Science Foundation of China (Nos. 91132301, 91432302, and
81371476), Youth Innovation Promotion Association of Chinese
Academy of Sciences (No. 2012075), and China Scholarship Council
funding (No. 201504910067). KJF is funded by a Wellcome Trust
Principal Research Fellowship (Ref: 088130/Z/09/Z). The authors
gratefully acknowledge Huan Huang, Peifu Li and Haixia Mao in
Department of Psychiatry, Renmin Hospital of Wuhan University and
Jun Chen and the staff in the Radiology Department of Radiology,
Renmin Hospital of Wuhan University for extensive time and effort in
data acquisition.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.12.006.

References

Abi-Saab, W.M., D'Souza, D.C., Moghaddam, B., Krystal, J.H., 1998. The NMDA antago-
nist model for schizophrenia: promise and pitfalls. Pharmacopsychiatry 31 (Suppl. 2),
104–109. http://dx.doi.org/10.1055/s-2007-979354.

Adams, R.A., Stephan, K.E., Brown, H.R., Frith, C.D., Friston, K.J., 2013. The computa-
tional anatomy of psychosis. Front. Psych. 4, 47. http://dx.doi.org/10.3389/fpsyt.
2013.00047.

Andreasen, N.C., Paradiso, S., O'Leary, D.S., 1998. “Cognitive dysmetria” as an integrative
theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry?
Schizophr. Bull. 24, 203–218. http://www.ncbi.nlm.nih.gov/pubmed/9613621.

Andrews-Hanna, J.R., Reidler, J.S., Huang, C., Buckner, R.L., 2010. Evidence for the
default network's role in spontaneous cognition. J. Neurophysiol. 104, 322–335.
http://dx.doi.org/10.1152/jn.00830.2009.

Anticevic, A., Repovs, G., Barch, D.M., 2013. Working memory encoding and main-
tenance deficits in schizophrenia: neural evidence for activation and deactivation
abnormalities. Schizophr. Bull. 39, 168–178. http://dx.doi.org/10.1093/schbul/
sbr107.

Arnsten, A.F., 2013. The neurobiology of thought: the groundbreaking discoveries of
Patricia Goldman-Rakic 1937–2003. Cereb. Cortex 23, 2269–2281. http://dx.doi.
org/10.1093/cercor/bht195.

Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J., 2012.
Canonical microcircuits for predictive coding. Neuron 76, 695–711. http://dx.doi.
org/10.1016/j.neuron.2012.10.038.

Bastos-Leite, A.J., Ridgway, G.R., Silveira, C., Norton, A., Reis, S., Friston, K.J., 2015.
Dysconnectivity within the default mode in first-episode schizophrenia: a stochastic

Y. Zhou et al. NeuroImage: Clinical 17 (2018) 704–716

714

https://doi.org/10.1016/j.nicl.2017.12.006
https://doi.org/10.1016/j.nicl.2017.12.006
http://dx.doi.org/10.1055/s-2007-979354
http://dx.doi.org/10.3389/fpsyt.2013.00047
http://dx.doi.org/10.3389/fpsyt.2013.00047
http://www.ncbi.nlm.nih.gov/pubmed/9613621
http://dx.doi.org/10.1152/jn.00830.2009
http://dx.doi.org/10.1093/schbul/sbr107
http://dx.doi.org/10.1093/schbul/sbr107
http://dx.doi.org/10.1093/cercor/bht195
http://dx.doi.org/10.1093/cercor/bht195
http://dx.doi.org/10.1016/j.neuron.2012.10.038
http://dx.doi.org/10.1016/j.neuron.2012.10.038


dynamic causal modeling study with functional magnetic resonance imaging.
Schizophr. Bull. 41, 144–153. http://dx.doi.org/10.1093/schbul/sbu080.

Behzadi, Y., Restom, K., Liau, J., Liu, T.T., 2007. A component based noise correction
method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90–101.
http://dx.doi.org/10.1016/j.neuroimage.2007.04.042.

Bora, E., Yucel, M., Pantelis, C., 2010. Cognitive impairment in schizophrenia and af-
fective psychoses: implications for DSM-V criteria and beyond. Schizophr. Bull. 36,
36–42. http://dx.doi.org/10.1093/schbul/sbp094.

Braun, U., Schafer, A., Bassett, D.S., Rausch, F., Schweiger, J.I., Bilek, E., Erk, S.,
Romanczuk-Seiferth, N., Grimm, O., Geiger, L.S., Haddad, L., Otto, K., Mohnke, S.,
Heinz, A., Zink, M., Walter, H., Schwarz, E., Meyer-Lindenberg, A., Tost, H., 2016.
Dynamic brain network reconfiguration as a potential schizophrenia genetic risk
mechanism modulated by NMDA receptor function. Proc. Natl. Acad. Sci. U. S. A.
113, 12568–12573. http://dx.doi.org/10.1073/pnas.1608819113.

