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Instability of default mode network connectivity in major
depression: a two-sample confirmation study
T Wise1,2,6, L Marwood1,2,6, AM Perkins1,2, A Herane-Vives1,3, R Joules4, DJ Lythgoe4, W-M Luh5, SCR Williams2,4, AH Young1,2,
AJ Cleare1,2,7 and D Arnone1,2,7

Major depression is associated with altered static functional connectivity in various brain networks, particularly the default mode
network (DMN). Dynamic functional connectivity is a novel tool with little application in affective disorders to date, and holds the
potential to unravel fluctuations in connectivity strength over time in major depression. We assessed stability of connectivity in
major depression between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC), key nodes in the DMN that are
implicated in ruminative cognitions. Functional connectivity stability between the mPFC and PCC over the course of a resting-state
functional magnetic resonance imaging (fMRI) scan was compared between medication-free patients with major depression
and healthy controls matched for age, sex and handedness. We tested replicability of the results in an independent sample using
multi-echo resting-state fMRI. The primary sample included 20 patients and 19 controls, while the validation sample included
19 patients and 19 controls. Greater connectivity variability was detected in major depression between mPFC and PCC. This was
demonstrated in both samples indicating that the results were reliable and were not influenced by the fMRI acquisition approach
used. Our results demonstrate that alterations within the DMN in major depression go beyond changes in connectivity strength and
extend to reduced connectivity stability within key DMN regions. Findings were robustly replicated across two independent
samples. Further research is necessary to better understand the nature of these fluctuations in connectivity and their relationship to
the aetiology of major depression.
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INTRODUCTION
Depression is a common illness with substantial negative
consequences for sufferers and society.1,2 A better insight into
neurobiological changes contributing to symptom generation is a
research priority to improve diagnosis and treatment.3

Neuroimaging has enhanced our understanding of the neuro-
biological mechanisms underlying depressive symptoms3–6 by
identifying potential alterations in the structural and functional
brain networks.4,7 The default mode network (DMN) is one system
that has attracted great research interest in major depression. One
reason for this relates to its importance in the generation of self-
referential thoughts, negative rumination and depressive
symptoms.8 A recent meta-analysis of static connectivity studies
in major depression demonstrated hyperconnectivity within the
DMN and between the DMN and fronto-parietal systems.4 Within
the DMN, the subsystem connecting the medial prefrontal cortex
(mPFC) with the posterior cingulate cortex (PCC) is considered
pivotal in generating affective, self-directed judgements and
thoughts.8,9 Although heightened static functional connectivity
has been shown in major depression within this subsystem in
association with a ruminative cognitive style,4,10 there is
uncertainty about its functional temporal stability. Connectivity
variability is a plausible mechanism in major depression to explain

brain responses associated with cognitive demands and proces-
sing of emotions.11

There is, however, little dynamic functional connectivity
research published to date11,12 with only one study in major
depression.13 This study showed increased variability in connec-
tivity within the DMN between the mPFC and the insula, which
correlated with a ruminative thinking style and coexisted with
decreased variability between the mPFC and the parahippocam-
pal gyrus.13 No effect was found between the mPFC and PCC in
this study, despite these being crucial in the generation of self-
directed negative affective cognitions, potentially due to the less
powerful whole-brain analysis method used.
Hence, we specifically evaluated temporal connectivity varia-

bility between the mPFC and the PCC, a subsystem within the
DMN, given its relevance to ruminative cognitions associated with
depression.8,9 Kaiser et al.13 observed increased connectivity
variability between the mPFC and insula, part of the ‘salience
network’ that is known to influence synergistically this DMN
subsystem when processing internally generated salient
information,14 correlating with levels of rumination. Based on this
finding that connections related to rumination show increased
variability, we hypothesized increased connectivity variability in
major depression between the mPFC and the PCC, correlating
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with ruminative cognitions. We tested this hypothesis first in a
primary sample of medication-free participants with major
depression selected to be free from psychiatric comorbidity. We
then validated the robustness of this result by replicating the
findings in an independent clinical sample. As a further test of the
stability of the results in the presence of significant clinical
heterogeneity, the validation sample included patients with major
depression and comorbid anxiety disorders. Furthermore, the
robustness of the neuroimaging results to non-neural artefacts
was ensured by utilizing multi-echo functional magnetic reso-
nance imaging (fMRI), a recent development that is superior to
traditional de-noising methods.15

