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Chapter 1

Time-frequency analysis of
cardiovascular signals and their
dynamic interactions.

3



Abstract

Cardiovascular signals are intrinsically non-stationary and interact through dynamic mechanisms to
maintain blood pressure homeostasis in response to internal and external perturbations. The assessment
of changes in cardiovascular signals and in their interactions provides valuable information regarding
the cardiovascular function. Time-frequency analysis is a useful tool to study the time-varying nature
of the cardiovascular system because it provides a joint representation of a signal in the temporal and
spectral domain that allows to track the instantaneous frequency, amplitude and phase of non-stationary
processes. The time-frequency distributions described in this chapter belong to the Cohen’s class, and
can be derived from the Wigner-Ville distribution, which represents the fundamental basis of this unified
framework. Time-frequency analysis can be extended to the study of the dynamic interactions between
two or more non-stationary processes. Time-frequency coherence, phase-delay, phase-locking and partial-
spectra are estimators that assess changes in the coupling strength and phase shift of signals generated
by a complex system.
This chapter introduces the reader to multivariate time-frequency analysis and covers both theoretical
and practical aspects. The application of these methodologies in the study of the dynamic interactions
between the most important variables of the cardiovascular function is discussed. In the introduction,
classical spectral analysis of cardiovascular signals is reviewed along with its physiological interpretation.
The limitations of this framework provides a motivation for implementing non-stationary tools. In the
first section, time-frequency representations based on the Wigner-Ville distribution are introduced and
important aspects, such as the interference cross-terms and their elimination, the time and frequency
resolution and the estimation of time-frequency spectra, are described. The second section describes
algorithms to assess the dynamic interactions between non-stationary signals, including time-frequency
coherence, phase delay and partial spectra, while the third section provides examples of multivariate
time-frequency analysis of cardiovascular data recorded during a standard test to induce an autonomic
response.



1.1 Introduction

A process is stationary if its probability distribution and therefore its main statistical properties do not
change over time. There are different degrees and types of stationarity and a process can be stationary
or non-stationary depending on the temporal scale of observation [1]. In the analysis of cardiovascular
signals, stationarity is considered an exception rather than the rule. For example, the quantification of
the degree of non-stationarity [1] of cardiovascular signals has demonstrated that heart rate variability is
non-stationary even when recorded at rest [2]. Cardiovascular signals are intrinsically non-stationary and
their interactions are time-varying because the system has to dynamically adjust to an ever-changing en-
vironment in order to maintain its function (blood pressure homeostasis). The quantification of changes
and dynamic interactions within the cardiovascular system provides valuable information for understand-
ing its function and recognizing possible dysfunctions.
The ultimate aim of most of signal processing methodologies is to provide a simple description of complex
systems that captures the most relevant features for a given application. Over the years, two approaches
have emerged to transform raw data into more useful representations. One includes model-based method-
ologies, where some a-priory knowledge is used to propose a model whose parameters fully characterize
the system under investigation. The reliability of this parametric analysis depends on how well the model
fits the data, which in cardiovascular applications are often assumed to be autoregressive processes [3, 4]
or point-processes [5]. The second approach is not based on any assumption regarding the structure of
the signal, and it transforms the data into a new representation that facilitates the analysis. This last
approach is non-parametric.
The time-frequency analysis representations described in this chapter are non-parametric. They are used
to transform non-stationary signals into joint time-frequency representations that reveal the temporal
evolution of their spectral components.
Analysis of raw data through time-frequency representations can be achieved in three steps:

1) Representation of the signal or the interactions among signals in the joint time-frequency domain.

2) Localization of relevant patterns and regions of interest in this new domain.

3) Extraction of useful information, usually by transforming the relevant patterns observed in the
region of interest into a time-varying physiological index or a single value.

1.1.1 Spectral analysis and its limitations

The spectral analysis is based on the Fourier transform, which provides a decomposition of a signal x(t)
into a linear combination of complex exponential functions:

x(t) =
∫
X(f)ej2πtfdf (1.1)

In this expression, the complex exponential functions ej2πtf are weighted by the complex function X(f),
that quantifies the spectral content of x(t), i.e. the contribution of each oscillation to the signal x(t).
The function X(f) is the Fourier transform of signal x(t), and it is given by:

X(f) =
∫
x(t)e−j2πftdt (1.2)

Expressions (1.1)-(1.2) operate transformations between the temporal and the spectral domains. The
Fourier transform has a set of properties that makes it a widespread and versatile tool with many
applications in signal processing. The most relevant are listed in Table 1.1.
The power spectral density is a representation of the distribution of the signal power over its spectral

components, i.e. as a function of frequency. According to the Wiener-Khinchin theorem, the power
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Time Frequency

h(t) = a · x(t) + b · y(t) ↔ H(f) = a ·X(f) + b · Y (f) Linearity

h(t) = x(t− t0) ↔ H(f) = X(f)e−j2πt0f t-Shifting

h(t) = ej2πtf0x(t) ↔ H(f) = X(f − f0) f -Shifting

h(t) = x(a · t) ↔ H(f) = 1
|a|X

(
f
a

)
t-Scaling

x(t) ∈ R ↔ X(−f) = X∗(f) Conjugation

h(t) = x(n)(t) ↔ H(f) = (j2πf)nX(f) Derivative

h(x) = (x ∗ y)(t) ↔ H(f) = X(f) · Y (f) Product/Convolution∫
|x(t)|2dt ↔

∫
|X(f)|2df Energy conservation

Table 1.1: Useful Fourier transform properties.

spectral density of a stationary stochastic processes x(t) is the Fourier transform of its autocorrelation
function:

Sxx(f) =
∫
rxx(τ)e−j2πτf dτ =

∫
E [x(t)x∗(t− τ)] e−j2πτf dτ (1.3)

