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Abstract

The rise of quantum technology has put control at the centre of advancements in quantum

mechanics. The union of quantum mechanics with mathematical control theory is a meeting that

is leading to a much deeper insight into our interaction with the bizarre properties of quantum

theory.

Often, the study of discrete variable systems is the focus for making this union. Here, we

look at how control theory may be applied to the continuous variable theory of Gaussian states.

Special emphasis is given to control of the covariance matrix of these states, as it is here that we

find the entanglement and entropic properties of the state.

We begin by exploring some initial results for the geometry of Gaussian states, revealing

different manifold structures dependent on symplectic eigenvalue degeneracy. In this geomet-

rical setting a proposal for an extension of Williamson’s theorem is put forward and partially

completed.

It is often interesting to look at restricted sets of Hamiltonians and ask what transformations

can be performed with concatenations of their corresponding unitaries. Controllable systems are

those for which the entire group of interest is possible to enact. We explore an uncontrollable

system in a single mode and give a physical analysis as to why it behaves this way. This leads

to ideas to move forwards for a necessary and sufficient condition for control on the symplectic

group that has been conjectured since 1972.

Later, we transfer to the question of open dynamics. We focus on a particular and ubiquitous

channel known as ‘lossy’ or ‘the attenuation channel’. An equation is derived describing the

evolution for the symplectic invariants of a Gaussian state undergoing such dynamics.

The equation of the former chapter is used to explore the evolution of entropy and entan-

glement. Optimal protocols are developed for the manipulation of these properties undergoing

lossy dynamics.



5

Acknowledgements

The first people that I would like to thank are my collaborators on all projects, especially

Marco Genoni for his inimitable ability to detect my numerous mistakes, Alexander Pitchford,

Daniel Burgarth, Alberto Carlini, Vittorio Giovannetti and Alessio Serafini.

My PhD experience was greatly enhanced by numerous discussions with members of my

department. Especially Lluis Masanes, who has been incredibly generous with his time; his

insights and creativity have been an incredible stimulus during my time at UCL. Alongside

these conversations, fellow students like Carlo Sparaciari, Thomas Galley, Alvaro Alhambra,

Dan Goldwater and Sofia Qvarfort have livened up the experience.

Of my collaborators, there is one that of course deserves special mention. My supervisor

Alessio has pushed forward fun and risky projects that were great fun working on. Spending

time indulging in tricky problems together has been enormous fun.

In the background throughout the whole project have been my parents, Martine and Claire,

who have put up with a heavy dose of PhD-induced pedantry.

Through the vacillations and vagaries of the three years, my partner Sophie has borne the

real brunt, letting me talk for far too long on the mathematical intricacies of control theory.



6



Contents

1 Introduction 13

2 Gaussian states 17

2.1 Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 The symplectic group 33

3.1 Other bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Subgroups and decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Single-shot symplectics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 The covariance matrix 47

4.1 Decomposition and categorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Squeezing measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Symplectic invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Geometry of Gaussian states 59

5.1 Covariance matrix manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Williamson’s theorem extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Control theory 67

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Preliminary controllability results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Multiple control field results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7



8 CONTENTS

7 Neutrality 79

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 In control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Symplectic neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Single-mode control 85

8.1 Structure of the single-mode symplectic group . . . . . . . . . . . . . . . . . . . . 86

8.2 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.3 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.3.1 Bounding the reachable set . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3.2 Euler translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.3.3 Visualising the reachable set . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.4 Spacetime analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.5 Ever-growing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9 Open Gaussian systems 103

9.1 Input-output formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.2 Lossy channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.3 Symplectic invariant evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.4 Entanglement evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10 Lossy system control 117

10.1 Entropic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.1.1 Optimal symplectics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.1.2 Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.2 Entanglement control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

11 Conclusion 131

A Groups and topology foray 133

B Hyperbolic system transformation 135

C Euler decomposition uniqueness 139

D Optimisation and bistochastic matrices 141



List of Tables

4.1 A categorisation of the different types of covariance matrix which can describe a

Gaussian state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9



10 LIST OF TABLES



List of Figures

2.1 Single-mode Wigner functions with different variances, but both complying with

the Robertson-Schrödinger uncertainty relation. . . . . . . . . . . . . . . . . . . . 29

4.1 An implication diagram linking different conditions for entanglement. . . . . . . 56

5.1 A graphical representation of the manifold of covariance matrices in two modes.

The diagonal line depicts the case when the two symplectic eigenvalues, ν1 and

ν2, are degenerate. Each point represents a manifold in a different form, either as

diffeomorphic to a plane or the product of a 2-sphere and a plane. . . . . . . . . 63

7.1 A graphical representation of the implications used to prove Theorem 34. . . . . 81

8.1 The reachable set of an example single-mode hyperbolic system with b � 0 is

represented in a cubic plot for different times of evolution. . . . . . . . . . . . . . 97

8.2 The reachable set of an example single-mode hyperbolic system is represented in

a cubic plot for b � �0.99 and T � 5. . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3 Imagine we begin in a lightcone in one of the angle-bounded regions, depicted by

the squares. Enacting θ Ñ �φ � π{2 and φ Ñ �θ � π{2 will take squares of

a single colour to squares of the same colour with the opposite arrow direction,

indicating opposite time direction. A transformation of θ Ñ θ� π and φÑ φ� π
takes us to a square of exactly the same time as this transformation does nothing

to the lightcone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.1 The input-output formalism describes a stream of bath-modes interacting momen-

tarily with the system, labeled S, and then being discarded. Although in many

setups these outgoing modes would in fact be measured instead. . . . . . . . . . 105

11



12 LIST OF FIGURES

10.1 The solution to Eq. (10.12) is given for the values ν0 � 5, χ � 1 and two different

initial squeezing values. z � 3 implies that the entropy monotonically decreases

whereas a higher initial squeezing parameter induces an initial ‘bump’ in the entropy.122

10.2 A plot of the trace term in Eq. (10.28) against the variable αA for the specific

values: aA � 2, bA � 5, cA � 3, zA � 4. . . . . . . . . . . . . . . . . . . . . . . . . 126

10.3 The graph shows the evolution of Σ̃ under Eq. (10.19) for a two-mode state.

Different solutions are given as we vary the number of times optimal control was

enacted during the evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



Chapter 1

Introduction

Quantum theory began its life as a remedy to a radiation problem. James Clerk Maxwell’s

theory of electromagnetism was unable to account for the behaviour of a confined field and

so Max Planck introduced the idea of a ‘quantum’ of energy hν, where ν is the frequency of

the radiation and h was the new quantum constant [4]. This modification of the continuous

ontology of Maxwell’s fields was applied to a host of other problems which gathered momentum

throughout the decade [5]. In 1913 Niels Bohr managed to use the intuition from Planck’s idea

to provide an understanding of the spectral lines of hydrogen, with a renewed understanding of

the Rutherford model, which was itself classical [6]. During the remainder of the decade and

into the next, a description of the atom and its spectral properties became the central focus and

success story of this early theory of quanta.

Ever-present was a desire to create a more systematic application of quantum theory to

broaden its application beyond the atom. The pioneers of the field sought a systematic way to

turn any classical picture into a quantum description that gave the correct results. The great in-

sight came with Werner Heisenberg’s paper of 1925 highlighting the role that non-commutativity

should play in the mathematical quantisation of any classical theory [7]. However, the deeper

mathematical structure underlying Heisenberg’s work was unclear even to him. Following a

meeting in 1925 in Göttingen, Heisenberg remarked that “Now the learned Göttingen mathe-

maticians talk so much about Hermitian matrices, but I do not even know what a matrix is” [5].

On one of the great train journeys of history, the young Pascual Jordan took it upon himself

to eavesdrop on the conversation of Max Born and Wolfgang Pauli who were discussing Heisen-

berg’s paper. After the train pulled into the station Jordan approached Born and offered him

his help which sparked the 1925 Dreier-Manner-Arbeit (three-man-work) by Born, Jordan and

Heisenberg, where the modern structure of quantum mechanics began to take shape [8].

Throughout the twentieth century the field has blossomed into a cacophany of technological

13



14 CHAPTER 1. INTRODUCTION

and philosophical research. Its bizarre nature was settled with Bell’s theorem, which remains

the linchpin of modern attempts to understand the theory [9]. Despite its metaphysical oddities,

as a physical theory it has withstood every test and is the foundation of the Standard Model,

which provides an account of the fundamental constituents of matter.

The rise of quantum information theory in the latter half of the last century has provided a

new ground on which physicists can flesh out the structure and utility of quantum mechanics.

This ground is a place where the application of the theory makes direct contact with questions

about its meaning. This is due to the fact that isolating the bizarre properties of quantum

mechanics provides intuition for the required content of a non-classical information protocol.

The conceived technologies invented by quantum information theorists, however, are a long

way from their real-world implementation. Our power to bring these machines to life remains

limited by our ability to manipulate quantum properties. It is thus no surprise that control over

the quantum world is the central aim of a vast section of experimental research.

The problem of controlling machinery, however, is of course not new. The industrial revolution

spawned a plethora of new technologies that required stabilising, damping and optimising. In

the early days, components to do this were added by their inventors based on intuition. The shift

came at a conference in 1867 when Maxwell led a call to arms for the community to produce a

mathematical structure for these effects. He delivered a paper describing a pre-existing engine

component called a ‘governor’ which acts as a stabilising component in many machines [10]. His

description of the governor was through a system of differential equations, which are often cited

as the birth equations of modern control theory [11].

This theory developed throughout the nineteenth and twentieth centuries, calling on increas-

ingly sophisticated mathematical techniques. Its collision with quantum theory was inevitable

after the latter became viewed as a theory of technological utility. Quantum control theory has

a growing literature as people try to increase their ability to manipulate these systems. This has

been mirrored by the rise of resource theories that explicitly recognise the utility of certain of

the properties of quantum states. A type of state, known as a Gaussian state, plays a prominent

role in much modern technology, as well as having intriguing mathematical properties. Although

only expressible using an infinite-dimensional Hilbert space, the Gaussian subtheory allows one

to avoid many of the subtleties contained in the broader exploration of control theory in infinite

dimensions.

The thesis is structured so as to introduce the reader to Gaussian states and the symplectic

group in Secs. 2–4, which will set the stage for novel results in later sections. The first foray into

an extension of the existent theory is given in Sec. 5 where an attempt to develop the geometry

of Gaussian states is provided.

The underlying motivation was the success with which geometry has been applied to the

understanding of finite-dimensional quantum systems through the Bloch ball representation, as
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well as the revolutionising role that geometry has played in abstract control theory, which is

introduced in Sec. 6, with some small results in Sec 7 developing the notion of neutrality.

In Sec. 8 the control theory of closed Gaussian systems is explored. Here, we perform a phys-

ical analysis of existing mathematical results on the controllability of the symplectic group. We

find that the behaviour of nontrivially uncontrollable Gaussian systems is such that unbounded

squeezing occurs. This is important in that it provides a characterisation that can be explored

for all uncontrollable systems, lending insight into a long-standing open problem in the field.

In Sec. 9 the system is opened to an environment and we consider evolution under lossy

dynamics. Fadeev-Leverrier recursion is used to arrive at an evolution equation for the symplectic

invariants of the covariance matrix in such a situation. This allows a direct insight into the

behaviour of these important quantities.

In Sec. 10 the former equation is used in the context of control. The equation enables the

derivation of optimal control strategies for the heating and cooling of Gaussian states, as well as

for the preservation of entanglement, which is gradually wiped out by lossy dynamics.

The structure of the thesis is such that the technical background is covered largely before

the statement of new results. We begin with an overview of Gaussians states before exploring

the structures of the symplectic group and the covariance matrix. These provide the bedrock on

which we can discuss new insights in the field.
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Chapter 2

Gaussian states

The theory of electromagnetism was present at the birth of quantum theory in Planck’s founding

paper, where he realised that a thermodynamical and discrete description of light might be

a better fit to certain experimental data [4]. Einstein took this further and in 1905 gave a

description of the photoelectric effect for which he won the Nobel prize [12]. Following the

successes of these early theories, Maxwell’s description of radiation was continually questioned.

Specifically, the interaction of electrons and electromagnetic radiation provided varying ontologies

for how we should conceive of light. One of the most influential experiments in this regard came

from Compton’s light scattering experiment [13] which was one of the central results used by

those arguing that light was made of particles, later called ‘photons’ [14].

As the theory of quantum fields matured throughout the later twentieth century, the simple

ontology of some of the earlier quantum models held firm in the teaching of quantum mechanics, if

not in the theory itself. That is, that quantum mechanics was about turning fields into particles.

The continued use of this older physical picture led Willis Lamb at a conference in 1960 to declare

a ban on the use of the word ‘photon’. He suggested a licence be required by anyone wishing to

use the word; applications were to be directed to himself [15].

To avoid entering into the mesh of visualisations of quantum theory, many of which rely on

pre-1925 intuitions, we restrict ourselves to a mathematical treatment of the field. We consider a

Gaussian state to begin as a particular state over the modes of electric and magnetic fields where

the amplitudes of these are promoted to operators on a Hilbert space. Any further physical

intuition would require an interpretation of the theory.

The electric and magnetic field operators can be mapped and rewritten in a form that looks

identical to the position and momentum operators of ordinary quantum mechanics, despite the

field theory origins of the equations. These fundamental variables that describe the system

have a continuous spectrum which causes the Hilbert space representation to have infinite-

17
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dimensionality. In 1932 Wigner created a new way of representing certain continuous variable

systems using a phase space picture. Now referred to as the Wigner function, this provided a

novel way to represent a quantum state that did not require a space of infinite dimensions [16].

A Gaussian quantum state is one whose Wigner function is Gaussian. A very early appari-

tion of these states came in 1926 in an exchange between Schrödinger and Hendrik Lorentz.

Schrödinger’s early understanding of his wave equation was as a description of a continuous

expression of the charge density of the electron [5]. In this mental picture, particles were given

as ‘wave packets’ of the field. Lorentz opposed this idea, stating that particles could not be

described by waves because of the way in which they inevitably spread. No evidence suggested

particles exhibiting this behaviour and so Schrödinger’s interpretation should be untenable ac-

cording to Lorentz [17]. Schödinger’s response was to provide a solution to the wave equation

which did not exhibit this behaviour. Due to the way in which it maintained its shape during

evolution, it was referred to as a coherent state [18]. Coherent states have a Gaussian Wigner

function and so form a subset of the Gaussian states. Thus, one of the earliest solutions to the

wave equation, before its modern interpretation, was a Gaussian state.

Coherent states are centrally important in the quantum description of the laser, invented

in 1960 [19]. They are sometimes referred to as the most classical of the states because the

evolution of their average mimics the classical solution to Maxwell’s equations [19]. It took some

time before the less classical ‘squeezed’ Gaussian states were observed in 1985 in AT&T Bell labs

by Richart E. Slusher [20], although they were considered as early as 1927 by Earle Kennard [18].

The importance of coherent states for quantum optics was recognised in two papers by E.

C. George Sudarshan [21] and Roy Glauber [22], published within a few months of each other.

In the former paper, Sudarshan shows that coherent states can be used as a basis to provide a

new representation of optical states. This new representation was named the P -representation

in Glauber’s paper which had connections with the Wigner representation, as another function

on phase space. Glauber’s paper won him the Nobel prize, to go alongside his Lamb Licence [23].

Gaussian states appear in a wide range of physical setups, not confined to the quantum optical

setting. Optomechanical systems describing micro-scale oscillators interacting with electromag-

netic fields use the theory extensively [24]. Furthermore, trapped ion systems depend on the

theory [25] as well as new explorations of the gravitational quantum regime using superpositions

of massive objects [26].

However, quantum theory is about more than just states. Restricting to Gaussian-preserving

measurements and transformations forms the Gaussian subtheory of quantum mechanics. In this

subtheory quadratic Hamiltonians, which describe two-point interactions, arise as fundamental.

This reveals the cause of the ubiquity of the theory since higher order interactions are difficult

to achieve in many situations.

A quick caveat that needs to be borne in mind is that we will always use the term Gaussian
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state to refer to Gaussian states of bosonic field modes. The study of these states has been

extended to fermionic modes with anti-commuting operators [27], but these will not be discussed

in this work. Therefore, it will always be implicit that the bosonic, rather then fermionic, flavour

of these states is being referred to.

Over time the Gaussian state formalism, although still barely mentioned in many optics

textbooks [20, 28], has been developed into a mathematical subtheory of quantum mechanics,

studied independently of any direct interpretation [29, 30]. A development in recent years has

been to nestle the framework of Gaussian states into the paradigm of quantum information theory

so that its potential use in the development of information technology can be clarified [31]. Before

attempting to control these states, we must first learn the formalism to describe them and their

properties.

2.1 Hilbert space

The standard definition of Gaussian states is usually with respect to its Wigner function. Al-

though this has pictorial clarity the path through Hilbert spaces can be more instructive and

provide a link with finite-dimensional methods – “the longer road sometimes gives more famil-

iarity with the country” [32]. Following Ref. [33], we will begin in the Hilbert space and then

work forwards to the phase space representation.

The common starting point in quantum optics, as found in Refs. [20, 28] is to consider an

electromagnetic field that is spatially confined. By solving Maxwell’s equations under such

boundary conditions, the vibrational modes of the field become discretised into a countably

infinite set. Any field in the confined space can be written as a sum of these modes, where each

mode has an electric and magnetic component. Taking a finite set of n field modes, we then

quantise by promoting these 2n degrees of freedom to operators acting on an infinite-dimensional

Hilbert space.

Throughout this work the canonical operators of the ith mode will be represented by x̂i and

p̂i. This abstract treatment could equally well describe a set of n coupled mechanical quantum

harmonic oscillators and so they will be referred to as the canonical position and momentum

operators for the given mode. We see that restricting to a finite subset of modes allows quantum

optics to have the formal form of quantum particle mechanics, despite describing a field theory.

Although we deal with a field as the underlying ontology of the theory, the finite degrees of

freedom mean that the full complexities of field theory are removed.

The basis of standard quantum mechanics since 1925, and the quantum optical formalism,

lies in stating a commutation relation for these canonical operators,

rx̂j , p̂ks � iδjk1̂, (2.1)
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where 1̂ is the identity operator on the Hilbert space and ~ has already been set to one, as is

commonly done, and δ is the Kronecker delta. Concatenating the 2n mode operators into a

vector form, r̂ � px̂1, p̂1, . . . , x̂n, p̂nqᵀ, the commutation relation can be rewritten as

rr̂, r̂ᵀs � iΩ1̂, (2.2)

where the outer product has been used to create a matrix of commutators. We also have

Ω :�
nà
j�1

Ω1, Ω1 �
�

0 1

�1 0

�
. (2.3)

Ω is an object that appears extensively in the Hamiltonian formalism of classical mechanics and

appears again now in the quantum formalism.

Definition 1 (Quadratic Hamiltonian). A Hamiltonian is referred to as quadratic if it is of the

form

Ĥ � 1

2
r̂ᵀH r̂� r̂ᵀr, (2.4)

where H is some real and symmetric, 2n� 2n matrix and r is some real, length 2n vector.

The close link between the Gaussian subtheory and classical mechanics immediately provides

a clash of nomenclature. Both Ĥ and ΩH are referred to as Hamiltonian matrices [34], due to

the fact that Ĥ is the quantum Hamiltonian operator that acts on the Hilbert space, whereas

ΩH acts as a representation of a Hamiltonian vector field which forms the Lie algebra of the

symplectic group [35], which will be extensively explored later. It should be clear in context

when reference is to a Hilbert space operator and when to the matrix ΩH.

Definition 2 (Gaussian state). Any state of the form

ρ̂G � e�βĤ�

Tr
�
e�βĤ�

� , (2.5)

with Ĥ� � 1
2 r̂ᵀH�r̂� r̂ᵀb, H� ¡ 0, b P Rn, and β ¡ 0 is referred to as Gaussian. This includes

the limiting case of β Ñ8, which describes the set of pure Gaussian states.

The restriction to a positive-definite H� puts the state in the form of a Gibbs distribution

when spectrally decomposed, as well as ensuring that the operator is a bona fide trace-class

density matrix. Thus, the set of Gaussian states can be described in words as: the ground and

thermal states of positive-definite Hamiltonians [33]. Later we will see that this description is

equivalent to them having Gaussian Wigner functions.
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Note that the only constraint placed on the vector r̂ was the satisfaction of Eq. (2.2). From

this we infer that any transformation of r̂ that conserves this relation will also conserve the form

of Eq. (2.5), and hence the state will remain Gaussian. The set of real linear transformations

that satisfy the commutation relation must be such that,

rr̂, r̂ᵀs � rSr̂� r, r̂ᵀSᵀ � rᵀs � iSΩSᵀ � iΩ, (2.6)

which beckons the introduction of the symplectic group.

Definition 3 (Symplectic Group). The set of real, 2n� 2n matrices satisfying

SΩSᵀ � Ω, (2.7)

where Ω is given in Eq. (2.3), is referred to as the n-mode symplectic group and denoted Spp2n,Rq.

The full set of transformations, r̂ Ñ Sr̂� r, defines the inhomogeneous symplectic group.

Our aim at this stage is to take the general form of a Gaussian state, as given in Def. 2, and

decompose it to reveal the structure of this set of states. In order to enact this decomposition

it is necessary to define some operators based on this commutator-preserving action of the in-

homogeneous symplectic group. We begin with the inhomogeneous part which displaces r̂ by a

constant vector. For this we require Weyl operators.

Definition 4 (Weyl operator). The set of Hilbert space operators of the form

D̂r :� eir
ᵀΩr̂, (2.8)

are known as Weyl operators. Note that D̂�r � D̂:
r.

Before connecting these with displacement, we require a lemma involving the commutator of

powers of matrices.

Lemma 5. Consider three real matrices of the same size, A, B, C. If rA,Bs � C and rB,Cs � 0

then rA,Bks � kCBk�1 for all k ¥ 1.

Proof. Suppose rA,Bks � kCBk�1 for some k ¥ 1. Then

rA,Bk�1s � ABk�1 �Bk�1A � ABk�1 �BkAB �BkAB �Bk�1A

� rA,BksB �BkrA,Bs � kCBk �BkC � pk � 1qCBk.
(2.9)

Defining B0 � I we know that rA,Bs � CB0 and rB,Cs � 0. The result then follows by

induction.
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Proposition 6. The action of Weyl operators on r̂ acts as a displacement,

D̂rr̂D̂
:
r � r̂� r. (2.10)

Proof.

rr̂, D̂rs �
�
r̂,

8̧

m�0

pirᵀΩr̂qm
m!

�
� �r

8̧

m�1

pirᵀΩr̂qm�1

pm� 1q! � �rD̂r, (2.11)

by Lemma 5 and using rr̂j , islΩlkr̂ks � �sj , meaning that,

D̂rr̂D̂
:
r � pr̂D̂r � rD̂rqD̂:

r

� r̂� r,
(2.12)

as required.

To begin to decompose Eq. (2.5) we note that Proposition 6 implies that

1

2
pr̂� rqᵀHpr̂� rq � 1

2
D̂:

rr̂
ᵀH r̂D̂r. (2.13)

Recalling the meaning of H� and b in Def. 2, and defining

r̄ :� �H�1
� b, (2.14)

we find that

1

2
D̂:

r̄r̂
ᵀH�r̂D̂r̄ � 1

2
pr̂ᵀH�r̂� r̄ᵀH�r̂� r̂ᵀH�r̄� r̄ᵀH�r̄q (2.15)

� 1

2

�
r̂ᵀH�r̂� bᵀr̂� r̂ᵀb� bᵀH�1

� b
�

(2.16)

� 1

2
r̂ᵀH�r̂� r̂ᵀb� 1

2
bᵀH�1

� b. (2.17)

This provides the first dismantling of Eq. (2.5) as

ρ̂G � D̂:
r̄

e�βĤ
1
�

Tr
�
e�βĤ1

�D̂r̄, (2.18)

where Ĥ 1
� � 1

2 r̂ᵀH�r̂. This works because the normalisation of ρ̂G removes the third term of

Eq. (2.17) after exponentiation. The vector r̄ is known as the vector of first moments of ρ̂G. To

decompose further we use the properties of H� and a theorem due to John Williamson.

Theorem 7 (Williamson’s theorem [36]). If M is a 2n-dimensional, real, symmetric, positive-
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definite matrix then there exists S P Spp2n,Rq such that

M � SᵀWS ¡ 0, (2.19)

where

W �
nà
i�1

νiI2, (2.20)

where νi are referred to as the n symplectic eigenvalues of W . Although S is not unique, the

symplectic eigenvalues of M are.

Recalling that H� ¡ 0, we know from Williamson’s theorem that there exists S P Spp2n,Rq
such that

H� � Sᵀ

�
nà
i�1

ωiI2

�
S, (2.21)

where ωi are referred to as the eigenfrequencies of H�.

At the level of the Hilbert space, however, we are interested in a slightly larger group structure

called the metaplectic group, Mpp2n,Rq. This is the double cover of the of the symplectic group

and is special in that it has a faithful unitary representation, which the symplectic group does

not [37]. Thus we use the metaplectic group representation to discuss the action of the symplectic

group on Hilbert space. The relationship between the two groups is not dissimilar to that existing

between SUp2q and SOp3q.
The commutation relation of Eq. (2.1) defines a Lie algebra of operators, known as the

Heisenberg algebra [38]. At the Lie group level the Stone-von Neumann theorem states that any

two irreducible representations are unitarily equivalent [38]. However, representations at the Lie

algebra introduce certain subtleties because the operators are unbounded [39,40]. Under certain

‘integrability’ conditions, which will be assumed, the theorem holds at this level. This allows us

to posit the existence of unitary operators to connect two vectors satisfying Eq. (2.2). This helps

in the following proposition, as outlined in Ref. [37].

Proposition 8. The transformation of r̂ is such that

Ŝ:r̂Ŝ � Sr̂, (2.22)

where Ŝ is a unitary representation of the metaplectic group [37] and S P Spp2n,Rq.

Proof. r̂ provides an Hermitian and irreducible representation of the canonical commutation

relation. For S P Spp2n,Rq, Sr̂ also provides an Hermitian and irreducible representation from

the property of the symplectic group that it preserves Eq. (2.2), as shown in Eq. (2.6). The Stone-

von Neumann theorem then implies that the transition is unitarily implementable. Therefore,
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for all S P Spp2n,Rq there exists ÛS acting on the Hilbert space with Sr̂ � Û :
S r̂ÛS such that

U :
SUS � 1̂. ÛS is arbitrary up to an S-dependent phase factor, i.e.

ÛS1ÛS � eiφS,S1 ÛS1S . (2.23)

Spp2n,Rq has no faithful unitary representation whereas its universal double cover, the meta-

plectic group Mpp2n,Rq, does [41]. Therefore the phase factor can be reduced to �1. As such,

we may choose ÛS to be given in the unitary representation of the metaplectic group. Operators

in this representation will generally be denoted Ŝ.

The set of unitary operators that represent Mpp2n,Rq will be referred to as the group of

Gaussian unitaries because under their action, an initial Gaussian state remains Gaussian [29].

Combining Eq. (2.21) and Eq. (2.22),

Ĥ 1
� � r̂ᵀSᵀ

�
nà
i�1

ωiI2

�
Sr̂ � Ŝ:r̂ᵀ

�
nà
i�1

ωiI2

�
r̂Ŝ � Ŝ:

�
ņ

i�1

Ĥöi

�
Ŝ, (2.24)

where Ĥöi � ωi
2 px̂2

i � p̂2
i q is the free Hamiltonian of a single harmonic oscillator. Thus, we further

decompose Eq. (2.5) as

ρ̂G � D̂:
r̄Ŝ

:

�Ân
i�1 e

�βĤöi
	

±n
i�1 Tr

�
e�βĤ

ö
i

� ŜD̂r̄, (2.25)

using

exp

�
ņ

i�1

M̂i

�
�

nâ
i�1

eM̂i , (2.26)

derivable using a Taylor expansion of the exponential. Eq. (2.25) is sometimes known as a thermal

decomposition of the Gaussian state because the central element is the thermal state of a free

electromagnetic field [29]. One point of interest is that we see that n key pieces of information

are contained in the set of values: tβωiu. These provide the core of the state which is then acted

on by Gaussian unitaries and Weyl operators, for its construction. Both of these transformations

are unable to change these n values and so they have a form of invariance, which will be vitally

important later.

Recall that in the definition of Gaussian states we also included the limiting case, β Ñ 8.
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Taking this now in Eq. (2.25) gives

lim
βÑ8

ρG � lim
βÑ8

D̂:
r̄Ŝ

:

�Ân
i�1 e

�βĤöi
	

±n
i�1 Tr

�
e�βĤ

ö
i

� ŜD̂r̄,

� lim
βÑ8

D̂:
r̄Ŝ

:

�±n
i�1 e

1
2βωi

	�Ân
i�1

�
e�

1
2βωj |0iyx0i| � e�

3
2βωi |1iyx1i| � . . .