MATERIALS AND METHODS
Participants
The right-handed participants aged 18–65 were recruited from the local
community using online advertisements16 and waiting lists of local
psychological therapy services. Given the novelty of the method, we were
unable to determine an expected effect size a priori. However, the sample
size was chosen to be consistent with other studies in the area and we used a
validation sample to ensure our results were robust. All patients met
Diagnostic and Statistical Manual for Mental Disorders IV criteria for unipolar
major depression (current or recurrent episode), as determined by clinical
interview based on the Mini International Neuropsychiatric Interview.17 In the
primary sample, comorbid conditions were excluded. For the validation
sample, comorbid anxiety disorders were allowed alongside major depres-
sion. Depression severity was assessed with the Montgomery–Åsberg
Depression Rating Scale18 and a score ⩾18 was required for inclusion.
Raters for both samples were trained on an independent sample of patients
and demonstrated high inter-rater reliability (Intraclass correlation coeffi-
cient= 0.96, P=0.004). The severity of anxiety symptoms was assessed using
the Hamilton Depression Rating Scale 17 anxiety/somatization factor items
(anxiety subscale)19,20 and handedness with the Edinburgh Handedness
Inventory.21 Trait rumination was assessed using the Rumination Response
Scale (RRS),22 a 22-item self-report measure. Patients were not receiving any
form of treatment, psychological or pharmacological, at the time of scanning
and were medication-free for ⩾2 weeks (⩾4 weeks for fluoxetine) before MRI
scanning. No subjects had been receiving treatment with medication
requiring a longer washout period. Healthy controls were assessed to exclude
personal and familial (first-degree relatives) psychiatric history. Exclusion
criteria for all the subjects included history of head injury, illicit substance use
in the preceding two months, unstable medical illness, any treatment with
potential psychotropic properties or interference with participants’ safety or
data interpretation, pregnancy or other contraindications for scanning.

Ethics approval
The research was approved by the local ethics committee. The subjects
provided written informed consent and were compensated financially for
participating.

fMRI acquisition
The data for each sample were acquired on two identical GE MR750 3-Tesla
scanners with 12-channel radiofrequency head coils. The participants
fixated on a cross with their eyes open for the scan duration. For the
primary sample, a 6-min resting-state scan using a T2*-weighted echo-
planar imaging sequence was acquired (repetition time= 2000, echo
time= 30 ms, field of view= 22.1 cm, flip angle = 75°, 39 slices,
resolution= 3.3 mm3). The cardiac signals and respiratory information
were also recorded. For the validation sample, the data were acquired
using an 8-min multi-echo sequence (repetition time= 2300 ms, echo
time= 12.7/31/48 ms, field of view=24 cm, flip angle = 90°, 33 slices,
resolution= 3.75 × 3.75 × 4.2 mm). An identical high-resolution T1-
weighted structural image was acquired for both the samples.