where E[] is the expectation value operator and rxx(τ) the autocorrelation function of x(t), a function
that assesses the correlation between a signal and a copy of itself as a function of the delay between them.
A simple estimator of the power spectral density that can be used when only one realization of finite
length is available is the periodogram, which is proportional to the squared magnitude of the Fourier
transform. More advanced estimators include the Welch [6] and the multitaper [7] spectra.
The power spectral density has been widely applied to the study of cardiovascular signals, in particular
to the analysis of heart rate variability [8, 9, 10]. The spectral analysis of heart rate variability allows to
non-invasively assess the autonomic nervous system modulation of the supra-ventricular cardiac struc-
tures responsible of heart rate regulation [11, 12, 13]. Figure 1.1 shows the power spectral density of
cardiovascular signals simultaneously recorded at rest in supine position [14]. From left to right, this
figure shows the spectrum of heart rate variability, respiratory signal measured as chest movement with
a thoracic belt, and systolic arterial blood pressure variability. A respiratory component is present in
all the three signals in the so called high-frequency spectral band (HF), 0.15 − 0.40 Hz [10], while a
low-frequency component is present in the heart rate and blood pressure variability in the low-frequency
spectral band (LF), 0.04− 0.15 Hz. The analysis of these two spectral components provides information
regarding the parasympathetic and sympathetic activity. The HF component of the heart rate variabil-
ity is considered a marker of parasympathetic activity [10, 15] reflecting respiratory sinus arrhythmia.
The precise nature of its underlying mechanisms are still matter of debate [16]. The LF component of
the heart rate variability is related to both the sympathetic and parasympathetic activity and its origin
and interpretation are still not completely understood [17]. The proportion between the LF and HF
component has been proposed and is often used as a marker of the sympathovagal balance [11], but its
use remain controversial [18, 19, 20].
The main limitation of spectral analysis is that it requires a signal to be stationary and does not provide
any temporal localization of events. Mathematically, the lack of localization is due to the decomposition
of a signal into sinusoids and cosinusoids, i.e. ej2πtf , that are equally spread along the entire temporal
axis. Figure 1.2 shows two schematic examples of this limitation. In the first one, the frequency of a
signal (on the left) is increasing during time, but this dynamic feature is lost in its spectral representation
(on the right), where the effect of a time-varying instantaneous frequency results in a single widespread
spectral component. In the second example, the amplitude of a sinusoid (on the left) is increasing over
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Figure 1.1: Normalized power spectral density (PSD) of : Heart rate variability (HRV), respiratory
signal (RESP) measured as chest movement with a thoracic belt, and systolic arterial blood pressure
variability (SBPV). A high-frequency (HF) component reflecting respiration is present in all the three
spectra, while a low-frequency component (LF) is present in the HRV and SBPV. These signals have
been derived from simultaneous recordings in a subject at rest in supine position. A multitaper approach
has been used to estimate the PSDs.

time, but this dynamic characteristic is again lost in its spectral representation (on the right), which only
shows a single static spectral peak. Another classical example of spectral analysis limitations is that the
spectrum of a signal and the spectrum of the same signal recorded backward are exactly the same. The
temporal organization of a signal is coded in the phase of the Fourier transform, which is not used to
construct a power spectrum.
Ideally, a joint time-frequency representation should be able to track changes of the instantaneous fre-
quencies and amplitudes of the signal’s components with high time and frequency resolution. An exam-
ple of an ideal time-frequency representation is reported in Figure 1.3, where a sinusoid of finite length,
time-varying amplitude and frequency, and a temporal impulse are all perfectly localized in time and
frequency. The instantaneous power and the power spectral density can be obtained by integrating the
time-frequency representation over time (right panel) and over frequency (middle panel), respectively.
These representations are called marginals. However, as it will be shown in the next section, this ideal
representation is not achievable because of fundamental compromise between localization in time and
frequency.
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Figure 1.2: Simple examples of spectral analysis limitations. Top: A signal with increasing instantaneous
frequency (on the left) and its spectrum (on the right). Bottom: A sinusoid with increasing instantaneous
amplitude (on the left), and its spectrum (on the right). The dynamic properties of these two signals
are not reflected in their spectral representation.
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Figure 1.3: Ideal joint time-frequency representation. A signal composed of sinusoid of finite length
and time-varying amplitude and frequency, plus temporal impulse is shown on the top. On the bot-
tom, its ideal time-frequency representation reveals its time-frequency structure and provides a perfect
localization of the events. The marginals obtained by integrating the time-frequency representation over
time (right) and frequency (middle) represents the instantaneous power and the spectrum or the signal,
respectively.
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1.2 Studying signals: Time-frequency representations

This section provides a detailed description of time-frequency representations belonging to the Cohen’s
class. A more exhaustive presentation of this subject can be found in excellent books [21, 22, 23], and
reviews [24, 25]. A useful toolbox with fundamental theory, examples and Matlab functions toolbox can
be found in [26].

1.2.1 Introducing the Cohen’s Class

The time-frequency (TF) representations that belong to the Cohen’s class [24, 21] are energy distribu-
tions, in the sense that they provide a decomposition of the signal energy (for finite energy signals), Ex,
in time and frequency. A fundamental property of an energy distribution, Cx(t, f), is that it should
preserve the energy of a signal x(t), such that:∫∫

Cx(t, f) dt df = Ex =
∫
|x(t)|2 dt =

∫
|X(f)|2 dt (1.4)

Furthermore, Cohen’s class distributions are energy distribution covariant by translation in time and
frequency, meaning that they preserve temporal and spectral shifts, such that if a signal x(t) is shifted
in time and modulated in frequency, its time-frequency representation should be shifted by the corre-
sponding amount both in time and frequency:

if y(t) = x(t− t0 )ej2πf0 ⇒ Cy(t, f) = Cx(t− t0 , f − f0 ) (1.5)

In this expression Cx(t, f) and Cy(t, f) are time-frequency representations of x(t) and y(t), respectively.
Ideally, an energy distribution should also satisfy the marginal properties, meaning that its integral over
time should provide the energy spectral density of the signal, while its integral over frequency should
give the instantaneous power of the signal:∫

Cx(t, f) dt = |X(f)|2 (1.6)∫
Cx(t, f) df = |x(t)|2 (1.7)

1.2.2 Equivalent definitions of Cohen’s class distributions

In its general form, each time-frequency representation belonging to the Cohen’s class admits at least
three equivalent definitions [21]:

1) Time-delay parametrization, via φt-d(t, τ):

Cx(t, f) =
∫∫

φt-d(t− v, τ)x
(
v + τ

2

)
x∗
(
v − τ

2

)
e−j2πfτdv dτ =

∫
rx(t, τ)e−j2πfτdτ (1.8)

In this expression, the time-frequency distribution is seen as the Fourier transform of a non-
stationary, deterministic, smoothed autocorrelation function rx(t, τ):

rx(t, τ) =
∫
φt-d(t− v, τ)x

(
v + τ

2

)
x∗
(
v − τ

2

)
dv (1.9)

where φt-d(t, τ) is a kernel (subscripts t-d stand for time-delay) whose function is explained in the
following. Note that (1.8) is similar to the Wiener-Khinchin theorem, which demonstrates that
the autocorrelation function and the power spectral density of a stochastic stationary process are
Fourier transform pairs.
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2) Delay–Doppler parametrization, via φd-D(τ, ν):

Cx(t, f) =
∫∫

φd-D(τ, ν)Ax(τ, ν)ej2π(tν−fτ)dν dτ (1.10)

In this expression, the time-frequency distribution is seen as the two-dimensional Fourier transform
of the narrow-band symmetric Ambiguity function, Ax(τ, ν), modulated by the kernel function
φd-D(τ, ν) (subscripts d-D stand for delay-Doppler, the Fourier pairs of frequency and time). The
narrow-band symmetric Ambiguity function is defined as [27]:

Ax(τ, ν) =
∫
x
(
t+ τ

2

)
x∗
(
t− τ

2

)
e−j2πνtdt (1.11)

and it can be seen as a two variable generalization of a correlation function, with the interesting
property that its magnitude is invariant to temporal and spectral shifts:

if y(t) = x(t− t0 )ej2πf0 ⇒ |Ay(t, f)| = |Ax(t, f)| (1.12)

3) Time-frequency parametrization, via φt-f(t, f):

Cx(t, f) =
∫∫

φt-f(t− v, f − u)Wx(v, u)dv du = φt-f(t, f)⊗Wx(t, f) (1.13)

In this expression, the time-frequency distribution is obtained by low-pass filtering (symbol ⊗
stands for 2D convolution) in time and frequency the Wigner-Ville distribution (WVD), defined as
the Fourier transform of the non-stationary, deterministic, autocorrelation function:

Wx(t, f) =
∫
x
(
t+ τ

2

)
x∗
(
t− τ

2

)
e−j2πfτdτ (1.14)

Expression (1.13) shows that the WVD can be considered as the central element of the Cohen’s class,
i.e. the distribution from which all the other ones can be derived through a simple convolution with
a time-frequency kernel function φt-f(t, f). The WVD (1.14) and the narrowband symmetric ambiguity
function (1.11) are related by two dimensional Fourier transform [28]:

Ax(τ, ν) =
∫∫

Wx(t, f)e−j2π(νt−fτ)dtdf (1.15)

This implies that the WVD is itself a member of the Cohen’s class, characterized by φd-D(τ, ν)=1 and
consequently φt-f(t, f) = δ(t, f), i.e. a Dirac delta distribution centered at t = 0 and f = 0.
Every representation belonging to the Cohen’s class is perfectly characterized by one of the three kernels
previously introduced, i.e. φt-d(t, τ), φd-D(τ, ν) or φt-f(t, f). These kernels completely define the properties
of the TF distributions, their time-frequency resolution, and are mutually related by the Fourier transform
[28]:

φd-D(τ, ν) =
∫
φt-d(t, τ)e−j2πνtdt =

∫∫
φt-f(t, f)ej2π(τf−νt)dtdf (1.16)

φt-f(t, f) =
∫
φt-d(t, τ)e−j2πfτdτ =

∫∫
φd-D(τ, ν)ej2π(tν−τf)dτdν (1.17)

The main role of these kernels is to reduce the interference terms that affect the WVD and they have
been extensively studied since the early Nineties [29, 30, 31, 32, 33, 34, 35, 36].
Of note, from the WVD, by convolution with an appropriate kernel it is possible to derive:

a) Any time-frequency distribution: Cx(t, f) = φt-f(t, f)⊗Wx(t, f). This implies that the geometrical
properties of φt-f(t, f) have a major effect on the representation Cx(t, f).

b) The spectrogram: Cx(t, f) = Wh(t, f)⊗Wx(t, f) = |
∫
x(s)h∗(s− t)e−j2πfs ds|2, where Wh(t, f) is

the WVD of the sliding window h(t).

c) The scalogram: Cx(t, f) = Wψ(t, f)⊗Wx(t, f), where Wψ(t, f) is the WVD of the mother wavelet.
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1.2.3 The Wigner-Ville Distribution and the interference terms

The WVD defined in (1.14) is the Fourier transform of the non-stationary autocorrelation function and
is the central element of the any time-frequency representation belonging to the Cohen’s class. It has
many interesting properties [26, 21], among which the most relevant are:

- Energy conservation: see (1.4).

- Satisfaction of marginal properties, see (1.6), meaning that its integration over time and frequency
provides the power spectral density and the instantaneous power of the signal, respectively.

- Translation covariance, see (1.5), meaning that if a signal is shifted in time and modulated in
frequency, its WVD will be shifted in time and frequency accordingly.

- Real valued: Wx(t, f) ∈ R ∀ (t, f).

- Wide-sense support conservation:
if x(t) = 0 for t < |T | ⇒Wx(t, f) = 0 for t < |T |;
if X(f) = 0 for f < |Ω| ⇒Wx(t, f) = 0 for f < |Ω|.

- Perfect localization of linear chirps, i.e. a complex exponential whose instantaneous frequency θ(t)
is a linear function of time :
if x(t) = ej2πθ(t)t, θ(t) = a+ β/2t⇒Wx(t, f) = δ(f − (a+ βt))

However, its use is seriously limited by the presence of interference terms. Interferences are oscillatory
terms inherent to the quadratic structure of the WVD, which do not represent signal spectral components
but are due to their mutual interactions [37, 38]. Therefore, they are usually considered as artifacts
that should be eliminated, or at least reduced, in order to improve the readability of the distribution.
Interference terms are a consequence of the WVD’s bilinear (or quadratic) structure and they can be
identified mathematically with quadratic cross-terms [39, 37]. They appear whenever a signal can be
described as the sum of different spectral components or distinct spectral atoms. For example, the WVD
of a signal x(t) = x1(t) + x2(t), is:

Wx(t, f) = W1(t, f) +W2(t, f) + 2<[W12(t, f)] (1.18)

where W1(t, f) and W2(t, f) are the WVDs of x1(t) and x2(t), also called auto-terms because they
represent signal components, whereas W12(t, f) is an interference term that oscillates with a frequency
and in a direction that depend on the relative position of the auto-terms in the TF plane [37, 38, 25].
The geometry of the interference terms can be explained considering two TF atoms x1(t) = h(t −
t1)ej2πf1t and x2(t) = h(t − t2)ej2πf2t, where h(t) is a Gaussian window, well localized around (t1,f1)
and (t2,f2). The WVD of their sum x(t) = x1(t) +x2(t) includes an interference term with the following
characteristics:

- It is centered around (t12, f12) =
(
t2+t1

2 , f2+f1
2

)
.

- It oscillates in a direction perpendicular to the axis connecting (t1,f1) and (t2,f2).

- Its frequency in time direction is proportional to |f2 − f1|.

- Its frequency in frequency direction is proportional to |t2 − t1|.

Therefore, the spectral and temporal distances between the TF atoms, |f2 − f1| and |t2 − t1|, determine
the the velocity of the oscillation of the interference term.
Interference terms are conceptually divided in two groups: outer and inner interferences [38]. Outer inter-
ferences appear in multi-component signals, as the result of the interactions between spectral components
that are present at the same time. They are usually located at midway between two components and
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they mainly oscillate in time direction. Inner interferences are due to non-linearities in the instantaneous
frequency of a single spectral component. Their structure obeys the same geometric laws of outer inter-
ferences. Figure 1.4 provides a graphical explanation of the geometry of the interference terms using two
examples. Both panels show the WVD of a signal composed of two TF atoms x1(t) = h(t−t1)ej2πf1t and
x2(t) = h(t− t2)ej2πf2t, with t1 < t2 and f1 < f2 and where h(t) is a Gaussian window. In both cases the
WVD provides a good localization of atoms x1(t) and x2(t), but it is affected by interference terms. The
geometrical center of the interference terms is in the middle of the auto-terms at [(t1 + t2)/2, (f1 + f2)/2]
and the oscillation propagates along a direction perpendicular to the axis connecting the auto-terms. The
interference oscillations in both time and frequency directions are faster in the example shown in the
upper panel than in the example shown in the lower one because both |t2 − t1| and |f2 − f1| are larger
in the latter. This is better represented in the panels on the right-hand side, which show slices of the
WVD evaluated at time and frequency that correspond to the centers of the auto- and cross-terms. Here
again it is clear that the velocity of the interference oscillation increases with the distance between the
auto-terms.

