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Fluid Intelligence Predicts Novel Rule Implementation in a
Distributed Frontoparietal Control Network
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Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of
lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and
the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included
multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task
complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of
performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD
function to a process of attentional focus on the successive parts of complex behavior.
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Introduction
The neural basis of fluid intelligence is a fascinating but poorly
understood topic. Lesion and imaging evidence links fluid intel-
ligence to a specific set of frontal and parietal regions, here called
the multiple-demand network (Prabhakaran et al., 1997; Duncan
et al., 2000; Gray et al., 2003; Woolgar et al., 2010; Cole et al.,
2015). This network includes the intraparietal sulcus, the anterior
(ant)—posterior (post) axis of the lateral frontal cortex (LFC), the
anterior insula (AI), the frontal eye field (FEF), and the pre-
supplementary motor area (pre-SMA). Functional magnetic reso-

nance imaging (fMRI) research demonstrates the recruitment of the
multiple-demand network in many kinds of tasks, including tests of
working memory, response inhibition, attention switching, and
many more (Duncan, 2013; Fedorenko et al., 2013).

Usually, fluid intelligence is measured with complex, multistep
tasks (Raven et al., 1988), and in novel behavior, errors linked to low
fluid intelligence increase with the number of operations or rules
involved in a task (Duncan et al., 2008; Bhandari and Duncan, 2014).
Intriguingly, even rules that are known not to apply to a current trial,
or block of trials, can increase errors on the remainder (Duncan et
al., 2008), suggesting a broad inability to foreground the correct part
of a complex rule set. A general requirement in complex behavior is
to select and assemble the specific components of each task stage or
epoch (Duncan, 2013). Achieving focus on the correct cognitive
operations may become increasingly demanding with increases in
total task complexity or the total body of potentially competing op-
erations. Previously, we have proposed that achieving such focus
may be a core aspect of multiple-demand function, accounting for
widespread recruitment across many kinds of tasks (Duncan, 2013;
Bhandari and Duncan, 2014).

Using fMRI, previous research showed that trial-by-trial
changes in executive demands during a working memory task led
to specific event-related fMRI responses in frontal-parietal cortex
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Significance Statement

Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts.
We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With
increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced
responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor
foregrounding of task-critical information across a distributed MD system.
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as a function of fluid intelligence levels (Gray et al., 2003). Higher
fluid intelligence was associated with greater event-related neural
activity for more challenging trials, which correlates with higher
performance accuracies. Here we extended this work to examine
the joint influence of fluid intelligence and contextual task com-
plexity. Over different runs of the experiment, sets of novel rules
were instructed. To manipulate task complexity, subjects mem-
orized either two or four novel rules in different experimental
runs, although in each 29 s epoch of performance only one rule
applied. Although only one rule applied at a time, we predicted
that participants with low fluid intelligence could have difficulty
configuring multiple-demand activity for this rule, especially in
the more complex, four-rule context. Accordingly, we predicted
increased performance errors, accompanied by decreased
multiple-demand responses to critical task events.

Materials and Methods
Participants. Participants were prescreened and divided into two groups,
a high-IQ group and a low-IQ group, based on their scores in a test of
fluid intelligence (Cattell and Cattell, 1960). All 38 participants had an IQ
score of at least 85. Two subjects were excluded because they failed to
correctly recall the task rules. The study was approved by the Cambridge
Psychology Research Ethics Committee, and participants gave informed
consent and were paid for taking part. Participants had no history of
psychological or neurological health problems and reported normal or
corrected-to-normal vision. The mean age of participants was 44 years,
ranging between 29 and 65 years. The mean IQ score from the Culture

Fair Test (Cattell and Cattell, 1960) was 107 (SD � 16). There was no
significant correlation between IQ scores and age in our subject sample
( p � 0.120). Based on a median-split analysis of all IQ raw scores (me-
dian IQ � 105), we defined a low-IQ group as having scores smaller or
equal to the median, and a high-IQ group as having scores larger than the
median. The low-IQ group included 20 participants (8 females) with a
mean IQ score of 95 (SD � 8). The high-IQ group included 16 partici-
pants (10 female) with a mean IQ score of 122 (SD � 10).

Experimental paradigm. The design of the task is illustrated in Figure 1.
For each 4.5 min run of the experiment, participants were asked to mem-
orize two or four novel associations between geometric figures (cues) and
animate or inanimate objects (targets). The run was then divided into a
series of chunks, each beginning with the appearance of a single cue from
the memorized set, followed by a series of pictures presented at 1/s (0.7 s
on, 0.3 s interstimulus interval). The task was to press a key with the right
hand whenever the specified target appeared.