fMRI preprocessing
The data were pre-processed with custom Nipype (http://nipy.org/nipype/)
scripts, using tools from SPM12 (http://www.fil.ion.ucl.ac.uk/spm), FSL 5.0.9
(http://fsl.fmrib.ox.ac.uk/), AFNI (https://afni.nimh.nih.gov/afni/), along with
custom code (available upon request). The first four volumes of the
functional series were discarded to allow for equilibration effects. Slice

timing correction was performed and the images were realigned and co-
registered to the structural image using the normalized mutual informa-
tion method in SPM12. For the primary sample, physiological signals
(cardiac and respiratory) were regressed from the data using AFNI’s
RETROICOR23 tool. For the validation sample, multi-echo data were pre-
processed using the multi-echo independent component analysis tool in
AFNI15 to isolate components in the signal representing true blood oxygen
level dependent (BOLD) signal. This was used in place of RETROICOR as it
has been shown to be a more effective method of de-noising.15 The
remaining processing steps were identical for both samples for
consistency. Six motion parameters (three translation, three rotation,
determined from the middle echo image for the validation sample) plus
time series extracted from the white matter and cerebrospinal fluid regions
were regressed out of the data. Data were then temporally filtered from
0.008 to 0.09 Hz before being demeaned, de-trended and smoothed with a
6 mm full width at half maximum kernel. Thus, preprocessing for both
samples was identical except for the method of de-noising used.

Motion scrubbing
As even minimal head motion can affect correlations calculated from
resting-state data when not controlled for,24 time points exhibiting
excessive motion were scrubbed from the BOLD time series.24 Motion at
each time point was assessed using root mean square (RMS) intensity
difference between volumes (REFRMS) and DVARS24 as calculated using
the FSL motion outliers tool with default thresholds. As directly removing
time points would affect the length of the sliding window, and hence
dynamic connectivity estimates, we instead interpolated time points
showing substantial motion using third-order b-spline interpolation. To
compare motion estimates between samples, we used both total distance
travelled and framewise displacement.24 All the analyses were performed
on the scrubbed, pre-processed data.

Region of interest definition
We performed group canonical independent component analysis,25

implemented in Nilearn and using 20 clusters, to identify the DMN
components. The clusters centred on the posterior cingulate and mPFC
regions in the DMN component were used to create regions of interest
(ROIs) for the connectivity variability analysis. A 10 mm diameter sphere was
created based on the peak of each cluster in the independent component
analysis, and mean time series were extracted from each of these ROIs. This
procedure was performed independently for the two samples to identify
sample-specific ROIs. These ROIs were used in place of the entire cluster to
provide a more consistent signal and avoid contamination from surrounding
areas. To ensure that results were specific to these regions rather than being
a global pattern, or caused by non-neural factors, we performed a negative
control analysis between these regions and a 10 mm spherical ROI in the
medial primary motor cortex (Montreal Neurological Institute coordinates=
−1, −8, 63), a region not previously linked to depression.

Sliding window correlation analysis
The sliding window analysis was performed using custom Python (https://
www.python.org/) scripts. The data were split into 40 s Gaussian moving
windows, staggered by one repetition time, created using a Gaussian
kernel with a standard deviation of 8 s (see Supplementary Methods for a
detailed discussion of the sliding window methodology). This time period
has been shown to be appropriate for characterizing dynamic functional
connectivity26 and provides a fine-grained picture of temporal changes in
connectivity. For each window, correlations were computed between
variance-normalized time series from the two regions using Pearson
correlations, the results of which were then transformed to Z-scores. The
variability of these correlations was calculated as their standard deviation,
and subjects with outlying correlation variability values (±3 standard
deviations from the mean) were removed. We also calculated the static
functional connectivity strength between these regions using the entire,
non-windowed time series to understand the relationship between static
and dynamic functional connectivity. Further statistical analyses were
performed using R.27 All the group comparisons and correlations were
adjusted for age, sex and head motion (total distance travelled), and were
corrected for the number of comparisons (mPFC–PCC and two negative
controls) using false discovery rate correction.
We assessed relationships between functional connectivity variability