		
�±n

i�1 e
1
2βωi

	±n
i�1 Tr

�
e�βĤ

ö
i

� ŜD̂r̄,

� D̂:
r̄Ŝ

:|0yx0|ŜD̂r̄,

(2.27)

where |0y �Ân
i�1 |0iy is the ground state of the free Hamiltonian

°n
i�1 Ĥ

ö
i , which shows us the

form that such pure states will take in this decomposition.

This deconstruction of a Gaussian state into component parts provides us with an idea of the

building blocks from which these states are made. To really delve into this it is sensible to move

away from the Hilbert space and into the phase space picture originated by Wigner in 1932. In

this picture we will see their true Gaussian nature.

2.2 Phase space

The word ‘phase’ has its origin in the Greek phasis, meaning ‘appearance’. The link between

this word and periodic motion derives from the word being used to describe the ‘phases’, or

appearances, of the moon [42]. This clarifies the reason for its ubiquitous use in describing

periodic motion. However, it is not at all clear from this, why the word became attached to the

phases spaces as found in mechanics, since they have no apparent periodicity.

This use hails back to 1872 when Ludwig Boltzmann was studying the equipartition theory of

gas molecules. He noted an analogy between his work and the ‘phase points’ of Lissajous figures,

which explicitly deal with periodic motion. Maxwell laid down this phase space structure more

formally in 1879 in the modern way, where a state of a system is described by 2n position and

momentum coordinates. The naming convention for this space varied through the twentieth

century, often being referred to as a Γ-space, until the term phase space was eventually settled

upon [43].

As shown by Wigner, when the states of a system are constructed out of operators satisfying

Eq. (2.1), this enables us to move over to a phase space description. The translation that takes

us between the different representations is variously known as the Glauber relation [31], the

Fourier-Weyl relation [33] and the Weyl transformation [44]. A proof for the relation can be

found in Refs. [33, 45].

Theorem 9 (Fourier-Weyl relation). A bounded operator Ô acting on a Hilbert space of n bosonic
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modes may be expanded in a basis of Weyl displacement operators as

Ô � 1

p2πqn
»
Rn

d2nr TrrD̂rÔsD̂:
r, (2.28)

where d2nr � dx1dp1 . . . dxndpn.

Eq. (2.28) expresses the fact that the Weyl operators form a complete basis for operators on

the Hilbert space. Note that this decomposition is possible for any operator that acts on this

space, including density matrices, and so

ρ̂ � 1

p2πqn
»
R2n

d2nr TrrD̂:
rρ̂sD̂r. (2.29)

We see that all the information of the state is contained in the coefficients that multiply the

Weyl operators, i.e. the continuous function TrrD̂:
rρ̂s over r. This provides a new representation

of the quantum state.

Definition 10 (Characteristic function). The characteristic function of a quantum state ρ̂, on

Fock space, is a complex-valued function,

χprq � TrrD̂:
rρ̂s, (2.30)

where D̂:
r is a Weyl operator, as per Def. 4.

To extract the Wigner function we take the Fourier transform of the characteristic function

[30,33,46],

Wprq :� 1

p2π2qn
»
R2n

d2nr1eir
1ᵀΩrχpr1q, (2.31)

which is a real-valued function on the phase space representing the state that was formerly given

in the infinite-dimensional Hilbert space.

If we substitute ρ̂G of Def. 2 into Eq. (2.30)we will find that the Wigner function representation

is itself a Gaussian distribution on phase space, of the form [33],

WGprq � 2n

πn
a

detrσse
�pr�r̄qᵀσ�1pr�r̄q, (2.32)

where σ is a 2n� 2n positive-definite matrix. We see that the state is now given as a Gaussian

distribution over phase space where σ and r̄ are the two objects necessary for its definition. These

two now contain all the information required to describe the state. The infinite dimensions of

the Hilbert space has been reduced to a finite vector and matrix to define all the properties of

the state, provided it is Gaussian.
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Treating the phase space axes as random variables, the Gaussian distribution can be seen as

a probability distribution over the points of the phase space. For pure states, this turns out to

be peculiar to Gaussian Wigner functions because of Hudson’s theorem [47] which states that

the only pure state, non-negative Wigner functions are Gaussian. For other pure quantum states

the Wigner function is referred to as a quasi-probability distribution. It is emphasised in Ref. [48]

that this positivity is neither necessary nor sufficient for an underlying classical hidden variable

model because the set of measurements and transformations need to be taken into account, as

well as the set of states. However, it has recently been shown that in fact the full Gaussian

subtheory is entirely equivalent to an epistemically restricted Liouville mechanics [49].

These probability distributions on phase space may be defined by the values of their moments.

The first moment of a random variable is its mean and the second moment corresponds to its

variance. The covariance matrix captures the variance of these variables, as well as the way in

which they change with respect to each other, i.e. the covariance.

In general, we consider some some random vector q � pq1, . . . , qpqᵀ and define the vector of

first moments to be

q̄ � xqy. (2.33)

This definition can be compared with the quantum expression,

r̄ � Trrρ̂Gr̂s. (2.34)

r̄ describes the mean position of the Gaussian state in the space - i.e. the location of the peak

of the function in the space. As an example we could consider the Gaussian state |0yx0| which,

after processing it through the full phase space analysis will turn out to have r̄ � 0, i.e. a Wigner

function centred at the origin.

If we then act a Weyl operator on the vacuum we describe a new Gaussian state

D̂:
r|0yx0|D̂r � |ryxr|, (2.35)

which, by substituting into Eq. (2.34) has mean value r. It is much more common to represent

such a state in complex notation. That is, we define α � pαi, . . . , αnqᵀ where αi � pxi� ipiq{
?

2,

and then denote |ryxr| as |αyxα|. This set of displaced vacua are exactly the set of coherent

states. As mentioned, these states have many interesting properties, describing laser light well

and being central to the early understanding of the particle interpretation of wave mechanics.

Classically, the covariance matrix is given as [50]

σ :� xpq� q̄qpq� q̄qᵀy. (2.36)
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whereas the quantum version is written as

σ � Trrtpr̂� r̄q, pr̂� r̄qᵀuρ̂Gs. (2.37)

In both the classical and quantum cases the covariance matrix is positive-definite. For a coherent

state, σ is equal to I but in general it can be any 2n� 2n matrix satisfying

σ � iΩ ¥ 0. (2.38)

This comes out of the formalism and is a direct expression of the uncertainty restriction [51,52].

This means that the spread of the Gaussian state in phase space, which represents the uncertainty

in the variables xi and pi, is prevented from being too small.

To gain more intuition behind Eq. (2.38) we consider the single-mode case. Firstly, we may

state the form of the covariance matrix as being

σ �
�

varpxq covpx, pq
covpx, pq varppq

�
�
�

p∆xq2 covpx, pq
covpx, pq p∆pq2

�
, (2.39)

where ∆x denotes the standard deviation of the variable x and likewise for p. covpx, pq describes

the covariance of the two variables which is a measure of how one varies with the other. The

uncertainty relation enforces σ�iΩ to be positive-semidefinite which also enforces its determinant

to be greater than or equal to zero, providing

p∆x∆pq2 ¥ pcovpx, yqq2 � 1 ¥ 1, (2.40)

where we are now able to see the explicit link to the well known, simple Heisenberg relation.

Eq. (2.38) is actually more general and corresponds to the Robertson-Schrödinger relation. In

Fig. 2.1a we see a distribution in x and p that obeys this relation. In Fig. 2.1b we see that the

state can maintain the uncertainty relation by increasing the variance in one of the modes while

decreasing it in another. This is a process known as squeezing which we will return to in Sec. 4.

The covariance matrix satisfies the conditions required for its decomposition and so can be

written as

σ � Sᵀ

�
nà
i�1

νiI2

�
S, (2.41)

where

νi :� 1� e�βωi

1� e�βωi
. (2.42)

To gain a little more insight into the set of values νi we calculate the average value n̄i of the
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(a) Equal variance in both x and p. (b) Low variance in one direction causing high vari-
ance in the other.

Figure 2.1: Single-mode Wigner functions with different variances, but both complying with the
Robertson-Schrödinger uncertainty relation.

number operator â:i â in a given mode:

n̄i :� Trrρ̂Gâ:i âis �
e�βωi

1� e�βωi
. (2.43)

Therefore one finds that νi is related to this value via

νi � 1� 2n̄i, (2.44)

providing it with some physical intuition as linearly dependent on the average excitation number

in a given mode.

This completes the analysis of the states of the Gaussian subtheory of quantum mechanics.

We have seen that the phase space description leads itself perfectly to provide a finite description

of the degrees of freedom of a Gaussian state. The object that is now studied as ‘the state’ is

now the duplet pr̄, σq.

2.3 Evolution

The Gaussian subtheory imposes the restriction that all dynamical processes must conserve the

Gaussian nature of the state. Starting with the Heisenberg equation,

9

Ô � irĤ, Ôs �
�
BÔ
Bt

�
Ĥ

, (2.45)
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we may study the evolution of the vector of operators r̂ under a given Hamiltonian Ĥ. In

anticipation of the final result we restrict this Hamiltonian to being quadratic, as per Def. 1.

Note that this is a different Hamiltonian to that which was used to define the state, and so

will be written as Ĥ � 1
2 r̂ᵀH r̂ � r̂ᵀc. Note that the classical counterpart of these dynamics is

integrable.

Given that r̂ has no explicit time dependence and using the Einstein summation convention,

the Heisenberg equation for this vector of operators reads,

9r̂i � i

�
1

2
r̂jHjkr̂k � r̂lcl, r̂i

�
� i

2
Hjk pr̂jrr̂k, r̂is � rr̂j , r̂isr̂kq � iclrr̂l, r̂is

� ΩikHkj r̂j � Ωilcl,

(2.46)

giving 9r̂ � ΩH r̂ � Ωc. Using Eq. (2.46) we may derive the evolution of the first moments, r̄.

Calculating d
dt Trrr̂ρ̂Gs immediately provides 9r̄ � ΩH r̄� Ωc, with solution

r̄ptq � eΩHtpr̄p0q � r̄dynq � r̄dyn. (2.47)

where r̄dyn � �H�1c is set by the dynamics.

The same can be done for σ:

9σij � d

dt
Trrtpr̂i � r̄iq, pr̂j � r̄jquρ̂Gs

�TrrpΩikHkltpr̂j � r̄jq, pr̂l � r̄lqu � ΩjkHkltpr̂i � r̄iq, pr̂l � r̄lquq ρ̂Gs
� 2cl TrrpΩilr̂j � Ωjlr̂i � Ωilr̂j � Ωjlr̂iqρ̂Gs

�ΩikHklσlj � σilHlkΩjk,

(2.48)

giving 9σ � ΩHσ � σHΩᵀ, which has a solution

σptq � eΩHtσp0qpeΩHtqᵀ. (2.49)

The matrix eΩHt is prominent in the evolution of the first and second moments of a Gaussian

state. It is possible to show that it obeys the same symplectic condition as stated before

eΩHtΩpeΩHtqᵀ �
�
I� ΩHt� 1

2
pΩHtq2 � . . .



Ω

�
I� tHΩᵀ � 1

2
ptHΩᵀq2 � . . .



� Ω,

(2.50)

and so eΩHt P Spp2n,Rq. Given that this evolving element is in Spp2n,Rq we immediately

deduce, from Williamson’s theorem, that the symplectic eigenvalues of σ are invariant under

closed evolution.

We have seen the real symplectic group crop up on two separate occasions, first to conserve
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the form of the canonical commutation relation and now to evolve the vector of first and second

moments forwards in time. This shows the deep relationship between preserving the Gaussianity

of the state, and preserving the symplectic form, as represented by Ω.

As a preemptive point we can already see some of the key elements of control theory. We

have seen that the evolution of the covariance matrix and first moments of Gaussian states

involve the action of the symplectic group. Furthermore, we see that these symplectic matrices

can be generated by exponentiating ΩH where H links us directly to the quantum Hamiltonian

operator. To finally arrive at a notion of control theory, all we require is some human control over

H which will be introduced later. A crucial aspect of our investigation will be to explore these

links, which will require some mathematical formality. A good place to start is the symplectic

group.
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Chapter 3

The symplectic group

In the previous section we found that the symplectic group was fundamental to the control of the

covariance matrix of Gaussian states. Therefore it is worth spending a little time studying the

group itself. The term ‘symplectic’ refers to a wide range of Lie groups over different fields and

of different dimensions. The name was coined by Hermann Weyl who originally referred to the

‘complex group’. Eventually he realised that this was likely to cause a not-insignificant amount

of confusion and renamed it [53]:

The name “complex group” formerly advocated by me in allusion to line com-
plexes, as these are defined by the vanishing of antisymmetric bilinear forms, has
become more and more embarrassing through collision with the word “complex” in
the connotation of complex number. I therefore propose to replace it by the corre-
sponding Greek adjective “symplectic.” Dickson calls the group the “Abelian linear
group” in homage to Abel who first studied it.

Naming it the Abelian group would have caused an even greater clash and so Weyl’s word stuck.

A set of different groups bear this name without a clear consensus on notation. Our particular

interest is in the set of real matrices that preserve an anti-symmetric bilinear form, often repre-

sented by the matrix Ω, extensively used in the previous section. Even still, a colloquialism will

pervade this work in that we will refer to the symplectic group, when we really mean the n-mode

symplectic group, without specifying n.

The group is a fundamental element in understanding classical Hamiltonian dynamical sys-

tems. Given some phase space with coordinate vector r � px1, p1, . . . , xn, pnqᵀ, the equations of

motion are given by
dri
dt

� Ω
BH
Bri , (3.1)

where H is the Hamiltonian of the system. This set of differential equations can be transformed

33
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into a geometrical picture where H generates a vector field flow on some symplectic manifold.

A symplectic manifold is a duplet pM, ωq where M is a differentiable manifold and ω is a

non-degenerate closed 2-form on M [36]. A linear Hamiltonian system is one for which the

Hamiltonian takes the form [54]

H � 1

2
rᵀHr. (3.2)

The lack of linear term reflects the fact that this can be removed via a change of coordinates.

Linear Hamiltonian systems evolve on symplectic vector spaces, which arise as tangent spaces

to symplectic manifolds [36]. That is, a duplet pV, ωq where V is a 2n-dimensional vector space

and ω is non-degenerate, alternating (or skew-symmetric) bilinear form [54]

ω : V� VÑ R. (3.3)

In our basis, this bilinear form can be represented as a matrix ωpu,vq Ñ uᵀΩv, where u,v P V,

and is often referred to as the symplectic form. In this context we see the symplectic group as the

set of linear transformations that preserve the value of this form. That is to say, transforming

the elements of the space such that u Ñ Su for all u P V preserves the value of ωp�, �q for

any two inputs. The generalised symmetry group for all symplectic manifolds is the set of

symplectomorphisms, which form an infinite-dimensional group [36].

In the quantum mechanical commutation relation the symplectic group appears in the same

way as it does in systems with classical degrees of freedom. It is via the unitary representation

of the metaplectic group that the two notions are brought together to govern dynamics on the

Hilbert space. Many results arising in the quantum mechanical case also apply to the classical

case, although there is no general equivalence due to quantum phenomena such as the uncertainty

principle. This is the element that allows for Gaussian states to describe quantum information

theoretic protocols, which are impossible in standard classical mechanics.

3.1 Other bases

As we have seen, Ω is a representation of a more abstract object on some symplectic vector space.

Its representation is basis-dependent and so we could consider different forms it could take as a

matrix, corresponding to a basis change in the space. There are many different representations

that are standardly used, which depend on the problem that is being solved. Here, the main

bases will be introduced so that these concepts can be used for solutions later in the text.

The space where the symplectic form is represented by Ω is the space in which the coordinates

are in the form rΩ � px1, p1, . . . , xn, pnqᵀ, where we have introduced the subscript on r for clarity,

although this will not be continued in later sections. When r is in this form we will sometimes

refer to the ‘Ω-basis’ in the text, although Ω is not universally used and so this is not a general
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term.

Another very commonly used basis is that for which the coordinates are in the form rJ �
px1, . . . , xn, p1, . . . , pnqᵀ. The transformation between rΩ and rJ is rJ � PrΩ, where

Pkl �

$'''&'''%
1, k ¤ n, l � 2k � 1,

1, k ¡ n, l � 2pk � nq,
0, otherwise,

(3.4)

which is an orthogonal permutation matrix. To find the new representation of the symplectic

form in this new basis we return to the place where the form first appeared in the commutation

relation, Eq. (2.2). Denoting the vector of operators in the Ω-basis as r̂Ω we derive the new form

as:

rP r̂Ω, P
ᵀr̂ᵀΩs � iPΩP ᵀ � i

�
0 I
�I 0

�
�: iJ, (3.5)

where J is the notation used for the new representation.

A different basis which proves useful later is where we introduce complex numbers. Defining

αi � 1?
2
pxi�ipiq, we transform from the basis rΩ, as above, to the basis rΘ � pα1, α

�
1 , . . . , αn, α

�
nqᵀ

via rΘ � QrΩ, where,

Q � 1?
2

nà
j�1

�
1 i

1 �i

�
, (3.6)

and is a unitary matrix. Linking in again with the commutator we find the new representation

Θ,

rQr̂Ω, Q
:r̂:Ωs � iQΩQ: � i

nà
j�1

�
�1 0

0 1

�
�: iΘ. (3.7)

To see this it is necessary to note that r̂ᵀΩ � r̂:Ω.

The final basis we will consider is that written as rΘ̃ � pα1, . . . αn, α
�
1 , . . . α

�
nq. For this it is

easiest to see the transformation from the J-basis via,

Q̃ :� PQP�1 � 1?
2

�
I iIn
In �iIn

�
, (3.8)

and

rQ̃r̂J , Q̃
:r̂:J s � iQ̃JQ̃: � i

�
�I 0

0 I

�
�: iΘ̃. (3.9)

We already came across a basis change when we considered u Ñ Su, where S is symplectic

and u is an element of the symplectic vector space. This transformation preserved the bilinear

form and so therefore its value for the two input vectors. The basis changes considered here do
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not preserve the value of form and so are a not related to a symmetry of the system.

3.2 Lie algebra

The relationship between the symplectic Lie algebra and the Lie group is of central importance

to the control theory of Gaussian states. The Lie algebra of the symplectic group contains

the elements ΩH, where the H represents the Hamiltonian that is directly manipulatable by a

controller.

The relationship between the Lie group G and its associated Lie algebra L comes via the

exponential map [55]

exp : LÑ G. (3.10)

When dealing with a particular matrix representation of the Lie algebra, this exponential map is

the matrix exponential of its elements. Note that this map is neither injective nor surjective in

general, although the latter property does hold when the group is compact and connected [56].

In a given representation, the Lie algebra of the symplectic group is a vector space where the

elements are matrices X obeying [37]

ΩX �XᵀΩ � 0, (3.11)

where the Lie bracket is the usual matrix commutator. We refer to this vector space as the

symplectic Lie algebra and denote it spp2n,Rq.
Any X P spp2n,Rq exponentiates to an element of the symplectic group. Due to the non-

compact nature of the group it is not true that the reverse holds: namely that every Lie group

element can be expressed as an exponential of an element of the symplectic Lie algebra. However

we will later prove that all symplectic group elements are expressible as eXeY where X,Y P
spp2n,Rq.

3.3 Properties

To make contact with the pure mathematical literature on the subject it is useful to have clarity

when using the wide range of terms employed to describe a system. Appendix A gives a brief

overview of some of the categories and properties that are used to describe Lie groups from their

group theoretic and geometrical perspectives. Here is provided a general overview of key facts

about the symplectic group that aid in the navigation through rougher mathematical waters.

Recall the definition of the symplectic group, in a particular basis, is the set of all real linear

2n � 2n matrices that preserve our representation of a non-degenerate, alternating, bilinear

form. Manipulating SΩSᵀ � Ω we can show that S�1ΩS�ᵀ � Ω and so S�1 is also symplectic.
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Taking the inverse of both sides of this latter equation provides SᵀΩ�1S � Ω�1 but since

Ω�1 � Ωᵀ � �Ω this proves that the transpose of a symplectic is also symplectic.

Another key property of the group, especially for the control theorist, is that it is con-

nected [36]. If we consider control theory as directing trajectories on the group manifold then

a disconnected group is obviously going to have large inaccessible regions to the flow of the

dynamics, depending on where the dynamics begin.

A further crucial property is that it is non-compact, although locally compact. Compactness

is a property that provides certain control problems with an easier solution. Specifically it is

the unbounded nature of non-compact groups that provide the possibility of a flow on the group

being taken out to infinity without visiting other parts of the manifold.

The mathematical literature also makes a clear distinction between Lie groups that are simple

and those that are not. The distinction is decided by the nature of the normal subgroups of the

group.

Definition 11 (Simple group [57]). A connected locally compact non-abelian Lie group is simple

if it does not have any connected nontrivial normal subgroups.

The symplectic group does have one nontrivial normal subgroup which is its centre, i.e.

the subset of all elements that commute with all other elements, Z2 � tI,�Iu [58]. This is not

connected and there are no other normal subgroups which makes the symplectic group simple [59].

It is possible to quotient by normal subgroups, and in this case we would obtain the projective

symplectic group PSpp2n,Rq.
The dimension of the group is the same as the number of degrees of freedom of each symplectic

matrix. For the symplectic group this is equal to np2n � 1q, where again n is the number of

modes and the matrices are of dimension 2n [34].

The eigenvalue structure of the symplectic group and Lie algebra is sufficiently restrictive

to make it interesting. Considering X P spp2n,Rq and S P Spp2n,Rq we have the following

proposition.

Proposition 12. The characteristic polynomial of X is an even polynomial, therefore if λ is

an eigenvalue of a X, then so are �λ, λ�,�λ�. Furthermore, the characteristic polynomial of

a S is a reciprocal polynomial and so if λ is an eigenvalue of a symplectic matrix then so are

λ�1, λ�, λ��1 [54].

Proof. Recall that detrΩs � 1. ppλq � detrX � λIs � detrΩXᵀΩ � λIs � detrΩXᵀΩ � λΩΩs �
detrΩsdetrX � λIs detrΩs � detrX � λΩs � pp�λq. Furthermore, using detrSs � 1 we may

show that ppλq � detrS � λIs � detrSᵀ � λIs � detr�ΩS�1Ω � λIs � detr�ΩS�1Ω � λΩΩs �
detr�S�1 � λIs � detrS�1sdetr�I� λSs � λ2n detr�λ�1I� Ss � λ2nppλ�1q.
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The power of the above result is that it allows us to infer and restrict the eigenvalues of a

given symplectic matrix, if we have knowledge about some of them. This can greatly diminish

the number of values that need to be kept track of in a numerical simulation of control problems.

The Jordan structure of these matrices gives even more information. First, note that if

two matrices are similar then they have equal Jordan block structures. We know that for X P
spp2n,Rq, X � Ω�1p�XᵀqΩ and so X and �Xᵀ are similar. X is always similar to its transpose

and to we also know that X and �X are similar [60]. This tells us that the Jordan block

structure relating to some eigenvalue λ must be identical in structure to that relating to �λ.

Similar reasoning holds for λ and λ�1 as eigenvalues of S P Spp2n,Rq, using S�1 � Ω�1SᵀΩ.

3.4 Subgroups and decompositions

The subgroups of the symplectic group are crucial in developing a physical understanding of the

behaviour of the group, especially in quantum optics. On top of these there are also subsets of

the group which, although not forming a closed structure under multiplication, provide interest

for decompositions.

An important notion in Lie group theory is that of maximal compact subgroup. The Cartan-

Iwasawa-Malcev theorem states that every compact subgroup of a Lie group G with finitely

many connected components is contained in a maximal one and, furthermore, that all maximal

compact subgroups of G are conjugate to each other [61]. This statement provides compact

subgroups with a notion of maximality. The maximal compact subgroup of Spp2n,Rq is referred

to as the orthogonal symplectic group, which is isomorphic to Upnq [37]. However, as a set of

symplectic matrices it is defined as

OSpp2n,Rq :� tS | S P Spp2n,Rq XOp2nqu, (3.12)

where Op2nq is the orthogonal group of real, 2n � 2n matrices. In the language of quantum

optics, which we will explore properly in Sec. 4, these transformations correspond to passive or

energy-preserving operations, or the set of beam-splitters and phase-shifters. The designation of

these transformations as passive, as opposed to active, refers to their preservation of the trace of

σ, which corresponds to the average value of the number operator. This is a particular expression

of the average energy of the state and so preserving, or not preserving, this value defines these

terms.

Another useful subgroup is

Zp2n,Rq :�
"

diag

�
1

z1
, z1, . . . ,

1

zn
, zn


 ���� z P p0,8q* . (3.13)
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This is clearly a non-compact subgroup due to the infinite range of the elements. In the optics

language these matrices are known as single-mode squeezers and, in contrast to the former, form

a set of active transformations.

An interesting subspace of the algebra comes when we define the subset of symmetric elements.

This set exponentiates to a subset of Spp2n,Rq that consists of the symmetric, positive-definite,

symplectic matrices,

Sp�p2n,Rq :� tS P Spp2n,Rq | Sᵀ � S, S ¡ 0u. (3.14)

Note that this is not a subgroup under the matrix product, because it is not closed and could be

used to generate the whole group. As such, we know that the non-compact property of squeezing

is contained in this half of the polar decomposition.

Decomposing symplectic matrices into products of matrices is an indispensible tool in working

with the group and understanding its behaviour. Some of these decomposition theorems are

presented here although a fuller treatment is given in Ref. [37].

Polar decomposition

The polar decomposition of a symplectic matrix splits it into

S � RL, s.t. R P OSpp2n,Rq, L P Sp�p2n,Rq. (3.15)

Furthermore, this decomposition is unique up to permutation of the products, i.e. that S �
RL � LR [37].

The elements of OSpp2n,Rq are exponentials of the skew-symmetric subset of spp2n,Rq and

those of Sp�p2n,Rq are exponentials of symmetric elements. This proves the statement of Sec. 3.2

that any symplectic matrix is expressible as the product of eXeY where X,Y P spp2n,Rq.
Furthermore, this decomposition, along with its uniqueness, allows us to make a geometrical

statement on top of the algebraic one.

Proposition 13. The manifold Spp2n,Rq is diffeomorphic to the Cartesian product of the group

Upnq with a with a real vector space of dimension npn� 1q [34].

Proof. OSpp2n,Rq � Upnq has manifold structure because it is a Lie group. In Proposition

2.18 of Ref. [36] we see that the exponential map from symmetric elements of spp2n,Rq is a

diffeomorphism onto Sp�p2n,Rq. Symmetric elements of spp2n,Rq form a sub-vector-space of

dimension npn � 1q. The unique matrix decomposition is therefore equivalent to the manifold

decomposition

Spp2n,Rq � Upnq � Rnpn�1q. (3.16)
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The unique matrix decomposition therefore provides a geometrical decomposition.

This decomposition is the first step to gaining some visual intuition for the structure of the

symplectic group. Later this result will be used to analyse the set of covariance matrices to

develop the geometry of Gaussian states.

Euler decomposition

Referred to as the Euler decomposition in Ref. [37] and as Bloch-Messiah in Ref. [62], this

is essentially the singular value decomposition of standard linear algebra. However, it is not

identical in that it also imposes a symplectic nature on the three components and can be expressed

as

S � R1ZR2, s.t. R1, R2 P OSpp2n,Rq, Z P Zp2n,Rq. (3.17)

This decomposition is one of the most useful ways to deconstruct a symplectic matrix. For

physicists it can be interpreted that any symplectic transformation decomposes into a passive

transformation, followed by an active single-mode squeezer, followed by another passive.

The decomposition is not unique, which becomes important in Sec. 8. However, by confining

the degrees of freedom of the three matrices, it is possible to enforce uniqueness. This is much

like the restriction that forces the complex logarithm to be unique, and just as in this case, we

will see branch-cuts occur in the process.

Since the Euler decomposition is merely the singular value decomposition in symplectic guise,

the diagonal values of Z still make up the set of singular values of the matrix, which are unique.

The singular values come in reciprocal pairs and so all that we require to know are the n values

greater than or equal to one, which are denoted zipSq, or zi when it is clear which matrix is

being referred to. These values provide the set of parameters to measure how active a symplectic

transformation is. When zi � 1 for all i, the decomposition collapses so that S is a member of

OSpp2n,Rq. A useful way to extract these values is by calculating

eigrSSᵀs � eigrR1ZR2R
ᵀ
2ZR

ᵀ
1 s � eigrZ2s. (3.18)

Passive decomposition

To extend the Euler decomposition further we would be required to decompose the elements

of OSpp2n,Rq. In Ref. [63] the authors show that any finite-dimensional unitary operator can

be factorised into a sequence of two-dimensional beam-splitter and single-mode phase-shifter

transformations, where the isomorphism allows these terms to be used in either representation.