Each run (Fig. 1, bottom) was divided into two halves by a 10 s pause in
the middle (mid). For two-rule runs, each half contained four 29 s
chunks, two for each rule in ABAB, BABA, ABBA, or BAAB order. Within
each chunk, the cued target appeared twice, as did the image associated
with the other cue (lure, to be ignored). Remaining pictures were fillers,
which were never used as targets, with the number of fillers between each
critical event (cue, target, or lure) jittered between two and eight. There
was a brief period (15 s) of filler pictures before the first chunk of each
half-run, again presented at 1/s, which the participant simply watched
while awaiting the first cue. For four-rule runs, two extra rules (second-
ary rules) were used only once each, one for the 15 s period at the start of
the first half of the run, the other for the similar period at the start of the

Figure 1. The experimental paradigm. Top, Before each experimental run, participants learned two or four novel cue–target associations. Middle, In each task chunk (29 s), a cue preceded a
sequence of animate and inanimate objects. The cue indicated the target in the current chunk. Other images were fillers and lures (images associated with a different cue). Bottom, Sequence of task
chunks in two-rule and four-rule runs.
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second half. These 15 s periods consisted of the cue, 12 fillers, and, ran-
domly placed within these, a single target and a single lure (the image
associated with the alternative secondary cue). The other two rules (pri-
mary rules) were used for remaining chunks, which were matched in
organization and structure to the chunks of two-rule runs. To match
two-rule runs, lures in these primary-rule chunks were always the image
associated with the noncued primary rule. To ensure the comparability of
two- and four-rule data, analysis focused just on the eight main chunks of
each run, discarding the initial period of each half-run (fillers for two-
rule runs, secondary rules for four-rule runs). Across the whole experi-
ment there were 10 runs: 5 two-rule runs and 5 four-rule runs. Different
cues and targets were used for each run. In two-rule runs, one target was
animate and the other was inanimate. In four-rule runs, this was sepa-
rately true for primary and secondary rules. One half of the filler items on
each run was animate, the other half was inanimate.

Before the beginning of each run, two slides were presented. The first
slide indicated the cue–target associations (Fig. 1, top, as an example),
and stated “please memorize the following associations.” The second
slide asked subjects to recall the images associated with the previously
learned cues. The order of cues presented for the memory check was
randomized and did not match the order of presentation on the initial
instruction slide. Subjects stated their responses during the memory
check verbally and were allowed to see the initial instruction slide again in
case they were not confident. At the end of each run, another memory
check slide was presented, asking subjects to recall the images associated
with the randomly presented cues.

Stimuli and visual display. Stimuli were presented using MATLAB
Psychtoolbox-3 (Kleiner et al., 2007). Stimuli were colorful images of
animals and objects drawn from multiple open-source visual image da-
tabases with a visual angle ranging from 3° to 4.7°. The visual display
included a white background and a black fixation cross that was pre-
sented in the 0.3 s interstimulus interval.

Data acquisition. fMRI data were acquired using a Siemens 3 T
TimTrio Scanner with a 64-channel head coil. We used a standard echop-
lanar imaging sequence. Parameters were as follows: TR (interscan inter-
val) � 2 s; TE � 30 ms; and flip angle � 78°. The functional images
consisted of 32 slices covering the whole brain (slice thickness, 3 mm;
interslice distance, 0.75 mm; in-plane resolution, 3 � 3 mm). A struc-
tural MPRAGE MRI (256 � 240 � 160, 1 mm isotropic) was acquired for
all participants.

Data processing and statistical analysis. The preprocessing and general
linear modeling (GLM) were conducted using the automated analysis
pipeline (version 4.0; Cusack et al., 2015) that was run in SPM12 (Well-
come Trust Centre for Neuroimaging, University College London, Lon-
don, UK). First-level statistical contrasts were computed by using the
GLM based on the canonical hemodynamic response function (Friston et
al., 1998). Low-frequency noise was removed with a high-pass filter (time
constant, 128 s). Events were separately modeled for each of the 10 runs.
Within each run, the onsets and durations for correct cues, targets, lures,
and filler items were separately modeled for each chunk. For this pur-
pose, responses to targets were considered correct if they occurred in the
1 s following target onset (i.e., before onset of the following stimulus);
responses to cues, lures, and fillers were considered correct if there was no