and clinical measures including depression and anxiety severity scores,
time since illness onset and RRS in Pearson partial correlations.
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Voxel-based morphometry
We also compared grey matter volumes in the chosen ROIs between
patients and controls using voxel-based morphometry to examine the co-
existence of volumetric changes that may explain changes in connectivity.
High-resolution T1-weighted structural images (repetition time= 7.31 ms,
time to echo= 3.02 ms, 256 × 256 matrix, 196 slices, voxel size = 1.2 ×
1.05× 1.05 mm, for both the samples) were pre-processed using voxel-
based morphometry in SPM12 (www.fil.ion.ucl.ac.uk/spm) for both the
samples. Images were segmented into different tissue types and processed
with DARTEL28 before being normalized to Montreal Neurological Institute
space. The modulated grey matter images were then smoothed with an
8 mm full width at half maximum Gaussian kernel. Grey matter volume was
next compared between groups within the same mPFC and PCC regions of
interest used in the functional connectivity analysis with a two-sample t-
test. A cluster-defining voxelwise threshold of Po0.001 uncorrected was
used, with a clusterwise threshold of 0.05 false discovery rate corrected.
Total grey matter volume was also calculated based on the segmented
maps created in SPM (thresholded at grey matter volume probability
40.5) and compared between the groups.

RESULTS
Participants
Twenty patients with unipolar major depression in the primary
study and 19 in the validation study were sex and age matched
with 19 healthy controls in the primary sample and 20 in the
validation sample (Table 1). Three and nine subjects were
recruited through psychological therapy services in the primary
and validation samples, respectively, while the remaining partici-
pants were recruited from the community. A healthy participant
from the validation sample was removed from the analyses due to
outlying connectivity variability values. Figure 1 shows coordinates
for the selected ROIs.

Connectivity variability in major depression
Connectivity variability, expressed as the standard deviation of
connectivity strength between the mPFC and the PCC (Figure 2),
was significantly greater in patients with major depression versus
healthy controls (t(37) = 2.56, P= 0.044, d= 0.82). This effect was
successfully replicated in the validation sample (t(36) = 2.53,
P= 0.045, d= 0.82) supporting the coherence of the model in
identifying consistently greater connectivity variability across
samples irrespective of clinical heterogeneity.
There were no group differences in connectivity variability in

either sample between the mPFC and primary motor cortex,
chosen as a negative control region (primary sample: t(37) = 0.79,
P= 0.44, validation sample: t(36) = 1.85, P= 0.22), or between the
PCC and primary motor cortex (primary sample: t(37) = 1.76,
P= 0.17, validation sample: PCC: t(36) = 0.63, P= 0.99), suggesting
that results did not reflect global instability. No differences in
static connectivity strength between mPFC and PCC were found
between patients and controls in either sample (primary sample:
t(37) = 0.33, P= 0.74, d= 0.11, validation sample: t(36) = 0.73,
P= 0.47, d= 0.24).

Connectivity variability and cognitive style
A positive correlation of RRS with connectivity variability was
noted in the validation sample (r(14) = 0.51, P= 0.045, Figure 3),
and not the primary sample (r(15) = 0.18, P= 0.48). The relationship
did not remain significant in a pooled analysis with both groups
combined and sample as a covariate (r(34) = 0.30, P= 0.075). We
did not find significant correlations between RRS scores and static
connectivity strength in either sample (primary sample: r
(15) = 0.31, P= 0.22, validation sample: r(14) =− 0.13, P= 0.62).

Correlations with clinical variables
Correlations between connectivity variability and depressive symp-
tom severity were not significant (primary sample: r(15)= 0.37,
P=0.14, validation sample: r(14)= 0.23, P=0.40). The same pattern
of results was observed between correlation variability and anxiety
symptoms scores, as measured by the anxiety subscale of the
Hamilton Depression Rating Scale (sample A: r(15) = 0.11, P=0.66,
sample B: r(14)= -0.23, P=0.39). The time since illness onset was not
significantly correlated with connectivity variability in either sample
(sample A: r(15) = 0.25, P=0.33, sample B: r(14) = 0.16, P=0.55).

Grey matter volumes
There were no differences between groups in grey matter volume in
the chosen regions of interest (no significant clusters at Po0.001,
false discovery rate corrected). There were also no differences in the
total grey matter volume between groups (primary sample:
t(37) = 1.43, P=0.16, validation sample: t(36) = 0.79, P=0.43).