The oscillatory nature of the interference terms suggests that they can be selectively attenuated or
eliminated by filtering the WVD with kernels that act as low-pass filters. The interpretation of the kernels
in (1.16)-(1.17) as low-pass filters imposes geometrical constraints on their design, and algorithms that
use specific signal properties to automatically determine an optimal kernel, so called signal-dependent
kernels, have been proposed [35, 30, 31, 33, 32, 40]. One strategy is to determine the properties of the
low-pass filter based on the minimum time-frequency distance between the signal components, which is
related to the lowest oscillation to be eliminated. For example, energy time-frequency distributions of
cardiovascular signals are expected to present both outer and inner interferences. Outer interferences
arise from the interactions between simultaneous LF and HF oscillations, while inner interferences may
arise from non-linearities in the instantaneous frequencies of this components. Outer interferences may
be eliminated by estimating the minimum distance between |fHF(t)−fLF(t)|, which is usually determined
by the respiratory rate, and then by using it to determine the cut-off of the low-pass filter in the time
direction [40].

Finally, it is worth mentioning that the complex analytic representation of the signal is often used
instead of the original real signal to further reduce the interference terms [41]. This is because the
power spectral density of the analytic representation of a signal vanishes for f < 0. Therefore, the use
of the complex analytic signal assures that positive and negative spectral components do not produce
interference terms and improves the readability of the TF distribution.

1.2.4 Time-frequency resolution

If we consider the general scheme for the analysis of non-stationary signals shown in Sec. 1.1, it is clear
that the final result of the analysis is strictly related to the time-frequency resolution of the representation.
For example, in the analysis of cardiovascular signals, the frequency resolution should be good enough to
separate the LF and the HF components, even when low respiratory rate reduces their spectral distance.
At the same time, time resolution should be good enough to follow quick variations, typically of the
order of few seconds.
The time-frequency resolution of a distribution belonging to the Cohen’s class depends on the degree of
filtering provided by the kernel function, which, in turn, depends on its geometrical properties.

Although in theory the use of bespoke kernels offers the possibility to go beyond the Heisenberg
principle, which states that time and frequency resolutions cannot be jointly arbitrarily low because they
are inversely related, the violation of this principle introduces cross-terms. Thus, the classical trade-off
between time and frequency resolution becomes a trade-off between joint time-frequency resolution and
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Figure 1.4: Graphical explanation of the geometry of the interference terms. On the left: A signal
composed of two time-frequency atoms x1(t) and x2(t), with t1 < t2 and f1 < f2, and where h(t)
is a Gaussian window, and its Wigner-Ville distribution. On the right: The Wigner-Ville distribution
evaluated at time and frequency corresponding to the geometrical centers of auto- and interference terms.
The WVD provides a good localization of atoms x1(t) and x2(t), but it is affected by interference terms.
The geometrical center of the interference terms is in the middle of the auto-terms and the oscillation
propagates along a direction perpendicular to the axis connecting the auto-terms. The interference
oscillations in both time and frequency direction are faster in the example in the upper than in the
bottom panel because the temporal and spectral distance between the atoms are larger in the latter.
This is better represented in the panels on the right-hand side, which show slices of the WVD evaluated
at time and frequency that correspond to the centers of the auto- and cross-terms. Here again it is clear
that the velocity of the interference oscillation increases with the distance between the auto-terms.
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amount of cross-terms. As we will see in the following, this is paticularly relevant when time-frequency
distributions are used to estimate time-frequency spectra, mainly because positivity, a necessary condi-
tion for a distribution to be interpreted as an energy spectral density, requires an appropriate amount
of filtering both in time and frequency [42]. Furthermore, the amount of smoothing also depends on the
signals, being higher for those signals which present more interference terms [38, 43].

The quantification of the resolution is important because it allows to compare the performance of
different distributions and to chose the most appropriate for a given application, and, importantly, it is
necessary for a correct interpretation of the results. For example, to correctly assess the latency between
a stimulus and a response in an index extracted from a time-frequency distribution it is necessary to
know the effect of the smoothing kernel on the localization of the observed features.
Since a time-frequency distribution can be obtained by the convolution between the WVD of a signal and
a kernel φt-f(t, f) (see (1.13)), and because the WVD is a non-filtered representation, the resolution of a
time-frequency distribution can be calculated by studying φt-f(t, f). The full-width at half maximum or
any other measurement of the spreading of the kernel in time and frequency provides an estimate of the
time-frequency resolution [14]. This can be easily seen by considering the example of the time-frequency
distribution of a temporal impulse δ(t − t0) or of a complex exponential ej2πf0t. The WVD of these
two signals is a line along frequency and time, respectively. The convolution with φt-f(t, f) results in a
time-frequency representation which is the same φt-f(t, f) centered around t0 or f0, respectively.

1.2.5 The smoothed-pseudo Wigner-Ville distribution (SPWVD)

Several filtered versions of the WVD have been proposed to reduce the interference terms while main-
taining a good TF resolution. Among those that have been applied to the study of the cardiovascular
variability [44, 45], the smoothed pseudo Wigner-Ville distribution (SPWVD) is one of the most inter-
esting, since it provides an independent control over time and frequency resolution. The SPWVD is the
only member of the Cohen’s class that makes use of separable kernels, i.e. φt-f(t, f) = φt(t)φf(f), and
offers the possibility to independently control the amount of time and frequency filtering [41, 21, 24].
The SPWVD of a signal x(t) can be estimated in the time-lag domain (t, τ) by means of (1.8) and by
using the separable kernel φt-d(t, τ) = φt(t)φd(τ):

Cx(t, f) =
∫
φd(τ)

[∫
φt(t− v)x

(
v + τ

2

)
x∗
(
v − τ

2

)
dv

]
e−j2πfτdτ (1.19)