keypress in this time period. Each run also con-
tained one regressor modeling the duration of
the two 15 s periods (fillers or secondary rules)
at the start of each half-run, one regressor
modeling the errors (i.e., false alarms for lures,
fillers, and cues, as well as misses for targets), as
well as six regressors for the movement param-
eters (the three parameters of translational
and rotational movements, respectively). To
eliminate chunks where participants may have
missed a cue or searched for the wrong target,
all targets and lures for a particular chunk were
removed (modeled as errors) if no response
was given to either of the two targets, an equal
number of responses were given to targets and
lures, or more responses were given to lures
than to targets. Such error chunks occurred

rarely, making up 1.7% of all chunks across runs and participants. These
chunks were also excluded from behavioral analyses.

Contrasts for events were defined on a single-subject level first and
then were subjected to random-effects analyses for group statistics using
SPM12. Signal from predefined regions of interest (ROIs) of the
multiple-demand network was extracted using the Marsbar utility in
SPM12 (Brett et al., 2002). A template for multiple-demand network
ROIs was used, defined in MNI space in a separate study that contrasted
difficult and easy conditions across seven tasks in 40 participants (Fe-
dorenko et al., 2013; see t map at http://imaging.mrc-cbu.cam.ac.uk/
imaging/MDsystem). This network template (see Figs. 3, 4) included the
intraparietal sulcus (IPS), the anterior–posterior axis of the LFC (ant-
LFC, mid-LFC, and post-LFC), the AI, the FEF, and the pre-SMA. ROIs
were symmetrically defined for the left and right hemispheres.

Results
Behavioral results
Data from 36 participants were analyzed. Two subjects were ex-
cluded because they either failed to memorize some of the task
rules in the beginning of a run or failed to retrieve them at the end
of a run. For all analyzed participants, accordingly, rule learning
and retrieval were perfect.

Our primary behavioral analyses concerned just the eight
main chunks of each run, examining misses to targets (no key-
press within 1 s of stimulus onset) and false alarms to lures (key-
press in corresponding interval). The impact of task complexity
and IQ was assessed by applying an ANOVA with the factors
“complexity” (two vs four rules) and “IQ group” (high-IQ vs
low-IQ). For misses, there was a significant main effect of com-
plexity (F(1,34) � 10.71, p � 0.002) as well as a significant com-
plexity � IQ group interaction (F(1,34) � 4.81, p � 0.035), which
was driven by higher percentages of misses in the low-IQ group
during four-rule runs (Fig. 2A). Trends were similar for false
alarms, though in this case there were no significant main effects
or interactions (Fig. 2B). No significant main effect of IQ group
was observed. To evaluate the proportion of correct responses
(hits) in relation to false alarms, we also calculated the sensitivity
or d� index (referring to d� � Z(hit rate) � Z(false alarm rate;
MacMillan and Creelman, 2005). This is a measure of overall
performance accuracy (i.e., how well subjects distinguished be-
tween the two critical stimulus events; targets and lures). This
analysis confirmed the main effect of complexity (F(1,34) �
12.517, p � 0.001), as well as the complexity � IQ group inter-
action effect (F(1,34) � 10.087, p � 0.003). The overall percentages
of misses and false alarms were low, ranging between 1% and 4%
across participants, indicating good overall ability to follow task
instructions.

To ensure that all participants adequately considered all four
rules in the four-rule conditions, we also examined misses and

Figure 2. Behavioral results from the eight main chunks of all experimental runs. A, Percentages of misses for targets.
B, Percentages of false alarms for lures. Error bars indicate SEM.
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false alarms in the brief task periods de-
voted to the two secondary rules (Fig. 1).
The number of missed targets was low,
and did not differ significantly between IQ
groups (mean percentage of misses for
low-IQ � 5.5, SD � 1.7; mean percentage
of misses for high-IQ � 5.0, SD � 1.5;
t(34) � 0.2, p � 0.85). The absence of sig-
nificant IQ group effects might reflect the
lack of statistical power inherent in analy-
ses of the secondary rules, since those
rules only appeared twice within each
four-rule run. False alarm rates for sec-
ondary rules were also low, this time with
a significant difference between groups
(mean percentage of false alarms for low-
IQ � 2.5, SD � 1; mean percentage of
false alarms for high-IQ � 0; t(34) � 2.24,
p � 0.031). Overall, the results confirm that secondary rules, like
primary rules, were learned and followed.

fMRI results
We assessed the recruitment of the multiple-demand network
during performance of the task by extracting univariate fMRI
parameter estimates from seven predefined ROIs within each
hemisphere (ant-LFC, mid-LFC, post-LFC, FEF, IPS, AI, and
pre-SMA). Our main interest concerned the impact of IQ and
task complexity on the processing of targets and lures. Data were
excluded if the response to a target or lure was incorrect and were

from occasional chunks with poor overall performance (see Ma-
terials and Methods).