For n � 1 the set of matrices that form the group are already in the form of single-mode

phase-shifters and so our focus is on the two-mode case as it will form the building blocks for n
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modes, if we wished to extend the decomposition.

By using the isomorphism between OSpp4,Rq and Up2q we are able to use the decomposition

theorems for Upnq to deconstruct two-mode orthogonal symplectics. In the J-representation we

may write an orthogonal symplectic matrix as [33]

RJ �
�
X Y

�Y X

�
, (3.19)

where XY ᵀ � Y Xᵀ � 0n and XXᵀ � Y Y ᵀ � In, derivable from the two condition SJSᵀ � J

and SᵀS � I2n. From here we may move into the Θ̃-basis,

RJ Ñ RΘ̃ � Q̃RJQ̃
: �

�
X � iY 0n

0n X � iY

�
�
�
U� 0n

0n U

�
, (3.20)

making the isomorphism to the unitary group explicit.

The decomposition of an element of Up2q is given in Ref. [64]:

U �
�
eiα 0

0 eiα

��
e�iψ{2 0

0 eiψ{2

��
cos θ{2 sin θ{2
� sin θ{2 cos θ{2

��
e�iφ{2 0

0 eiφ{2

�
, (3.21)

where α,ψ, θ, φ P R. Decomposing the elements of RΘ̃ and converting back to the Ω-basis we

derive the decomposition of a general element RΩ P OSpp4,Rq in the Ω-basis as

RΩ �
�
R�α 0

0 R�α

��
Rψ{2 0

0 R�ψ{2

�������
cos θ{2 0 sin θ{2 0

0 cos θ{2 0 sin θ{2
� sin θ{2 0 cos θ{2 0

0 � sin θ{2 0 cos θ{2

�����

�
Rφ{2 0

0 R�φ{2

�
,

(3.22)

where

Rx :�
�

cosx � sinx

sinx cosx

�
, (3.23)

for some real x. Rx is a matrix that acts on a single mode and represents a phase-shifter in the

quantum optics literature. The matrix involving θ as a parameter represents a beam-splitter [30].

For the n-mode case we would use Ref. [63] to decompose the n-mode orthogonal symplectic

into operations acting locally on two modes at a time. These operations could then be decom-

posed using Eq. (3.22). This decomposition allows us to write down elements of the orthogonal

symplectic group and are especially important when writing numerical simulations of two-mode

control problems.

The form of a general orthogonal symplectic matrix in Eq. (3.20) allows us to prove another
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important property of the symplectic group. From the preservation of the bilinear form we can

deduce that

detrSΩSᵀs � detrSsdetrΩsdetrSs � detrSs2 � detrΩs � 1. (3.24)

Thus we know that detrSs � �1. The polar decomposition provides S as a product of S � RL.

The determinant of the positive-definite matrix L is positive and so the next stage is to consider

the determinant of the orthogonal R. For Eq. (3.20) we see that detrRs � detrU s2 � 1, and so

detrSs � 1 for all S P Spp2n,Rq.

3.5 Single-shot symplectics

In Sec. 3.2 it was stated that the elements of Spp2n,Rq are not always expressible as eX where

X P spp2n,Rq. The elements that are expressible in this form will be referred to as single-

shot symplectics. Another way to express this is that such elements have a real Hamiltonian

logarithm, because X � ΩH is a Hamiltonian matrix. In terms of control theory, a symplectic

that is not single-shot is one for which no constant Hamiltonian exists to enact it. Thus, all the

two-shot symplectics require the controller to alter the Hamiltonian in time to be able to enact

that transformation.

To develop conditions to decide whether a symplectic matrix is single-shot, we require some

knowledge of the different normal forms of a symplectic matrix. A complete necessary and

sufficient condition in n modes is still an open question but is partly addressed in Ref. [65].

To state this result we are required to explore some normal forms of symplectic matrices.

These allow a categorisation of different symplectic transformations, which allows a systematic

path for proofs to take.

Normal forms of symplectic matrices go back to the early work of John Williamson, of the

aforementioned Williamson’s theorem [66,67]. Extracted from these early papers, normal forms

were written down by D. M. Galin providing them in Ref. [68]. After correcting a few mistakes

these normal forms made their way into an appendix of Vladimir I. Arnol’d’s Mathematical

Methods of Classical Mechanics [69, 70]. Other normal forms can be found, for example in

Ref. [70], as well as those derived by Alan J. Laub and Kenneth Meyer in Ref. [71]. The normal

forms of Laub and Meyer provide the basis for work on conditions for ‘shottability’ of group

elements. That is to say, they provide conditions for whether or not a symplectic matrix is

single-shot.

Working in the J-basis, the authors prove that all symplectic matrices S are similar, via a

symplectic matrix T , to a matrix V such that

V � T�1ST �
�
A B

C D

�
, (3.25)
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where
A � diagpA1, . . . , Apq, B � diagpB1, . . . , Bpq,
C � diagpC1, . . . , Cpq, D � diagpD1, . . . , Dpq.

(3.26)

The 2k � 2k matrices,

Yj �
�
Aj Bj

Cj Dj

�
, (3.27)

are analogous to Jordan blocks but where we have managed to preserve the symplectic nature

of V . Aj , Bj , Cj and Dj are all real, k � k matrices. As in the case of standard Jordan blocks,

each corresponds to a single eigenvalue λ. By categorising the different types of ‘Laub-Meyer’

block, one provides a categorisation of all 2n� 2n symplectic matrices, due to the uniqueness of

the decomposition.

The different forms that Yj can take are written in Ref. [71], to which the reader is referred

for more detail. Our interest is restricted to some particular cases and so only these will be

reproduced. In the question of shottability we will see that it is the negative real eigenvalues

that cause the obstacles to a necessary and sufficient condition. Symplectic matrices that have

negative eigenvalues have Laub-Meyer blocks in one of the following forms, correspodning to the

eigenvalues λ [71]:

(a) λ   0, λ � �1: Y �
�
E 0k

0k E�ᵀ

�
.

(b) λ � �1: (i) Y � �I, (ii) Y �
�
F 0k

0k F�ᵀ

�
, (iii) Y �

�
F 0k

G F�ᵀ

�
,

where

E �

����������

λ 0 � � � � � � 0

1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 � � � 0 1 λ

���������

, E�ᵀ �

�������
λ�1 �λ�2 � � � p�1qk�1λ�k

0 λ�1 . . .
...

...
. . .

. . . �λ�2

0 � � � 0 λ�1

������
, (3.28)

and

F � �

�������
1 0 � � � 0

2 1
. . .

...
...

. . .
. . . 0

2 � � � 2 1

������
, F�ᵀ � �

�������
1 �2 � � � p�1qk�12

0 1
. . .

...
...

. . .
. . . �2

0 � � � 0 1

������
, (3.29)
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and

G � �

������
�2 � � � �2

2 � � � 2
...

...
...

p�1qk2 � � � p�1qk2

�����
. (3.30)

Anyone wishing to enact some symplectic transformation may wish to know whether it is

possible in a single shot.

Theorem 14 (Conditions for a real Hamiltonian logarithm [65]). Let a symplectic matrix S P
R2n�2n be given.

1. Suppose �1 R eigpSq. Then there exists X P spp2n,Rq such that eX � S if and only if S

has an even number of canonical blocks of type (a) of each size relative to every negative

eigenvalue.

2. Suppose that �1 P eigpSq, and that relative to the other negative eigenavlues, condition 1

is satisfied. S has a logarithm in spp2n,Rq if, relative to �1, there are only

• blocks of type (b)-(i),

• blocks of type (b)-(ii) with k odd,

• an even number of blocks of each size of type (b)-(iii) or (b)-(ii) with k even.

with reference to the normal forms provided earlier.

These conditions are only partially necessary and sufficient and so they will only allow us

to isolate the types of symplectic matrix that will not have a logarithm in the symplectic Lie

algebra, although examples will exist where S does not satisfy these conditions and still have

such a logarithm. Furthermore, we see that these conditions isolate the negative eigenvalues as

the root of the breakdown of single-shottability since the blocks of type (a) and (b) only refer

to these, ignoring the blocks containing complex and imaginary eigenvalues. The significance for

control of Gaussian states will be explored in Sec. 5 which attempts an extension of Williamson’s

theorem to single-shot symplectics, rather than just symplectics.

To cement ideas a little, we can look at an example in a single mode,

S1 �
�
�z 0

0 � 1
z

�
� exp

�
0 π

�π 0

�
exp

�
logrzs 0

0 � logrzs

�
. (3.31)

This has two blocks of type (a) but for two different eigenvalues, and so Theorem 14 states

that this is not single-shot. However, we see a valid expression as a product of two single-shot

symplectic matrices.
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This shottability structure is able to arise because the symplectic group is non-compact. As

mentioned before, all connected compact groups have a surjective exponential map. In Sec. 2 we

saw that the evolution of a Gaussian state was encoded in H and enacted through eΩHt.

This however ignores the fact that the Williamson decomposition is not unique and so there

is an equivalence class of symplectic matrices which enact the same transformation on a given

covariance matrix. We can ask whether an element of the equivalence class is single-shot which

is what we return to in Sec. 5. Before we can do this, however, we will be required to understand

the properties of the set of covariance matrices that determine the shape of the Gaussian Wigner

function on phase space.
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Chapter 4

The covariance matrix

Gaussian states are totally specfied by the duplet pr̄, σq which encodes the location and spread

of the distribution respectively. The covariance matrix expresses the variance and covariance

of the 2n random variables of phase space over which some distribution is defined. Recall that

coherent states had a trivial covariance matrix and so were totally specified by r̄. However, as

far as quantum information protocols are concerned, it is the covariance matrix that encodes

the interesting information because it contains all entropic and entanglement properties of the

state [31]. To begin our quantum analysis of the covariance matrix, we first need to learn about

its properties from the classical theory.

Since σ is positive-definite it is possible to diagonalise using an orthogonal matrix O,

σ � ODOᵀ. (4.1)

The eigenvector associated with the diagonal element Dii can be expressed as Oei where ei is a

vector of zeroes except with a 1 in the ith position. The eigenvalues of σ are real and so we may

order them by size, and hence also order the eigenvectors by association, with obvious ambiguity

for degeneracies.

The diagonal elements of the covariance matrix correspond to the variance of that particular

random variable and the eigenvectors Oei correspond to the direction along which this variance

is calculated. We find that the maximal element of D is greater than any diagonal element in

any basis by noting that the diagonal elements of sigma are of the form,

σii �
¸
j

O2
ijDjj . (4.2)

47
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The orthogonality of O implies that¸
j

OijOkj � δik ùñ
¸
j

O2
ij � 1 @i. (4.3)

This implies that the sum of Eq. (4.2) is convex and hence Djj ¥ σii for all i if Djj is maximal.

Similar reasoning show that the minimum eigenvalue in the diagonal basis corresponds to the

minimum variance. As such we can see diagonalisation as transforming to a basis in which we

capture the direction of greatest variance as a basis vector.

The eigenvector with the greatest eigenvalue is known as the first principal component of

the distribution and the ray along its direction is known as the first principal axis, in principal

component analysis. The second eigenvalue of the covariance matrix provides the maximal

variance for the directions orthogonal to the direction of the first principal axis. This provides

the second principal component and axis. The eigenvalues of the covariance matrix therefore

provide the shape of the Gaussian distribution, even when dealing in higher modes where a direct

visualisation is not possible.

The quantum covariance matrix has all of these properties, except that it is also bounded by

the Robertson-Schrödinger uncertainty relation as given in Eq. (2.38). This, it will be shown,

corresponds to a lower bound on the set of symplectic eigenvalues.

Now that we have unpicked the meaning of the covariance matrix and its elements, eigenvalues

and eigenvectors, we are able to go deeper into its structure. A good way of seeing this is to use

decomposition theorems to rewrite it in different ways. The deconstructions we focus on have

physical meaning using the language of quantum optics. The elemental pieces of its structure

are the key properties that are used to provide new insights in the latter sections of this work.

4.1 Decomposition and categorisation

The covariance matrix, as we have already seen, is positive-definite, symmetric and real and so

the decompositions of previous sections can be applied. Each element of this decomposition will

gradually be unpicked to reveal a complete optical description.

The first decomposition that applies is Williamson’s, as given in Theorem 7, breaking the

covariance matrix into

σ � SWSᵀ, (4.4)

where S P Spp2n,Rq and W � diagpν1, ν1, . . . , νn.νnq, i.e. W denotes the diagonal matrix of

symplectic eigenvalues. The set of symplectic eigenvalues contained in this particular normal

form are often referred to as the symplectic eigenvalues of the Gaussian state, even though we

have seen other symplectic eigenvalues arise in Sec. 2, related to H. This decomposition allows
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us to imagine every covariance matrix as being an evolved form of W , under some Hamiltonian

dynamics, using Sec. 2.3.

This allows us to peel back the meaning behind the uncertainty relation even more, as stated

in Ineq. (2.38) as σ � iΩ ¥ 0. Given that this inequality is invariant under the action of the

symplectic group by conjugation, it is equivalent to the inequality

W � iΩ �
nà
i�1

�
νi 1

�1 νi

�
¥ 0, (4.5)

which is in turn equivalent to

νi ¥ 1, @i. (4.6)

The uncertainty relation is therefore expressible as a lower bound on the symplectic eigenvalues.

The Euler decomposition of this symplectic matrix provides a notion of what this evolution

could have looked like. Expanding S we may write

σ � R1ZR2WRᵀ
2Z

ᵀRᵀ
1 . (4.7)

The properties of W and S allow us to categorise the different types of Gaussian state.

The state with covariance matrix σ �W is a thermal state of the free Hamiltonian
°n
i�1 Ĥ

ö
i ,

as shown in Sec. 2.2. Such a state is referred to as a ‘chaotic field’ in Ref. [20] but also as the

thermal state of a free field. This Hamiltonian describes a set of decoupled harmonic oscillators,

each with a different value for βωi which is then repackaged in the symplectic eigenvalues νi.

These states bear a resemblance to the states first looked at by Planck at the beginning of

quantum theory and are used to describe blackbody radiation [20].

As we have seen, these symplectic eigenvalues are bounded from below to be greater than or

equal to one. If σ � I then this is known as the vacuum state, recalling as ever that the vacuum

state is shorthand for the ground state of some given Hamiltonian. Here we are implicitly

referring to the ground state of the free Hamiltonian.

In Eq. (4.7) we see that the first symplectic element to act is R2 P OSpp2n,Rq. This subgroup

of symplectic transformations is the set that preserves the average energy of the free Hamiltonian.

To see this we first expand Eq. (2.37) as

σij � Trrpr̂ir̂j � r̂j r̂i � 2r̄ir̄j � 2r̂ir̄j � 2r̂j r̄iqρ̂Gs
� Trrtr̂i, r̂juρ̂Gs � 2r̄ir̄j .

(4.8)

Given some quadratic Hamiltonian Ĥ � 1
2 r̂ᵀH r̂� r̂ᵀr we can derive the average energy of some
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Gaussian state ρ̂G using Eq. (2.37) to get

Trrρ̂GĤs �
¸
ij

Hij Trrtr̂i, r̂juρ̂Gs � Trrρ̂Gr̂isri � Hijσij � 2Hij r̄j r̄i � r̄iri. (4.9)

This means that Trrρ̂GĤs � TrrσHs � 2r̄ᵀH r̄ � r̄ᵀr. Setting H � I and r � 0, we obtain the

Hamiltonian of the free field. A passive transformation is one that preserves this average energy,

and thus preserves Trrσs. The orthogonal symplectic group is precisely this set of symmetries.

In quantum optics these transformations consist of the beam-splitters and phase-shifters in the

lab.

In order to not preserve the average energy we must move to the next stage in the decom-

position with the Z element. This has already been referred to as a direct sum of single-mode

squeezers. We can see the reason for this naming if we consider the affect that Z has on the

principal components of the distribution.

Consider a single-mode state with degenerate symplectic eigenvalues, σ � νI. The maximum

eigenvalue of σ provides the maximum variance of the distribution that this describes, i.e. ν.

We see a degeneracy here in that the second eigenvalue is also equal to ν, which tells us that the

Gaussian state has n-spherical symmetry on a given set of axes, much like the vacuum Wigner

function as pictured in Fig. 2.1a, but broader because the variance is larger. If we apply R2 to

this state then it will leave it invariant, in the same way that it does the vacuum. Then applying

Z � diagpz, 1{zq we find that max eigrσs � z2ν where z ¥ 1 without loss of generality. Thus

the variance in one principal axis has increased whereas the second, ν{z2 has decreased. This is

an operation known as squeezing and is an active transformation because it does not preserve

Trrσs [29]. Since the zi values of S are the singular values of the matrix, then we can define a

squeezing transformation as a symplectic that has non-unit singular values. The operation of

squeezing is bound by the uncertainty principle, Eq. (2.38). The variance in one direction is

allowed to decrease but only when the variance in another direction increases. Squeezing is a

technologically useful and desirable feature that is sought in many practical setups [31]. Since

the fashion of resource theories in quantum information theory, squeezing has been recast as a

limited resource, mirroring the difficulty with which it is produced [62].

Although the definition of a squeezing operation is settled, the definition of a squeezed state

is varied in the literature. If we restricted to coherent states, and by ignoring first moments

therefore vacuum states, the uncertainty relation is saturated and the variance in all directions is

one. Any evolution that involves some S with non-unit singular values will reduce the variance

in one direction to be less than unity. Due to the utility of the sub-vacuum fluctuations exhibited

by this state, a squeezed state is often defined as any state with an eigenvalue less than one [72].

Such states, since their experimental realisation in 1985 [20], have received much attention and it

is hoped that they will play a greater role in gravitational wave physics to improve detection [28].
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SzW W � I W � I
zipSq � 1 @i Vacuum state Thermal state of free field
DzipSq � 1 for some i Squeezed vacuum state Squeezed state

Table 4.1: A categorisation of the different types of covariance matrix which can describe a
Gaussian state.

A particular subset of squeezed states called ‘twin-beam’ states are maximally entangled in the

Fock basis and are used in continuous variable quantum teleportation protocols [31].

However, we can begin with states that are not coherent and so squeezing the state does

not reduce any of its variances to less than unity. In Ref. [73] there is discussion of ‘squeezed

Fock states’ and ‘squeezed thermal states’ for example. The proceeding definition follows this

example.

Definition 15 (Squeezed Gaussian state). A squeezed Gaussian state is one for which the

Williamson decomposition of its covariance matrix, σ � SWSᵀ, is such that S has non-unit

singular values.

The reason for this definition in the context of this thesis is because we are interested in the

behaviour of squeezing in terms of control theory, rather than the threshold at which squeezing

becomes a useful quantity.

It has been noted that the Williamson decomposition of a matrix is not unique. Therefore

it would seem that categorising based on the properties of S could fail. However, in Sec. 5 it

will be shown that the singular values of the diagonalising symplectic are unique. Thus we can

unambiguously refer to states with σ � SWSᵀ as unsqueezed when the singular values of S are

unity and squeezed when they are not. We summarise the different types of commonly used

Gaussian in Table 4.1.

4.2 Squeezing measure

We have found that the eigenvalues of σ provide the variance along the principal axes. This set

of quantities is much easier to find but it leaves the problem of comparison, due to the fact that

we are dealing with a set and not a single number. We may provide a crude measure of squeezing

by focusing on the minimum eigenvalue of σ as this provides the minimum variance along any

given direction. This value is also known as the squeezing variance of the state [74]. To turn

this into a squeezing measure that monotonically increases as this variance decreases, and is zero
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when this the state is unsqueezed, we define

ξrσs :� 1

min eigrσs �
1

min | eigrΩσs| . (4.10)

To understand this measure we notice that the width of a Gaussian state is dictated both by the

symplectic eigenvalues of the state, as well as the singular values of the symplectic matrix when

the covariance matrix is put in Williamson normal form. In order for this squeezing measure

to be zero when all the singular values are zero, it is necessary to subtract off the contribution

made by the symplectic eigenvalues. This positive measure allows us to track the maximal extent

of the squeeze of a state and to follow its trajectory as it undergoes some varying symplectic

control.

In other situations, however, we may like a measure for the squeezing inherent in a particular

symplectic matrix rather than the covariance matrix on which it has acted. A fine-grained

knowledge would come from knowing the singular value decomposition and the set of singular

values. For each of the modes, a natural measure that will arise later is

ζz :� z2 � 1{z2

2
, (4.11)

which monotonically increases with z.

4.3 Symplectic invariants

The set of symplectic eigenvalues tνiu arose from the Williamson decomposition of the covariance

matrix. Due to their uniqueness it is the case that no symplectic matrix acting by congruence

on the covariance matrix will alter its symplectic eigenvalues, and as such they are called sym-

plectically invariant.

Although Williamson’s theorem can be proved in a constructive manner, there are better

ways of finding the set of symplectic eigenvalues. A faster way is to notice that

eigrΩσs � eigrΩSWSᵀs � eigrSᵀΩSW s � eigrΩW s � t�iνiu, (4.12)

and so we just seek the modulus of the eigenvalues of the matrix Ωσ.

The importance of symplectic invariants is that they will be preserved under closed Gaussian

evolution. This immediately implies that this set should uniquely define the entropy of a given

Gaussian state, as this is also invariant under such evolution. Two common ways of expressing

the entropy of a state are the linear and von Neumann entropies. The von Neumann entropy

bears a formal resemblance to the Shannon entropy from classical information theory and is
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defined as

SV :� �Trrρ̂G ln ρ̂Gs. (4.13)

In terms of symplectic invariants this takes the form [33]

SV �
¸
fpνiq, (4.14)

where

fpxq �
�
x� 1

2



ln

�
x� 1

2



�
�
x� 1

2



ln

�
x� 1

2



. (4.15)

The linear entropy is a first order approximation to this and is defined as

SL :� 1� Trrρ̂2s, (4.16)

which takes the following form in terms of symplectic invariants [33]

SL � 1� 1a
detrσs � 1� 1±n

i�1 ν
2
i

. (4.17)

Any measure of entropy for a Gaussian state need only be a function of the n symplectically

invariant parameters that define the state.

In Eq. (2.42) we saw that the symplectic eigenvalues were related to the values βωi via

νi � 1� e�βωi

1� e�βωi
,

where the temperature T of the state is related to β by β � 1{pkBT q and where kB is Boltzmann’s

constant. This in turn was related to the average mode excitation number n̄i in Eq. (2.44). We

see here that the inverse temperature of the state only ever appears in a product with the mode

frequency ωi and so there is not a unique notion of the temperature of the state without fixing

the mode frequencies. Given that νi is a monotonically increasing function in βωi we can describe

a rise in symplectic eigenvalue as an increase in the temperature of a mode, given the implicit

assumption that the mode frequency is kept fixed. Decreasing νi to its minimal value of one in

turn decreases n̄i to zero. The language of heating and cooling of a state will be extensively used

in Sec. 10.

The n symplectic eigenvalues have precedence only by virtue of their being the set of values

produced by Williamson decomposition. One could write down any function of these and derive a

new set of values which would also be invariant under symplectic transformations. For example,

considering the elementary symmetric functions of a matrix also provides a set of n values. Given
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a set of eigenvalues λj of an m�m matrix M , these are written as [75]

ϑkrM s :�
¸

HPFmk

¹
jPH

λj , (4.18)

where k labels the n functions and

H P Fmk � P pNmq iff |F | � k, (4.19)

where Nm � t1, . . . ,mu, P p�q denotes the power set and ϑ0rM s :� 1. As an example, for a

matrix M with eigenvalues tλ1, λ2, λ3, λ4u,

ϑ3rM s � λ1λ2λ3 � λ1λ3λ4 � λ1λ2λ4 � λ2λ3λ4. (4.20)

Given that the symplectic eigenvalues can be obtained as the modulus of the eigenvalues of Ωσ

we see that it is possible to define a new set of symplectic invariants [76]

ϑ2irΩσs �
¸

HPFni

¹
jPH

ν2
j . (4.21)

This set of symplectic invariants will reappear when we explore multimode entropy in the context

of heating and cooling in Sec. 9.

The uncertainty relation expressed before as a lower bound on the symplectic eigenvalues has

now become mixed up in these new invariants. In order to rewrite the relation using these new

objects we define the function,

Σ :�
ņ

i�0

p�1qn�iϑ2i, (4.22)

which can be shown to be equal to Σ �±n
i�1pν2

i �1q, which is easiest to see by working backwards

n¹
i�1

pν2
i � 1q �

n¹
j�1

ν2
i �

¸
HPFnn�1

¹
jPF

ν2
j �

¸
HPFnn�2

¹
jPF

ν2
j � . . .

�
ņ

i�0

p�1qn�i
¸

HPFni

¹
jPF

ν2
j

�
ņ

i�0

p�1qn�iϑ2i.

(4.23)

From this we see that a necessary condition for the satisfaction of Ineq. (4.6) is that

Σ ¥ 0. (4.24)
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From Eq. (4.23) we see that if an even number of symplectic eigenvalues violate Ineq. (4.6) then

Ineq. (4.24) is not going to detect it. A second situation in which this will not be detected is

when we have partial saturation, i.e. when νj � 1 for some j. This is remedied in Ref. [76]

by iteratively checking a formula that detects such partial saturation. Such states have some

interesting properties, for example in two modes they turn out to be the states with minimal

entanglement for a given purity [77,78].

4.4 Entanglement

Entangled systems are those for which a description of the combined system is not given by an

individual description of each component part. That is, the number of variables increases more

rapidly than the number of components multiplied by the individual degrees of freedom. The

occurrence of such states in quantum mechanics has been recognised as one of the key features of

the theory since the famous Einstein, Podolsky, Rosen (EPR) paper of 1935 [79]. Closely related

to the crucial property of nonlocality, detecting and quantifying entanglement has been a major

focus of quantum theoretical research.

A well known necessary condition for the separability of bipartite states is the ‘positivity

of the partial transpose’ (PPT) criterion [80]. This states that a separable bipartite quantum

state has non-negative eigenvalues after transposing one of the systems. This was applied to

continuous variable systems in Refs. [81,82]. First we consider a Gaussian state of pp�qq modes,

where the first set of p modes is referred to as subsystem A and the latter set of q modes as

subsystem B. To enact the partial transposition on subsystem A we transform

σ Ñ TσT �: σ̃, (4.25)

where T � Àp
1 diagp1,�1q `Àq

1 diagp1, 1q, which can be shown by returning to the definition

of the covariance matrix from the quantum state. It is very quick to see that if σ is separable

then this map take us to an equally valid quantum covariance matrix, as intended by partial

transposition. The PPT condition is equivalent to

σ̃ � iΩ ¥ 0. (4.26)

T acts by similarity and is symmetric meaning that σ̃ remains positive-definite, implying that it

also has a Williamson decomposition: σ̃ � S̃W̃ S̃ᵀ. Ineq. (4.26) is in turn equivalent to

ν̃j ¥ 1, @j. (4.27)
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Figure 4.1: An implication diagram linking different conditions for entanglement.

We then define a new object, in analogy with Eq. (4.22):

Σ̃ :�
p�q̧

k�0

p�1qp�q�kϑ2krΩσ̃s. (4.28)

The condition

Σ̃ ¥ 0, (4.29)

is necessary for Ineq. (4.27) to hold. However it can not be sufficient because of the possibility

of an even number of violations or partial saturation, because of the same reasons as before.

However, it can be shown that sufficiency holds for bisymmetric pp � qq-states [76]. These are

states that are invariant under local mode permutations on the subsystems. Some of these results

are summarised in Fig. 4.1.

Intuitively we expect that locally-acting symplectics should not have an effect on any entan-

glement measure of a state. Indeed, it can be shown that local symplectic operations leave the

transposed symplectic eigenvalues invariant. Considering a symplectic matrix σ � SWSᵀ being

acted on by some Sloc � SA ` SB , where A and B label the two subsystems, we find that

tν̃iu � eigrΩTSlocσS
ᵀ
locT s � eigrSᵀ

locTΩTSlocσs � eigrΩTσT s, (4.30)

where we used the cyclic invariance of the spectrum and the fact that

Sᵀ
locTΩTSloc �

�
Sᵀ
A 0

0 Sᵀ
B

��
Ω 0

0 �Ω

��
SA 0

0 SB

�
� TΩT. (4.31)

If this were not the case then the transposed symplectic eigenvalues would not prove a very good
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measure of entanglement.
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Chapter 5

Geometry of Gaussian states

The previous sections provided a linear exposition from the Hilbert space definition of Gaussian

states through the phase space until we ended with the duplet pr̄, σq. The covariance matrix has

received the most attention as it is the main focus of informational theoretical tasks.

As a result, our interests in terms of controlling these states will be geared towards navigating

the manifold of covariance matrices. Here, we move towards a new geometrical picture where the

set of covariance matrices can be seen as a space of manifolds, labelled by the symplectic eigenval-

ues and deriving their form from a geometrical interpretation of the matrix decompositions given

so far. The set of matrices with fixed symplectic eigenvalues will be termed isospectral and is the

set on which the symplectic group acts. The shottability question can be recast geometrically to

ask whether this action on the manifold can be done with a single control.