Head motion
There were no significant differences in the total distance travelled
between the patients and controls in the primary sample

Table 1. Samples clinical characteristics

Major
depression

Healthy
control

P

Primary sample
n 20 19
Age, years 29.55 (6.59) 30.05 (6.71) 0.81
Male/female 2, 18 2, 18 1
MÅDRS 27.25 (4.24) 0.95 (1.39) o0.001
HDRS anxiety subscale 4.95 (2.48) 0.21 (0.42) o0.001
RRS 56.00 (10.23) 29.67 (6.44) o0.001
Time since illness
onset, years

6.35 (6.41) — —

Comorbid diagnoses None — —

Hospitalizations 0 — —

Number of episodes 1.5 (1.25) — —

Validation sample
n 19 19
Age, years 32.34 (10.62) 31.91 (10.30) 0.90
Male/female 7, 12 6, 13a 0.73
MÅDRS 30.74 (7.31) 1.37 (1.86) o0.001
HDRS anxiety subscale 7.16 (1.30) 0.31 (0.58) o0.001
RRS 66.47 (8.22) 30.63 (6.83) o0.001
Time since illness
onset, years

13.50 (8.26) — —

Comorbid diagnoses N= 12 (9 GAD,
5 SAD, 4 OCD,
2 PD, 2 PTSD,
1 historic

substance abuse)

— —

Hospitalizations 4 — —

Number of episodes 4 (2.5) — —

Abbreviations: GAD, generalized anxiety disorder; HDRS, Hamilton
Depression Rating Scale (17 item); MÅDRS, Montgomery-Åsberg Depres-
sion Rating Scale; OCD, obsessive compulsive disorder; PD, panic disorder;
PTSD, post-traumatic stress disorder; RRS, Ruminative Response Scale; SAD,
social anxiety disorder. aDemographics for the validation sample represent
the 19 healthy controls included in the final analysis. The samples did not
differ on depression severity (t(37)=− 1.83, P= 0.07). The validation sample
had a significantly higher anxiety score (t(37)= 3.45, P= 0.001), time since
illness onset (t(37)= 2.62, P= 0.01) and RRS score (t(37)= 3.51, P= 0.001)
than the primary sample. Values are reported as mean (standard
deviations) for all variables except number of episodes where due to
skewed data we report median (interquartile range).
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(t(37) =− 1.31, P= 0.20) or the validation sample (t(36) = 0.56,
P= 0.58). When looking at framewise motion measures, there
were no significant differences between the groups in mean
framewise displacement (primary sample: t(37) = 0.88, P= 0.38,
validation sample: t(36) = 0.26, P= 0.80) or maximum displacement
(primary sample: t(37) = 0.42, P= 0.68, validation sample:
t(36) = 1.48, P= 0.15). There was also no significant difference
between groups in the number of interpolated time points
(primary sample: U(37) = 173, P= 0.64, non-parametric test used

due to non-normally distributed data, validation sample:
t(36) = 1.60, P= 0.12), or in the thresholds used for detecting
outlying time points for either the primary sample (REFRMS:
t(37) =− 0.14, P= 0.89, DVARS: t(37) = 0.42, P= 0.68) or the valida-
tion sample (REFRMS: t(36) = 0.67, P= 0.51, DVARS: t(36) = 0.71,
P= 0.48).

Default mode components
identified through ICA

for primary and validation sample

Figure 1. Illustration of the dynamic functional connectivity analysis method. In the primary sample, sample-specific Montreal Neurological
Institute (MNI) coordinates for the posterior cingulate cortex (PCC) were 2, − 62, 22 and for the medial prefrontal cortex (mPFC) 4, 60, 0. In the
validation sample, MNI coordinates were 6, − 44, 11 and 2, 60, − 4, respectively. (a) Default mode network (DMN) components for each sample
identified using group independent component analysis (ICA), showing clusters in the mPFC and PCC. (b) Illustration of the dynamic
functional connectivity method. BOLD, blood oxygen level dependent.