Breakspear, M., 2004. “Dynamic” connectivity in neural systems: theoretical and em-
pirical considerations. Neuroinformatics 2, 205–226. http://dx.doi.org/10.1385/
NI:2:2:205.

Broyd, S.J., Demanuele, C., Debener, S., Helps, S.K., James, C.J., Sonuga-Barke, E.J.,
2009. Default-mode brain dysfunction in mental disorders: a systematic review.
Neurosci. Biobehav. Rev. 33, 279–296. http://dx.doi.org/10.1016/j.neubiorev.2008.
09.002.

Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., 2008. The brain's default network:
anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38. http://
dx.doi.org/10.1196/annals.1440.011.

Bullmore, E.T., Frangou, S., Murray, R.M., 1997. The dysplastic net hypothesis: an in-
tegration of developmental and dysconnectivity theories of schizophrenia. Schizophr.
Res. 28, 143–156. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&
db=PubMed&dopt=Citation&list_uids=9468349.

Carlen, M., Meletis, K., Siegle, J.H., Cardin, J.A., Futai, K., Vierling-Claassen, D.,
Ruhlmann, C., Jones, S.R., Deisseroth, K., Sheng, M., Moore, C.I., Tsai, L.H., 2012. A
critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm
induction and behavior. Mol. Psychiatry 17, 537–548. http://dx.doi.org/10.1038/
mp.2011.31.

Chu, C., Fan, L., Eickhoff, C.R., Liu, Y., Yang, Y., Eickhoff, S.B., Jiang, T., 2015. Co-
activation Probability Estimation (CoPE): an approach for modeling functional co-
activation architecture based on neuroimaging coordinates. NeuroImage 117,
397–407. http://dx.doi.org/10.1016/j.neuroimage.2015.05.069.

Clark, A., 2013. The many faces of precision (replies to commentaries on “Whatever next?
Neural prediction, situated agents, and the future of cognitive science”). Front.
Psychol. 4, 270. http://dx.doi.org/10.3389/fpsyg.2013.00270.

Corbetta, M., Shulman, G.L., 2002. Control of goal-directed and stimulus-driven attention
in the brain. Nat. Rev. Neurosci. 3, 201–215. http://dx.doi.org/10.1038/nrn755.

Corlett, P.R., Taylor, J.R., Wang, X.J., Fletcher, P.C., Krystal, J.H., 2010. Toward a neu-
robiology of delusions. Prog. Neurobiol. 92, 345–369. http://dx.doi.org/10.1016/j.
pneurobio.2010.06.007.

Corlett, P.R., Honey, G.D., Krystal, J.H., Fletcher, P.C., 2011. Glutamatergic model psy-
choses: prediction error, learning, and inference. Neuropsychopharmacology 36,
294–315. http://dx.doi.org/10.1038/npp.2010.163.

Coyle, J.T., Tsai, G., Goff, D., 2003. Converging evidence of NMDA receptor hypofunction
in the pathophysiology of schizophrenia. Ann. N. Y. Acad. Sci. 1003, 318–327.
https://www.ncbi.nlm.nih.gov/pubmed/14684455.

Crossley, N.A., Mechelli, A., Fusar-Poli, P., Broome, M.R., Matthiasson, P., Johns, L.C.,
Bramon, E., Valmaggia, L., Williams, S.C., McGuire, P.K., 2009. Superior temporal
lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis
and in first-episode psychosis. Hum. Brain Mapp. 30, 4129–4137. http://dx.doi.org/
10.1002/hbm.20834.

Deserno, L., Sterzer, P., Wustenberg, T., Heinz, A., Schlagenhauf, F., 2012. Reduced
prefrontal-parietal effective connectivity and working memory deficits in schizo-
phrenia. J. Neurosci. 32, 12–20. http://dx.doi.org/10.1523/JNEUROSCI.3405-11.
2012.

Dosenbach, N.U., Fair, D.A., Miezin, F.M., Cohen, A.L., Wenger, K.K., Dosenbach, R.A.,
Fox, M.D., Snyder, A.Z., Vincent, J.L., Raichle, M.E., Schlaggar, B.L., Petersen, S.E.,
2007. Distinct brain networks for adaptive and stable task control in humans. Proc.
Natl. Acad. Sci. U. S. A. 104, 11073–11078. http://dx.doi.org/10.1073/pnas.
0704320104.