In this expression, the term in the brackets represents a smoothed version of the non-stationary deter-
ministic autocorrelation function. The time and the frequency resolution of the SPWVD is separately
determined by the shape of φt(t) and by the shape of the Fourier transform of φd(τ), respectively.
Figure 1.5 provides an illustrative example of the effect of using different smoothing strategies. Panels
on the upper line represent a signal composed of 4 Gaussian atoms, i.e. 4 complex exponentials mod-
ulated by Gaussian functions. Graphics (A)–(D) show 4 different TF distributions of this signal. The
centers of the TF atoms are localized by black crosses. Panel (A) shows the WVD. The 4 TF atoms are
well localized both in time and frequency. However, several interference terms also appear in between
the atoms. Importantly, some of these interference terms have an amplitude higher than the amplitude
of the auto-terms related to the TF atoms. In panel (B) and (C) the WVD is only filtered in frequency
and time, respectively. It is shown that the filtering in frequency cancels the interference terms arising
from the interaction of TF atoms with the same central frequencies (see panel (B)), while the filtering
in the time direction cancels the interferences terms arising from the interactions of TF atoms with the
same central time (see panel (C)). If we compare the distributions in (B)–(C) with the WVD in (A), we
observe that the filtering reduces the localization in frequency and time, respectively. Finally, in panel
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Figure 1.5: Effect of time-frequency smoothing. Upper line: All panels represent a signal composed
of 4 Gaussian atoms. (A)-(D): Iso-contours of time-frequency representation with different degree of
filtering. Black cross localize the center of the Gaussian atoms in the time-frequency domain. Time-
frequency distributions are normalized to the total energy of the signal. (A): Wigner-Ville distribution (no
smoothing). (B): Pseudo Wigner-Ville distribution (frequency smoothing only). Note that interference
terms oscillating in the frequency direction and centered between the horizontal lines connecting the
atoms have been eliminated. (C): Smoothed Wigner-Ville distribution (time smoothing only). Note that
interference terms oscillating in the time direction and centered between the vertical line connecting the
atoms have been eliminated. (D): Smoothed pseudo Wigner-Ville distribution (both time and frequency
smoothing). All interference terms have been removed at a cost of a increased smoothing.
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(D), the SPWVD obtained by combining the time and frequency filtering used in (B) and (C) is shown.
In this representation, all the interference terms have been eliminated. Additionally, the smoothing ap-
plied to the distribution shown in (D) was sufficient to make the SPWVD positive, so that it can now
be considered as an estimate of the non-stationary spectrum of signal x(t).

1.2.6 From time-frequency representations to time-frequency spectra

The definition of the power spectral density of a stationary random process is given in (1.3). Contrary to
the stationary case, a non-stationary spectrum for a time-varying random process is not uniquely defined.
The Wigner-Ville spectrum (WVS), defined as the Fourier transform of a non-stationary auto-correlation
function [21]:

Sxx(t, f) =
∫

E
[
x
(
t+ τ

2

)
x∗
(
t− τ

2

)]
e−j2πτf dτ (1.20)

can be seen as a natural extension of the power spectral density in a non-stationary context. It can be
shown that, under mild conditions, the Wigner-Ville spectrum (1.20) is equal to the ensemble average of
the Wigner-Ville distributions (WVD), Wxx(t, f) (see (1.14)), of the realizations of the processes [21]:

Sxx(t, f) = E [Wxx(t, f)] (1.21)

When only one observed realization is available, Sxx(t, f) should be estimated by replacing the expectation
E[Wxx(t, f)] with local averaging. This can be achieved by using Cohen’s class distributions:

Ŝxx(t, f ;φ) = Wxx(t, f)⊗ φt-f(t, f) (1.22)

where ⊗ represents the 2D convolution on t and f , and φt-f(t, f) is the smoothing function, which should
guarantee the positiveness of the estimated spectra.
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1.3 Studying interactions: Multivariate time-frequency repre-
sentations

This section describes time-frequency methodologies utilized to study the dynamic interactions between
non-stationary signals. These include:

1) Time-frequency coherence: For the analysis of the strength of the local coupling between two
signals.

2) Time-frequency phase-difference: For the analysis of the degree of synchronization between two
signals.

3) Time-frequency phase-locking: For assessing the degree of coordination between multiple responses.

4) Time-frequency partial spectrum: For assessing the variability of a given signal after removing the
amount of variability in synchrony with another signal.

Most of the methodologies presented in this section have been specifically proposed to study dynamic
interactions between cardiovascular signals [14, 2, 46].
In the following, when a time-frequency distribution represents a time-varying power spectrum, the
symbol S(t, f) will be used instead of C(t, f).

1.3.1 Time-frequency coherence

Spectral coherence measures the degree of correlation between the spectral components of two signals
[47]. This measure requires signals to be stationary and it is therefore inappropriate for studying non-
stationary signals. In the analysis of cardiovascular signals, the estimation of spectral coherence in the
joint time-frequency (TF) domain has many potential fields of application. For example, the localization
of TF regions in which two signals are coupled can be applied in the time-varying characterization of
baroreflex [48, 49, 50], or in the assessment of the degree of similarity between different signals to validate
the use of one signal, and its derived measures, as surrogates of original ones [51].
The spectral coherence function between two stationary zero-mean stochastic processes x(t) and y(t) is
a normalized version of the cross power spectral density, Sxy(f), which measured the cross-correlation
between two different signals as a function of frequency and is estimated as in (1.3). The spectral
coherence is defined as:

γ(f) = Sxy(f)√
Sxx(f)Syy(f)

, (1.23)

The magnitude of the spectral coherence is equal to one for those frequencies for which x(t) and y(t) are
related by a linear time-invariant system and it is equal to zero for those frequencies for which x(t) and
y(t) are uncorrelated, i.e. when Sxy(f) = 0 [47, 52].
By analogy with the stationary case, the time-frequency coherence (TFC) can be defined in non-
stationary conditions as [53, 52]:

γ(t, f) = Sxy(t, f)√
Sxx(t, f)Syy(t, f)

(1.24)

where Sxy(t, f) is the non-stationary cross spectrum, and Sxx(t, f) and Syy(t, f) are the non-stationary
auto-spectra estimated as in (1.22). A critical aspect of the estimation of the TFC is the elimination of
the interference terms, as these may cause the TFC to take values outside the range [0, 1], thus losing
its physical meaning. This is shown by the Janssen’s formula (also known as outer interference formula)
[38, 21]:

|Wxy(t, f)|2 =
∫∫

Wxx

(
t+ τ

2 , f + ν

2

)
Wyy

(
t− τ

2 , f −
ν

2

)
dτdν (1.25)
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This expression shows that for given TF point (t0, f0), it is possible to have |Wxy(t0, f0)| 6= 0 while
Wxx(t0, f0) = Wyy(t0, f0) ≈ 0, and consequently γ(t0, f0) > 1.
To obtain TFC estimates bounded between zero and one, φt-f(t, f) should completely suppress the inter-
ference terms [52]. As long as the degree of TF filtering is strong enough, TF coherence can be obtained
using (1.24).
In the analysis of the interactions between cardiovascular signals, a simplified version of the multiform–
tiltable exponential kernel first proposed in [33], was succesfully used [40, 51, 14, 2, 46]:

φd-D(τ, ν) = exp
{
−π
[(

ν

ν0

)2

+
(
τ

τ0

)2]2λ
}

(1.26)

In the ambiguity function domain, the iso-contours of this kernels are ellipses whose eccentricity depends
on parameters ν0 and τ0. Parameters ν0 and τ0 are used to change the length of the ellipse axes aligned
along ν (i.e. the degree of time filtering) and τ (i.e. the degree of frequency filtering), respectively. The
parameter λ sets the roll off of the filter as well as the size of the tails of the kernel.
A signal-dependent kernel that provides a time-frequency coherence bounded between 0 and 1 can be
empirically determined as follows. First, the target TF resolution corresponding to the minimum amount
of TF smoothing is decided based on a-priori information about the signals and the experimental settings.
The set of parameters {τ0, ν0, λ} associated with this TF resolution are used as a starting point. If using
this set of parameters γ(t, f) /∈ [0, 1], the degree of time (or frequency) smoothing is increased until
reaching the minimum degree of smoothing associated with meaningful TFC estimates.
Despite the fact that the degree of time and frequency filtering can be tuned almost independently,
the resulting time and frequency resolution can not be set arbitrarily, since the condition of having
γ(t, f) ∈ [0, 1] imposes a trade of on the minimum joint TF filtering.
A more sophisticated signal-dependent scheme to automatically find a kernel associated to TFC functions
bounded between 0 and 1 was proposed in [40].

Statistical assessment of coherence significance

As for the classical spectral coherence, time-frequency coherence estimates are not meaningful per se, but
they strongly depend on the parameters used in its calculation [47, 54]. The local averaging provided by
the smoothing function φt-f(t, f) introduces a bias in the TFC estimates, causing the TFC of two uncor-
related signals to be higher than zero. This dependence introduces an uncertainty in the interpretation of
the coherence level. To reduce this uncertainty and to localize TF regions characterized by a significant
coherence level, a hypothesis test can be used. The test is based on the point-by-point comparison of
the time-frequency coherence estimates, γ(t, f), with a threshold function, γTH(t, f), obtained by esti-
mating the time-frequency coherence between several realizations of locally uncoupled signals. The null
hypothesis H0 to be rejected is that two signals x(t) and y(t), with time-frequency coherence γ(t, f),
are uncorrelated around a point (t0,f0). The procedure is based on surrogate data analysis, where a
surrogate is a signal that shares similar features as the original one but lack of the property that needs
to be tested [55, 54]. In this case, the analysis consists of the following steps [14]:

1) Generate pairs of uncorrelated test signals {x̃j(t),ỹj(t)}.

2) Compute the distribution Γ(t, f) = {γ1(t, f), ..., γj(t, f), ...}, where γj(t, f) is the TFC between the
j-th realization of test signals x̃j(t) and ỹj(t);

3) Estimate the threshold γTH(t, f ;α), corresponding to the desired significance level α. According
to this framework, α is the probability of wrongly rejecting the null hypothesis, and γTH(t, f ;α) is
estimated point-by-point as the (1− α)-th percentile of Γ(t, f);
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4) Determine the TF region R(t, f ;α) in which the null hypothesis can be rejected as that where
γ(t, f) > γTH(t, f ;α).

When the test signals x̃j(t) and ỹj(t) are white noises the threshold function only depends on the kernel
and it is expected to be constant over the entire time-frequency domain. If one of the test signals is
replaced by one of the original signals, the threshold function will be signal-dependent and it should be
estimated for each pair of signals even when the same kernel function is used for the analysis [14].

1.3.2 Time-frequency phase differences

Phase differences represent the delay between two oscillations that share approximately the same fre-
quency. This delay, which should be much smaller than the oscillation period, can vary during time as a
response to a given stimulus and may provide valuable information about the system under investigation.
To introduce the time-frequency phase difference and its estimation, let’s model two signals as AM-FM
modulated complex exponentials with time-varying LF and HF components:

x(t) = Ax,LF(t)ejθx,LF(t) +Ax,HF(t)ejθx,HF(t) (1.27)

y(t) = Ay,LF(t)ejθy,LF(t) +Ay,HF(t)ejθy,HF(t)

In these expressions, LF and HF indicate the low frequency component, traditionally inside 0.04− 0.15
Hz, and the high frequency component, traditionally inside 0.15− 0.4 Hz, respectively [10]; θk,B(t), with
B ∈ [LF,HF ] and k ∈ [x, y], is the instantaneous phase, related to the instantaneous frequency by
fk,B(t) = (dθk,B(t)/dt)/(2π).
The phase difference between these spectral components, θB(t) = θx,B(t) − θy,B(t), is expected to be
time-varying. The time-course of the phase difference between two signals x(t) and y(t), evaluated for a
specific spectral component B, can be estimated as:

θB(t) = 2π
∫ t

0
[fx,B(τ)− fy,B(τ)]dτ (1.28)

However, the estimation of the phase difference from the instantaneous frequencies of the spectral com-
ponents of two signals is very sensitive to estimation errors in fk,B(t), since an estimation error at t0

affects all θB(t > t0). The characterization of the phase differences in the joint time-frequency domain
may therefore be preferable. The time-frequency representation of the phase difference between two
signals is defined as:

Θ(t, f) = arg [Sxy(t, f)] = arctan
[
=
[
Sxy(t, f)

]
<
[
Sxy(t, f)

]] (1.29)

This expression provides a quantification of the phase difference between the spectral components of two
signals in the time-frequency domain and is bounded Θ(t, f) ∈ [−π, π].
Other approaches to estimate the phase differences between 2 non-stationary signals have used the wavelet
transform [56, 57, 58, 59], the Rihaczek transform [60, 61] and the reduced interference distributions
[62, 29].
A time-varying index describing the temporal evolution of the phase difference between a given spectral
component B of two signals can be estimated by averaging the time-frequency representation of the phase
difference in a specific time-frequency region Ω(θ)

B . Among a wide range of different possibilities, one that
has been previously used is Ω(θ)

B defined as a time-frequency region centered around the instantaneous
frequency of a spectral component of the cross spectrum, f (xy)

B (t) (estimated as the maximum of the
instantaneous spectral peak) in which coherence is statistically significant [2]. These conditions are
necessary to obtain robust and accurate estimates since the estimation of a phase difference is relevant
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only in those time intervals in which the two signals are locally coupled and therefore are sharing
approximately the same instantaneous frequency. This region can be defined as [2]:

Ω(θ)
B ≡

{
(t, f)

∣∣f = f (xy)
B (t)± ∆f

2 ∩ γ(t, f) > γTH(t, f)
}

; (1.30)

where ∆f is the width of the spectral band centered around f (xy)
B (t), which should be related to the

frequency resolution of the TF distributions. The index that quantifies the phase difference, θB(t), can
be estimated (in radians) by averaging the time-frequency phase difference spectrum in Ω(θ)