Figure 2. Variability in connectivity strength for patient and healthy
control groups in both samples. Plots represent the distribution of
data for each group, along with individual data points. Dashed lines
represent means and standard errors. *Po0.05 (P= 0.044 for the
primary sample and P= 0.048 for the validation sample). HC, healthy
controls; MDD, major depressive disorder.

Figure 3. Correlation between connectivity variability and rumina-
tive response style (RRS) score in major depression in the primary
and validation sample. RRS, Rumination Response Scale.
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There were also no significant correlations in the validation
sample between rumination scores and total distance travelled (R
(17) = 0.13, P= 0.59), mean displacement (R(17) = -0.09, P= 0.70),
maximum displacement (R(17) = 0.17, P= 0.48), or the number of
interpolated time points (R(17) = 0.11, P= 0.66), indicating that the
observed relationship between connectivity variability cannot be
explained by motion. There were no significant relationships
between thresholds used to detect outlying time points and
rumination scores (REFRMS R(17) = 0.11, P= 0.65, DVARS: R
(17) = 0.35, P= 0.15).

DISCUSSION
We compared variability in connectivity strength within the DMN
between medication-free individuals with major depression and
matched healthy controls. We found that connectivity between the
mPFC and PCC, two key nodes in the DMN, was significantly more
variable in currently symptomatic patients with major depression.
Furthermore, the validity of the results was confirmed in an
independent sample of individuals with significantly more clinical
heterogeneity, and using multi-echo acquisition parameters to
limit the impact of non-neural signals. We believe this is the first
time that greater connectivity variability has been reported in
major depression in this DMN subsystem, complementing findings
of reported abnormal dynamic connectivity in other brain regions
in major depression13 and other psychiatric conditions.11,29,30

In agreement with Kaiser et al.,13 we demonstrated that the
increased variability in neural connectivity originating from the
mPFC correlates with a ruminative thinking pattern, indicating a
possible synergy of this DMN subsystem with the ‘salience
network’ represented by the insula.14 This previous study, a
whole-brain analysis, demonstrated altered connectivity variability
between the mPFC and other DMN regions, but not specifically
the PCC,13 and variability in connectivity between the mPFC and
parahippocampal gyrus was reduced. This might be explained by
the more limited power in whole-brain analyses due to the
necessary correction for multiple comparisons. Another possible
explanation is that depression is associated with increased
connectivity variability in the central DMN (including the PCC),
while variability in the ventral system (including the parahippo-
campal gyrus) is reduced.
At present, the biological significance of time varying properties

of connectivity is not well understood.12 One potential explana-
tion for the observed greater connectivity variability is that it
results from reduced structural connectivity in the DMN as
suggested by previous research linking structural integrity with
connectivity variability.31 However, our recent meta-analysis
reported that structural integrity is maintained in the tracts
connecting these regions in major depression,7 suggesting that
such an explanation is unlikely, further supported by our finding of
no alteration in grey matter volume in the ROIs in these patient
samples. It is also possible that greater connectivity variability
reflects primary alterations in neuronal communication rather
than occurring secondary to aberrant structural connectivity, a
suggestion that is in line with preclinical work showing primary
abnormalities of neural processing in circuits relevant to
depression.32 Clarifying the precise meaning of connectivity
variability, and how it relates to connectivity strength, at a neural
level will be an important task for future research.
We also tested the hypothesis that a ruminative cognitive style,

linked with depression,8,33 potentially explains the observed
abnormalities in connectivity variability between mPFC and PCC.
We observed a direct positive correlation between levels of
intrusive, self-generated, ruminative thoughts and variability in
connectivity within this network. This was, however, present only
in the validation sample. This discrepancy in the results can be
explained by issues related to statistical power combined with
variability in the samples clinical characteristics. Patients in the