Fletcher, P.C., Frith, C.D., 2009. Perceiving is believing: a Bayesian approach to ex-
plaining the positive symptoms of schizophrenia. Nat. Rev. Neurosci. 10, 48–58.

Forbes, N.F., Carrick, L.A., McIntosh, A.M., Lawrie, S.M., 2009. Working memory in
schizophrenia: a meta-analysis. Psychol. Med. 39, 889–905. http://dx.doi.org/10.
1017/S0033291708004558.

Fornito, A., Bullmore, E.T., 2015. Reconciling abnormalities of brain network structure
and function in schizophrenia. Curr. Opin. Neurobiol. 30, 44–50. http://dx.doi.org/
10.1016/j.conb.2014.08.006.

Fox, M.D., Corbetta, M., Snyder, A.Z., Vincent, J.L., Raichle, M.E., 2006. Spontaneous
neuronal activity distinguishes human dorsal and ventral attention systems. Proc.
Natl. Acad. Sci. U. S. A. 103, 10046–10051. http://dx.doi.org/10.1073/pnas.
0604187103.

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005.
The human brain is intrinsically organized into dynamic, anticorrelated functional
networks. Proc. Natl. Acad. Sci. U. S. A. 102, 9673–9678. http://dx.doi.org/10.1073/
pnas.0504136102.

Friston, K., Brown, H.R., Siemerkus, J., Stephan, K.E., 2016. The dysconnection hy-
pothesis (2016). Schizophr. Res. 176, 83–94. http://dx.doi.org/10.1016/j.schres.
2016.07.014.

Friston, K., Moran, R., Seth, A.K., 2013. Analysing connectivity with Granger causality
and dynamic causal modelling. Curr. Opin. Neurobiol. 23, 172–178. http://dx.doi.

org/10.1016/j.conb.2012.11.010.
Friston, K.J., 2011. Functional and effective connectivity: a review. Brain Connect. 1,

13–36. http://dx.doi.org/10.1089/brain.2011.0008.
Friston, K.J., Frith, C.D., 1995. Schizophrenia: a disconnection syndrome? Clin. Neurosci.

3, 89–97. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=
PubMed&dopt=Citation&list_uids=7583624.

Friston, K.J., Frith, C.D., Liddle, P.F., Frackowiak, R.S., 1993. Functional connectivity: the
principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab.
13, 5–14.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. NeuroImage 19,
1273–1302. https://www.ncbi.nlm.nih.gov/pubmed/12948688.

Friston, K.J., Litvak, V., Oswal, A., Razi, A., Stephan, K.E., van Wijk, B.C., Ziegler, G.,
Zeidman, P., 2016. Bayesian model reduction and empirical Bayes for group (DCM)
studies. NeuroImage 128, 413–431. http://dx.doi.org/10.1016/j.neuroimage.2015.
11.015.

Friston, K.J., Stephan, K.E., Montague, R., Dolan, R.J., 2014. Computational psychiatry:
the brain as a phantastic organ. Lancet Psychiatry 1, 148–158. http://dx.doi.org/10.
1016/S2215-0366(14)70275-5.

Gilmour, G., Dix, S., Fellini, L., Gastambide, F., Plath, N., Steckler, T., Talpos, J.,
Tricklebank, M., 2012. NMDA receptors, cognition and schizophrenia–testing the
validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology 62,
1401–1412. http://dx.doi.org/10.1016/j.neuropharm.2011.03.015.

Goldman-Rakic, P.S., 1994. Working memory dysfunction in schizophrenia. J.
Neuropsychiatr. Clin. Neurosci. 6, 348–357. http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7841806.

Haatveit, B., Jensen, J., Alnaes, D., Kaufmann, T., Brandt, C.L., Thoresen, C., Andreassen,
O.A., Melle, I., Ueland, T., Westlye, L.T., 2016. Reduced load-dependent default mode
network deactivation across executive tasks in schizophrenia spectrum disorders.
Neuroimage Clin. 12, 389–396. http://dx.doi.org/10.1016/j.nicl.2016.08.012.

Jiang, T., Zhou, Y., Liu, B., Liu, Y., Song, M., 2013. Brainnetome-wide association studies
in schizophrenia: the advances and future. Neurosci. Biobehav. Rev. 37, 2818–2835.
http://dx.doi.org/10.1016/j.neubiorev.2013.10.004.

Kim, M.A., Tura, E., Potkin, S.G., Fallon, J.H., Manoach, D.S., Calhoun, V.D., Fbirn,
Turner, J.A., 2010. Working memory circuitry in schizophrenia shows widespread
cortical inefficiency and compensation. Schizophr. Res. 117, 42–51. http://dx.doi.
org/10.1016/j.schres.2009.12.014.