An ANOVA was applied to parameter estimates of targets and
lures. This included the factors complexity (two-rule vs four-rule
runs), IQ group (low-IQ vs high-IQ), “stimulus” (targets vs lure),
“hemisphere” (left vs right), and ROI (ant-LFC, mid-LFC, post-
LFC, FEF, IPS, AI, and pre-SMA). Importantly, a main effect of
complexity (F(1,34) � 12.75, p � 0.001) was observed, as well as a
significant complexity � IQ group interaction (F(1,34) � 7.16,
p � 0.011). These effects did not interact with any other factor.
Figure 3 shows mean parameter estimates averaged across stimuli

Figure 3. fMRI results from multiple-demand network ROIs. Graphs plot the mean parameter estimates for targets and lures, separately for low IQ and high IQ groups during two-rule and
four-rule conditions, averaged across hemispheres and stimulus types. The gray box presents the average of activation across all presented ROIs. Error bars indicate SEM.

Figure 4. fMRI results from multiple-demand network ROIs. Mean parameter estimates across all ROIs for low-IQ and high-IQ
groups during two-rule and four-rule conditions, plotted for targets and lures separately. Error bars indicate SEM.
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(targets, lures) and hemispheres, separately for each ROI and the
average across ROIs. The results show that the main effect of
complexity was driven by smaller parameter estimates for the
more challenging four-rule runs, compared with the two-rule
runs. The complexity � IQ group interaction was due to partic-
ularly low parameter estimates in the low-IQ group on four-rule
runs. No significant stimulus � complexity � IQ group interac-
tion was observed, suggesting a similar response pattern for tar-
gets and lures (Fig. 4).

A strong main effect of stimulus was also observed (F(1,34) �
68.39, p � 0.001), reflecting an overall difference between targets
and lures (Fig. 5). The size of this difference varied somewhat
across ROIs, revealed in significant interactions of stimulus �
ROI (F(1,29) � 30.62, p � 0.001), stimulus � hemisphere � ROI
(F(1,29) � 7.38, p � 0.001), and stimulus � hemisphere � IQ
group (F(1,34) � 4.41, p � 0.043). Overall, however, the strong
trend was simply for greater response to targets than lures.

Effects of IQ group and complexity were also explored for cues
and filler items. ANOVAs were applied to parameter estimates
from multiple-demand regions for each of these stimulus types.
However, no significant main effect of complexity and no signif-
icant complexity � IQ group interaction were observed for either
cues (all p values �0.481) or fillers (all p values �0.363). Thus,
the main impact of complexity and IQ group concerned only
responses to the two specific, task-critical events, the current tar-
get (currently cued) and lure (cued in other task periods).

Finally, to check for activity outside our a priori ROIs, we ran
a second-level whole-brain ANOVA on parameter estimates
from targets and lures. This analysis included the factors com-

plexity (two-rule vs four-rule runs), IQ group (low-IQ vs high-
IQ), and stimulus (targets vs lures). No false discovery rate-
corrected significant complexity or IQ group effects were
observed at the whole-brain level. At a lenient threshold of p(un-
corrected) � 0.011, which was the level of significance of the
complexity � IQ group interaction in ROI analyses, this interac-
tion only revealed effects within or adjacent to regions of the
multiple-demand network (Fig. 6). The results confirm that it
was multiple-demand network regions that were most affected by
our experimental manipulations.

Discussion
This study addressed the neural basis of human fluid intelligence
and its link to the demands of rule use. Effects of fluid intelligence
under varying task demands were observed in both behavioral
performance as well as in neural measures extracted from a spe-
cific set of frontal and parietal regions, previously defined as the
multiple-demand network (Duncan, 2010; Fedorenko et al.,
2013). Task demands were manipulated by introducing smaller
and larger sets of novel rules across experimental runs (two vs
four rules). Within each run, only one rule was cued at a time in
a continuous sequence of stimuli, keeping the complexity of each
single task period constant across runs. Participants from low-IQ
and high-IQ groups were instructed to respond to the cued target
and to ignore the images associated with a different cue (lure) as
well as those never associated with any cue (fillers). Accordingly,
complexity differences between two-rule and four-rule runs re-
flected the difficulty of foregrounding and implementing the spe-

Figure 5. fMRI results from multiple-demand network ROIs. Graphs plot the mean parameter estimates of all participants for targets and lures during two-rule and four-rule conditions, averaged
across hemispheres. The gray box presents the average of activation across all presented ROIs. Error bars indicate SEM.
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cific rule of the current task period, when
this was to be drawn from a smaller or
larger overall set.