B :

θB(t) =
[∫

Ω(θ)
B

Θ(t, f)df
]/[∫

Ω(θ)
B

df

]
; (1.31)

The time delay associated to θB(t) can be estimated (in seconds) by the index DB(t), defined as:

DB(t) = θB(t)
2πf (xy)

B (t)
(1.32)

Assessing TF coherence and phase differences: In the following, the results of a simulation study
designed to assess TF coherence and phase difference estimators is proposed. The purpose of the study
is to demonstrate the potential of these methodologies to track fast changes in the dynamic interactions
between cardiovascular signals.
The signals used in the simulation are modified versions of the RR variability signals recorded during
the tilt table test [2]. They are obtained as:

x(t) =aRRV(t) + ξx(t) (1.33)

y(t) =[γ0(t)α0(t)exp(jθ0(t))]aRRV(t) + ξy(t) (1.34)

where aRRV(t) is the complex analytic signal representation of the RRV signal, and ξx(t) and ξy(t) are
complex white Gaussian noises whose amplitude is set to give a SNR = 10 dB. Indices γ0(t) ∈ {0, 1} and
θ0(t) ∈ [−2.2,−0.8] rad represent the reference time-course of the local coupling and phase difference,
respectively. Index α0(t) is a time-varying amplitude modulation. The estimation of these indices
is challenging because: the TF structure of the signals reflects the complexity of real non-stationary
biomedical signals; there are short intervals during which signals are not locally coupled and during which
phase difference should not be estimated, the shortest lasting 30 s; phase difference varies non-linearly
with time; the amplitude modulation first undergoes stepwise changes and then recovery toward higher
values following a non-linear time-course; noise is added; finally, all these patterns imply simultaneous
amplitude and frequency modulation of the signals. Results were obtained over 50 realizations and are
shown in Figure 1.6, where the time-course of γ0(t), θ0(t) and α0(t) is represented by a red-bold line,
while estimates obtained through time-frequency analysis in represented in gray. Signals x(t) and y(t)
are uncoupled during two intervals where γ0(t) = 0, their phase difference changes as a sinusoids and
the amplitude modulation presents slow and abrupt non-stationarities. Results demonstrate that the
presented framework provides an accurate estimation of the changes in the signal properties and their
dynamic interactions.

1.3.3 Time-frequency phase locking

The time-frequency representation of phase differences offers the possibility of estimating the degree
of phase-locking between different signals [60, 61, 56, 57, 63, 64]. The phase locking is used to assess
whether a given stimulus provokes similar changes in the time-frequency phase difference spectrum. Its
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Figure 1.6: Simulation: Time-course of (A) Coherence, (B) Phase differences, (C) Amplitude modulation.
Reference values γ0(t), θ0(t) and α0(t) described in equations (1.33) are represented in bold red lines.
Estimates are represented as median (black line) and interquartile range (gray region). Vertical lines
mark supine positions and head-up tilt. Light gray areas represent the intervals during which signals are
uncoupled. The horizontal dashed line in (A) represents the threshold for statistical significance.

time-frequency representation is [65]:

Ψ(t, f) =

∣∣∣∣∣ 1L
L∑
i=1

ej2πΘi(t,f)

∣∣∣∣∣ =

∣∣∣∣∣ 1L
L∑
i=1

Sxy,i(t, f)
|Sxy,i(t, f)|

∣∣∣∣∣ (1.35)

By construction, Ψ(t, f) is bounded between 0 and 1, Ψ(t, f) ∈ [0, 1], being Ψ(t, f) = 1 if Θi(t, f) does
not vary across different realizations i, and being Ψ(t, f) = 0 if Θi(t, f) is characterized by a zero mean
random distribution across i. Indeed, if for a given point (t0,f0), the complex terms in the summation
in (1.35) maintain similar phase for all i, Ψ(t0, f0) ≈ 1.
Therefore, the phase locking measures the degree of similarity of the time-frequency structure of a group
of signals, by pairwise comparing their time-frequency phase differences Θi(t, f).

1.3.4 Time-frequency partial spectrum

The estimation of a time-frequency partial spectrum is interesting in the analysis of systems that can be
modeled as the sum of two single-input/output models where inputs u(t) and v(t) are uncorrelated (see
Figure 1.7):

y(t) = x1(t) + x2(t) = h1(t) ∗ u(t) + h2(t) ∗ v(t) (1.36)

where ∗ represents convolution with time-varying transfer functions h1(t) and h2(t).
In many applications, one needs to decompose the TF spectrum of y(t) into a part related to x1(t)
and another related to x2(t). This section describes how to obtain such a decomposition when only te
output y(t) and one of the inputs, i.e. either u(t) or v(t), are known. In the time-frequency domain,

18



Figure 1.7: A multiple-input single-output model. Inputs u(t) and v(t) are uncorrelated.

input/output auto spectrum and input/output cross spectrum relations are:

H1(t, f) = Su,1(t, f)
Su,u(t, f) (1.37)

|H1(t, f)|2 = S1,1(t, f)
Su,u(t, f) (1.38)

Taking into account that the inputs are uncorrelated, the TF spectrum of the output is [66]:

Sy,y(t, f) = |H1|2S1,1(t, f) + |H2|2S2,2(t, f) (1.39)

while TF coherence between y(t) and input u(t) is:

γ2
y,u(t, f) = 1

1 + S2,2(t, f)/S1,1(t, f) (1.40)

where S1,1(t, f) and S2,2(t, f) are auto spectra of x1(t) and x2(t). In this formulation, x2(t) is considered
a noise term uncorrealted with input u(t). Similarly, the TF coherence between y(t) and input v(t) is

γ2
y,v(t, f) = 1

1 + S1,1(t, f)/S2,2(t, f) (1.41)

where x1(t) is considered a noise term uncorrealted with input v(t).
The TF coherence function can be used to separate the output spectrum into two partial spectra: the
coherent output spectrum and the partial (or conditioned) spectrum [66]:

Sy:1(t, f) = S1,1(t, f) = γ2
y,u(t, f)Sy,y(t, f) = (1− γ2

y,v(t, f))Sy,y (1.42)

Sy:2(t, f) = S2,2(t, f) = γ2
y,v(t, f)Sy,y(t, f) = (1− γ2

y,u(t, f))Sy,y (1.43)

Note that S1,1(t, f) can be calculated from output y(t) and input u(t) even if x1(t) cannot be measured.
Similarly, S2,2(t, f) can also be estimated from y(t) and input u(t) without measuring x2(t). Definitions
(1.42)-(1.43) show that a partial TF spectrum is obtained from the original spectrum by using the TFC
function as a TF filter that reduces the amplitude of the original spectrum by a factor proportional to
the TFC. In regions where the TFC is equal to one, the TF partial spectrum is equal to zero. Whereas
in regions where the TFC is zero, the original and the partial spectra will have the same amplitude. This
approach has been used to estimate changes in the variability of the QT interval unrelated with heart
rate variability, by using records of QT and RR intervals [67].