Knowles, E.E., David, A.S., Reichenberg, A., 2010. Processing speed deficits in schizo-
phrenia: reexamining the evidence. Am. J. Psychiatry 167, 828–835. http://dx.doi.
org/10.1176/appi.ajp.2010.09070937.

Kyriakopoulos, M., Dima, D., Roiser, J.P., Corrigall, R., Barker, G.J., Frangou, S., 2012.
Abnormal functional activation and connectivity in the working memory network in
early-onset schizophrenia. J. Am. Acad. Child Adolesc. Psychiatry 51, 911–920. e912.
https://doi.org/10.1016/j.jaac.2012.06.020.

Lee, J., Park, S., 2005. Working memory impairments in schizophrenia: a meta-analysis.
J. Abnorm. Psychol. 114, 599–611. http://dx.doi.org/10.1037/0021-843X.114.4.
599.

Lewis, D.A., Curley, A.A., Glausier, J.R., Volk, D.W., 2012. Cortical parvalbumin inter-
neurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 35, 57–67.
http://dx.doi.org/10.1016/j.tins.2011.10.004.

Lui, S., Li, T., Deng, W., Jiang, L., Wu, Q., Tang, H., Yue, Q., Huang, X., Chan, R.C.,
Collier, D.A., Meda, S.A., Pearlson, G., Mechelli, A., Sweeney, J.A., Gong, Q., 2010.
Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-
episode schizophrenia revealed by “resting state” functional magnetic resonance
imaging. Arch. Gen. Psychiatry 67, 783–792. http://dx.doi.org/10.1001/
archgenpsychiatry.2010.84.

Menon, V., Uddin, L.Q., 2010. Saliency, switching, attention and control: a network
model of insula function. Brain Struct. Funct. 214, 655–667. http://dx.doi.org/10.
1007/s00429-010-0262-0.

Monaco, S.A., Gulchina, Y., Gao, W.J., 2015. NR2B subunit in the prefrontal cortex: a
double-edged sword for working memory function and psychiatric disorders.
Neurosci. Biobehav. Rev. 56, 127–138. http://dx.doi.org/10.1016/j.neubiorev.2015.
06.022.

Murray, J.D., Anticevic, A., Gancsos, M., Ichinose, M., Corlett, P.R., Krystal, J.H., Wang,
X.J., 2014. Linking microcircuit dysfunction to cognitive impairment: effects of dis-
inhibition associated with schizophrenia in a cortical working memory model. Cereb.
Cortex 24, 859–872. http://dx.doi.org/10.1093/cercor/bhs370.

Nielsen, J.D., Madsen, K.H., Wang, Z., Liu, Z., Friston, K.J., Zhou, Y., 2017. Working
memory modulation of frontoparietal network connectivity in first-episode schizo-
phrenia. Cereb. Cortex 1–10. http://dx.doi.org/10.1093/cercor/bhx050.

Olney, J.W., Newcomer, J.W., Farber, N.B., 1999. NMDA receptor hypofunction model of
schizophrenia. J. Psychiatr. Res. 33, 523–533. https://www.ncbi.nlm.nih.gov/
pubmed/10628529.

Owen, A.M., McMillan, K.M., Laird, A.R., Bullmore, E., 2005. N-back working memory
paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain
Mapp. 25, 46–59. http://dx.doi.org/10.1002/hbm.20131.

Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., Mechelli, A., 2011. Dysconnectivity
in schizophrenia: where are we now? Neurosci. Biobehav. Rev. 35, 1110–1124.
http://dx.doi.org/10.1016/j.neubiorev.2010.11.004.

Phillips, W.A., Silverstein, S.M., 2003. Convergence of biological and psychological per-
spectives on cognitive coordination in schizophrenia. Behav. Brain Sci. 26, 65–82
discussion 82–137. (https://www.ncbi.nlm.nih.gov/pubmed/14598440).

Piskulic, D., Olver, J.S., Norman, T.R., Maruff, P., 2007. Behavioural studies of spatial
working memory dysfunction in schizophrenia: a quantitative literature review.
Psychiatry Res. 150, 111–121. http://dx.doi.org/10.1016/j.psychres.2006.03.018.