We observed a main effect of complex-
ity (two-rule vs four-rule runs) in behav-
ioral performance accuracies and neural
signal from multiple-demand network re-
gions. Participants showed weaker neural
signal in four-rule runs in contrast to two-
rule runs for task-critical events (targets
and lures), accompanied by lower perfor-
mance accuracies (more missed targets)
on four-rule runs. Neural responses to
fillers did not show these effects, thus pro-
viding evidence that those effects are not
due to low-level fluctuations in neural sig-
nal across experimental runs. Together,
this indicates a less focused use of task
rules in the case of a larger task set. Impor-
tantly, complexity interacted with fluid
intelligence on both the behavioral and
neural level for critical task events (targets
and lures). Low-IQ participants showed
particularly high error rates on four-rule
runs and weaker neural signal across all
multiple-demand network regions, which speaks for a closely
integrated network. Whole-brain analyses confirmed the local-
ization of these effects within, or adjacent to, regions of the
multiple-demand network. Follow-up research with increased
subject samples and thus increased statistical power may reveal
fluid intelligence-dependent rule representations within addi-
tional frontal structures (compare with Sakai and Passingham,
2006; Reverberi et al., 2012).

In a related prior study, Gray et al. (2003) linked frontopari-
etal activity to fluid intelligence in a three-back working memory
task. In their data, as in ours, high fluid intelligence was associ-
ated with stronger frontoparietal responses to challenging task
events (lure stimuli that had appeared not three places back in the
sequence, but nearby). Our results extend this finding to a new
task domain, address the role of task complexity, and show sim-
ilar activity across the whole distributed multiple-demand net-
work. More broadly, a complex literature relates individual
differences in cognitive ability to activation of frontoparietal cor-
tex, with some findings showing greater activity for high-ability
participants and others showing the reverse (Reuter-Lorenz et al.,
2000; Rypma and D’Esposito, 2000; Cabeza, 2002; Szameitat et
al., 2016). In aging, for example, stronger recruitment for better-
performing individuals has been linked to compensation for cog-
nitive decline (Reuter-Lorenz et al., 2000; Cabeza, 2002), while in
other cases the reverse result may reflect increased cognitive de-
mand for low-performing individuals. In our case, as in the study
of Gray et al. (2003), the critical data concern the response to
specific, task-critical events. In this case, we suggest that weak
recruitment in low-ability individuals reflects poor attentional
focus or poor discrimination of critical events from the ongoing
task background. A similar argument may explain why, in our
study, it was the harder four-rule task that was associated with
reduced multiple-demand activity, in contrast to the common
finding of increased activity with increasing task difficulty (Dun-
can and Owen, 2000; Fedorenko et al., 2013).

Our results are consistent with previous research reporting a
phenomenon of goal neglect in individuals with lower fluid in-
telligence (Duncan et al., 2008; Bhandari and Duncan, 2014). In

goal neglect, task requirements are repeatedly ignored during
performance, although subjects accurately describe them before
and after testing. Although fluid intelligence correlates with a
range of traditional working memory measures that capture task
execution demands such as digit span, spatial span, and visual
short-term memory (Engle et al., 1999; Kane and Engle, 2002;
Fukuda et al., 2010), particularly high correlations have been
observed with the neglect of novel task rules (Duncan et al., 2012).
Goal neglect increases with the number of rules in a task (Duncan et
al., 2008) and has been linked to difficulty in focusing on the specific
rules required in a current task step (Bhandari and Duncan, 2014).
Our data suggest similar processing limits even in the absence of
major performance failures and link them to a reduced response to
critical task events across the multiple-demand network, especially
in individuals with low fluid intelligence.

To conclude, this study demonstrated a close link between
multiple-demand network functions and a core feature of fluid
intelligence: the process of dividing complex tasks in a sequence
of attentional episodes. Thus, the multiple-demand network may
orchestrate the allocation of attentional resources to individual
parts of a complex task. In high fluid intelligence, more atten-
tional resources are allocated to those parts of a task that are most
critical for behavior.
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