5.1 Covariance matrix manifold

The investigation into the manifold structure of Gaussian states has a similar motivation to that

for the Bloch ball, widely used in quantum information theory. For qubits the complex Hilbert

space can be a less intuitive space in which to work and the same is true for Gaussian states.

The higher dimensional generalisation of the Bloch ball was explored in Ref. [83] and here we

make an analogous attempt for Gaussian states.

To begin we need to define the concept of a group action because this is where the manifold

structure of covariance matrices will emerge. A left action of a Lie group G on a set A is a map

θ : G�A Ñ A,
pg, pq ÞÑ g � p, (5.1)

59
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such that g1 � pg2 � pq � pg1 � g2q � p and e � p � p; g1, g2 P G, p P A and e is the identity in G. A

group action is transitive if

@p, q P A, Dg P G : p � g � q. (5.2)

Given such a group action, the orbit of an element p is the set of elements

OGppq � tg � p | g P Gu. (5.3)

Some points of A may be fixed under the action of a subgroup of G. This is the isotropy group:

Gp � tg P G | g � p � p, p P Au. (5.4)

For points that are in the same orbit, this group is independent of p, up to isomorphism. This

can be quickly seen by considering some h P Gp and some other g P G such that q � gp. We see

that ghg�1q � q and so all elements in Gp are conjugate to an element of Gq. Also, given kq � q,

we know that g�1kgp � p and so the converse is true. meaning that the groups are isomorphic.

Lemma 16. Consider a set A on which the Lie group G acts transitively such that the isotropy

group of a point p P A is a closed Lie subgroup of G. Then A has a unique smooth manifold

structure such that the given action is smooth [84].

Such a set A as described in Lemma 16 is referred to as a homogeneous G-space [84]. Fur-

thermore we define an equivariant diffeomorphism to be a diffeomorphism from a manifold M
to a manifold N such that it commutes with the group action [84]:

M N

M N

F

θg φg

F

.

where θg denotes the action of g on M and similarly for φg and N . Furthermore, given a

subgroup H of G then

gH :� tg � h | h P Hu. (5.5)

The collection of all distinct sets of this form given H is called the set of left cosets of H in G.

These sets may be considered as point elements in a new group expressed as the quotient G{H.

This allows us to state the key theorem to reveal the manifold structure of these homogeneous

G-spaces.

Lemma 17 (Homogeneous space characterisation theorem [84]). Let M be a homogeneous G-

space, and let p be any point of M. Then the map ϕ : G{Gp ÑM defined by ϕpgGpq � g � p is

an equivariant diffeomorphism.
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Note that the map ϕ takes us from an element of G{Gp, the set of left cosets, and takes it in

one to one fashion to an element of M.

Fix some multiset of symplectic eigenvalues v � tν1, . . . , νnu and denote the subset of covari-

ance matrices that have these symplectic eigenvalues J pvq. From Theorem 13 we know that the

symplectic group has a manifold structure that is diffeomorphic to Upnq � Rnpn�1q. With the

knowledge that Spp2n,Rq acts transitively on J pvq, we now seek the isotropy group. We know

that this is unique since all covariance matrices with the same set of symplectic eigenvalues are

in the same orbit under the action of the symplectic group. Therefore it suffices to find the set

of matrices K which satisfy

W � KWKᵀ, (5.6)

where K is symplectic and W is, as usual, the diagonal matrix of symplectic eigenvalues.

Proposition 18. The isotropy group of the W P J pvq is OSpp2n1q � . . . � OSpp2nkq where i

labels the k distinct symplectic eigenvalues and ni labels the degeneracy of the k distinct symplectic

eigenvalues.

Proof. We begin with the set of symplectic matrices K as defined in Eq. (5.6), recalling that

KΩKᵀ � Ω. Combining the two conditions we find that we require rK,WΩs � 0. If K is written

as a matrix of 2� 2 sub-blocks κij :

K �

����
κ11 � � � κ1n

...
. . .

...

κn1 � � � κnn

���
, (5.7)

then the simple form of WΩ allows us to reduce the condition to a new one on each sub-block:

νjκijΩ1 � νiΩ1κij � 0. (5.8)

Writing

κij �
�
a b

c d

�
, (5.9)

this provides a set of equations

pa� dqpνj � νiq � 0, pc� dqpνj � νiq � 0,

pa� dqpνj � νiq � 0, pc� bqpνi � νjq � 0.
(5.10)

We see that for νi � νj these equations provide κij � 0 for all such cases making K block

diagonal according to the degeneracy of the symplectic eigenvalues of W . In mathematical form

K �Àk
i�1Ki where Ki P OSpp2ni,Rq and the symplectic eigenvalue degeneracy determines the
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value of each ni. A representation that provides a direct sum of groups provides a Cartesian

product manifold description.

For any given covariance matrix σ � SWSᵀ, Proposition 18 gives the isotropy group as

that containing elements, SKS�1, where K is in the direct product group as given before.

Applying this to σ we may expand it in the form σ � SKWKᵀSᵀ where K varies over the

isotropy group, as given before, without changing σ. This creates an equivalence class tSK |K P
OSpp2n1q � . . .�OSpp2nkqu containing all possible symplectic matrices used in the Williamson

diagonalisation of σ. Earlier it was stated, but not proven, that all elements of this equivalence

class have the same singular values. Proposition 18 shows this because the singular values

are invariant under the action of any element of OSpp2n,Rq. As a result, the singular values

associated with the diagonalising symplectic of a covariance matrix are unique. Furthermore,

the proposition leads us to the following result.

Proposition 19. There exists a diffeomorphism from J pvq to

Upnq � Rnpn�1q

Upn1q � . . .�Upnkq , (5.11)

where ni labels the degeneracy of the ith symplectic eigenvalue.

This comes from a combination of Proposition 13, Lemma 17 and Proposition 18. The

dimension of these manifolds is given by np2n� 1q �°k
i�1 n

2
i . When we enact the quotient it is

via an equivalence class pu1, vq � pu2, vq, for all u1, u2 P Upnq and all v P Rnpn�1q, and so is the

inverse of the original operation. Thus, we may rewrite the quotient above as

Upnq
Upn1q � . . .�Upnkq � Rnpn�1q, (5.12)

allowing us to explore the geometry of the two parts separately. The left-hand quotient of unitary

groups has close similarities with the strata of the Bloch ball in r dimensions. In Ref. [83]

the authors show that the orbit of the unitary group on a finite-dimensional density matrix

with eigenvalues λ1, . . . , λr of respective multiplicity n1, . . . , nr, has exactly the form given in

Eq. (5.12), without the additional Rnpn�1q. The difference is that our orbits are labeled by the

multiset of symplectic eigenvalues v whereas theirs are labeled by the eigenvalues of the density

matrix.

The crucial difference arises in that the set of eigenvalues is bounded into a convex combina-

tion via
°r
i�1 niλi � 1, where no such relation holds for the symplectic eigenvalues. Therefore

no analogue of the Bloch ball is going to arise in any compact form, even given the compact

nature of each of the strata given by the quotient.
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Figure 5.1: A graphical representation of the manifold of covariance matrices in two modes. The
diagonal line depicts the case when the two symplectic eigenvalues, ν1 and ν2, are degenerate.
Each point represents a manifold in a different form, either as diffeomorphic to a plane or the
product of a 2-sphere and a plane.

A naive attempt to create some sort of a geometrical picture in two modes is given in Fig. 5.1.

This, however, does not contain the intuitive properties that are so useful in the Bloch ball. Note

that in Fig. 5.1 we have included the uncertainty principle in lower bounding the symplectic

eigenvalues to 1. We use the fact that Up2q{pUp1q � Up1qq � CP1 is diffeomorphic to the

2-sphere [83]. However, in contrast to qubits, there is no clear to glue these together to form

something like the Bloch ball because the symplectic eigenvalues don’t obey a convexity condition.

The manifolds that come together in the higher dimensional Bloch ball have a partial ordering

that is derived from majorisation conditions. The same will be true of the various manifolds at

different points of Fig. 5.1. Each of them will correspond to a set of symplectic eigenvalues

which will in turn determine the entropy of that particular state. Majorisation conditions act

to compare states at different entropies. However, such conditions are still in their infancy for

Gaussian states [85].
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5.2 Williamson’s theorem extension

The aim of the preceding geometrical analysis was to provide some intuition behind the manifold

of covariance matrices, which we will later attempt to navigate. The analysis has not yet given

the same clear picture as the Bloch ball although there are still things to be learned from it.

In the previous section we saw that the isotropy group for pure states is OSpp2n,Rq. Such

covariance matrices are of the form σ � SISᵀ. The polar decomposition turns out to completely

extract the isotropy group representative as S � LR where R P OSpp2n,Rq and L P Sp�p2n,Rq,
and so the covariance matrix of such a covariance matrix of a pure state is of the form σ � L2.

Since L P Sp�p2n,Rq are single-shot symplectics, the Williamson decomposition of all pure

Gaussian states can be done such that S is single-shot. This reasoning holds for any state with

degenerate symplectic eigenvalues.

It is unclear whether mixed states also inherit this single-shot property. The existence of an

isotropy group for mixed states as discussed in the previous section at least informs us that there

is no one-to-one relation between symplectic matrices and isospectral mixed states. If this were

the case then there would exist some state that required a two-shot symplectic for its Williamson

decomposition.

Mathematically the question is whether every covariance matrix can be put in the form

σ � SWSᵀ (5.13)

where S is of the form eX , X P spp2n,Rq. If this were true then we would have an extension of

Williamson’s theorem.

By exploring the two-mode case it is hoped that intuition will be provided for a larger n-

mode investigation. In Sec. 3.5 we saw that the Dieci conditions provided a sufficient condition

for the existence of a real Hamiltonian logarithm in the symplectic Lie algebra. This used a

characterisation based on the Laub-Meyer normal form, and so this is where the investigation

will start.

For the nondegenerate two-mode case we know that the isotropy group of σ is going to

be conjugate to OSpp2,Rq ` OSpp2,Rq. This conjugacy is given by the S that Williamson

decomposes σ. It is just as valid to put the acting matrix ‘through’ the symplectic to touch the

normal form inner element giving the decomposition

σ � SKWKᵀSᵀ, (5.14)

where K P OSpp2,Rq ` OSpp2,Rq. Therefore the problem becomes to find K such that SK is

single-shot. If this is possible then we call the matrix S savable. We know that �I is always

in the range of K and so S is known as trivially savable if this suffices. The conjecture for the
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extension of Williamson’s theorem for two modes will be proven true if this is achievable for

every S P Spp4,Rq.
Of course it is only necessary to focus on those elements of the symplectic group that are

two-shot. For the rest, K � I will obviously suffice. This set of symplectics is at least given

by the Dieci conditions, although because they are not necessary this provided set is potentially

larger than it needs to be.

Enacting the Laub-Meyer decomposition we may rewrite S as S � TV T�1 where T P Spp4,Rq
and V is one of the normal forms as given in Sec. 3.5. In two modes the only options are V � Y ,

i.e. one block, or V has two blocks Y1 and Y2. When considering two blocks this implies that

k � 1 for each of the blocks. For one block we only consider k even. The cases that do not

satisfy the Dieci condition are when we have:

• One block, Y .

– a block of type a, bpiiq, or bpiiiq.

• Two blocks, Y1, Y2.

– a block of type a and another block not of type a

– some mixture of the b blocks where neither are the same.

– two bpiiiq blocks.

– a block of type bpiiiq and another block not of type bpiiiq.

Given the list of matrices not satisfying the Dieci condition most of them are trivially savable

by setting K � �I to change the sign of the eigenvalues. In fact the only two that are not are:

• type a and not type a.

• type bpiiiq and not type bpiiiq.
If this second block corresponded to a negative or imaginary eigenvalue then the matrix would be

trivially saveable. Therefore the only remaining possibility is for it to be positive. Using Ref. [71]

and Sec. 3.5 we write down the two cases that are not trivially savable have Laub-Meyer normal

forms,

V �

������
�λ1 0 0 0

0 λ2 0 0

0 0 � 1
λ1

0

0 0 0 1
λ2

�����
, V �

������
�1 0 0 0

0 λ2 0 0

0 0 �1 0

2 0 0 1
λ2

�����
 (5.15)

where λ1, λ2 ¡ 0 and not equal to 1 and noting that we are working in the J-basis.

From here it is necessary to show that there exists K P OSpp2,Rq ` OSpp2,Rq such that

SK � TV T�1K is single-shot. Doing this has proven difficult although numerical simulations
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have strongly suggested that these types of symplectic are also savable, and so this the extension

of Williamson’s theorem is conjectured to be true, at least in two modes. Proving this in general

for n modes would close the gap a little by showing that both can enact control using a single

time-independent Hamiltonian.



Chapter 6

Control theory

Control theory is a broad subject that involves the systematic modelling of the attempt by hu-

mans to manipulate physical systems. The formal enquiry is often dated to Maxwell’s exploration

of governers which “is a part of a machine by means of which the velocity of the machine is kept

nearly uniform” [10]. In the paper he gives a call to arms for physicists and mathematicians to

study these dynamical systems mathematically.

Generally the picture is this: a space of states is visualised along with dynamics that cause

the system to move from some initial state to a final state. A part of the dynamics involves

a component that is chosen by some controller. During the evolution this component can be

altered, thus changing the dynamics of the system. Within this model, questions are asked

about the possibility of reaching specific states, and the time it might take to arrive there. These

controls may be dependent on the particular state reached, as in the case of governors, in which

case this is referred to as feedback control because the state of the system is feeding back to

determine the controls.

The modern study of control theory is often taken to begin with Roger Brockett in the

nineteen-sixties with his early studies on feedback systems [86]. During the sixties and into the

seventies, control theory blossomed into a plethora of investigations concerning the mathematical

formalisation of the subject [87]. We will follow a specific body of work that provides the basis

for the results in following sections.

The account of a state flowing around a space of states according to dynamics that are affected

by a controller has a distinctly geometrical flavour. It is therefore not surprising that geometry

was quickly absorbed to aid in formalising control. It became apparent that in many cases the

movement of states through the space corresponded to flows induced by right-invariant vector

fields, as in Hamiltonian dynamics. This spawned the study of ‘right-invariant control systems’

which introduce the full theory of Lie groups and algebras to the investigation. Ref. [88] cites

67
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Ref. [89] as the first to apply vector fields to study control problems in 1963.

This field burgeoned with a seminal paper by Velimir Jurdjevic and Hector Sussmann [90]

where some crucial results were proven that form the bedrock of much current research, forty-

five years on. Control theory absorbed more and more of the theory of Lie groups, requiring

ever-greater sophistication of techniques. ‘Strongly regular’ Lie algebra elements received much

attention [91] building on old results of Masatake Kuranishi [92,93]. Specific types of Lie group

were explored with specific interest in solvable groups [94] and simple groups [95]. Towards the

end of the last century and up to the present, the theory of root spaces has provided deeper

insight into the problem [96–98]. A wonderful review of Lie group control can be found in

Ref. [99] with Refs. [88, 100] being two major textbooks on the topic.

Control theory was born from questions in classical engineering which has spread into the field

of quantum engineering. A series of reviews, summarising contemporary success can be found

in Refs. [101–105]. Quantum states, and subsequently their control, can be divided into states

living in either finite- or infinite-dimensional Hilbert spaces with the former being dealt with in

one of the early textbooks in the field [106]. Given our interest in Gaussian states, however, the

work on infinite-dimensional systems requires more time.

In an infinite-dimensional Hilbert the set of pure states live on the unit sphere or projective

Hilbert space. As an infinite-dimensional manifold it introduces many subtleties into the problem

of control. A major insight came from the interest in the subset of analytic vectors, based on

Edward Nelson’s 1959 work [107]. Controlling on this subset turns out to be as desirable as

any physicist would want, and luckily makes the problem more tractable. The seminal paper

providing this analysis is Ref. [108] with a continuing literature including Refs. [109–113].

The set of Gaussian states, however, which includes both pure and mixed states, evolves on a

finite-dimensional manifold, which can be immediately inferred by its finite degrees of freedom.

However, the related Hilbert space is still forced to be infinite-dimensional. This suggests that

the Hilbert space picture is not a natural arena for control. Instead it is the study of Lie groups

where many people have gone to gain deeper insight into specific infinite-dimensional systems.

A notable line of exploration in this vein is the work of Jian-Wu Wu et al who have focused

on the control of SUp1, 1q which is a symmetry group arising for many systems including Bose-

Einstein condensates and in the downconversion process [114,115]. This will be of crucial interest

to us later due to its isomorphism with Spp2,Rq.
A different area that arises is the study of optimal control. This concerns the issue of reaching

a specific point as fast as possible, given that you know you are able to. These optimisation

schemes involve complex mathematical and computational machinery. In recent years the notion

of the control landscape has proved useful, with a technical definition on Ref. [116]. It seems that

the simple ‘yes-no’ aim of controllability might be far more an interest of pure mathematicians

rather than experimentalists. A part of the aim of writing Ref. [117] was to save its reputation
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by showing how it links to a more easily tractable control landscape and therefore ties in with

the notion of optimal control. However, as yet this result is only proven for finite-dimensional

Hilbert spaces.

The group of interest for the control of Gaussian states is of course the symplectic group.

Questions of optimality for this group were first studied in Ref. [118]. Control of the first moments

with an open system is explored in Ref. [119] and the recent work on conditions to enact any

symplectic group element can be found in Ref. [120]. These works base themselves in the context

of physics. The most recent purely mathematical attempt to draw out control properties of this

group can be found in Ref. [98].

These problems are connected to the relationship between a set of controls at the Lie algebra

level and a set of group elements or states. Secs. 7-8 will deal with this aspect of control for

Gaussian states. The focus there is on closed evolution and conditions for control when we

restrict the Hamiltonians that are accessible to the controller. Optimisation problems will be

considered in Secs. 9.2 and 10 in the context of open dynamics with manipulation of at the group

level, rather than studying the Lie algebra/group subtleties.

6.1 Preliminaries

The control of quantum systems is often divided into open-loop and closed-loop control. Open-

loop control systems are those for which the control choices of the controller are pre-determined.

That is to mean that there is no feedback of measurement outcomes that go into the decisions

made during the evolution of the state, which would be termed closed-loop. We will exclusively

work on open-loop problems for the remainder of this work.

The mathematical expression that captures these notions generally can be given by [88]

9x � fpx,uptqq, x P Rd, up�q P U , t ¥ 0. (6.1)

The vector-valued function f dictating the dynamics depends both on x and the control functions

uptq. The fact that this u has no x dependence indicates that this is an open-loop control

equation. U denotes the set of possible functions that the controller could choose and is referred

to as a control set. Given an initial value xp0q one might ask which elements of U allow one

to reach some specific target state, or which elements allow one to reach the target state in a

specific time.

Eq. (6.1) is very general, describing a broad class of physical setups. This is as far as we

develop for the setup of Sec. 9 but for Sec. 8 we require a narrower subclass of equations. These
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arise when we decompose fpx,uptqq so that it takes the form

9x � gpxq �
m̧

i�1

uiptqhipxq, x P Rd, up�q P U , t ¥ 0. (6.2)

This situation is very common in a wide range of physical setups. The gpxq represents a part

of the control that is ‘always on’, corresponding to some dynamics that are unaffected by the

controller. The second component represents the ability of the controller to manipulate the

dynamics by altering a vector of m scalar functions.

To continue to narrow our focus we may linearise by truncating the Taylor expansion such

that gpxq Ñ gp0q � Bg
Bx
��
x�0

x and hipxq Ñ hip0q � Bhi
Bx
��
x�0

x giving

9x � Ax� gp0q �
m̧

i�1

uiptqpBix� hip0qq, x P Rd, up�q P U , t ¥ 0, (6.3)

where A � Bg
Bx
��
x�0

and Bi � Bhi
Bx
��
x�0

. Eq. (6.3) is referred to as inhomogeneous bilinear [99] or

sometimes biaffine [100].

Setting gp0q � hip0q � 0 for all i we arrive at

9x �
�
A�

m̧

i�1

uiptqBi
�

x, x P Rn�, up�q P U , t ¥ 0. (6.4)

where Rd� � Rdzt0u. The new space of states is often set to this new punctured space because a

state beginning at the null element will not evolve and this provides issues with the transitivity

property described later. The matrix A represents the always-on dynamics which is referred to

as the drift field. The set of Bi fields are referred to as control fields where the control functions

uiptq are set by the controller. The reason they are referred to as fields is because we will later

see them as elements of the tangent space of the state manifold which is isomorphic to the Lie

algebra of right-invariant vector fields.

There are many different control sets U that are natural to consider. Four, that are often

used are described here:

• Uu is the class of all functions defined on the interval r0,8q with the range taking values

in Rm.

• Ur is the class of all functions defined on the interval r0,8q with the range taking values

in the cube: tu P Rm : |ui| ¤ 1, i � 1, . . .mu.

• Ub is the class of all piecewise constant functions defined on the interval r0,8q with the

range taking values in Rm and elements with values 1 and �1. This is also referred to as
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‘bang-bang’ control.

• Uc is the class of all functions defined on the interval r0,8q with the range taking values

in Rm and piecewise constant.

All functions are taken to be locally bounded and measurable. Before delving into the Lie group

analysis of Eq. (6.4), this provides a good place to pause for an example.

Example. Consider

9v � pI� uΩqv, v P R2
�, up�q P Uu, t ¥ 0. (6.5)

where v � px, yqᵀ. Changing variables to x � r cos θ and y � r sin θ, we find

9r � x 9x� y 9ya
x2 � y2

� r, (6.6)

and
9θ � 9xr�1 � xr�2

9rb
1� �xr � � �u, (6.7)

providing

rptq � etrp0q θptq � �
»
uptqdt� θp0q. (6.8)

This provides an ever increasing radius and so no chance of reaching every element of R2
�.

Swapping I and Ω we obtain

9r � 2ur, 9θ � 1, (6.9)

where now we may manipulate uptq to obtain any value of R2
�. For later reference, this

property will be referred to as controllability.

Before delving further, an important concept to introduce is that of the transition matrix.

We may relate the evolution of x to the evolution of a matrix acting on the initial state

xptq �Mptqxp0q. (6.10)

Substituting this into Eq. (6.4) and dropping the initial state we obtain a new equation

9M �
�
A�

m̧

i�1

uiptqBi
�
M, Mp0q � Id, up�q P U , t ¥ 0. (6.11)

This new equation is obviously related to Eq. (6.4) although now the focus is on the set of
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transformations rather than the state. Of course, we could forget about the original states

entirely and only be interested in the transformations.

It may be the case that we do not want to consider the entirety of Rn� but instead some

submanifold M and ask which points we can reach. To lead back to the example of Gaussian

states we have already encountered the manifold of covariance matrices which is where these

geometrical notions would be important. For quantum mechanics we could consider M to be

the set of density matrices, as explored in the following example.

Example. Consider the Liouville-von Neumann equation

9ρ̂ � irĤ, ρ̂s, ρ̂ P D, up�q P U , t ¥ 0. (6.12)

where

iĤ � Â�
m̧

i�1

uiptqB̂i, (6.13)

and D is the set of density matrices on some Hilbert space. We have already split the control

Hamiltonian into drift and control fields. The ansatz,

ρ̂ptq � Û ρ̂p0qÛ : (6.14)

solves the differential equation,

dρ̂ptq
dt

� dÛ

dt
ρ̂p0qÛ : � Û ρ̂p0qdÛ

:

dt
� iĤÛ ρ̂Û : � Û ρ̂piĤÛq:, (6.15)

where Û must satisfy
dÛ

dt
� iĤÛ , (6.16)

which allows us to consider the unitary transformations without the states.

As a result, Eqs. (6.4) and (6.11) act as the bedrock on which we can begin to consider the

mathematical problems of quantum control theory.

The type of control theory we are considering has connections with another problem that is

found in the quantum information literature. The aim of ‘universal quantum computation’ is to

find a small set of unitaries that are able, in combination, to enact any unitary of a particular

dimension [121]. Here, however, we deal with a set of Hamiltonians which correspond to an

infinite set of allowed unitaries. Our focus is therefore on the Lie algebra level, rather than the

group level.

The key object in the study of control is the Lie algebra generated by the set of possible
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Hamiltonians.

Γ �
#
A�

m̧

i�1

viBi

����� v P rangeruptqs,up�q P U
+
. (6.17)

From this we may construct a Lie algebra by introducing the matrix commutator rX,Y s �
XY � Y X to act as the natural Lie bracket on the set. By taking the repeated commutators

until we have a linearly independent set we form a basis for the Lie algebra vector space which

will be denoted LΓ with GΓ the associated Lie group. If we wish to discuss some general group

G then its associated Lie algebra will always be denoted as L.

The solution to Eq. (6.11) is exponential and so the solutions M will all be elements of GΓ.

Eq. (6.4) can therefore be seen as a set of dynamics where elements of GΓ act on elements of the

manifold M via Eq. (6.10). Thus we arrive again at the theory of homogeneous G-spaces.

Obviously if the group is not transitive onM then the control equation will never be able to

reach the full set of states which could mean that we should really be considering a submanifold.

An example of this would be in considering the Bloch ball as the set of states for unitary

evolution. The unitary group is not transitive on the full Bloch ball and so control in this case

will be restricted to a consideration on the sub-2-spheres.

Given Eq. (6.11) where we have set the initial matrix Id, chosen some control set U and a set

of fields tA,B1, . . . , Bmu defining some Γ, then we may make the following definitions.

Definition 20 (Reachable Set). Given tA,B1, . . . , Bmu, which provides some Γ, as in Eq. (6.17),

the values of the set of solutions to Eq. (6.11) ranging over U forms the reachable set, R. This

will be referred to as RΓ if this needs explicitly stating.

Definition 21 (Controllability). Γ is said to be controllable on a Lie group G if R � G.

In that section, the way in which optimisation must occur is made apparent through the way

in which the differential equation is written. However, this only dips into the broader theory

of optimal control, which comes with a set of different tools and results to the large body of

literature on controllability. Optimal control, in general, is closely connected with the calculus of

variations but provides a broader and more sophisticated framework for minimising the length

of trajectories. The intensity of the space program and the race to the moon went hand in hand

with problems of this type and continues to be a central point of interest for experimental and

mathematical physics, for its utility and complexity [88].

6.2 Preliminary controllability results

Firstly we state that for Γ to be controllable on G, G must be a connected group. If it is not then

there will be no path connecting the initial point to every other point on the group manifold.
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From this point onward we will deal exclusively with the piecewise constant control set

U � Uc. This may seem like a wide amount of control for any result hoping to be of interest to

experimentalists. However, this set strikes a happy medium in that it allows us to explore what

is possible in this limit, providing intuition for the capped case as we will see. This set allows us

to provide the solution to Eq. (6.11) as

Mptq �
p¹
i�1

eX1t1eX2t2 . . . eXptp ,
p̧

i�1

ti � t, ti ¡ 0@i, (6.18)

where Xi P Γ and p is the number of constant control trajectories that are concatenated.

Observing this solution we see that the reachable set is going to have the properties of a

monoid, which is a semigroup with identity. The only thing that prevents the reachable set

having group structure in general is the positivity of time removing the immediate existence of

an inverse for each element.

Theorem 22 (Generation necessity). For Γ to be controllable on G it is necessary that LΓ � L.

Proof. If LΓ is not L then either it forms a subalgebra or an element of Γ is not in L. In the

former case there is an element of G that is outside of GΓ. In the latter case there is an element

L of Γ such that eL is not in G. Either way, R � G and so the system is not controllable.

Lemma 23. Let G be some connected Lie group and let tLiu be a set of elements that generate

the Lie algebra of G. Every g P G can be written as a finite product of elements of the form eqLi

for q P R, i � 1, . . .m [90].

Homogeneous systems, not to be confused with homogeneous G-spaces, are a type of system

that frequently arises and leads to some simple controllability results.

Definition 24 (Homogeneous systems [99]). Control systems of the form of Eq. (6.11) for which

Γ � �Γ are referred to as homogeneous.

An example of a homogeneous system are those for which the drift field A and the set

tB1, . . . Bmu are linearly dependent. Theorem 23 immediately allows us to prove the following

starter control theorem:

Theorem 25 (Homogeneous system controllability). If the system is homogeneous then a nec-

essary and sufficient condition for controllability is that LΓ � L.

Proof. Theorem 23 states that any element g P G can be written as a finite product of exponen-

tials of elements of a generating set of the Lie algebra of G with coefficients q P R. This is the

same form as Mptq takes in Eq. (6.18). Therefore, all we require is that the Lie algebras are the

same.
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Another result that will be key for proving things later is the sufficiency of the reachable set

being dense in G, in order to conclude that is is G.

Definition 26 (Closure and density [122]). Consider a topological space T and a subset A � T .