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but
systematic correlations in functional connectivity MRI networks arise from subject

Y. Zhou et al. NeuroImage: Clinical 17 (2018) 704–716

715

http://dx.doi.org/10.1093/schbul/sbu080
http://dx.doi.org/10.1016/j.neuroimage.2007.04.042
http://dx.doi.org/10.1093/schbul/sbp094
http://dx.doi.org/10.1073/pnas.1608819113
http://dx.doi.org/10.1385/NI:2:2:205
http://dx.doi.org/10.1385/NI:2:2:205
http://dx.doi.org/10.1016/j.neubiorev.2008.09.002
http://dx.doi.org/10.1016/j.neubiorev.2008.09.002
http://dx.doi.org/10.1196/annals.1440.011
http://dx.doi.org/10.1196/annals.1440.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9468349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9468349
http://dx.doi.org/10.1038/mp.2011.31
http://dx.doi.org/10.1038/mp.2011.31
http://dx.doi.org/10.1016/j.neuroimage.2015.05.069
http://dx.doi.org/10.3389/fpsyg.2013.00270
http://dx.doi.org/10.1038/nrn755
http://dx.doi.org/10.1016/j.pneurobio.2010.06.007
http://dx.doi.org/10.1016/j.pneurobio.2010.06.007
http://dx.doi.org/10.1038/npp.2010.163
https://www.ncbi.nlm.nih.gov/pubmed/14684455
http://dx.doi.org/10.1002/hbm.20834
http://dx.doi.org/10.1002/hbm.20834
http://dx.doi.org/10.1523/JNEUROSCI.3405-11.2012
http://dx.doi.org/10.1523/JNEUROSCI.3405-11.2012
http://dx.doi.org/10.1073/pnas.0704320104
http://dx.doi.org/10.1073/pnas.0704320104
http://refhub.elsevier.com/S2213-1582(17)30311-X/rf0125
http://refhub.elsevier.com/S2213-1582(17)30311-X/rf0125
http://dx.doi.org/10.1017/S0033291708004558
http://dx.doi.org/10.1017/S0033291708004558
http://dx.doi.org/10.1016/j.conb.2014.08.006
http://dx.doi.org/10.1016/j.conb.2014.08.006
http://dx.doi.org/10.1073/pnas.0604187103
http://dx.doi.org/10.1073/pnas.0604187103
http://dx.doi.org/10.1073/pnas.0504136102
http://dx.doi.org/10.1073/pnas.0504136102
http://dx.doi.org/10.1016/j.schres.2016.07.014
http://dx.doi.org/10.1016/j.schres.2016.07.014
http://dx.doi.org/10.1016/j.conb.2012.11.010
http://dx.doi.org/10.1016/j.conb.2012.11.010
http://dx.doi.org/10.1089/brain.2011.0008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7583624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7583624
http://refhub.elsevier.com/S2213-1582(17)30311-X/rf0170
http://refhub.elsevier.com/S2213-1582(17)30311-X/rf0170
http://refhub.elsevier.com/S2213-1582(17)30311-X/rf0170
https://www.ncbi.nlm.nih.gov/pubmed/12948688
http://dx.doi.org/10.1016/j.neuroimage.2015.11.015
http://dx.doi.org/10.1016/j.neuroimage.2015.11.015
http://dx.doi.org/10.1016/S2215-0366(14)70275-5
http://dx.doi.org/10.1016/S2215-0366(14)70275-5
http://dx.doi.org/10.1016/j.neuropharm.2011.03.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7841806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7841806
http://dx.doi.org/10.1016/j.nicl.2016.08.012
http://dx.doi.org/10.1016/j.neubiorev.2013.10.004
http://dx.doi.org/10.1016/j.schres.2009.12.014
http://dx.doi.org/10.1016/j.schres.2009.12.014
http://dx.doi.org/10.1176/appi.ajp.2010.09070937
http://dx.doi.org/10.1176/appi.ajp.2010.09070937
https://doi.org/10.1016/j.jaac.2012.06.020
http://dx.doi.org/10.1037/0021-843X.114.4.599
http://dx.doi.org/10.1037/0021-843X.114.4.599
http://dx.doi.org/10.1016/j.tins.2011.10.004
http://dx.doi.org/10.1001/archgenpsychiatry.2010.84
http://dx.doi.org/10.1001/archgenpsychiatry.2010.84
http://dx.doi.org/10.1007/s00429-010-0262-0
http://dx.doi.org/10.1007/s00429-010-0262-0
http://dx.doi.org/10.1016/j.neubiorev.2015.06.022
http://dx.doi.org/10.1016/j.neubiorev.2015.06.022
http://dx.doi.org/10.1093/cercor/bhs370
http://dx.doi.org/10.1093/cercor/bhx050
https://www.ncbi.nlm.nih.gov/pubmed/10628529
https://www.ncbi.nlm.nih.gov/pubmed/10628529
http://dx.doi.org/10.1002/hbm.20131
http://dx.doi.org/10.1016/j.neubiorev.2010.11.004
http://refhub.elsevier.com/S2213-1582(17)30311-X/rf0275
http://refhub.elsevier.com/S2213-1582(17)30311-X/rf0275
http://refhub.elsevier.com/S2213-1582(17)30311-X/rf0275
http://dx.doi.org/10.1016/j.psychres.2006.03.018


motion. NeuroImage 59, 2142–2154. http://dx.doi.org/10.1016/j.neuroimage.2011.
10.018.