validation sample were in fact characterized by higher rumination
scores and comorbid anxiety disorders. It is possible that this
result is reflective of a stronger link between anxiety symptoms
and rumination,34 and further work could clarify this. The
difference between samples may also be related to differences
in image acquisition and preprocessing. It is also possible that
connectivity variability might be more closely linked to ‘state’
rumination levels occurring at the time of scanning rather than
more ingrained ‘trait’measures such as the RRS or to state anxiety,
which we did not assess here. This is supported by work adopting
post-scan cognitive style reports in healthy volunteers.35 This
study suggested a positive correlation between variability in the
DMN and reported daydreaming (a related phenomenon to
rumination) during MRI scanning, consistent with our findings.
We found no association in either sample between variability

and depression severity scores. This may suggest that increased
variability is not directly related to depressive symptoms.
However, it is possible that this could be due to the Montgom-
ery–Åsberg Depression Rating Scale, our measure of symptom
severity, being weighted towards somatic rather than cognitive
symptoms of depression. Previous research suggests that altera-
tions in DMN connectivity are more likely to be related to
psychological symptoms such as negative self-related
cognitions.33 Another possible explanation is that the relationship
between biological disease mechanisms and symptoms is
complex, and tend not to correlate linearly with one another.11

We found no alterations in static connectivity strength in both
our samples in agreement with some studies36 but not others.37

Discrepancies in the findings can be explained by methodological
differences in connectivity measurements, the proneness of
neuroimaging data to type I/II error based on their relatively
moderate sample sizes as indicated by recent meta-analyses4 and
multiple sources of heterogeneity intrinsic to major depressive
disorders. We adopted a cross-validation method applied for the
first time to this type of data to help enhance robustness of the
findings. Based on our experience, future studies could consider a
similar approach with larger samples, perhaps in the context of
collaborative mega-analyses38 to reduce statistical bias and
increase power.
In addition to this potential link between connectivity instability

and alterations in cognitive or emotional state, such as rumination,
instability may also reflect increased noise or alterations in neural
dynamics. Simulation studies have indicated that patterns of
synchronization and desynchronization in neuronal populations
lead to fluctuations in functional connectivity as measured using
fMRI,39 while noise-driven neuronal simulations produce switches
between states of functional connectivity.40 Notably, simultaneous
electroencephalography and fMRI have shown that changes in the
BOLD functional connectivity mirror electroencephalography
power fluctuations41 further indicating that variations in the
functional connectivity are reflective of neuronal processes. It is
possible that fluctuations in connectivity may reflect underlying
changes in neural synchrony, a key process in inter-regional
communication, which has been proposed to be affected in a
range of psychiatric disorders.42

It has previously been suggested that hyperconnectivity implies
lower variability in connectivity.13,43 However, this is at odds with
our results as we did not find group differences in static
connectivity. Hence, the relationship between dynamic and static
connectivity appears complex, with dynamic functional connec-
tivity providing distinct information about network communica-
tion in a state of pathology independent from and beyond that of
static connectivity. This echoes findings from previous research
that attempted to classify patients with schizophrenia, bipolar
disorder and healthy controls based on functional connectivity,
indicating that classification using a combination of static and
dynamic connectivity tends to be more accurate than static
connectivity alone.11,44
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A notable strength of this study is the control of non-neural
influences on the data. The resting-state fMRI analyses are
susceptible to influence from confounding factors such as motion
and physiological variables,24 and this is especially pertinent here
in view of the possibility that physiological characteristics such as
heart rate may differ between groups due to increased anxiety in
patient groups. Consequently, we rigorously controlled for these
in a number of ways, including correction for cardiac and
respiratory signals, and motion scrubbing.24 In our replication
sample we used multi-echo fMRI with independent component
analysis-based de-noising, which is more effective than traditional
de-noising methods,15 providing further evidence that our original
results were not a result of non-neural influences. Moreover, our
negative control analyses indicate that our findings were specific
to the disease-relevant network under investigation, and groups
did not differ on motion parameters.
Further strengths of the present study are the inclusion of