The intersection of the family of all closed sets containing A is denoted Ā and is the closure of

A. A set A is dense in T if Ā � T .

Lemma 27. If R̄ � G then R � G.

Proof. See Theorem 2.8 in Ref. [99].

From here we look at compact groups. Their compact nature provides a result that is akin

to the Poincaré recurrence theorem causing a recursive property of the dynamics.

Theorem 28. For G compact there exists a sequence of times ttku8k�1 with tk ¥ 1 such that

limkÑ8 ||etkX � I|| � 0 for all X P L [106].

Proof. G is compact and therefore it is sequentially compact1, which means that every sequence

in G has a convergent subsequence. First, we consider eX , e2X , e3X , . . ., for some X P Γ,

which contains a convergent subsequence em1X , em2X , . . ., converging on some g P G where

tm1,m2, . . .u � N. Furthermore the sequence e�m1X , e�m2X , . . . will converge to g�1. Therefore

lim
kÑ8

||epmk�1�mkqX � I|| � lim
kÑ8

||etkX � I|| � 0, (6.19)

where tk :� mk�1 �mk. The minimum value of tk is 1 because mk�1 is always an integer larger

than the integer mk, which proves the statement.

Theorem 29 (Compact Lie group control). If G is compact then a necessary and sufficient

condition for Γ to be controllable on G is that LΓ � L.

Proof. Theorem 28 implies that when some M is an element of R̄, for G compact, then so is

its inverse, since reaching M along a trajectory and then returning to identity means that the

return trajectory can be cut out as M�1. Therefore R̄ has a group structure. This group will

be the one that corresponds to LΓ, as Eq. (6.11) just relates trajectories in LΓ with elements in

GΓ. By Lemma 27 this implies that Γ is controllable on G. Combined with Theorem 22 we see

that the condition is necessary and sufficient for compact groups.

We see that the common feature of both driftless systems and drift systems on compact

groups is that the elimination of time plays a role in the proof. It is the positivity of the time

1Compact Lie groups are metrizable by Urysohn’s metrisation theorem which states that ‘a compact space is
metrizable if it is second countable’ [122]. All Lie groups are second countable and compactness is the same as
sequential compactness for metric spaces. See Appendix A for more detail on terminology.
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parameter used in these product solutions that stops the question of controllability being easy

– if we could evolve Eq. (6.11) forwards and backwards in time then we would be able to reach

every element of the Lie group associated to LΓ. Homogeneous systems do not have this problem

because despite time being positive the generator can always be given a negative coefficient by

the property that defines these systems. Compact groups contain the recursive property as given

in Theorem 28 which also removes the importance of time in these systems.

The theorems above begin to reveal some of the structure of Lie group control theory. We

see that for compact groups and when Γ is homogeneous, the issue of time is eliminated and

a necessary and sufficient controllability criterion arises. This suggests the question of whether

similar results can be found for non-compact groups with Γ inhomogeneous. Researchers on

finite-dimensional quantum systems may cease to be interested because Upnq is compact. How-

ever, groups like Spp2n,Rq and SUp1, 1q play an important role in infinite-dimensional quantum

systems and are both non-compact.

6.3 Multiple control field results

We introduce a new set

ΓB �
#

m̧

i�1

viBi

����� v P rangeruptqs,up�q P U
+
. (6.20)

which is the same as Γ but with the drift field removed. This comes with an associated Lie

algebra LΓB and Lie group GΓB , where ḠΓB denotes the closure of GΓB in GΓ.

Lemma 30. ḠΓB � R̄ [90].

Proof. By Lemma 23 we can express every element of a group as a product of its single shots.

Thus to prove that ḠΓB � R̄ it suffices to show that it is true for the single shots. Fix

ui � p0, . . . , 0, c, 0, . . . , 0q where c appears in the ith position. Choose time such that t � t1{c.
Therefore

lim
cÑ8 e

t1{cpA�cBiq P ḠΓB (6.21)

and is also in the closure of the reachable set. By taking the limit points of GΓB we stay in R̄
which proves the statement.

Theorem 31 (Blow away the drift field). If LΓB � LΓ then Γ is controllable on GΓ.

Proof. In Lemma 30 we saw that ḠΓB � R̄. If LΓB � LΓ then GΓB � GΓ. In Ref. [123], we find

that the closure of subsemigroups are subsemigroups, i.e. R̄ � GΓ and so this would prove their

equality. From Lemma 27 we see that this is equivalent to controllability of Γ on G.
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At this stage we reach a divergence between the mathematical and physical communities.

The drowning out of the drift field dynamics by powerful control fields seems like a fair physical

assumption. This is down to the fact that a transformation being enacted which is very close to

another is something that should yield a similar physical effect.

However, closeness at the Lie algebra level is not so physically clear. Two Hamiltonians that

are extremely similar may yield very different dynamics when applied to a state. Whether or

not such a notion of closeness is allowed will affect reception of the following result that is the

cause for most mathematicians ignoring the situation of m ¥ 2, i.e. more than one control field

as written in Eq. (6.4).

Theorem 32 (Generic generation [88]). Almost all right invariant control systems with U � Uu,

or Uc, are controllable on G provided that the number of control functions m ¥ 2.

This uses the idea that the set of elements pL1, L2q P L�L such that L1 and L2 generate L,

is an open and dense subset when L is semisimple [88]. Therefore, for m � 2, B1 and B2 are,

in a sense, close to two elements that generate L. Therefore, using Theorem 31 the system is

controllable.

A recent advance for the m � 1 case can be found in Ref. [98] where root spaces play a central

role in developing a sufficient condition on Γ for controllability. As yet, however, there does not

exist a general necessary and sufficient condition for controllability of non-compact groups.

As we have seen, however, for compact groups and driftless systems this question has been

answered. It is known that the Lie algebra rank criterion is not a sufficient for the controllability

non-compact groups and so the current aim is in finding another property that might be added

to create a necessary and sufficient condition.

The property of ‘neutrality’ was proven to be sufficient in 1972 but its necessity for control

is still only a conjecture2 [90]. This property has an intuitive link with the idea of recursivity

of the Hamiltonian dynamics and, as such, is a novel way in which time may be removed as an

issue, as in compact groups and driftless systems. It is hoped that some physical insight can be

drawn from this property to shed light on this open conjecture.

2In the paper it is just stated that they do not know if the result is also necessary. The conjecture was stated
in private correspondence between V. Jurdjevic and the present author in April 2015.
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Chapter 7

Neutrality

The concept of neutrality in the context of control comes in Ref. [90] where the authors show that

the existence of constant recursive trajectories on the manifold would provide a new condition

for controllability. The clarification of this theorem, and link to linear algebra was provided in

Ref. [124], although the name was not coined there. Indeed, it is referred to as compactness in

Ref. [125]. In this section we will explore the condition of neutrality and its relation to control.

Towards the end we will begin to focus on the symplectic group as a key object of study in the

thesis.

7.1 Introduction

There are many different ways to define a neutral matrix which is shown by the list of equivalences

below. These are useful at different times, depending on how we want to use them.

Definition 33 (Neutral matrix). A matrix N P Rm�m is neutral if

D P P Rn�n st PNP�1 �M and MT � �M. (7.1)

Lemma 34. Neutrality of N is equivalent to each of the following properties [100]

1. A nonzero matrix N P Rn�n if NTQ�QN � 0 for some positive-definite Q.

2. specrN s lies on the imaginary axis and N is diagonalisable over C.

3. The closure of eRN is compact. N � 0.

4. There exists σ ¡ 0 and a sequence of times ttku81 with tk ¥ σ such that limkÑ8 ||etkN�I|| �
0.

79
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Proof. We find a set of inferences which will provide the equivalence of the above statements.

• Def ðñ 1.
NᵀQ�QN � NᵀP ᵀP � P ᵀPN � 0 ðñ
pP�1qᵀNᵀP ᵀ � pPNP�1qᵀ � �pPNP�1q

(7.2)

where we set Q � P ᵀP which is the Cholesky decomposition of Q due to its positive-

definiteness [126].

• Def ðñ 2. PNP�1 � M as in the definition. M is real and skew-symmetric matrix if

and only if iM is Hermitian which is true if and only if iM � UDU :, where D diagonal

and real. Therefore the spectrum of M is imaginary and hence so is the spectrum of N .

• 1 ùñ 3. Given NᵀQ � QN � 0 we have already seen that TrN � 0 because a skew-

symmetric matrix has trace zero. Therefore det erN � 1 for all r P R. The determinant

is a continuous function mapping the set to a compact subset of R. Continuous functions

map compact spaces to compact spaces and so the closure of eRN is compact.

• 3 ùñ 2. First we show that compactness implies diagonalisability. First define Jk P Rd�d

Jk :�

������������

0

khkkikkj
� � � 1 0 � � � 0

0 � � � 0 1 � � � 0
...

. . .
...

...
. . . 0

0 � � � 0 0 0 1
...

...
...

...
...

...

0 � � � 0 0 0 0

�����������

, (7.3)

where J0 :� I and Jk :� 0d�d for k ¡ d � 1. Note that JkJl � Jk�l @ k, l P N. By the

binomial theorem

pλI� J1qn �
ņ

m�0

�
n

m

�
λn�mJm, (7.4)

and so

epλI�J1qt �
8̧

n�0

ņ

m�0

�
n

m

�
λn�mJm

tn

n!
� eλt �

d�1̧

m�1

Jm

8̧

n�m

�
n

m

�
λn�mtn

n!

� eλt �
d�1̧

m�1

Jm
tm

m!

8̧

n�0

λntn

n!
� eλt

�
I�

d�1̧

m�1

Jm
tm

m!

�
.

(7.5)
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Figure 7.1: A graphical representation of the implications used to prove Theorem 34.

In the first line we took out an m � 0 term, used the fact that m ¡ d�1 causes Jm � 0d�d

and noted that

�
n

m

�
� 0 for n   m. The final expression is not equal to I for all t � 0. A

Jordan block is of the form λI� J1 and so the above result shows that the identity is not

reachable for t ¡ 0 if N is not diagonalisable. Now, given that N must be diagonalisable,

we focus on its spectrum. Any real eigenvalues will exponentiate in time to infinity and so

can not recur. Therefore, all eigenvalues must be imaginary. This provides the implication

required.

• 3 ðñ 4. Since eRN is a subset set of the n � n real matrices, which is a metric space,

compactness is equivalent to sequential compactness. Therefore the proof of Theorem 28

applies here. That provides 3 ùñ 4. The reverse is clear in that if erN � I for some r

then the set is compact because epr�r
1qN � er

1N and so the exponential map is a continuous

map from a closed segment of the real number line to a set of matrices. The domain is

compact and therefore so is the range.

To illustrate the implications of the proof, Fig. 7.1 is provided as a graphical representation.

We see that the concept of neutrality is completely related to the notion of recursion via the

exponential map. In physical systems we expect recursion to relate to recursive dynamics, for

example simple harmonic oscillation. This is exposed mathematically in Sec. 7.3. However,

before delving too deeply into the physics of this problem we shall first look at its relation to

control theory.
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7.2 In control

Near the genesis of geometrical control theory, a seminal paper by Jurdjevic and Sussmann [90]

provided a sufficient result related to neutrality that will be reproven here.

Theorem 35. Given a control system on Eq. (6.11) with associated Γ and Uc, if there exists a

control u such that A�°m
i�1 uiBi is neutral then Γ is controllable on GΓ.

Proof. By Lemma 34 our neutral control allows us to get arbitrarily close to I and so we can make

the broader statement that there exists some X P Γ such that etX P ḠΓB , given that I P ḠΓB .

Thus we know that e�tX P ḠΓB and also that e�ntX P ḠΓB because of its group properties. We

know that for all q P R there exists some n P N such that epnt�qqX P R, for n large enough – the

large enough n is to counteract the q. We also know by Lemma 30 that ḠΓB � R̄. Therefore

epnt�qqXe�ntX � eqX P R̄ (7.6)

Therefore R̄ is the group generated by tX,Biu, by Lemma 23, which is just GΓ. Having proven

that a neutral element of Γ implies R̄ � GΓ then we just require Lemma 27 to state that

R � GΓ.

Theorem 35 provides a sufficient result for controllability for Eq. (6.11). To this date it is

not known whether it forms a necessary and sufficient condition for all Lie groups. Next we are

going to link this concept with our symplectic conditions.

7.3 Symplectic neutrality

So far the discussion about control has been for any Lie group. We have seen that necessary

and sufficient conditions for controllability on compact Lie groups and homogeneous systems

exist. The existence of a neutral element in Γ has been shown to be a sufficient condition for

controllability on GΓ with no final outcome as to its necessity.

To solve this problem in general would be a significant advance in understanding the nature

of controllability. From this point in the thesis we will narrow our focus to our particular Lie

group of interest: the symplectic group Spp2n,Rq. It is hoped that exploring neutrality in this

context will give some clues as to the route forwards.

In terms of the dynamics, the place where we take interest in neutral matrices is at the Lie

algebra level spp2n,Rq, as discussed in Sec. 6. In that section we saw that elements of the algebra

were of the form X � ΩH where H is symmetric.

First we seek to combine the algebra condition, ΩX�XᵀΩ � 0 with the neutrality condition,

Def. 33. This leads to the following result:
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Theorem 36. A necessary and sufficient condition for a X P spp2n,Rq to be neutral is that

there exists some real, symmetric, positive-definite Q such that

rΩQ,Xs � 0. (7.7)

Proof. If X is neutral then Xᵀ � �QXQ�1 for Q ¡ 0 by Lemma 34. From the symplectic Lie

algebra condition, Eq. (3.11), Xᵀ � �ΩXΩᵀ. Putting these together we prove the necessity of

the statement. The argument works in reverse for sufficiency.

Note that elements of the Lie algebra ospp2n,Rq associated to the Lie group OSpp2n,Rq
already satisfy rΩ, Xs � 0 and this full algebra is made up of neutral matrices. As it stands,

intuition behind neutrality is lacking as so we will explore further.

To develop our insight we may explore the impact of the neutrality of X on the matrix H,

as all the degrees of freedom for the X matrix lie in this. Given that X is neutral, we know

from Lemma 34 that X must be diagonalisable and have pure imaginary eigenvalues. These

conditions will dictate the normal form that it takes, some of which are discussed in Sec. 4.

The pure imaginary property will obviously limit the eigenvalues and the diagonalisability will

require that all Jordan blocks are of order 1, since Jordan blocks are not diagonalisable. The

proofs of Ref. [71] relate the Jordan and Laub-Meyer blocks meaning that this also implies that

we are restricted to k � 1, in the notation of Sec. 3.5.

Hence we find that for a neutral matrix X P spp2n,Rq there will exist some T P Spp2n,Rq
such that X � ΩH � TY T�1 such that

Y �
nà
i�1

�
0 �λi
λi 0

�
, (7.8)

where Y is taken from Ref. [71] and presented in the Ω-basis. Given TΩT ᵀ � Ω, we find that

T ᵀHT � T ᵀΩᵀTY � �ΩY �
nà
i�1

�
�λi 0

0 �λi

�
. (7.9)

This normal form for H is inherited from that for X and corresponds to a set of n uncoupled

simple harmonic oscillators. The dynamics of such a system is, of course, recursive and it is

shown here that, up to the symplectic transformation T , it is the unique recursive system for

symplectic dynamics. This shows that neutral elements of the Lie algebra are characterised by

their relation to simple harmonic motion.

This leads to some interpretation of Eq. (7.7) and its ospp2n,Rq counterpart. Given X we seek

a natural Q that will fulfill the role in Eq. (7.7), ensuring that it is positive-definite, symmetric

and real. We find that taking the absolute value of the matrix ΩY and then using T to take it
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out of normal form does the trick, i.e. letting

Q � pT�1qᵀ|ΩY |T, (7.10)

we find that Eq. (7.7) is satisfied. Q is thus constructed from X by extracting the matrix H from

X � ΩH, finding its normal form which will appear as decoupled simple harmonic oscillators,

taking the absolute value of this matrix and then undoing the normal form diagonalisation. We

note that the ospp2n,Rq condition is just the statement that this is always possible for trivial

simple harmonic motion where λi � 1 for all i, in Eq. (7.8).

This set of neutral elements in spp2n,Rq, N , forms a proper subset of the algebra. The image

of N under the exponential map is a also proper subset of the group, eN � Spp2n,Rq. Note

that although the exponential of a simple harmonic motion Hamiltonian will be an element of

OSpp2n,Rq, a general exponential of a neutral element will have non-trivial singular values, i.e.

squeezing, since we only require similarity to such dynamics. As such there is no immediate

characterisation of this subset of the symplectic group. The question of the exact link between

neutrality and control is not solved as of yet. To continue our discussion we will focus on the

single-mode case to see if we can draw out any physical intuition for the dynamics of these

systems.



Chapter 8

Single-mode control

Studying control problems in low dimensions can lead to physical intuition behind how such

problems may be solved in general. Here, we restrict to Spp2,Rq to explore different dynamics

on this group. A visualisation of the reachable set will be constructed for a single mode to see

what form it takes under different types of set, Γ.

For this low dimension a set of group isomorphisms come into play which allow the importa-

tion of other control results. For our particular case we find that

Spp2,Rq � SLp2,Rq � SUp1, 1q. (8.1)

The bijective property of isomorphisms means that the reachable set for systems evolving on one

of these groups will be in one-to-one correspondence with the reachable sets on the other groups.

Control on SUp1, 1q was explored in Ref. [115] where the authors prove that the existence of a

neutral element in Γ, along with LΓ � sup1, 1q, is necessary and sufficient for Γ to be controllable

on SUp1, 1q. The study of SUp1, 1q systems do not call for an immediate generalisation whereas,

with the isomorphism to Spp2,Rq there is a much greater physical push to increase the number

of modes to see if the result still holds. Clarifying paths forward for this generalisation led to the

project of visualising the behaviour of uncontrollable systems as presented here. The main aim of

this section is to enact a physical analysis of this result with the aim of clarifying routes forwards

for the multimode case. For the remainder of this chapter we will restrict to the single-mode

case, n � 1.
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8.1 Structure of the single-mode symplectic group

The focus in this branch of control theory is always the relation between trajectories that occur

in the Lie algebra and how they carve out trajectories at the group level. Examining this link

can be recast physically as the examination of how changes of Hamiltonian affect changes of

transformation and how to explore this in a rigorous way.

We begin by exploring a classification scheme that exists at the Lie algebra level of ellipticity,

hyperbolicity and parabolicity. As well as having interpretations as physical transformations,

these three types also relate to control theoretical properties as will be seen.

Given some X P spp2n,Rq we call it

• Elliptic if TrrX2s   0,

• Parabolic if TrrX2s � 0,

• Hyperbolic if TrrX2s ¡ 0.

This is a partition of the algebra into three classes.

The characteristic polynomial of a 2� 2 matrix X is given by

detrX � λIs � λ2 � TrrXsλ� detrXs. (8.2)

Lemma 37 (Cayley-Hamilton Theorem [127]). The matrix X obeys its own characteristic equa-

tion.

We have already seen that elements of spp2,Rq have vanishing trace and so Eq. (8.2) shows

that

X2 � �detrXsI. (8.3)

From this, the conditions for ellipticity, hyperbolicity and parabolicity as given above take a new

form in the single-mode case, as follows: An element of spp2,Rq is

• Elliptic if detrXs ¡ 0,

• Parabolic if detrXs � 0,

• Hyperbolic if detrXs   0.

Using Eq. (8.2) and the eigenvalue condition for neutral matrices, we see that all elliptic and

some parabolic, matrices are neutral. The set of parabolics that are not neutral are those that

are not diagonalisable.

To complete the analysis we may now see whether a similar structure also exists at the group

level. This would be self-evident if the exponential map were bijective but that is not the case
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for the symplectic group for any number of modes. Indeed, as we saw in Sec. 3.2 the exponential

map is not surjective for the symplectic group. We will analyse the links between the algebra

and the group a little more closely.

For this we introduce a basis for the algebra:

K1 � 1

2

�
0 1

1 0

�
, K2 � 1

2

�
�1 0

0 1

�
, K3 � 1

2

�
0 �1

1 0

�
, (8.4)

which satisfies

rK1,K2s � �K3, rK2,K3s � K1, rK3,K1s � K2. (8.5)

We see that K1 and K2 are hyperbolic whereas K3 is elliptic. From this we see that a general

element of spp2,Rq can be written as

X �
�
�b a

c b

�
, (8.6)

where a, b, c P R. Using this we find that [128]

eX �
8̧

k�0

Xk

p2kq! �
8̧

k�0

X2k

p2kq! �
8̧

k�0

X2k�1

p2k � 1q! � cosr
?

detXsI� sinr?detXs?
detX

X, (8.7)

given that X2 � � detrXsI, X3 � � detrXsX, etc. Note that we allow the argument of the

cosine to be imaginary leading to the hyperbolic cosine and sine. We know that TrrXs � 0 and

so taking the trace on the left and right hand sides provides TrreX s ¥ �2. There are elements

of the group that have trace less than �2 and so we see a proof of our statement that not all

elements of the symplectic group have a real logarithm in spp2n,Rq, even for a single mode.

Specifically we have a condition showing that symplectic matrices whose trace is less than �2 do

not possess such a logarithm. For the subset of single-shot symplectic matrices we may provide

a group level partition that reflects the partition in the Lie algebra:

• Elliptic. |TrrSs |   2,

• Parabolic. |TrrSs | � 2,

• Hyperbolic. |TrrSs | ¡ 2.

This provides a partition at the group level where hyperbolics are generally taken to span the

two-shots as well, although given that the hyperbolic cosine is unbounded from above, this also

covers many single-shot symplectics. This categorisation has a geometrical interpretation where

elliptics are related to rotations of figures in a plane, parabolics to shear distortion (turning a

square into a rhombus), and hyperbolics to squeezing, in the literal rather than optical sense [129].
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From here we delve into a visualisation of the controllability problem in a single mode.

8.2 Controllability

We adapt Eq. (6.11) to a form that explicitly deals with symplectic matrices. Therefore our

equation is of the form

9S �
�
A�

m̧

i�1

uiptqBi
�
S, Sp0q � I2n, up�q P Uc, t ¥ 0. (8.8)

Γ will be defined as before where it is made up of drift and control fields that are elements of

the algebra and R will denote the reachable set of the system.

We repeat many of the results from Ref. [115] with the aim of extending the result with a

visual, physical analysis. There, it is proven that a neutral element in Γ, along with Lie algebra

generation, is necessary and sufficient for controllability on Spp2,Rq, using the isomorphism

between this group and SUp1, 1q. It is also shown that parabolic elements deny the possibility

for Γ to generate the full algebra and so lead to trivial uncontrollability. Since all elliptic, and

some parabolic, matrices are neutral, this proves that ellipticity and Lie algebra generation is

necessary and sufficient for controllability on this group.

It was proven in Ref. [115] that the only nontrivial system of study for a single mode involves

a single control field, i.e. m � 1. The low dimensionality of the problem means that in the

other cases we are either trivially controllable or trivially uncontrollable in that generation is not

satisfied. Thus the system we study is given by

9S � pA� uptqBqS, Sp0q � I2, up�q P Uc, t ¥ 0. (8.9)

The main result from Ref. [115] that helps is the following

Theorem 38. If Γ only contains hyperbolic elements such that LΓ � spp2n,Rq then Eq. (8.9) is

similar, via a symplectic transformation, to

9Sptq � p�K1 � bK3 � uptqK2qSptq, Sp0q � I2, (8.10)

where b is some real constant with modulus strictly less than one.

Recalling that parabolic elements cause the Lie algebra generation to fail, hyperbolic systems

are the only ones which are nontrivially uncontrollable.This theorem then enables us to see how

they act in general by relating them all to a specific system, Eq. (8.10). Its proof is given in
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Appendix B. Eq. (8.10) becomes the new control equation with dynamical algebra

rΓ � t�K1 � bK3 � vK2 | v P Ru , (8.11)

and reachable set rR. This new control equation has much less freedom than Eq. (8.9) and so we

can focus in on its more explicit properties.

We do this by writing down a general 2� 2 element of Spp2,Rq in the form

S �
�
x1 � x3 x2 � x4

x4 � x2 x1 � x3

�
, xi P R. (8.12)

Note that this general form in fact holds for any 2� 2 real matrix. Using this form allows us to

state the following result of Ref. [115]. We include the proof here as it leads on to the translation

using the Euler decomposition which we will enact.

Theorem 39. Consider some solution Sptq to Eq. (8.10), parametrised as according to Eq. (8.12).

The following function of S,

fpSq :� px1 � x4q2 � px2 � x3q2 (8.13)

has the properties fpSq ¥ 1 and 9fpSq ¥ 0, for all choices of uptq. Equality in the former case is

only reached for S � I.

Proof. Substituting the parametrisation of Eq. (8.12) into Eq. (8.10) we are provided with the

set of coupled differential equations on the four parameters of S,

9x1 � 1

2
pbx2 � x4 � ux3q, 9x2 � 1

2
p�bx1 � x3 � ux4q, (8.14)

9x3 � 1

2
p�bx4 � x2 � ux1q, 9x4 � 1

2
pbx3 � x1 � ux2q. (8.15)

Subtracting 9x4 from 9x1, with a multiplication by 2px1 � x4q provides

d

dt
px1 � x4q2 � bpx1 � x4qpx2 � x3q � px1 � x4q2 � upx1 � x4qpx2 � x3q. (8.16)

By a similar method, we have

d

dt
px2 � x3q2 �� bpx1 � x4qpx2 � x3q � px2 � x3q2 � upx1 � x4qpx2 � x3q. (8.17)
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By subtracting Eq. (8.17) from Eq. (8.16) we obtain

d

dt

�px1 � x4q2 � px2 � x3q2
� � 2bpx1 � x4qpx2 � x3q �

�px1 � x4q2 � px2 � x3q2
�

� p1� |b|q �px1 � x4q2 � px2 � x3q2
�� |b| ppx1 � x4q � signrbspx2 � x3qq2 .

(8.18)

Upon inspection we see that this derivative is always positive and so 9fpSq ¥ 0 for every trajectory

solving Eq. (8.10). The initial value of the system is I and fpIq � 1 with 9fpS � Iq � 1, from

Eq. (8.18), providing fpSq ¡ 1 for all other parts of the trajectory.

Of course it is possible that both A and B could be non-elliptic and the system still be

controllable. For example letting

A �
�

0 1

1 0

�
, B �

�
0 0

1 0

�
(8.19)

we see that neither are elliptic themselves but A� uB for u   �1 is. Given that Γ in this case

has an elliptic element and that the pair generate the algebra, we immediately know that this

system is controllable.

The derivation of the function f and its behaviour under hyperbolic dynamics proves that

hyperbolic systems are uncontrollable. This is due to the monotonic behaviour of f which

precludes it taking certain values which are the values for certain symplectic matrices, thus

rendering them unreachable. This leads to a necessary and sufficient condition for controllability

on Spp2,Rq which is the main result of Ref. [115]. The continuation here is to characterise the

reachable set of hyperbolic systems.

8.3 Visualisation

We have seen that a neutral element of Γ is necessary for the controllability of systems on a

single mode. As has been mentioned, it is unknown whether this property extends to multimode

systems. Rather than attempting this directly it is interesting to ask what it is about neutral

elements that makes them necessary.

At this point it may seem obvious: the set of neutral elements of spp2,Rq is unavailable and

so it may be thought that the set of elements that these exponentiate to should be obviously

inaccessible. However, there is no apparent reason why we should not be able to reach a passive

element along two or more trajectories generated by hyperbolic elements. For example the

matrices

S1 � 1

4

�
2 1

4 10

�
, and S2 �

�
�2 �11

1 5

�
(8.20)
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are both hyperbolic, in that TrrS1s � TrrS2s � 3, whereas the trace of their product is 3{4 and is

therefore an elliptic element. It is this concatenation of elements that causes some of the deeper

subtleties of control research.

8.3.1 Bounding the reachable set

The controllability proof of the previous section uses the fact that any hyperbolic system asso-

ciated with Eq. (8.9) may be transformed into Eq. (8.10). This transformation was then used to

derive an ever-growing function that was used to prove the uncontrollability of such a system.

It would be interesting to use this function to find a more intuitive bound for the reachable set

of Eq. (8.10).

Theorem 40. Given Eq. (8.9) with its associated Γ only containing hyperbolic elements, the

reachable set R does not contain any element that is symplectically similar to an element of

OSpp2,Rq, excepting I.

Proof. First we show that no element of rR exists such that

S � TRθT
�1, (8.21)

where T P Spp2,Rq, Rθ P SOp2q � OSpp2,Rq. We will proceed by contradiction. Consider the

existence of some S P rR that satisfies Eq. (8.21). This implies that

Sm P rR @m P N, (8.22)

because rR has monoidal structure. Furthermore, note that

‖Sm � I‖ � ‖T pRmθ � IqT�1‖

¤ ‖T‖‖T�1‖‖Rmθ � I‖,
(8.23)

using the Euclidean norm,

‖M‖ :�
b

TrrMTM s. (8.24)

The time-independence of T means that ‖T‖‖T�1‖ is constant. Since Rθ P SOp2q, there must

exist some m such that

‖Rmθ � I‖   ε, @ε ¡ 0 (8.25)

and so there exists m such that

‖Sm � I‖   ε, @ε ¡ 0. (8.26)
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Theorem 39 provides a lower bound fpSq ¡ 1 which is increasing at the start of the dynamics.