Powers Iii, A.R., Gancsos, M.G., Finn, E.S., Morgan, P.T., Corlett, P.R., 2015. Ketamine-
induced hallucinations. Psychopathology 48, 376–385. http://dx.doi.org/10.1159/
000438675.

Pu, W., Luo, Q., Palaniyappan, L., Xue, Z., Yao, S., Feng, J., Liu, Z., 2016. Failed co-
operative, but not competitive, interaction between large-scale brain networks im-
pairs working memory in schizophrenia. Psychol. Med. 46, 1211–1224. http://dx.
doi.org/10.1017/S0033291715002755.

Raichle, M.E., 2015. The Brain's default mode network. Annu. Rev. Neurosci. 38,
433–447. http://dx.doi.org/10.1146/annurev-neuro-071013-014030.

Ranlund, S., Adams, R.A., Diez, A., Constante, M., Dutt, A., Hall, M.H., Maestro Carbayo,
A., McDonald, C., Petrella, S., Schulze, K., Shaikh, M., Walshe, M., Friston, K.,
Pinotsis, D., Bramon, E., 2016. Impaired prefrontal synaptic gain in people with
psychosis and their relatives during the mismatch negativity. Hum. Brain Mapp. 37,
351–365. http://dx.doi.org/10.1002/hbm.23035.

Razi, A., Seghier, M.L., Zhou, Y., McColgan, P., Zeidman, P., Park, H.-J., Sporns, O., Rees,
G., Friston, K.J., 2017. Large-scale DCMs for resting-state fMRI. Network
Neuroscience 1 (3), 222–241. http://dx.doi.org/10.1162/netn_a_00015.

Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A.R., Schulz, J.B., Fox, P.T., Eickhoff,
S.B., 2012. Modelling neural correlates of working memory: a coordinate-based meta-
analysis. NeuroImage 60, 830–846. http://dx.doi.org/10.1016/j.neuroimage.2011.
11.050.

Salomon, R., Bleich-Cohen, M., Hahamy-Dubossarsky, A., Dinstien, I., Weizman, R.,
Poyurovsky, M., Kupchik, M., Kotler, M., Hendler, T., Malach, R., 2011. Global
functional connectivity deficits in schizophrenia depend on behavioral state. J.
Neurosci. 31, 12972–12981. http://dx.doi.org/10.1523/JNEUROSCI.2987-11.2011.

Satterthwaite, T.D., Wolf, D.H., Loughead, J., Ruparel, K., Elliott, M.A., Hakonarson, H.,
Gur, R.C., Gur, R.E., 2012. Impact of in-scanner head motion on multiple measures of
functional connectivity: relevance for studies of neurodevelopment in youth.
NeuroImage 60, 623–632. http://dx.doi.org/10.1016/j.neuroimage.2011.12.063.

Schmidt, A., Smieskova, R., Aston, J., Simon, A., Allen, P., Fusar-Poli, P., McGuire, P.K.,
Riecher-Rossler, A., Stephan, K.E., Borgwardt, S., 2013. Brain connectivity abnorm-
alities predating the onset of psychosis: correlation with the effect of medication.
JAMA Psychiat. 70, 903–912. http://dx.doi.org/10.1001/jamapsychiatry.2013.117.

Schmidt, A., Smieskova, R., Simon, A., Allen, P., Fusar-Poli, P., McGuire, P.K., Bendfeldt,
K., Aston, J., Lang, U.E., Walter, M., Radue, E.W., Riecher-Rossler, A., Borgwardt,
S.J., 2014. Abnormal effective connectivity and psychopathological symptoms in the
psychosis high-risk state. J. Psychiatry Neurosci. 39, 239–248. http://www.ncbi.nlm.
nih.gov/pubmed/24506946.

Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L.,
Greicius, M.D., 2007. Dissociable intrinsic connectivity networks for salience pro-
cessing and executive control. J. Neurosci. 27, 2349–2356. http://dx.doi.org/10.
1523/JNEUROSCI.5587-06.2007.

Shepherd, A.M., Laurens, K.R., Matheson, S.L., Carr, V.J., Green, M.J., 2012. Systematic
meta-review and quality assessment of the structural brain alterations in schizo-
phrenia. Neurosci. Biobehav. Rev. 36, 1342–1356. http://dx.doi.org/10.1016/j.
neubiorev.2011.12.015.

Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D., 2012. Decoding
subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex
22, 158–165. http://dx.doi.org/10.1093/cercor/bhr099.

Silver, H., Feldman, P., Bilker, W., Gur, R.C., 2003. Working memory deficit as a core

neuropsychological dysfunction in schizophrenia. Am. J. Psychiatr. 160, 1809–1816.
Spreng, R.N., Stevens, W.D., Chamberlain, J.P., Gilmore, A.W., Schacter, D.L., 2010.

Default network activity, coupled with the frontoparietal control network, supports
goal-directed cognition. NeuroImage 53, 303–317. http://dx.doi.org/10.1016/j.
neuroimage.2010.06.016.

Stanislaw, H., Todorov, N., 1999. Calculation of signal detection theory measures. Behav.
Res. Methods Instrum. Comput. 31, 137–149. http://www.ncbi.nlm.nih.gov/
pubmed/10495845.

Stephan, K.E., Baldeweg, T., Friston, K.J., 2006. Synaptic plasticity and dysconnection in
schizophrenia. Biol. Psychiatry 59, 929–939. http://dx.doi.org/10.1016/j.biopsych.
2005.10.005.

Sui, J., Adali, T., Yu, Q., Chen, J., Calhoun, V.D., 2012. A review of multivariate methods
for multimodal fusion of brain imaging data. J. Neurosci. Methods 204, 68–81.
http://dx.doi.org/10.1016/j.jneumeth.2011.10.031.

Toro, R., Fox, P.T., Paus, T., 2008. Functional coactivation map of the human brain.
Cereb. Cortex 18, 2553–2559. http://dx.doi.org/10.1093/cercor/bhn014.

Uhlhaas, P.J., Singer, W., 2012. Neuronal dynamics and neuropsychiatric disorders: to-
ward a translational paradigm for dysfunctional large-scale networks. Neuron 75,
963–980. http://dx.doi.org/10.1016/j.neuron.2012.09.004.

Van Dijk, K.R., Sabuncu, M.R., Buckner, R.L., 2012. The influence of head motion on
intrinsic functional connectivity MRI. NeuroImage 59, 431–438. http://dx.doi.org/
10.1016/j.neuroimage.2011.07.044.

Weinberger, D.R., 1993. A connectionist approach to the prefrontal cortex. J.
Neuropsychiatr. Clin. Neurosci. 5, 241–253. http://dx.doi.org/10.1176/jnp.5.3.241.

Whitfield-Gabrieli, S., Ford, J.M., 2012. Default mode network activity and connectivity
in psychopathology. Annu. Rev. Clin. Psychol. 8, 49–76. http://dx.doi.org/10.1146/
annurev-clinpsy-032511-143049.

Whitfield-Gabrieli, S., Thermenos, H.W., Milanovic, S., Tsuang, M.T., Faraone, S.V.,
McCarley, R.W., Shenton, M.E., Green, A.I., Nieto-Castanon, A., LaViolette, P.,
Wojcik, J., Gabrieli, J.D., Seidman, L.J., 2009. Hyperactivity and hyperconnectivity
of the default network in schizophrenia and in first-degree relatives of persons with
schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 106, 1279–1284. http://dx.doi.org/10.
1073/pnas.0809141106.

Wu, G., Wang, Y., Mwansisya, T.E., Pu, W., Zhang, H., Liu, C., Yang, Q., Chen, E.Y., Xue,
Z., Liu, Z., Shan, B., 2014. Effective connectivity of the posterior cingulate and medial
prefrontal cortices relates to working memory impairment in schizophrenic and bi-
polar patients. Schizophr. Res. 158, 85–90. http://dx.doi.org/10.1016/j.schres.2014.
06.033.

Wu, S., Wang, H., Chen, C., Zou, J., Huang, H., Li, P., Zhao, Y., Xu, Q., Zhang, L., Wang,
H., Pandit, S., Dahal, S., Chen, J., Zhou, Y., Jiang, T., Wang, G., 2017. Task perfor-
mance modulates functional connectivity involving the dorsolateral prefrontal cortex
in patients with schizophrenia. Front. Psychol. 8, 56. http://dx.doi.org/10.3389/
fpsyg.2017.00056.

Zhang, H., Wei, X., Tao, H., Mwansisya, T.E., Pu, W., He, Z., Hu, A., Xu, L., Liu, Z., Shan,
B., Xue, Z., 2013. Opposite effective connectivity in the posterior cingulate and
medial prefrontal cortex between first-episode schizophrenic patients with suicide
risk and healthy controls. PLoS One 8, e63477. http://dx.doi.org/10.1371/journal.
pone.0063477.