1.4 Example of analysis of cardiovascular signals

The time-frequency framework described in this chapter has been applied to the study of cardiovascular
signals and their dynamic interactions [14, 2, 46, 65], and references to specific studies have been given
and briefly discussed in the previous sections. In this section, cardiovascular signals from one healthy
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volunteer undergoing a head-up tilt test are studied as a representative example. This test includes
three phases: early supine position (4 min), head-up tilt at 700 (5 min) and late supine position (4 min)
[2]. The RR interval was measured from the surface ECG, systolic arterial blood pressure was mea-
sured non-invasively from the finger using a Finometer device, and respiration was measured as chest
movement using a thoracic belt. Results shown in Figure 1.1 and Figure 1.6 are from the same subject.
Time-frequency analysis was performed using the kernel function described in (1.26). The time and
frequency resolutions, measured as the full-width at half maximum of the kernel function evaluated at
its center [14], were equal to 11 s and 0.039 Hz, respectively. A statistical test to estimate the threshold
for significant coupling was conducted using white Gaussian noise as uncoupled surrogate data. The
threshold associated with a 5% significance level was equal to 0.849.
Figure 1.8 shows the time-frequency spectra of RR variability (RRV), systolic arterial pressure variabil-
ity (SAPV) and the respiratory signal (R). RRV and SAPV show spectral components in both the LF
(0.04-0.15 Hz) and HF (0.15-0.40 Hz) bands, while the spectral power of the respiratory signal is in the
HF band only. Interestingly, both amplitudes and frequencies of these signals clearly change during the
test. The time-frequency resolution of these representations allows to track these changes. In particular,
subtle changes in the instantaneous frequency of the respiratory oscillations can be followed accurately.
Time-frequency coherence (TFC) and time-frequency phase difference (TFPD) between each pair of sig-
nals is also reported. Regions of the time-frequency domain where the coherence between two signals
is statistically significant are encircled by a black line. These time-frequency coherence representations
demonstrate that the three signals are strongly locally coupled. Significant level of coupling between
RRV and SAPV is found in both LF and HF, whereas respiration is strongly coupled with only HF
components of RRV and SAPV. The coupling in HF is maintained during the entire test, demonstrating
that respiratory oscillations in RRV and SAPV are persistent. Whereas the coupling in the LF band is
intermittent.
The inspection of the TFPD representations reveals that the phase difference between coupled oscilla-
tions in these cardiovascular signals is affected by head-up tilt. A clear and sudden change in the phase
difference after the onset of head-up tilt is registered between RRV and SAPV, RRV and R, and between
SAPV and R. In the late supine position, baseline values are restored, suggesting that head-up tilt is
provoking a shift in the degree of temporal synchronization of respiratory-related oscillations within the
cardiovascular system.
Figure 1.9 shows the time-frequency partial spectra of RRV (upper panel) and SAPV (lower panel) af-
ter removing the components in synchrony with respiration. These representations have been obtained
using the definition (1.42) and the kernel (1.26). The comparison between these representations and
the original RRV and SAPV spectra shown in Fig. 1.8 suggests that the HF components of both sig-
nals are almost entirely due to respiration. The residual components still present in the TF spectra
are mainly in the LF band. Black lines encircle the TF regions where TFC with respiration is statisti-
cally significant. As expected, in these regions the amplitude of the TF partial spectra is particularly low.

1.5 Final considerations

In this chapter, we have described a framework for the assessment of the time-frequency structure of
non-stationary signals and their dynamic interactions. We have used simulated data to demonstrate
its reliability and we have provided examples based on cardiovascular signals recorded during a tilt-
table test, a procedure that quickly modifies arterial blood pressure and activates a neural response (the
baroreflex) to restore baseline values. The approach described in this chapter has been proven to be
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robust and accurate [14, 2, 46] and it is certainly a useful tool to track the cardiovascular response to
different stimuli, such as emotions [68], orthostatic stress [2], exercise stress test [69] etc., and to detect
subtle and transient dynamics such as repolarization alternans [70].
In recent years, different methods to estimate time-varying features of non-stationary signals have been
proposed. Most of them are based on parametric autoregressive modeling [4, 71, 72, 73]. The per-
formance of these methods is related to their capability of capturing signal dynamics and, in extremely
non-stationary conditions, they have been observed to perform less accurately than non-parametric meth-
ods [45, 74].
Time-varying estimators based on non-parametric methods have the advantage of not requiring any as-
sumption on the TF structure of the signals and are relatively easy to estimate. Beside those described
in this chapter, others have been used in biomedical applications. These include the time-scale coher-
ence [75] based on the continuous wavelet transform, which has been proposed to study cardiovascular
dynamics [76, 77, 50] as well as neural connectivity [63, 78, 79, 80]. These methods are characterized
by a non-homogeneous TF resolution and are suited for signals presenting high frequency components
of short duration and low frequency components of long duration. In the late Nineties, estimators of
time-frequency coherence based on multitaper spectrogram [81, 82] have also been proposed to study the
coupling between neuronal signals [83] and atrial fibrillation [84].
The main limitation of the time-frequency framework described in this chapter is that it cannot be
used to infer causality or to assess the direction of the coupling. In this case, other approaches, mainly
parametric [85], should be used.
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Figure 1.8: Time-frequency analysis of RR interval variability (RRV), systolic arterial blood pressure
variability (SAPV) and respiration (R) during head-up tilt table test. Vertical lines separate the early
supine phase (4 min), from the head-up tilt phase (5 min), and the late supine phase (4 min). From top
to bottom: The first three panels show the time-frequency spectra of RRV, SAPV and R, respectively.
From the forth panels onwards, figures show the time-frequency coherence and phase difference of RRV
and SAPV, RRV and R, and finally of SAPV and R. Black lines in the coherence and phase differences
panels encircle the regions where coherence is statistically significant (α < 5%). Time-frequency phase
is shown only in these regions. Colors represent arbitrary units for the TF spectra, normalized units for
the TFC, and radians for the TFPD.

22



TF Partial Spectrum (RRV/R)

F
re

q 
(H

z)

0

0.2

0.4

0  

0.5

1  

TF Partial Spectrum (SAPV/R)

Time (s)
120 240 360 480 600 720

F
re

q 
(H

z)

0

0.2

0.4

0  

0.5

1  
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These representations greatly differ from the original TF spectra shown in Figure 1.8. In particular, HF
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these panels encircle the regions where coherence with respiration is statistically significant (α < 5%).
Note that, as expected, inside these regions the time-frequency partial spectra show very little power.
In the TF spectra, colors represent arbitrary units.
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