After some finite time of evolution the value of fpSq will be some value greater than 1. We

can follow Sm along and get beneath this value, violating 9fpSq ¥ 0. Therefore, no S satisfying

Eq. (8.21) can be an element of rR. The reachable set R corresponding to Eq. (8.9) is similar

under a symplectic transformation to rR. We know that no element of rR is similar under a

symplectic transformation to any member of SOp2qzI. This property is therefore inherited by

R.

8.3.2 Euler translation

The visualisation of the reachable set is greatly improved if we change coordinates and introduce

the Euler decomposition. The difficulty that comes with using this decomposition is that it is

not unique. However, its advantage comes by virtue of its physical interpretation being clear,

as discussed in Sec. 3. Uniqueness can, however, be given by an appropriate restriction of the

ranges of the parameters in the three matrices. The Euler decomposition in a single mode takes

the form,

S � RθZRφ, (8.27)

where Z � diagpz, 1{zq and z ¡ 1, as well as,

Rθ �
�

cosrθs � sinrθs
sinrθs cosrθs

�
, (8.28)

and similarly for Rφ. We see that the group OSpp2,Rq is identical to SOp2q. We may make this

decomposition unique by restricting the angle parameters to

� π � θ0 ¤ θ   π � θ0, �π
2
� φ0 ¤ φ   π

2
� φ0, (8.29)

where θ0 and φ0 are arbitrary numbers that fix the centres of the ranges. The proof of this is

given in Appendix C. The case of Z � I is special in that the equation reduces to the product

of two passive symplectics which are elements of SOp2q which only requires a single parameter

to describe. Hence we simply fix φ and let θ vary over the 2π range. Note that this restriction

for the Euler decomposition introduces branch-cut style effects into the physical analysis of the

reachable set.

We begin with two expressions for S P Spp2,Rq, the first from Eq. (8.12) and the latter from



8.3. VISUALISATION 93

the Euler decomposition:

S �
�
x1 � x3 x2 � x4

x4 � x2 x1 � x3

�
Ñ
�

cosrθs cosrφs
z � z sinrθs sinrφs � cosrθs sinrφs

z � z sinrθs cosrφs
sinrθs cosrφs

z � z cosrθs sinrφs � sinrθs sinrφs
z � z cosrθs cosrφs

�
.

(8.30)

Equating the two expressions we find that f in the new coordinates is

fpSq � cosr2θs cosr2φs � sinr2θs
�

1

2

�
z2 � 1

z2



sinr2φs � 1

2

�
z2 � 1

z2




. (8.31)

For the proofs in the following two lemmas, we define

δ :� 1

2

�
z2 � 1

z2



sinr2φs � 1

2

�
z2 � 1

z2



� sinr2φs. (8.32)

so that

fpSq � cosr2pθ � φqs � δ sinr2θs. (8.33)

Lemma 41. If fpSq ¡ 1 then sinr2θs ¡ 0.

Proof. Let sinr2θs ¤ 0. Eq. (8.33) tells us that fpSq ¡ 1 only has solutions if δ ¡ 0, i.e. that�
z2 � 1

z2
� 2



sinr2φs ¡ z2 � 1

z2
. (8.34)

For the full range of z for which this inequality holds, we note that z2 � 1{z2 � 2 ¥ 0 and that

sinr2φs ¤ 1. Therefore any z satisfying the previous inequality will also satisfy

z2 � 1

z2
� 2 ¡ z2 � 1

z2
, (8.35)

for some θ. This implies that z   1 which is ruled out by the restriction, set at Eq. (8.27). By

contradiction the statement is proven.

Lemma 42. If fpSq is lower bounded such that fpSq ¡ d, where d ¥ 1, then

z ¡
c
d� 1

2
. (8.36)

Proof. Given the bound on fpSq, by Lemma 41 we may state that sinr2θs ¡ 0. Now, Eq. (8.33)

tells us that fpSq ¡ d only has solutions if δ   1� d, i.e. that�
z2 � 1

z2
� 2



sinr2φs   z2 � 1

z2
� pd� 1q. (8.37)
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Again z2 � 1
z2 � 2 ¥ 0 and sinr2φs ¤ 1 so any z satisfying this inequality will also satisfy

z2 � 1

z2
� 2   z2 � 1

z2
� 1� d, (8.38)

for some θ. This implies that

z2 ¡ d� 1

2
, (8.39)

completing the proof.

We see that as fpSq does not decrease which provides a nondecreasing lower bound on z, the

squeezing parameter.

8.3.3 Visualising the reachable set

The analysis so far has provided us with some general bounds that any single-mode, uncontrol-

lable system with LΓ � spp2,Rq, must obey. The main analytical result in terms of visualisation

is that no element symplectically similar to a passive matrix may be reached – apart from the

identity which is the initial position on the group. Furthermore we saw that z will always be

non-decreasing.

Eq. (8.10) provides the form to which all hyperbolic systems may be transformed. In terms

of drift and control fields it can be written as

A �
�

0 �p1� bq
�p1� bq 0

�
, B �

�
�1 0

0 1

�
. (8.40)

where b P R and |b|   1 to make it hyperbolic. Note that we have dropped the factor of 1{2
since this can be absorbed by the time variable. Through Eq. (2.4) which relates elements of

the Lie algebra to Hamiltonian operators on the phase space, these matrices correspond to the

Hamiltonians

ĤA � p1� bqx̂2 � p1� bqp̂2

2
, ĤB � � x̂p̂� p̂x̂

2
. (8.41)

Using the conditions of Sec. 8.1, A can be shown to be either parabolic, hyperbolic or elliptic if

|b| is, respectively, equal to, less than, or greater than 1. We provide an analysis of the hyperbolic

case for b � 0.

The non-uniqueness of the Euler decomposition is again going to cause some subtleties with a

graphical illustration of the reachable set and so some time will be required to unpick this. If we

consider a three-dimensional plot where the axes label the z, θ and φ parameters then every point

on the plot will correspond, uniquely to a symplectic matrix. However, the reverse is not true.

To compensate for this we return to the angle bound of Appendix C to restrict the latter two

axes. This creates a one-to-one mapping for all matrices with zpSq � 1. However, we then find
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degeneracies at z � 1 because we will have two angles deciding a point on the one-dimensional

passive line.

One solution to this problem would be to alter the cubic geometry of the plot and pinch

it into an egg-timer shape. However, since we already know from Theorem 40 that only the

identity element of the passive set is going to be reachable, this seems a little drastic. As a result

it remains for us to uncover the natural point on the passive plane which will correspond to the

identity, and then we can look at the results of the numerics.

Recalling that the angles are bounded such that we must choose appropriate bounds. Fol-

lowing Eq. (8.29), we set these to be

� π ¤ θ   π, 0 ¤ φ   π. (8.42)

To find the natural point for the identity on this passive plane we consider eAt and then take

the limit as tÑ 0, given our angle bounds. This will give the ‘Euler decomposition of identity’.

Letting t � 1
n where n P N we have that

exp

��
0 �1

�1 0

�
1

n

�
�
�
R� 3π

4

�
1
e 0

0 e

�
R 3π

4

� 1
n

� R� 3π
4

�
1
e 0

0 e

� 1
n

R 3π
4
.

(8.43)

Taking the limit we find that the natural decomposition for the identity is

I � R� 3π
4
R 3π

4
. (8.44)

i.e. the point p�3π{4, 3π{4q. This analysis simply allows us to represent the reachable set of

the system corresponding to Eq. (8.40) on a three dimensional plot without worrying about

degeneracies. Given the location of this initial point, we may add the bound of Lemma 41 which

additionally restricts us to �π   θ   �π{2.

Now that the last of the analytical bounds have been put in place, we may proceed with a

computational visualisation of the reachable set of the system corresponding to Eq. (8.40).

The computational investigation was carried out using QuTiP, an open source python library

that simulates quantum dynamics [130, 131]. The example hyperbolic system in Eq. (8.40) was

taken and the question was asked: which symplectics Starget can be reached at a given time

T? Note that this is slightly different to finding the reachable set, as that would be for all T .

However, specifying the time allows us to see more detail in exactly how the system is behaving.

Splitting T into Q time slices of duration ∆t, the control function uptq was assumed to
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be constant during each of these Q time intervals, with value uptkq for the kth interval. The

generators are of the form

Xk � A� uptkqB, uptkq P R, (8.45)

which exponentiate to a set of symplectic matrices

Sk � eXk∆t, (8.46)

to give the overall evolution by the product,

SpT q � SQSQ�1 � � �Sk � � �S2S1. (8.47)

Of course, to test for a specific target state with zero deviation would not be feasible numer-

ically. Therefore it is necessary to introduce the infidelity via the Frobenius norm

ε :� λTrrpSpT q � StargetqTpSpT q � Stargetqs, (8.48)

where λ � 1{8 for a 2� 2 matrix.

To find the uptq that enacts this target symplectic the GRAPE algorithm [132] was used in

QuTiP. Ensuring that ε was minimal required the L-BFGS-B method in the scipy optimization

function. The target is said to have been reached if ε   10�3. The search terminates if a

local minimum is found or the system runs over a particular time threshold. The number of

time slices was set to Q � 10. The set of target symplectics was discretised by only attempt-

ing points at intervals of length π{2 in the angular directions θ and φ, and 10 logarithmically

equal intervals between z � 1 and z � 100, the latter being an arbitrary upper bound. The

simulation was repeated for combinations of b � t0.0,�0.5,�0.9,�0.99,�1.01,�1.1,�1.5u and

T � t0.1, 0.5, 1, 2, 3, 4, 5, 7, 10, 20, 50, 100u, but a subset of these is displayed.

The primary point of the simulation was to find out the behaviour of the hyperbolic system to

see if we could characterise it in some physical way. Fig. 8.1 shows the case for b � 0 and T � 5

and T � 1. The T � 5 basket lies inside that for T � 1 suggesting that in our system we require

small times for small values of squeezing, but also don’t require large times for large values of

squeezing, presumably an effect of our unbounded controls. Furthermore it suggests that there

is a general ‘rip-tide’ dragging the squeezing value z to be ever greater as time progresses. As

proven, we see that the reachable set is centred around pθ, φq � p�3π{4, 3π{4q, with a θ-bound

of �π   θ   �π{2. There is an additional φ bound, π{2   φ   π, that was not predicted in the

previous analysis.

This provokes the surmise that it is squeezing that acts as the block to controllability on these

systems. We noted before that Γ can be trivially uncontrollable by not generating the algebra.
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(a) b � 0, T � 1 (b) b � 0, T � 5

Figure 8.1: The reachable set of an example single-mode hyperbolic system with b � 0 is repre-
sented in a cubic plot for different times of evolution.

In cases where it does, however, we see here a mechanism by which it can avoid being able to

access the whole space. The existence of a neutral element of Γ would allow us to control so that

the passive elements of the group were reachable. We see a ‘rip-tide’ squeezing effect blocking

us from accessing a sufficiently large angle range.

Maintaining the time at T � 5 but varying b so that it is close to the ‘controllable’ boundary

at b � �0.99 - i.e. the point where Γ will contain a neutral element, we see in Fig. 8.2 that

the size of the reachable set increases. This provokes the idea that even for these uncontrollable

hyperbolic systems, there is a still a notion of varying amounts of control. The b parameter

seems to be acting as a parameter controlling the strength of the rip-tide effect.

In summary, we see that when Γ contains no neutral element, but still generates the alge-

bra, we get unbounded squeezing within a confined angular region for single-mode systems. A

generalisation of this visualisation to two modes would require some sophisticated treatment.

However, we have provided some intuition for what the behaviour may look like and what such

a proof may entail.

8.4 Spacetime analogy

The baskets explored in the previous section bear a certain resemblance to the lightcones of

relativity theory. In this section we offer a brief investigation into how far this analogy holds.
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Figure 8.2: The reachable set of an example single-mode hyperbolic system is represented in a
cubic plot for b � �0.99 and T � 5.

Referring to Fig. 8.1 we see that the squeezing value z acts as the parameter analogous to

coordinate time and T to proper time. We have already seen in Eq. (8.43), when we set u to zero

the effect is pure squeezing. Thus we see that u acts as a parameter analogous to velocity. The

drift field, in this particular example, corresponds to a drift through time, without any motion.

Thus we see that there is a minimum ‘speed’ along the z axis for our system to take, similar to

the way in which c acts in relativity.

In fixed time T we are able to achieve a greater coordinate time. This must only be possible

by varying u and hence by ‘moving’. Thus we see the twin-paradox situation where Bob, the

moving party, can meet Alice at some ‘coordinate time’ z, where Bob has a smaller proper time

and is therefore younger. Of course, we see that u � 0 is acting as a preferred rest frame.

Given A and B, as in Sec. 8.3.3, we look at the two cases where, firstly, control is not used,

X1 � A and secondly where it is X2 � A�uB. Exponentiating these in time to get S1 and S2 we

then look to see which achieves a higher level of squeezing. A good measure of squeezing, as we

have seen in Sec. 3.4 uses the maximum eigenvalue of the matrix in product with its transpose.

We see that

max eigrS1S
ᵀ
1 s � e2t, max eigrS2S

ᵀ
2 s � e2t

?
1�u2

(8.49)

showing that altering u, i.e. ‘moving’ always increases our distance in z, or ‘coordinate time’.

To take the analogy further we notice that we are dealing in a spatially compact space but
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unbounded in time. Squeezing is the non-compact and ‘timelike’ aspect of the symplectic group

here. Neutral matrices are those that allow us to either unsqueeze after squeezing, or never

squeeze at all. The former set will hence be analogous to closed curves in spacetime.

The analogy is not complete in that we are not dealing with a single lightcone structure but

a set of interlaced ones. We see this by considering the backwards-time reachable set. To go

from eXt to e�Xt we enact the transformation

S Ñ S�1 � ΩSᵀΩᵀ. (8.50)

Given the Euler decomposition we see that this is the same as

RθZRφ Ñ R�φ�π
2
ZR�θ�π

2
. (8.51)

Consider what this would mean for our reachable set depicted in Fig. 8.1a, confined to the region

�π   θ   �π{2 and π{2   φ   π. This transformation is enacted by a mirror reflection in the

θ � �φ line, then a shift right by π{2 and down by π{2, if looking from above. Overall, this is a

transformation that takes us from one ‘lightcone’ to one going back in time. Fig 8.3 shows what

this set of transformations looks like if we begin in any of the squares of Fig 8.1, looking from

above and with slightly extended angle ranges.

Obviously this analysis focuses on our particular example system for a particular choice of

A, B and b. For this system we have made the statement that setting u � 0 always provides a

faster route to some squeezing value. This is obviously not true in general as we could imagine a

new system with drift field pA� u1Bq and control field B, where u1 is some real number, so that

the whole element is A�u1B�uB. In this situation the reachable set will clearly be identical to

the one we have before but it will not be the case that u � 0 is better for squeezing. As a result

we see that there is a form of preferred rest frame for these single-mode systems. The choice

of b, however, was not shown to significantly alter the behaviour observed here in terms of the

shape of the reachable set.

This analogy is quite satisfying, although obviously not complete. However it provides an

illustrative way of seeing the structure of the reachable set and its properties. It would be

interesting to find out if these properties remain in multimode systems where we would then

have multiple ‘time’ directions. The main point, as far as control goes, is whether the same

‘rip-tide’ effect of ‘time’ exists for these systems.
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Figure 8.3: Imagine we begin in a lightcone in one of the angle-bounded regions, depicted by
the squares. Enacting θ Ñ �φ � π{2 and φ Ñ �θ � π{2 will take squares of a single colour to
squares of the same colour with the opposite arrow direction, indicating opposite time direction.
A transformation of θ Ñ θ � π and φÑ φ� π takes us to a square of exactly the same time as
this transformation does nothing to the lightcone.

8.5 Ever-growing function

The underlying cause of the uncontrollability of non-neutral systems was the continual growth of

the function fpSq, as shown in Theorem 39. The natural thing to wonder, from this, is whether

this is a general behaviour of n-mode systems: that the lack of a neutral element in Γ causes

some parameter to continually grow, causing the remainder of the group to be unreachable.

Consider a bilinear form on S P Spp2n,Rq, given as

gQpSq � TrrSᵀQSs, (8.52)

where Q is some symmetric, positive-definite, real matrix. Referring to Eq. (8.8) we find that

9gQpSq � Tr rSᵀF puqSs , (8.53)

where

F puq :�
�
A�

m̧

i�1

uiBi

�ᵀ

Q�Q

�
A�

m̧

i�1

uiBi

�
. (8.54)

Setting 9gQpSq ¡ 0 for all u and all S means that

TrrSᵀF puqSs �
2ņ

j�1

eᵀ
jS

ᵀF puqSej

� e1ᵀj F puqe1j
¡ 0 @u,

(8.55)
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where e1j � Sej . This is true if and only if F puq is positive-definite for all u. Thus we see that

the continued growth of gQpSptqq implies that A�°m
i�1 uiBi, the element of Γ, can not be made

neutral with Q, referring to Item 1 of Lemma 34.

Note that Eq. (8.13) is not in the form of Eq. (8.52) and so this does not relate to the results

before. Furthermore, this analysis did not lead to a general result but provided a tantalising,

albeit possibly superficial link, between an eternal function growth as in Ref. [115], and neutrality.
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Chapter 9

Open Gaussian systems

In quantum dynamics, as soon as some of the degrees of freedom are labeled as an environment

and the rest as the system, then we are dealing with open systems. As soon as the dynamics of

interest is the system alone, without considering the environment then the discussion inevitably

moves away from the old unitary dynamics. This simple model is the bedrock for a vast branch of

quantum theory which is vital for the advancement of quantum technologies, due to the impact

of noisy environments on delicate quantum experiments.

The new set of transformations that takes us from quantum density matrices to quantum

density matrices is the set of completely-positive trace-preserving (CPT) maps [33]. CPT maps

are also known as quantum channels because “they play the same role in quantum information

theory as classical channels (stochastic maps) play in classical information theory” [133].

Along with the maps themselves we often seek for dynamics that enact them. There is a

host of equations that are good at describing a wide range of different regimes and models for

the evolution of quantum states. One key approximation states that our system should be very

weakly coupled to the environment, or bath. This is known as the Born approximation. The

second idea is that of having no memory. For a discrete set of time steps this is the notion that

the proceeding dynamics should only be contingent on the previous step, without a memory

stretching back to earlier times. This is referred to as the Markovian approximation. When we

make these approximations together we refer to the Born-Markov regime [134].

Within this regime we seek the most general dynamical equation for which the evolution is

completely-positive and trace-preserving. This question was dealt with in the 1970s by Vittorio

Gorini, Andrzej Kossakowski and E. C. George Sudarshan [135] and Göran Lindblad [136],

providing what is known as the GKSL equation. The GKSL equation provides the general setup

when we want to model a quantum system in the presence of an infinitely large bath which is

not being affected by the evolution of the system. Intuitively, this is a natural thing to do as the

103
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degrees of freedom of the environment are usually taken to be much more numerous than those

of the system.

The study of open quantum systems reaches back to the early days of quantum theory after

von Neumann’s formulation of the density matrix [137]. The link to thermodynamics has been

explored in an attempt to use quantum mechanics to derive analogues of the well known classical

thermodynamical laws [138,139]. Other lines of research involve continuous measurement of the

environment that makes the system dynamics stochastic, which was first studied in 1989 by

Viacheslav Belavkin [140].

Due to the ease with which noise can be added to Gaussian dynamics, Gaussian states

are prominent in the discussion of open systems [141]. Following on from Belavkin’s work,

the continuous monitoring of Gaussian states has been explored extensively [142–144]. A lot of

research has been done to quantify the evolving behaviour of entanglement in such circumstances

because it is often considered as the key resource for quantum technology that the environment

impinges on so heavily [145].

Our focus will be on the Born-Markov regime for a Gaussian system and environment. From

this point onward in this work, we consider control in a very different regime to that seen in the

previous sections. The ability of symplectic control to affect open dynamics is now the point of

interest and so the Lie algebraic relation to the group acts as a backdrop and is no longer the

point of mathematical interest. We are now interested in how closed control affects these open

dynamics.

9.1 Input-output formalism

Following the treatment of Ref. [146], we consider a Gaussian system in the regime where it is

weakly coupled to the environment such that no information passing from the system to the

environment may ever return. A way to model this idea is using the ‘input-output’ formalism

with the ‘white-noise’ condition [147]. This is where we consider a system that is interacting with

a continuous flow of identical modes from the environment. At each instant of time an interaction

occurs between bath modes and system modes, after which the bath modes are refreshed and

a new interaction happens at the later time. This is illustrated in Fig. 9.1. We see that the

refreshment of the bath modes at each instant in time encodes the idea that the bath is never

affected by the changes in the system, and also that no memory effects come into play because

any former interaction is wiped out in the refreshment.

For Gaussian systems the situation is modeled with a system of n modes and a bath with an

infinite set of m incoming modes. The ‘incoming’ bath modes are represented by the vector r̂Bptq
where the label t is attached to each set of m modes in the continuum that models the bath.

The system interacts with the bath mode labeled t at time t, giving t something of a twofold
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Figure 9.1: The input-output formalism describes a stream of bath-modes interacting momen-
tarily with the system, labeled S, and then being discarded. Although in many setups these
outgoing modes would in fact be measured instead.

meaning. After the interaction has occurred it disappears into the bath.

The study of Gaussian states begins with the commutation relation, as given in Eq. (2.2).

Each ingoing bath mode is set up to be completely independent of the other modes which provokes

the new relation,

rr̂ᵀBptq, r̂ᵀBpt1qs � iΩδpt� t1q1̂, (9.1)

where δp�q is the Dirac delta function. Referring to Eq. (2.37), which relates the density matrix

to the covariance matrix, and setting first moments to zero, the covariance matrix of each of the

bath modes will satisfy

Trrtr̂ᵀBptq, r̂ᵀBpt1quρ̂Bs � σB1δpt� t1q, (9.2)

where ρ̂B denotes the bath state and σB1 is a covariance matrix of our choosing, denoted with a

prime because Eq. (9.2) is not yet in the standard form. The important part of the formalism is

that it reduces the infinite bath degrees of freedom to a new picture where we have an infinitely

repeated number of finite bath systems, which interact continuously with the system, at their

given time.

By integrating the mode-operators over an interval of time we define

δr̂Bptq :�
» t�δt
t

r̂Bpsqds, (9.3)
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which again provides new versions of the commutation relation and covariance matrix form:

rδr̂Bptq, δr̂ᵀBptqs � iΩ

» t�δt
t

ds � iΩδt,

Trrtδr̂Bptq, δr̂ᵀBptquρ̂Bs � σB1

» t�δt
t

ds � σB1δt.

(9.4)

As δt becomes incremental it is possible to replace δr̂B Ñ r̂Bδt and so

rr̂Bptq, r̂ᵀBptqsδt � iΩ,

Trrtr̂Bptq, r̂ᵀBptquρ̂Bsδt � σB1 ,
(9.5)

after dividing by δt. Taking the limit as δtÑ dt and defining r̂Bptqdt � r̂B1dv where dv2 � dt,

we find
rr̂B1 , r̂ᵀB1s � iΩ,

Trrtr̂B1 , r̂ᵀB1uρ̂Bs � σB1 .
(9.6)

The expression ‘dv2 � dt’ is prevalent in situations with white noise, i.e. where we wish to express

the system/bath-mode interaction as a delta function in time. The input-output formalism allows

us to tuck away the incremental time elements to arrive at a new set of modes that have the

standard interpretation in the Gaussian formalism, without any continuous stream. The quantum

state of the bath ρ̂B remains the same but we have transformed the modes we use to probe the

state. From here we may begin to use the evolution rules as set up in Sec. 2.

Given our interacting system and bath, a general Hamiltonian will be of the form ĤS� ĤB�
ĤI , which denote the system, bath and interaction Hamiltonians respectively. As the interaction

is our only concern, we shall set ĤS � ĤB � 0. Furthermore we set the remaining interac-

tion Hamiltonian to be of quadratic form. This renders us with the most general interaction

Hamiltonian

ĤIdt � 1

2
r̂ᵀSBptqHI r̂SBptqdt � 1

2
r̂ᵀSBptq

�
0 C

Cᵀ 0

�
r̂SBptqdt, (9.7)

where r̂ᵀSBptq � pr̂ᵀS , r̂ᵀBptqq. The evolution of ρ̂SB is of the form

ρ̂Bpt� dtq � eĤIdtρ̂SB

�
eĤIdt

	:
. (9.8)

By changing the mode definition, i.e. the way in which we probe ρ̂B , we may replace

ĤIdt � 1

2
r̂ᵀSB1HI r̂SB1dv, (9.9)

where r̂ᵀSB1 � pr̂ᵀS , r̂ᵀB1q. Because these new modes allow us to use the Gaussian formalism, we
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are able to write down the evolution of

σSB1 �
�
σ 0

0 σB1

�
(9.10)

as

σSB1pt� dtq � eΩHIdvσSB1peΩHIdvqᵀ. (9.11)

Recalling that dv2 � dt, we expand the exponentials to first order in dt,

eΩHIdv � I� ΩHIdv � pΩHIq2
2

dt� opdtq. (9.12)

Substituting into Eq. (9.11) we have

σSB1pt� dtq � σSB1 �M1dv �M2dt� opdtq, (9.13)

where

M1 �
�

0 ΩCσB1 � σCΩᵀ

σB1CᵀΩᵀ � ΩCᵀσ 0

�
, (9.14)

and

M2 �
�

ΩCΩCᵀσ�σCΩCᵀΩ
2 � ΩCσB1CᵀΩᵀ 0

0 ΩCᵀΩCσB1�σB1CᵀΩCΩ
2 � ΩᵀCᵀσCΩ

�
. (9.15)

By tracing out the bath modes and reforming Eq. (9.13) into a differential equation we derive

9σ � Aσ � σAᵀ �D, (9.16)

where

A � ΩCΩCᵀ

2
, and D � ΩCσB1CᵀΩᵀ. (9.17)

This equation is the most general dynamical equation one can write for the evolution of Gaussian

states in the Born-Markov regime [33]. One can also show that the reintroduction of a further

Hamiltonian ĤS , determining system evolution, induces a transformation

AÑ A� ΩHS

2
, (9.18)

where ĤS � 1
2 r̂ᵀSB’HS r̂SB1 .



108 CHAPTER 9. OPEN GAUSSIAN SYSTEMS

9.2 Lossy channels

Now that we have Eq. (9.16) we can decide what interaction Hamiltonian we might like to

consider, between system and bath. A host of different interactions create a good model for

processes that occur in nature. One that is of interest to us is called a lossy channel. Also known

as the attenuation channel, it is used to model optical communication in lossy fibers [148].

The corresponding interaction Hamiltonian for such an evolution is given as a beam-splitter

that swaps excitations between the system and bath

ĤI � ?
ηpââ:B � â:âBq (9.19)

This is equivalent to setting C � ?
ηI so that

9σ � �ησ � ηχI, (9.20)

where we set σB1 � χI, where χ � 2n̄ � 1 and n̄ is the average number of excitations of each

mode. Rescaling time tÑ ηt we arrive at the equation for lossy evolution

9σ � �σ � χI, (9.21)

with solution

σ � χI� pσp0q � χIqe�t. (9.22)

Eq. (9.21) describes the lossy evolution of the covariance matrix of a Gaussian state. If the

covariance matrix is at all large then it will be become gradually more cumbersome to solve

the equation as the number of parameters increases. It would be nice to be able to extract

the relevant parameters and observe how they evolve without requiring us to solve the whole

equation.

A centrally interesting set of parameters, as discussed in Sec. 4 are the n symplectic invariants

that provide the entropic information about the state. In Sec. 4 we saw that these were not unique

and we could consider different sets, given that it is easy to construct a new set of symplectic

invariants as a function of the old set. The major result we find is an evolution equation for the

set of symplectic invariants, introduced earlier and denoted ϑ2krΩσs.

9.3 Symplectic invariant evolution

We have already seen the role that symplectic invariants play in descriptions of the state, both

in its entropic and entanglement properties. Tracking the evolution of these quantities over time

is therefore interesting to people wishing to manipulate these properties.



9.3. SYMPLECTIC INVARIANT EVOLUTION 109

Before stating the result that shows this evolution for lossy channels, we are required to define

yet another set of symplectic invariants, in addition to the two that have already been explored.

These require the definition of a new way of choosing subsets of N. Define.