medication-free patients, suggesting that the findings are not due
to pharmacological effects. In addition, many patients in the
primary sample were medication-naive and had experienced few,
if any, past depressive episodes, making it less likely that the
effects observed are cumulative effects of illness or previous
treatment. The demonstration of greater connectivity variability in
the validation sample, which included patients with more chronic
and heterogeneous illness and used multi-echo fMRI, increases
confidence in the reliability of the findings, which are unlikely to
be attributable to idiosyncrasies of a specific sample or
methodological artefacts. This is particularly important in view of
concerns regarding poor reproducibility in research.45 Replication
is an important step towards minimizing false associations and
enhancing reliability of results,45 and the reproducibility demon-
strated here suggests that alterations in dynamic functional
connectivity are robust. Future replications of these results are
warranted, and it would be of particular interest to examine
connectivity variability in non-symptomatic individuals with
depression and ‘at risk’ samples to test whether it is a feature of
the depressive state, a marker of vulnerability to depression or a
‘scar’ effect.
One limitation of this study is the focus on two isolated regions

of the DMN. We chose these regions given their key role in the
DMN, and association with rumination in major depression.8,9

Focusing on a priori regions of interest nevertheless increased the
power to detect changes given the relatively small sample sizes.
Additional analyses to confirm the replicability of previous
findings, such as altered dynamic connectivity with the insula,
would have been of interest; however, we chose to focus on one
particular component of the DMN to reduce the likelihood of type
II errors due correction for multiple comparisons with a small
sample.
Furthermore, alternative methods to sliding window analyses,

such as coherence-based methods, have been proposed that may
provide more accurate estimations of dynamic functional
connectivity.12 Given their novelty, we have however chosen to
use a more established method that has been evaluated in
numerous studies. It is also possible that using different window
lengths may affect the analysis. We believe the 40 s windows used
here is an optimal length for detecting alterations in dynamic
functional connectivity (see Supplementary Material for further
discussion of this issue). In addition, our imaging sequences were
only 6 and 8 min long for the primary and replication sample
respectively. This may have limited our ability to detect less-
frequent fluctuations in connectivity. Furthermore, our replication
data and analysis differed slightly from our primary sample in
acquisition and de-noising methods, making this more of a
conceptual than methodological replication. Nevertheless, the fact
that our results were largely consistent despite these dissim-
ilarities suggests that the effect is robust.

In view of the presence of a range of anxiety disorders in the
validation sample, it is not possible to determine whether altered
connectivity variability might be a common abnormality present
in both major depression and anxiety disorders rather than being
specifically associated with depression. High comorbidity rates
between anxiety and depressive disorders and the co-occurrence
of anxiety symptoms in major depression are frequent findings in
clinical practice.1 This makes the differentiation challenging to
establish. Lastly, it should be noted that the sample sizes used
here were relatively small. Nonetheless, the consistency of our
results across two independent samples indicates that our results
are unlikely to be spurious.
In conclusion, our study indicates that major depression is

associated with reduced stability of connectivity within the DMN
in key regions relevant to the generation of ruminative cognitions.
This could represent an intrinsic neural property of this illness and
a potential network-specific brain abnormality not previously
explained by structural abnormalities or static functional con-
nectivity. The results were replicated in a second independent
sample, indicating that they are robust. Ruminative cognitive style
might partially explain the results in keeping with cognitive
models of depressive disorders. This work adds to functional
connectivity research in affective disorders by validating new
findings across different samples with novel fMRI analysis
techniques. Further work investigating trait markers of vulner-
ability to depression and connectivity variability in remitted
patients are necessary to establish the specificity of these findings
to the depressed state. Similarly, longitudinal studies are required
to explore the effect of treatment on these abnormalities.
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