Zhou, Y., Friston, K.J., Zeidman, P., Chen, J., Li, S., Razi, A., 2017. The Hierarchical
Organization of the Default, Dorsal Attention and Salience Networks in Adolescents
and Young Adults. Cereb. Cortex 1–12. http://dx.doi.org/10.1093/cercor/bhx307.

Y. Zhou et al. NeuroImage: Clinical 17 (2018) 704–716

716

http://dx.doi.org/10.1016/j.neuroimage.2011.10.018
http://dx.doi.org/10.1016/j.neuroimage.2011.10.018
http://dx.doi.org/10.1159/000438675
http://dx.doi.org/10.1159/000438675
http://dx.doi.org/10.1017/S0033291715002755
http://dx.doi.org/10.1017/S0033291715002755
http://dx.doi.org/10.1146/annurev-neuro-071013-014030
http://dx.doi.org/10.1002/hbm.23035
http://dx.doi.org/10.1162/netn_a_00015
http://dx.doi.org/10.1016/j.neuroimage.2011.11.050
http://dx.doi.org/10.1016/j.neuroimage.2011.11.050
http://dx.doi.org/10.1523/JNEUROSCI.2987-11.2011
http://dx.doi.org/10.1016/j.neuroimage.2011.12.063
http://dx.doi.org/10.1001/jamapsychiatry.2013.117
http://www.ncbi.nlm.nih.gov/pubmed/24506946
http://www.ncbi.nlm.nih.gov/pubmed/24506946
http://dx.doi.org/10.1523/JNEUROSCI.5587-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.5587-06.2007
http://dx.doi.org/10.1016/j.neubiorev.2011.12.015
http://dx.doi.org/10.1016/j.neubiorev.2011.12.015
http://dx.doi.org/10.1093/cercor/bhr099
http://refhub.elsevier.com/S2213-1582(17)30311-X/rf0355
http://refhub.elsevier.com/S2213-1582(17)30311-X/rf0355
http://dx.doi.org/10.1016/j.neuroimage.2010.06.016
http://dx.doi.org/10.1016/j.neuroimage.2010.06.016
http://www.ncbi.nlm.nih.gov/pubmed/10495845
http://www.ncbi.nlm.nih.gov/pubmed/10495845
http://dx.doi.org/10.1016/j.biopsych.2005.10.005
http://dx.doi.org/10.1016/j.biopsych.2005.10.005
http://dx.doi.org/10.1016/j.jneumeth.2011.10.031
http://dx.doi.org/10.1093/cercor/bhn014
http://dx.doi.org/10.1016/j.neuron.2012.09.004
http://dx.doi.org/10.1016/j.neuroimage.2011.07.044
http://dx.doi.org/10.1016/j.neuroimage.2011.07.044
http://dx.doi.org/10.1176/jnp.5.3.241
http://dx.doi.org/10.1146/annurev-clinpsy-032511-143049
http://dx.doi.org/10.1146/annurev-clinpsy-032511-143049
http://dx.doi.org/10.1073/pnas.0809141106
http://dx.doi.org/10.1073/pnas.0809141106
http://dx.doi.org/10.1016/j.schres.2014.06.033
http://dx.doi.org/10.1016/j.schres.2014.06.033
http://dx.doi.org/10.3389/fpsyg.2017.00056
http://dx.doi.org/10.3389/fpsyg.2017.00056
http://dx.doi.org/10.1371/journal.pone.0063477
http://dx.doi.org/10.1371/journal.pone.0063477
http://dx.doi.org/10.1093/cercor/bhx307

	Altered intrinsic and extrinsic connectivity in schizophrenia
	Introduction
	Materials and methods
	Participants
	Experimental design and task
	Cognition assessments
	MRI data acquisition and preprocessing
	Behavioral analysis
	GLM analysis
	Dynamic causal modeling
	VOI selections
	Individual level DCM specification and inversion
	Empirical Bayes for group DCM
	Bayesian model reduction

	Clinical correlates of differentiated connections
	Effect of antipsychotic medication

	Results
	Behavioral results
	Brain activation following GLM analysis
	Task independent connectivity across conditions – and their group differences
	Modulatory effects on connections and their group differences
	Clinical correlates of differentiated connections

	Discussion
	Impaired self-inhibition in schizophrenia
	Altered effective connectivity within the DMN in schizophrenia
	Weaker extrinsic connectivity between networks in schizophrenia
	Contextual modulatory effect in self-connections
	Clinical implications

	Conclusion
	Acknowledgements
	Supplementary data
	References