H P Fnzik � P pNnztiuq iff |H| � k. (9.23)

This is similar to the sets as given in Sec. 4.3 but there is a removal of all terms involving a

particular element. The new set of symplectic invariants that we will need to refer to later are

defined as,

{ϑi2krΩσs :�
¸

HPFnzik

¹
jPH

ν2
j . (9.24)

These are similar to the symplectic invariants ϑ2krΩσs except that we remove all terms in the

sum that involve the symplectic eigenvalue νi. To make this a little clearer we will consider an

example where σ is a five-mode covariance matrix and so,

{ϑ2
6rΩσs � ν2

1ν
2
3ν

2
4 � ν2

1ν
2
3ν

2
5 � ν2

1ν
2
4ν

2
5 � ν2

3ν
2
4ν

2
5 . (9.25)

We see that the terms still have three distinct symplectic eigenvalues each, but we have excluded

any term term that includes ν2. The main result of this section, and the starting point for much

of the analysis of Sec. 10, can now be stated from Ref. [2].

Theorem 43. For σ evolving under 9σ � �σ � χI, the evolution of the symplectic invariants,

defined by ϑ2krΩσs, obeys

9ϑ2krΩσs � �2kϑ2krΩσs � χTrrSV2kS
ᵀs, (9.26)

where σ � SWSᵀ and

V2k �
nà
i�1

�
νi {ϑi2pk�1qrΩσs

	
I2. (9.27)

To get a feel for Eq. (9.26) it would be instructive to consider an example. In two modes we

see that the set of equations described by Eq. (9.26) are

9ϑ2rΩσs � � 2pν2
1 � ν2

2q � χTr rS pν1I2 ` ν2I2qSᵀs ,
9ϑ4rΩσs � � 4ν2

1ν
2
2 � χTr

�
S
�
ν1ν

2
2I2 ` ν2ν

2
1I2
�
Sᵀ
�
.

(9.28)

These coupled equations do not provide a trivial solution. Furthermore we have not entirely

escaped Eq. (9.21) in that we are still required to have knowledge of the time-dependent sym-

plectic matrix S which appears in the Williamson decomposition of σptq. Eq. (9.26) gives us

the evolution of the invariants directly as opposed to Eq. (9.21), allowing us to focus on the
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important parameters for our interest and removing 2n2 unrequired pieces of information.

Proof of Theorem 43

A key component of the proof uses a recursive method to generate the symplectic invariants.

Before stating it, we must recall some basic algebra [75]: take an m �m matrix M , delete the

same m � r rows and columns. Left over you will have an r � r submatrix which is referred to

as the principal submatrix of M , the determinant of which is referred to as a principal minor.

Considering the characteristic polynomial
°m
k�0 ckλ

m�k of M , with c0 :� 1, we have

ckrM s � p�1qk
¸

(all k � k principal minors),

ϑkrM s �
¸

(all k � k principal minors).
(9.29)

We see the close link between the coefficients of the characteristic polynomial and the objects

that will later become the ϑ2krΩσs symplectic invariants. In fact, the two are equal for even k

and so the following theorem, which provides a recursive formula for ckrM s, will be relevant to

the evolution of the symplectic invariants.

Theorem 44 (Fadeev-LeVerrier recursion [149–151]). Let M be an m�m real matrix. Let its

characteristic polynomial be written detrM � λIs � °m
k�0 ckλ

m�k with c0 :� 1. It is possible to

calculate the coefficients of the polynomial via the recursive formula,

ckrM s � �1

k

k�1̧

i�0

TrrMk�iscirM s. (9.30)

Given that c2kr�s � ϑ2kr�s we may rewrite Eq.(9.30) as a recursive generation of our symplectic

invariants,

ϑ2krΩσs � �1

2k

k�1̧

i�0

TrrpΩσq2pk�iqsϑ2irΩσs, (9.31)

given that ϑkrΩσs � 0 when k is odd. Using a Taylor expansion we bring in Eq. (9.21) to observe

an incremental time change in ϑ2krΩσptqs:

ϑ2krΩσpt� dtqs � ϑ2krΩpσ � 9σdtqs � ϑ2krΩσ � dtΩσ � χΩdts
� ϑ2krF �Gdts,

(9.32)

where F :� p1� dtqΩσ and G :� χΩ. Thus we see that

ϑ2krF �Gdts � �1

2k

k�1̧

i�0

TrrpF �Gdtq2pk�iqsϑ2irF �Gdts. (9.33)
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Lemma 45. To first order,

TrrpF �Gdtqms �
$&%TrrFms �mdtTrrFm�1Gs, m even,

0, m odd.
(9.34)

Proof. Using the binomial theorem we may expand pF�Gdtqm to first order in dt where we obtain

a single term of the form Fm and m terms of the form F aGdtF b where a�b � m�1. The cyclicity

of the trace allows us to reorder these elements to obtain TrrFms�mdtTrrFm�1Gs�opdtq. Now

it remains to show that to first order this expression is zero for m odd. It suffices to show that

TrrF 2m�1s � 0, m P N, (9.35)

TrrF 2mGs � 0, m P N. (9.36)

To prove Eq. (9.35) we use the invariance of the trace under cycles and transposes giving

TrrpΩσq2m�1s � Tr
��pΩσq2m�1

�ᵀ� � p�1q2m�1 TrrpσΩq2m�1s
� �TrrpΩσq2m�1s � 0,

(9.37)

where we used Ωᵀ � �Ω. Eq. (9.36) is found using a similar argument. Putting these together

we prove the proposition due to the many terms that are zero in the first order expansion.

Lemma 45 is going to help provide a Taylor expansion of the symplectic invariants which is

the next result.

Lemma 46. Taylor expanding ϑ2krF �Gdts we arrive at

ϑ2krF �Gdts � ϑ2krF s � dt
k�1̧

i�0

TrrpΩσq2pk�iq�1Gsϑ2irF s � opdtq. (9.38)

Proof. From Eq. (9.33) we can explicitly show that

ϑ0rF �Gdts � 1,

ϑ2rF �Gdts � ϑ2rF s � dtTrrγGs,
(9.39)

where we define γ :� Ωσ for brevity in the proceeding proof and where we have also used Lemma

45, TrrF �Gdts � 0 and ϑ2rF s � � 1
2 TrrF 2s. From here we will proceed with an inductive proof.

We assume that Eq. (9.38) holds for some k and then show that if this is true then it holds for

k � 1.

Using Eq. (9.33) we may write the expansion out for k � 1 and then use Lemma 45 and the
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definition of F to arrive at

ϑ2pk�1qrF �Gdts � �1

2pk � 1q
ķ

i�0

�
TrrF 2pk�1�iqs � 2pk � 1� iqdtTrrF 2pk�1�iq�1Gs

	
ϑ2irF �Gdts.

(9.40)

Substituting Eq. (9.38) into Eq. (9.40) we extract the first two terms that look like they would

fulfill the proof, plus a final one that we would hence like to show is zero:

ϑ2pk�1qrF �Gdts �
�1

2pk � 1q
ķ

i�0

�
TrrF 2pk�1�iqs � 2pk � 1� iqdtTrrF 2pk�1�iq�1Gs

	�
ϑ2irF s�

dt
i�1̧

j�0

Trrγ2pi�jq�1Gsϑ2jrF s
	

�ϑ2pk�1qrF s � dt
ķ

i�0

Trrγ2pk�1�iq�1Gsϑ2irF s�

�1

2pk � 1q
ķ

i�1

�
� dtTrrγ2pk�1�iqs

i�1̧

j�0

Trrγ2pi�jq�1Gsϑ2jrF s � 2idtTrrγ2pk�1�iq�1Gsϑ2irF s
�
.

(9.41)

Dropping the coefficient p2pk� 1qq�1, we proceed to examine the final piece, referring to it as L,

and rewriting it as

L �dt
k�1̧

i�1

Trrγ2pk�iqs
i�1̧

j�0

Trrγ2pi�jq�1Gsϑ2jrF s � dt
k�1̧

i�1

2iTrrγ2pk�iq�1Gsϑ2irF s. (9.42)

Note that we have relabeled k as k�1 to shorten the expression but it will not alter the analysis.

The dt at the front reminds us that everything should be expanded to zeroth order inside the

sum. To prove the lemma it is necessary to show that L � 0.

Expanding ϑ2irF s to introduce another sum we arrive at

L �dt
k�1̧

i�1

i�1̧

j�0

�
Trrγ2pk�iqsTrrγ2pi�jq�1Gs � Trrγ2pk�iq�1GsTrrγ2pi�jqs

�
ϑ2jrF s. (9.43)

From here note that for a general sum with elements Yij we have

k�1̧

i�1

i�1̧

j�0

Yij �
k�2̧

j�0

k�1̧

i�j�1

Yij � 1

2

k�2̧

j�0

k�j�2¸
i1�0

Yi1�j�1,j � 1

2

k�2̧

j�0

k�j�2¸
i2�0

Yk�i2�1,j , (9.44)
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where i1 � i� pj � 1q and i2 � k � i1 � j � 2. The first equality of Eq. (9.44) can be seen with

observation. The second involves a redefinition of the sums where we split them into two halves

and then redefine the labels such that one is descending whilst the other ascends. When such a

summation redefinition is applied to Eq. (9.43) it will be clear that L � 0.

Thus we prove that if ϑ2krF �Gdts is given in Eq. (9.38) then this also holds for k Ñ k � 1.

From Eq. (9.39) we see that it is true for k � 1 and so, inductively it is true for all k. To write

it in the form stated one must replace γ with Ωσ.

Lemma 47. Taylor expanding ϑ2krF s using F :� p1� dtqΩσ we find that

ϑ2krF s � p1� 2kdtqϑ2krΩσs. (9.45)

Proof. Expanding out the recursive formula and again defining γ :� Ωσ we get a product of

sums of the form

ϑ2krF s � �1

2k

k�1̧

i1�0

�
1� 2pk � i1qdt

	
� �1

2i1

i1�1̧

i2�0

�
1� 2pi1 � i2qdt

	
�

. . .
�1

2ik�1

ik�1�1¸
ik�0

�
1� 2pik�1 � ikqdt

	
� Trrγ2pk�iqs . . .Trrγ2pik�1�ikqs.

(9.46)

By only keeping terms that are less than second order in dt we get a smaller sum

p1� 2kqϑ2krΩσs �X (9.47)

X consists of the remaining terms which come in pairs. Take for instance the first pair which

is generated by choosing the �2i1dt coefficient in the first line of Eq. (9.46), with everything

else at zeroth order, and secondly the �2i1dt coefficient in the second line, with everything else

at zeroth order. The pairs will each cancel to become zero. The final piece comes without a

partner but has coefficient ik � 0, and so does not contribute. Therefore X � 0 and the lemma

is proven.

Lemma 48. Using the previous two Taylor expansions we may write the rate of change of

ϑ2krΩσs as

9ϑ2krΩσs � � 2kϑ2krΩσs � χ
k�1̧

i�0

TrrpΩσq2pk�iq�1Ωsϑ2irΩσs. (9.48)

Proof. The first Taylor expansion came from Lemma 46 stating that

ϑ2krF �Gdts � ϑ2krF s � dt
k�1̧

i�0

TrrF 2pk�iq�1Gsϑ2irF s. (9.49)
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Using Lemma 47 we rewrite the above as

ϑ2krΩσpt� dtqs � ϑ2krΩσs � �2kdtϑ2krΩσs � dt
k�1̧

i�0

TrrpΩσq2pk�iq�1Gsϑ2irΩσs. (9.50)

Dividing through by dt we prove the proposition, recalling that G :� χΩ.

Eq. (9.48) provides the rate of change of the set of symplectic invariants under the action

of a lossy channel. In this form, however, it is still recursive and so the following results work

towards its simplification. We may rewrite the trace term of our equation as

TrrpΩσq2k�1Ωs � Trr
2k�1hkkkkkkkkkkkkikkkkkkkkkkkkj

ΩSWSᵀ . . .ΩSWSᵀ Ωs � �TrrS
2k�2hkkkkkkkkkkkkikkkkkkkkkkkkj

WSᵀΩS . . .WSᵀΩSWSᵀs

� �TrrS
2k�2hkkkkkkikkkkkkj

WΩ . . .WΩWSᵀs � �TrrSW 2k�2Ω2k�2WSᵀs
� p�1qk TrrSW 2k�1Sᵀs.

As a result Eq. (9.48) becomes

9ϑ2krΩσs � � 2kϑ2krΩσs � χ
k�1̧

i�0

p�1qk�i TrrSW 2pk�iq�1Sᵀsϑ2irΩσs. (9.51)

Exploring the summation in this equation we find that

k�1̧

i�0

p�1qk�1p�1qi TrrSW 2pk�iq�1Sᵀsϑ2irΩσs � Tr

�
S

�
k�1̧

i�0

p�1qk�1p�1qiW 2pk�iq�1ϑ2irΩσs
�
Sᵀ

�
,

(9.52)

where the sum has been taken inside the trace. Given that W is diagonal we can calculate the

inner sum for each of the symplectic eigenvalues. Denoting these by νq for q � 1, . . . , n to avoid

confusion, we find that the ith term of the sum is

p�1qk�1p�1qi
�
ν2pk�iq�1
q {ϑq2pi�1qrΩσs � ν2pk�iq�1

q {ϑq2irΩσs
�
, (9.53)

whereas the i� 1th is

p�1qk�1p�1qi�1

�
ν2pk�iq�1
q {ϑq2irΩσs � ν2pk�iq�3

q {ϑq2pi�1qrΩσs
�
. (9.54)

By considering these equations carefully we see that our sum is going to telescope. This is when

each term in the series is in two parts where the latter part of the ith term cancels the former
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part of the i� 1th term, leaving just the first and last piece of the entire series. Noting that this

is the case for Eqs. (9.53) and (9.54), and also that the first piece is equal to zero we see that

the sum collapses to

p�1qk�1p�1qk�1νq {ϑq2pk�1qrΩσs � νq {ϑq2pk�1qrΩσs. (9.55)

As a result the sum term of Eq. (9.52) reduces to

V2k �
nà
i�1

�
νi {ϑi2pk�1qrΩσs

	
I2. (9.56)

Substituting this into Eq. (9.51) we find that

9ϑ2krΩσs � �2kϑ2krΩσs � χTrrSV2kS
ᵀs, (9.57)

which proves Theorem 43.

This final equation allows a deeper perspective into the effect that lossy channels have on

the symplectic invariants. The right-hand side has two components, one which is symplectically

invariant and the other that is not, thus inviting an investigation into the role of symplectic

control in this evolution.

9.4 Entanglement evolution

The previous techniques can be adapted to studying something that is not symplectically invari-

ant. The full analysis holds in the partially transposed case and so our investigations can extend

to explore the behaviour of entanglement under lossy channels.

Recalling the analysis of Sec. 4.4 we know that the partial transpose of a pp�qq-mode Gaussian

state corresponds to enacting σ Ñ σ̃ � TσT where T � Àp
1 diagp1,�1q `Àq

1 diagp1, 1q. We

saw that σ̃ maintains a Williamson decomposition and we looked at condition on the set of these

‘partially-transposed’ symplectic invariants.

Since T is time independent the equation for the evolution of the partially transposed matrix

under a lossy channel obeys

9σ̃ � T 9σT � �σ̃ � χI. (9.58)

Hence the full analysis that led us to Theorem 43 can be used to derive the evolution of the

partially transposed symplectic invariants, i.e. the following,

9ϑ2krΩσ̃s � �2kϑ2krΩσ̃s � χTrrS̃Ṽ2kS̃
ᵀs, (9.59)
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where σ̃ � S̃W̃ S̃ᵀ and

Ṽ2k �
p�qà
i�1

�
ν̃i {ϑi2pk�1qrΩσ̃s

	
I2, (9.60)

which provides

9Σ̃ �
ņ

k�1

p�1qp�q�k
�
� 2kϑ2krΩσ̃s � χTrrS̃Ṽ2kS̃

ᵀs
	
, (9.61)

This provides us with an equation for Σ̃ describing the evolution of entanglement of the pp� qq-
mode system, directly from the analysis employed to derive Eq. (9.26).

In the two mode case Σ̃ ¥ 0 is necessary and sufficient for satisfaction of the PPT criterion

because detrσ̃s � detrσs ¥ 1, meaning that only one of the transposed symplectic eigenvalues

can be less than one. Given that bisymmetric entangled Gaussian states can be locally distilled

into a single, two-mode entangled state, this condition becomes necessary and sufficient for this

class of states as well. As a result, studying the behaviour of the sign of Σ̃ tells us about the

entanglement of the state.



Chapter 10

Lossy system control

The analysis of Sec. 9 provides a new avenue for the application of control techniques. Up until

now we have focused on controlling the transformations themselves, i.e. the symplectic matrices

that govern closed Gaussian dynamics. Now we consider controlling the states themselves and,

more specifically, certain of their properties that are of use.

Once we have answered the question of which symplectic operations can be enacted given a

set of Hamiltonians, we then ask which symplectic operations we would like to enact. This is

dependent on the particular properties one would like to have, as well as the constraints placed on

the system. Following on from the previous section we consider a regime in which our Gaussian

state is evolving under lossy dynamics. The final term of Eq. (9.26) invites the application

of symplectic, or closed system control, to see if we can affect the evolution of the symplectic

invariants.

Control problems concerning open quantum systems have been explored in a variety of cases

including dissipating qubits [152], multilevel discrete systems [153], in the context of ‘quantum

speed limits’ [154] and in closed feedback control systems [155]. The application of control

problems to Gaussian states undergoing open evolution is explored in Ref. [146] and Ref. [156].

This latter reference contains the results produced in this section but restricted to a single mode.

Often the point of interest is finding some locally optimal set of control choices that preserve

a property, or attain it as fast as possible. This caveat of local optimality is an important one

that needs to be noted when discussing optimisation. If we have a parameter evolving towards

a fixed point then locally optimal control is that which will extremise the rate of change of the

parameter towards that target. It is admitted that in certain cases there may be a globally

optimal route that would not adopt this strategy.

The two properties that will act as the resources of interest are entropy and entanglement.

Their evolution under lossy channels has been explored in Sec. 9, and here we seek to affect this

117
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evolution using symplectic control.

10.1 Entropic control

Entropy has played a central role in quantum mechanics since its introduction by von Neumann

in the nineteen-thirties. It is a central aspect of information theory and so plays a major role in

its quantum counterpart. Furthermore it is one of the key variables of thermodynamics and is

the property of interest in resource theories of purity [157,158].

In Sec. 4.3 we saw that the entropy of a Gaussian state is totally given by its set of n

symplectic invariants. Furthermore it was shown that by fixing the mode frequencies ωi we may

interchangeably refer to a rise in entropy as heating, and a fall as cooling. The idea of a Gaussian

state having this associated temperature goes back to our original definition considering them

as thermal states of quadratic Hamiltonians, in Def. 2.

The question of heating and cooling Gaussian states is of interest to people for whom tem-

perature is the barrier to overcome before treating their system as a carrier for quantum in-

formation. In quantum optomechanics there is a drive to cool their systems to decrease the

number of phonon modes, to allow for greater ease of control and computation [143,159]. At low

temperatures quantum effects are often easier to harness given the absence of noise.

In the previous section we derived the evolution of the set of symplectic invariants for a

Gaussian state evolving under lossy dynamics. This provided the equation

9ϑ2k � �2kϑ2k � χTrrSV2kS
ᵀs, V2k �

nà
i�1

�
νi {ϑi2pk�1q

	
I2, (10.1)

where from now on ϑ2k :� ϑ2krΩσs and ϑ̃2k :� ϑ2krΩσ̃s. This equation describes the evolving

dynamics, as well as providing a route into manipulating these dynamics through symplectic

control.

10.1.1 Optimal symplectics

Theorem 43 provided the extraction of the symplectic invariants from the equation for lossy

evolution. When discussing cooling or heating under such channels then it is Eq. (9.26) that

becomes the main focus. We consider instantaneous symplectic control at each time-step as the

state undergoes lossy dynamics. The ability to enact an instantaneous symplectic may seem far

too much but this can be justified by the fact that symplectics can typically be enacted in the

order of nanoseconds, whereas the decoherence rates are of the order of 10-103 kHz. Turning to



10.1. ENTROPIC CONTROL 119

Eq. (9.26), as given again here,

9ϑ2krΩσs � �2kϑ2krΩσs � χTrrSV2kS
ᵀs, (10.2)

we see that on the right-hand-side there are two terms which both depend on the covariance

matrix at that point in the evolution. Our control gives us the ability to send σ Ñ SσSᵀ for any

S P Spp2n,Rq. The first term in the equation is a symplectic invariant and so has no response to

such a control setup, and so it is the second term that needs to be focused on. To maximise or

minimise the rate of change for the symplectic invariant in Eq. (9.26) it is necessary to vary S so

that it respectively maximises or minimises the trace term, which is dealt with in the following

result where we consider a more general matrix Y , rather than dealing with the specific form of

V2k.

Proposition 49. Consider TrrSY Sᵀs where Y �Àn
i�1 yiI2, with yi positive, and S P Spp2n,Rq.

sup
SPSpp2n,Rq

TrrSY Sᵀs � lim
ziÑ8

ņ

i�1

2ζ�ziyi, (10.3)

where ζ�z :� z2�1{z2
2 , such that z1 ¥ . . . ¥ zn, and y1 ¥ . . . ¥ yn. The infimum is given by

TrrY s.

Proof. First, we Euler decompose S to provide

TrrSY Sᵀs � TrrR1ZR2Y R
ᵀ
2ZR

T
1 s � TrrZ2R2Y R

ᵀ
2 s. (10.4)

Using the basis changes of Sec. 3.1 we first enact P and then Q̃ to get

Z 12 :� pQ̃P qZ2pQ̃P q�1 �
�

Γ� Γ�

Γ� Γ�

�
, (10.5)

where Γ� :� 1
2 diagpz2

1 � 1{z2
1 , . . . , z

2
n � 1{z2

nq.

Y 1 :� pQ̃P qY pQ̃P q�1 �
�

Υ 0n

0n Υ

�
, (10.6)

where Υ � diagpy1, . . . , ynq

R1
2 :� pQ̃P qR2pQ̃P q�1 �

�
U� 0n

0n U

�
, Rᵀ1

2 :� pQP qRᵀ
2pQP q�1 �

�
Uᵀ 0n

0n U�ᵀ

�
, (10.7)
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where U is some unitary matrix. Note that � denotes the complex conjugate.

TrrZ2R2Y R
ᵀ
2 s � TrrZ21R1

2Y
1Rᵀ1

2 s � TrrΓ�U�ΥUᵀs � TrrΓ�UΥU�ᵀs � 2aᵀPb. (10.8)

where a is the vector of diagonal elements of Γ�, i.e. ai � Γ�ii , and b is the vector of diagonal

elements of Υ, i.e. bi � Υii. Pij � |Uij |2 which is the definition of a unistochastic matrix, a set

of matrices which form a subset of the doubly stochastic matrices [160]. These are matrices with

non-negative entries such that their rows and columns sum to one. If we can show that

sup
M doubly stochastic

aᵀMb � aÓᵀbÓ, and inf
M doubly stochastic

aᵀMb � aÒᵀbÓ. (10.9)

then the statement shall be proven because all permutation matrices are unistochastic [160]. To

explain the notation, given some vector v, the vector vÓ denotes a new vector of elements of v

written in descending order, and conversely for vÒ. The statement above is proven in Ref. [161]

and reproduced in Appendix D. Varying zi between its maximum value which, given complete

control, is infinity and its minimum at zi � 1 we find the infimum and the supremum and prove

the statement.

Replacing Y with V2k, Proposition 49 provides the maximum and minimum that S should

be in Eq. (9.26) such that the rate of change of the symplectic invariants is extremised. Namely

that either S should equal Z with as high values of zi as possible, this is to maximise, or that S

should equal I to minimise the term.

Note, however, that these are not the unique values of S to extremise the term. The trace

is invariant under an added element of OSpp2n,Rq and maximum and minimum can equally be

achieved respectively with S � RZ and S � R, for R passive. Thus we see that the real difference

between the controls is the presence of squeezing highlighting it as the element in extremising
9ϑ2k.

10.1.2 Decoupling

In both cases we see that it is possible to study the optimal case for decoupled dynamics.

However, this does not mean that decoupling itself is the only optimal scenario, as we have just

discussed. When we have decoupled the dynamics, Eq. (9.21) becomes block diagonal with 2� 2

covariance matrices, each of which correspond to a single symplectic invariant. We have seen that

the optimal control is not a unique solution but it suffices to study one of them. It is obviously

easiest to consider the decoupling symplectic as the minimum relaxation times derived here will

be general.

Enacting the decoupling matrix, maintaining the possibility to squeeze or unsqueeze brings
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us to the same equation on each of the n modes:

9ϑ2 � �2ϑ2 � 2χζ�ziνi, (10.10)

where ζ�zi is defined in the statement of Proposition 49. Rewriting this in terms of symplectic

invariants we obtain,

9νi � νi � χζ�zi � 0, (10.11)

which is solved by

νiptq � χζ�zi �
�
νi0 � χζ�zi

�
e�t, (10.12)

where νip0q is denoted by νi0. Note that we have obtained these decoupled dynamics by enacting

our optimal control strategy a single time at the beginning of the dynamics. We see that this

single control suffices for optimality throughout the evolution.

The fixed point of this equation is at νi � χ. The time to reach the fixed point of the

dynamics diverges and so we fix an error ε which is the distance within which we are satisfied

that we have achieved the target,

|νi � χ|   ε. (10.13)

For the case when νi0   χ we may describe the dynamics as heating. Optimising so that zi

is maximal, the time to come within the decided error is

Theat � sup
νi0,zi

ln

�
χζ�zi � νi0

χpζ�zi � 1q � ε

�
. (10.14)

Firstly, we note that this quantity is generally finite and tends to zero for unbounded squeezing.

Furthermore it is possible to send ε to zero and not change this fact. Note, here, that it is not

squeezing itself that does anything towards heating the state, but squeezing in conjunction with

the lossy channel dynamics.

When νi0 ¡ χ the channel is described as cooling. We have seen that the optimal strategy

in this case it is set to zi � 1. The minimum time for the state to relax to the steady state is

Tcool � sup
νi0

ln

�
νi0 � χ

ε

�
. (10.15)

In contrast to the heating case we see that Tcool goes to infinity as εÑ 0.

A point that came up during the analysis was the presence of ‘bumps’ in cooling dynamics. It

can be shown that if a highly squeezed state is placed in a cooling channel then the initial effect

is for the entropy to rise rather than fall, as shown in Fig. 10.1. Thus we see that squeezing can

entirely block cooling from ever occurring. We see that the increase happens when νi   χζ�zi even

for νi ¡ χ. In Eq. (10.10) we see that the squeezing parameter ζ�zi multiplies the bath parameter
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Figure 10.1: The solution to Eq. (10.12) is given for the values ν0 � 5, χ � 1 and two different
initial squeezing values. z � 3 implies that the entropy monotonically decreases whereas a higher
initial squeezing parameter induces an initial ‘bump’ in the entropy.

χ. Thus, the intuition is that a high value of squeezing causes the state to ‘see’ a hotter bath.

This is apparent from Eq. (10.11) where we see the product of χ and ζ�zi appear. Highly squeezed

states will see the bath as hot until they have lowered their ζ�zi value to eventually thermalise to

the cooler state.

A visual intuition for this comes if considering the Wigner function, as depicted in Fig. 2.1.

If a state has high entropy then the variance is wider in both directions. Squeezing then reduces

the variance in one direction whilst increasing it in the other. As the system cools we see that

not only must it reduce the variance in both directions, but also to balance them out. These two

processes act against each other causing these ‘bumps’.

Example. Take as the initial state the following covariance matrix,

σ � γ

������
cosh 2r 0 sinh 2r 0

0 cosh 2r 0 sinh 2r

sinh 2r 0 cosh 2r 0

0 sinh 2r 0 cosh 2r

�����
 , (10.16)

It bears a similarity to the two-mode squeezed state except for the constant factor of γ

at the front which makes it mixed. The parameter r is sometimes called the two-mode
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squeezing parameter. In order to evolve such a state under Eq. (9.20), we must first set

some parameters. A loss rate of η � 100 kHz is chosen and an average bath-mode excitation

number is found to be n̄ � 5� 10�5 which is based on Bose-Einstein statistics,

n̄ � 1

e
hf
kBτ � 1

, (10.17)

with Planck’s constant h � 6.626 � 10�34 m2 kg s�1, Boltzmann’s constant kB � 1.38 �
10�23 m2 kg s�1 K�1, and room temperature τ � 300 K. We use a bath-mode frequency

of f � 74 THz, which corresponds to radiowave frequency and, using χ � 2n̄ � 1 we find

χ � 1.00001.

To set up a cooling situation we let γ � 2 and ε � 0.01. We know from the former

analysis that it is optimal to unsqueeze, which here would mean taking the state to γI. Let

the initial squeeze be set as r � 0.4. Without performing our single optimal control we get

within ε for both symplectic eigenvalues in 47.53µs. Unsqueezing all the way at the start of

the dynamics achieves this in 46.05µs.

For a heating situation we set γ � 1 and ε � 0. For the initial state with r � 0.4 the

fixed point is reached for both symplectic eigenvalues after 1.77ns and in the controlled case

setting r � 0.5 it takes 1.13ns.

10.2 Entanglement control

Referring to the distillation and control of ‘useful properties’, quantum theory can be placed

in contact with a view of quantum mechanics as a resource theory. The most important and

intriguing resource in quantum theory is that of non-locality, which was revealed as an essential

feature of nature following Bell’s theorem [9]. This phenomenon is only expressed when we deal

with entangled states and so entanglement has become the subject of resource theories.

The utility of this resource has prompted a wide range of protocols geared towards its creation,

distillation and preservation in different settings. In the regime of quantum optics many different

setups have been explored in the context of entanglement preservation, due to the commonly

corrosive impact of the environment. In Ref. [162] the authors establish optimal protocols for

photon-number entangled states evolving under lossy channels. In Ref. [163] the authors consider

a double beam of Gaussian states where one branch has a partially transmitting plate. In

Ref. [164] the focus is on an asymmetric setup with two beams of Gaussian states, where one

beam is made lossy and the other lossless.

In Sec. 9 we explored the way in which lossy channels can affect the symplectic eigenvalues of
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a Gaussian state, as well as the symplectic eigenvalues of the partially transposed covariance

matrix. This evolution equation contains elements that can be altered by a change in the

dynamics, thus leaving us with a control problem to be solved. As before, it is necessary to

set which controls we allow ourselves.

Given that entanglement is a nonlocal property, a physical control setup would suggest re-

stricting ourselves to local operations. In Sec. 4.4 we saw that such control leaves partially

transposed symplectic invariants untouched and so, again, we are in a situation where the first

term of the equation does not change and so our focus lies with the second. It will not be

necessary to cap our group in this section, as we will see.

We have seen that Σ̃   0 is a necessary and sufficient condition for the entanglement of

two-mode Gaussian states, which can be extended to bisymmetric pp � qq-mode states. Recall

that these are states that are invariant under local mode permutations on the subsystems. In

Ref. [165] it is proven that such states are reducible, via local symplectic operations, to a pair of

entangled modes, and a set of p� q�2 uncorrelated single modes. Therefore our investigation of

these states may proceed by studying the case of two entangled modes. An interesting question

then arises which is: given instantaneous local symplectic control on such a system undergoing

lossy dynamics, what is the locally optimal strategy for the preservation of entanglement?

Our equations of interest are Eqs. (9.59) and (9.61) but for the purposes of the proof, we

begin a little earlier in Sec. 9.3 and write down the equation

9

ϑ̃2k � �2kϑ̃2k � χ
k�1̧

i�0

TrrpΩσ̃q2pk�iq�1Ωsϑ̃2i. (10.18)

which is the analogue of Eq. (9.48). The reason for going back to this earlier stage in the deriva-

tion is that at this stage we do not want to deal with the computation of partially transposed

symplectic invariants. Substituting in for the evolution of Σ̃ and restricting to two modes we

arrive at

9Σ̃ �
2̧

k�1

p�1q2�k�12kϑ̃2k � χ
2̧

k�1

p�1q2�k�1
k�1̧

i�0

TrrpΩσ̃q2pk�iq�1Ωsϑ̃2i

� 2ϑ̃2 � χTrrσ̃s � 4ϑ̃4 � χpTrrpΩσ̃q3Ωs � Trrσ̃sϑ̃2q
� 2ϑ̃2 � 4ϑ̃4 � χ

�
Trrσ̃spϑ̃2 � 1q � TrrpΩσ̃q3Ωs

	
.

(10.19)

Given local symplectic control, the first term terms on the right-hand-side are invariant and so

our focus is on the third term. Given that

ϑ2 � �1

2
TrrΩσΩσs, (10.20)
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from Eq. (9.31), this term can be rewritten as

Tr

�
Ωσ̃Ωσ̃

�
σ̃ � 1

2
Trrσ̃s


�
, (10.21)

where we have dropped χ for the purpose of analysis. A lengthy calculation shows that this term

is invariant under σ̃ Ñ T σ̃T � σ for all 4� 4 symmetric matrices σ. In Sec. 9.3 we learned that

k�1̧

i�0

TrrpΩσq2pk�iq�1Ωsϑ2i � �TrrSV2kS
ᵀs, V2k :�

nà
i�1

�
νi {ϑi2pk�1q

	
I2, (10.22)

and so Eq. (10.19) becomes

9Σ̃ � 2ϑ̃2 � 4ϑ̃4 � χ
2̧

k�1

p�1q2�k TrrSV2kS
ᵀs

� 2ϑ̃2 � 4ϑ̃4 � χTrrSXSᵀs,
(10.23)

where X � V4 � V2 � diagpν1pν2
2 � 1q, ν1pν2

2 � 1q, ν2pν2
1 � 1q, ν2pν2

1 � 1qq.
The first two terms remain invariant but the final term is now in a form which lends itself

much more easily to a control evaluation. Firstly we notice that, if the state is pure, then X � 0

and so no local control can affect the rate of change of its entanglement. As yet, we have no

physical intuition for this result. However, under lossy dynamics this pure state will become

mixed and then control will be able to slow down the effect of the channel.

Before, we were considering a much broader class of controls and so we allided the Sc and S

to look at the effect on the trace term. Here, however, S will be in general a nonlocal symplectic

and so we are unable to do this. Our control symplectic will be of the form Sloc � SA ` SB and

act on σ as σ Ñ SlocσS
ᵀ
loc. This will have an impact in the trace term and so we are looking at

an effective transformation, TrrSXSᵀs Ñ TrrSlocSXS
ᵀSᵀ

locs. As a symplectic matrix, Sloc will

maintain an Euler decomposition. However, given its action in the trace term, its first passive

operation will have no effect, and so we consider

Sloc � ZlocRloc �
�
ZA 0

0 ZB

��
RA 0

0 RB

�
, (10.24)

where ZA and ZB are local single-mode squeezers and

RA �
�

cosrαAs sinrαAs
� sinrαAs cosrαAs

�
, (10.25)

is a local phase-shifter, as is RB .
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Figure 10.2: A plot of the trace term in Eq. (10.28) against the variable αA for the specific
values: aA � 2, bA � 5, cA � 3, zA � 4.

A first thing to notice is that if the optimal squeezing turns out to be Zloc � I then Rloc will

have no effect as the trace term will annihilate this. However, in the case when Zloc � I then

we may consider the optimal strategy for Rloc. The optimal action for each of these matrices

turns out to be independent and so the results may be proven in any order. Since the local

phase-shifters act first we will optimise for them first.

Working abstractly we consider some general 4� 4 symmetric matrix H where,

H �
�
G K

Kᵀ L

�
, G �

�
aA bA

bA cA

�
, L �

�
aB bB

bB cB

�
, (10.26)

and K is some arbitrary 2�2 real matrix. Any property proven for such a matrix will also apply

to the matrix, SXSᵀ. In this 2� 2 block form we may decompose the trace term of Eq. (10.23)

as

Tr
��ZA 0

0 ZB

��
RA 0

0 RB

��
G K

Kᵀ L

��
Rᵀ
A 0

0 Rᵀ
B

��
Zᵀ
A 0

0 Zᵀ
B

��
�TrrZ2

ARAGR
ᵀ
As � TrrZ2

BRBLR
ᵀ
Bs.

(10.27)

As expected, the local phase-shifters only have a local effect and can be optimised independently.

Beginning with the first term we find that

TrrZ2
ARAGR

ᵀ
As �

1

zA

�pcA � aAz
2
Aq cos2rαAs � paA � cAz

2
Aq sin2rαAs

� bApz2
A � 1q sinr2αAs

�
.

(10.28)

This function of αA oscillates and is plotted in Fig. 10.2. The period of oscillation is π and
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contains one minimum and one maximum. In order to find its extremal points we take the

derivative with respect to αA giving

d TrrZ2
ARAGR

ᵀ
As

dαA
�
�
zA � 1

zA



p2bA cosr2αAs � pcA � aAq sinr2αAsq . (10.29)

Setting this to zero, we see that the extremisation is independent of the squeezing parameters

zA and zB . For the case when aA � cA and bA � 0, the extremising angle satisfies,

tanr2αext
A s � 2bA

aA � cA
. (10.30)

When bA � 0 we have sinr2αext
A s � 0 and for a � c the extremisation angle satisfies cosr2αext

A s � 0,

unless b � 0 in which case it can be anything. This latter point is obvious in that RA and Rᵀ
A

will cancel if acting on a matrix which is a multiple of the identity. Summarising, the extremal

values are found when αA satisfies:$''''''&''''''%

tanr2αext
A s � 2bA

aA�cA , aA � cA, bA � 0;

sinr2αext
A s � 0, aA � cA, bA � 0;

cosr2αext
A s � 0, aA � cA, bA � 0;

anything, aA � cA, bA � 0.

(10.31)

We see that within any range of π we will find one maximum and one minimum, separated by

π{2. This analysis also holds for the second local phase-shifter.

Having optimised the phase-shifters, the next step is to optimise the local squeezers. The

following proof takes a different approach to that of the previous analysis and does not use

Eq. (10.27). Instead it proceeds by considering total global control on S in the final term of

Eq. (10.23) and then showing what this implies for local control. We find that the trace term is

monotonic with the squeezing measure ζ�zi , as introduced in Sec. 4.2. Given that it is monotonic

with this measure for global control, it follows that it must also be monotonic with it for local

control. From this we combine the two analyses to find an locally optimal local-control strategy.

Beginning our global control stepping stone, we consider varying over S for the the term

TrrSXSᵀs. Euler decomposing S, we may rearrange the trace term as TrrZ2As where A :�
R2XR

ᵀ
2 . As a result,

¸
ij

rZ2sijAji �
¸
i

rZ2siiAii �
¸
i odd

rZ2siiAii � 1

rZ2siiAi�1 i�1. (10.32)
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In two modes, R2 P OSpp4,Rq can be written as

R2 �

������
a11 a13 a12 a14

�a13 a11 �a14 a12

a21 a23 a22 a24

�a23 a21 �a24 a22

�����
, (10.33)

plus extra conditions not important for this. From this we find that Aii � Ai�1 i�1 for odd i and

so Eq. (10.32) becomes

TrrZ2As �
¸
i odd

Aii

�
rZ2sii � 1

rZ2sii



, (10.34)

providing
BTrrSXSᵀs
B
�
z2
i � 1

z2i

	 ���
zj ,j�i

� Aii. (10.35)

That is to say, the rate of change of the trace term with respect to z2
i � 1{z2

i for some mode i,

where all other squeezers are fixed, is equal to Aii. Since Aii �
°
j oddXjjprR2s2ij � rR2s2i j�1q,

Aii is positive for all i odd.

In summary, given Σ̃ evolving under Eq. (10.23), its rate of change is minimised by applying

Sloc, as in Eq. (10.24) such that Zloc acts to minimise the squeezing measure ζ�zi , as given in

Sec. 4.2, and Rloc obeys Eq. (10.31). Note that there is no claim that Σ̃ provides a measure for

entanglement, but only that its sign provides a yes/no criterion for entanglement. More work has

been done to explore optimisation for logarithmic negativity, which does act as an entanglement

measure. Furthermore, we note that this control is only proven to be locally optimal and so

there is no proof that a better protocol does not exist.

Example. Using the same parameters as given in the example of Sec. 10.1, we begin with

a random, entangled, mixed initial state

σ �

������
3.93221 4.62812 �0.899615 �1.23693

4.62812 6.72353 �2.17121 0.91571

�0.899615 �2.17121 1.7453 �2.62486

�1.23693 0.91571 �2.62486 6.88703

�����
. (10.36)

From here, we enact the optimal protocol by minimising the value of each singular

value. Then we apply the optimal local passive transformation using the angles derived

in Eq. (10.31). After this, we evolve according to the lossy dynamics of Eq. (9.21) for a

certain time and then optimise again. Continuing these concatenated processes leads to an
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Figure 10.3: The graph shows the evolution of Σ̃ under Eq. (10.19) for a two-mode state. Different
solutions are given as we vary the number of times optimal control was enacted during the
evolution.

overall evolution of the value of Σ̃ as shown in Fig. 10.3. For a fixed amount of overall

evolution time, we are able to choose how frequently we would like to enact local symplectic

control to affect the overall lossy dynamics. In the figure, we see the evolution if we never

optimise as shown in blue, which leads to a disentanglement time of around 6.08µs. We

see that a speed up occurs when we enact the single act of control at the beginning of the

dynamics to give a disentanglement time of 10.27µs. Controlling an increasing number of

times causes the value of Σ̃ to be lower for longer. For a number of controls of this order,

the protocol preserves entanglement on the order of microseconds.

The set of partially transposed symplectic invariants contains all the entanglement properties

of the state. This is bundled together in the object Σ̃ which relates to a necessary and sufficient

condition for entanglement in certain Gaussian states. The physically meaningful situation where

lossy channels degrade the entanglement of the state has been explored and a locally optimal

control strategy using instantaneous symplectics was provided for the set of bisymmetric pp� qq-
mode entangled Gaussian states.
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Chapter 11

Conclusion

Focused study on the control of Gaussian states provides an interesting mathematical union

that promises to bear much more fruit in the future. The deeply geometrical nature of the

subtheory makes it particularly fertile ground on which to develop an independent branch of

control theory. The ease with which we can introduce the impact of the environment makes it

particularly susceptible to a mathematical scheme in which abstract control theory can provide

real world protocols.

The evolution of these states was considered in two different regimes, the closed and the

open. The closed regime focuses on the interaction between three mathematical structures:

the symplectic Lie algebra as a representation of Hamiltonian control, the symplectic group

as associated with the set of Gaussian unitaries, and the manifold of isospectral covariance

matrices, representing the state. The relationship between these three structures encapsulates

a geometrical image from which we can ask a host of different questions. This field is in its

infancy but this work goes some way towards setting the ground for its development. In Sec. 5,

we began teasing out some of the natural geometrical questions that might be asked here. We

found a geometrical image of the space of covariance matrices and explored the ‘shottability’ of

the action of the symplectic group on this space.

In 1972 a conjecture was put forward that the property of neutrality would be important

in a necessary and sufficient condition for the controllability of non-compact Lie groups. This

holds true for the symplectic group in the single-mode case but up until now, a more physical,

intuitive reasoning had not been given in the literature. Through a combination of numerical

and analytical work, the rip-tide effect of uncontrollable squeezing was observed, providing fertile

ground for multimode numerical research that is still ongoing. This provided the content of Sec. 8.

The ease with which noise is able to be added to Gaussian states strongly invites an extension

of this picture to consider more than just closed system dynamics. Extending this means that
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the states are no longer confined to a single isospectral covariance matrix manifold but can

evolve throughout the whole space. Whilst evolving, we sought to track two properties that are

particularly useful in quantum technology. Finding an equation that described the evolution

of symplectic invariants in a lossy channel was the central result of Sec. 9 and culminated in

Eq. (9.26). This provided an insight into the evolution of both the entropy and entanglement of

the state.

In Sec. 10 it was shown that this equation naturally set up a question for the control of

these properties. For the entropic case an optimal protocol was derived for both the heating and

the cooling case. For the entanglement case an optimal protocol was derived for bisymmetric

pp� qq-mode entangled states.

This work focused on the control of the second moments of Gaussian states in both closed and

open dynamics. The full understanding of how these two fields of research can be amalgamated

is ongoing but it is hoped that a few of these results may give some insight for that development.
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Groups and topology foray

The mathematics of control theory can sometimes require a deeper understanding of Lie group

properties than usual. Therefore it seems that a speedy march through the mathematical struc-

tures used to prove theorems will be useful.

Definition 50 (Topological space [166]). Given a set X, a topology on X is a family, τ � tτi |
τi � X, i P Iu, where I is some indexing set and each τi has the following properties:

1. The empty set H is in τ .

2. The full set X is in τ .

3. The intersection of any two sets of τ is in τ .

4. The union of any number of sets of τ is in τ .

The pair pX, τq is called a topological space. The elements of τ are known as open sets.

Definition 51 (Open Cover [166]). A family of subsets of X is said to be a cover of X if their

union is X.

For example an open cover of the real line, with respect to the Euclidean topology, is the set

of all open intervals tp�n, nqu where n P N.

Definition 52 (Connected topological space [166]). A topological space is said to be connected

if there are no two disjoint, open, nonempty subsets of X whose union equals X.

Definition 53 (Compact topological space [166]). A topological space is said to be compact

provided every open cover of it has a finite subcover. In other words every cover of a topological

space has a finite subset of open sets that is also a cover.
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Definition 54 (Sequence in a topological space). A sequence is an ordered string of elements

of the set of the topological space pp1, p2, . . .q, where pi P X.

Definition 55 (Convergent sequence [167]). Consider a topological space with tpnu a sequence

of points in X. This sequence is said to be convergent if there exists a point p P X such that for

each neighbourhood N of p (where neighbourhood is an open set containing p) A positive integer

n0 can be found with the propty that pn is in G for all n ¥ n0. The point p is called a limit of

the sequence, and we say that pn converges to p.

Definition 56 (Sequentially compact topological space). In mathematics, a topological space is

sequentially compact if every infinite sequence has a convergent subsequence.

These properties that can be ascribed to topological spaces can also be ascribed to the related

manifolds. These manifolds can take on group structure to become a Lie group. The Lie group

thus also inherits these terms. This allows us to define some required terms.

Definition 57 (Compact Lie group). A Lie group whose associated manifold is compact.

Definition 58 (Connected Lie group). If connected as a topological space.
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Hyperbolic system transformation

To achieve our aim we must reproduce some of the lemmas and proofs of Ref. [115]. We begin

with some computation that will be used in the rest of the proof. Expand the elements of spp2,Rq
in basis of Sec. 8.1 so that M � °3

i�1miKi and N � °3
i�1 niKi. Thus we have,

TrrM2s � 1

2
pm2

1 �m2
2 �m2

3q, (B.1)

and similarly for TrrN2s. Also, TrrMN s � 1
2 pm1n1 �m2n2 �m3n3q and

TrrrM,N s2s � 1

2
ppm2n3 �m3n2q2 � pm3n1 �m1n3q2 � pm1n2 �m2n1q2q. (B.2)

Lemma 59. Consider some hyperbolic elements M P spp2,Rq. There exists T P Spp2,Rq such

that TMT�1 �a2 TrrM2sK2.

Proof. The hyperbolic condition on M means that TrrM2s ¡ 0. First, we seek the existence of

T1 � eαK3 P Spp2,Rq such that

T1MT�1
1 �

b
m2

1 �m2
2K2 �m3K3. (B.3)

It is possible to find some α such that

sinrαs � m1a
m2

1 �m2
2

, cosrαs � m2a
m2

1 �m2
2

. (B.4)

Taylor expanding the exponential of a matrix it is possible to prove the following formula,

eMNe�M � N � rM,N s � 1

2!
rM, rM,N ss � . . . . (B.5)
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From this, we find that

eαK3Me�αK3 � m1e
αK3K1e

�αK3 �m2e
αK3K2e

�αK3 �m3K3

� pm1 cosrαs �m2 sinrαsqK1 � pm1 sinrαs �m2 cosrαsqK2 �m3K3

�
b
m2

1 �m2
2K2 �m3K3,

(B.6)

and so T1 exists with the required property. The next matrix we require is T2 � eβK1 P Spp2,Rq
such that

T2T1MT�1
1 T�1

2 �
a

2 TrrM2sK2. (B.7)

Eq. (B.1) tells us that m2
1 �m2

2 �m2
3 ¡ 0 and so there exists a β such that

sinhrβs � m3a
m2

1 �m2
2 �m2

3

, coshrβs �
a
m2

1 �m2
2a

m2
1 �m2

2 �m2
3

. (B.8)

Eq. (B.5) allows us to obtain

eβK1p
b
m2

1 �m2
2K2 �m3K3qe�βK1 �

b
m2

1 �m2
2e
βK1K2e

�βK1 �m3e
βK1K3e

�βK1

�p
b
m2

1 �m2
2 coshrβs �m3 sinhrβsqK2�

pm3 coshrβs �
b
m2

1 �m2
2 sinhrβsqK3

�
b
m2

1 �m2
2 �m2

3K2

�
a

2 TrrM2sK2.

(B.9)

The matrix T2T1 is symplectic and will convert TM hyperbolic M into
a

2 TrrM2sK2.

It is easy to show, using the analysis as the beginning of the section, that

TrrrM,N s2s � TrrMN s2 � 2 TrrN2sTrrM2s. (B.10)

Furthermore, by computing the commutator of these terms we may assert that M , N and rM,N s
are linearly dependent iff

det

���m1 n1 m2n3 �m3n2

m2 n2 m3n1 �m1n3

m3 n3 �pm1n2 �m2n1q

��
� 0, (B.11)

or equivalently that TrrrM,N s2s � 0 and computing this determinant, and using Eq. (B.2).

Theorem 43. If all elements of Γ are hyperbolic and LΓ � spp2,Rq then Eq. (8.9) is similar,
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via a symplectic transformation, to

9Sptq � p�K1 � bK3 � uptqK2qSptq, Sp0q � I2, (B.12)

where b P R and |b|   1.

Proof. Given hyperbolic elements of Γ we find the following inequality:

TrrpA� vBq2s � TrrB2sv2 � 2 TrrABsv � TrrA2s ¡ 0, @v P R. (B.13)

Given that this is true for all v we see that it must be the case that TrrA2s ¡ 0. Furthermore,

TrrB2s ¡ 0 because

(i) being less than zero would imply the existence of v for which Ineq. (B.13) does note hold

and,

(i) being equal to zero implies that TrrABs � 0 and therefore so must TrrrA,Bs2s, from

Eq. (B.10). This would imply that LΓ � spp2n,Rq which we have ruled out.

As a result, both A and B are hyperbolic.

Lemma 59 may now be used to state that we may symplectically transform Eq. (8.9) into:

9Sptq � pA1 � uptqK2qSptq, Sp0q � I2, (B.14)

where A1 P spp2,Rq, which may be expanded in the Lie algebra basis considered before,

A1 � b1K1 � b2K2 � b3K3. (B.15)

Tuning uptq we may reset b2 � 0. A1 is hyperbolic because this property is invariant under

a symplectic similarity transformation. As a result, we know that |b1| ¡ |b3| using Eq. (B.1).

Rescaling the time parameter we can scale to make the coefficient of K1 have modulus one,

leaving
9Sptq � pεK1 � bK3 � uptqK2qSptq, Sp0q � I2, (B.16)

with |b|   1 and ε � �1. Given the case of ε � 1, enacting an Ω similarity transformation is

equivalent to time reversal and so we arrive at the ε � �1 case, completing the proof.
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Appendix C

Euler decomposition uniqueness

As stated in Sec. 3.4, the Euler decomposition of a symplectic matrix is not unique. It is, however,

possible to restrict its allowed parameters forcing it to be unique. This is a little like taking a

branch-cut in order to make the logarithm function unique for complex numbers. Symbolically,

our aim is to make

S � RθZRφ � RαZ
1Rβ (C.1)

imply that α � θ, β � φ and Z 1 � Z by restricting the allowed ranges.

Firstly, we note that the singular values of S are unique and make up the diagonal elements

of Z and Z 1. Without loss of generality we may fix Z � Z 1 � diagpz1, 1{z1, . . . , zn, 1{znq such

that zi ¥ 1 for all i and z1 ¥ . . . ¥ zn. This is due to the permutation freedom that we maintain

in the passive transformations. The next distinction is between the cases when Z � I and when

it does not.

Starting with the former case we note that,

RθZRφ � RαZRβ ðñ Rθ�αZ � ZRβ�φ, (C.2)

which can be explicitly written as�
1
z cosrθ � αs �z sinrθ � αs
1
z sinrθ � αs z cosrθ � αs

�
�
�

1
z cosrβ � φs � 1

z sinrβ � φs
z sinrβ � φs z cosrβ � φs

�
. (C.3)

we have the set of conditions

1

z
sinrθ � αs � z sinrβ � φs, z sinrθ � αs � 1

z
sinrβ � φs, cosrθ � αs � cosrβ � φs, (C.4)
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which are maintained only if

sinrθ � αs � 0, sinrβ � φs � 0, cosrθ � αs � cosrβ � φs. (C.5)

These, in turn, only hold when

α � θ � nπ and β � φ�mπ, (C.6)

for n,m P Z either both odd or both even. In order to enforce a unique decomposition this

implies that we must limit φ to vary in a range strictly less than π to impose β � φ. As this sets

m � 0 this causes n to only be able to take on even values. Therefore this causes the θ range to

need restricting to within a range of 2π which it is anyway. We therefore limit the ranges of θ

and φ such that

� π � θ0 ¤ θ   π � θ0, �π
2
� φ0 ¤ φ   π

2
� φ0, (C.7)

where θ0, φ0 are arbitrary numbers that fix the centres of the ranges.

The case of Z � I is special in that the equation reduces to the product of two passive

symplectics which are elements of the SOp2q which only requires a single parameter to describe.

Hence we simply fix φ and let θ vary over the 2π range.
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Optimisation and bistochastic

matrices

Earlier, we were required to look at the extrema of an inner product over the set of all bistochastic

matrices. This is provided in Ref. [161] and repeated here.

Proposition 60. Given two real vectors, a and b, of length m, the following relations hold:

sup
M bistochastic

aᵀMb � aÓᵀbÓ, (D.1)

and

inf
M bistochastic

aᵀMb � aÒᵀbÓ. (D.2)

Proof. The set of permutation matrices forms a subset of the set of bistochastic matrices and so

a and b may be placed in descending order without loss of generality. Furthermore, fixing M to

some bistochastic matrix, we define

χ :� aÓᵀMbÓ �
m̧

i,j�1

aibjMij , (D.3)

where aÓi and bÓi are the elements of aÓ and bÓ respectively.

Let bistochastic M � I, and let k be the smallest index of M such that Mkk � 1. As a result,

i   k means that Mii � 1. This means that when i or j are less than k then Mij � 0 for i � j.

Given Mkk   1, then there exists l ¡ k, Mkl ¡ 0 and some p ¡ k such that Mpk ¡ 0. These

imply that Mpl � 1.

These inequalities means that there exists some ε ¡ 0 such that the matrix M 1 is bistochastic
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where
M 1
kk �Mkk � ε,

M 1
kl �Mkl � ε,

M 1
pk �Mpk � ε,

M 1
pl �Mpl � ε,

(D.4)

and M 1
ij �Mij for all other elements. This leads tothe definition

χ1 :�
¸
i,j�1

aibjM
1
ij . (D.5)

Given l ¡ k and p ¡ k,

χ1 � χ � εpakbk � akbl � ambk � amblq
� εpak � amqpbk � blq

¥ 0,

(D.6)

implying that
°
aibjMij is not decreased. ε can be chosen to set off-diagonal term in M 1 to zero

without affecting the bistochasticity of M and without decreasing the value of χ1 � χ. Iterating

this process we arrive at M 1 � I. This provides the result in the supremum case.

An analogous argument can be found for the infimum case except where we consider

χ :� aÒᵀMbÓ �
m̧

i,j�1

aÒi bjMij . (D.7)

Later, we consider χ1 � χ ¤ 0, and so follow a procedure where iterating such that M 1 gets to I
does not increase the value of χ.
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[153] Jirari H and Pötz W. Optimal coherent control of dissipative n-level systems. Phys Rev

A. 2005. 72:013409. doi:10.1103/PhysRevA.72.013409.

[154] del Campo A, Egusquiza IL, Plenio MB, et al. Quantum speed limits in open system

dynamics. Phys Rev Lett. 2013. 110(5):050403. doi:10.1103/PhysRevLett.110.050403.

[155] Lloyd S and Viola L. Engineering quantum dynamics. Phys Rev A. 2001. 65:010101.

doi:10.1103/PhysRevA.65.010101.

[156] Carlini A, Mari A, and Giovannetti V. Time-optimal thermalization of single-mode Gaus-

sian states. Phys Rev A. 2014. 90(5):052324. doi:10.1103/PhysRevA.90.052324.

[157] Horodecki M, Horodecki P, and Oppenheim J. Reversible transformations from pure to

mixed states and the unique measure of information. Phys Rev A. 2003. 67:062104. doi:

10.1103/PhysRevA.67.062104.



154 BIBLIOGRAPHY

[158] Gour G, Mller MP, Narasimhachar V, et al. The resource theory of informational nonequi-

librium in thermodynamics. Phys Rep. 2015. 583:1 . doi:https://doi.org/10.1016/j.physrep.

2015.04.003.

[159] Clark JB, Lecocq F, Simmonds RW, et al. Sideband cooling beyond the quantum backaction

limit with squeezed light. Nature. 2017. 541(7636):191.
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