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Abstract

We present a survey of selection across Drosophila melanogaster embryonic anatomy.

Our  approach  integrates  genomic  variation,  spatial  gene  expression  patterns  and

development to map adaptation over the entire embryo’s anatomy. Our adaptation map

is based in analyzing gene expression spatial information for 5,969 genes (from text-

based  annotations  of  in  situ  hybridization  data  directly  from  the  BDGP database,

Tomancak et al.  2007) and polymorphism and divergence in these genes (from the

project DGRP, Mackay et al. 2012). 

The proportion of non-synonymous substitutions that are adaptive, neutral or slightly

deleterious are estimated for the set of genes expressed in each embryonic anatomical

structure using the DFE-alpha method  (Eyre-Walker  and Keightley  2009),  a  robust

derivative of the McDonald and Kreitman test (McDonald and Kreitman 1991). We also

explore whether different anatomical structures differ in the phylogenetic age, codon

usage or expression bias of the genes they express and whether genes expressed in

many anatomical structures show more adaptive substitutions than other genes.

We found that: (i) most of the digestive system and ectoderm-derived structures are

under  selective  constraint,  (ii)  the  germ line  and  some  specific  mesoderm-derived

structures  show  high  rates  of  adaptive  substitution  and  (iii),  the  genes  that  are

expressed in a small number of anatomical structures show higher expression bias,

lower phylogenetic ages and less constraint. 
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Introduction

Adaptation  is  a  core  concept  of  biological  evolution  and  its  measurement  is  an

important pursuit of research in evolutionary biology. Adaptation can be studied both at

the phenotypic and genotypic level. One can, for example, measure the distribution of a

phenotypic trait in a population, study the performance of each trait value in the lab, or

in the wild, and infer which proportion of the observed changes over generations is

attributable to adaptive natural selection (Hereford et al. 2004). In practice, measuring

adaptation directly on phenotypic traits in the wild is challenging and time consuming

and therefore most studies on phenotypic adaptation are limited to a single or a small

number of traits per organism (Hereford et al. 2004). Easily identifiable and measurable

phenotypic traits that are known, or suspected, to be adaptive are preferentially chosen

in these studies  (Hereford et al.  2004), which may bias our view on how the whole

phenotype of  an organism evolves.  To our  knowledge,  no measurement  of  natural

selection over the whole body morphology has ever been attempted.

The relationship between genetic and phenotypic variation is well known to be complex

(Alberch 1982; Salazar-Ciudad 2007). In spite of that it can be expected that, at least at

a statistical  level,  adaptation in  a body part  can be inferred from adaptation in  the

genes it expresses. In here, we take such approach to build a map of adaptation over

the embryo's anatomy. 

In  current  population  genomics  research,  adaptive  (positive)  selection  and  other

selection  regimes  can  be  inferred  and  measured  studying  the  pattern  of  genome

variation  within and between species.  A growing number  of  sophisticated statistical

methods has been developed to detect and measure selection at the DNA level for an

increasing number of genome-wide variation data and species (reviewed by Vitti et al.

2013; Casillas and Barbadilla 2017). Most of these methods assume that selection at

the DNA level leaves a distinctive footprint on the patterns of genetic variation when

compared with  the variation  patterns  expected under  a null  (neutral)  hypothesis  of

absence  of  selection  (Kimura  1968).  From  30  to  50%  of  fixed  non-synonymous

mutations in  D. melanogaster are estimated to be adaptive  (Casillas and Barbadilla

2017).   Is this amount of molecular  adaptation randomly distributed with respect to

different phenotypic traits such as organs or morphological body parts? We are going

to  address  this  question  by  measuring  the  action  of  natural  selection  in  genes

specifically expressed across development .

A widely-used statistic to infer selection on coding DNA sequences is the ratio of non-

synonymous  to  synonymous  substitution  per  site  (Ka/Ks,  dN/dS or  ω),  which  uses

sequence divergence data between species. If in a given sequence Ka/Ks < 1 then the
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sequence  is  under  constraint  since  it  has  less  non-synonymous  substitutions  than

expected  from  a  neutral  setting.  Given  that  most  non-synonymous  mutations  are

deleterious, the Ka/Ks statistics has little power to detect positive selection, that is, an

excess of  non-synonymous  substitutions  respect  to  the  expected  ones.  The  Ka/Ks

ratio, thus, conflates the contributions of adaptive and neutral changes to sequence

divergence;  a  high  Ka/Ks  ratio  could  reflect  little  constraint,  or  a  combination  of

adaptation and purifying selection (Sella et al. 2009). Accordingly, the ratio Ka/Ks should

mainly  be  considered  as  a  measurement  of  selective  constraint.  A more  powerful

approach is combining genomic polymorphism data (variation within a species) and

divergence (variation between species), as does the McDonald-Kreitman test (MKT)

(McDonald  and  Kreitman  1991).  Unlike  the  Ka/Ks ratio,  the  MKT  normalizes  the

divergence ratio (Ka/Ks) with the polymorphism ratio (πa/πs), which allows taking into

account  the  constraint  on non-synonymous  sites  and,  thus,  increase  the  power  of

detection of  positive selection ((Ka/Ks)/(πa/πs)  > 1).  MKT allows also quantifying the

proportion  of  fixed  variants  that  are  adaptive  (α)  and  the  rate  of  these  adaptive

substitutions relative to the mutation rate, ωα (as α×Ka/Ks, Gossmann et al. 2010). 

In  this  study, we  use  the DFE-alpha  method  (Eyre-Walker  and  Keightley  2009) to

estimate  α and  ωα.  The  DFE-alpha  method  is  a  robust  derivative  of  MKT. Since

adaptive mutations tend to be fixed quickly (Kimura 1957), they will rarely be detected

as polymorphic variants but only as a divergent site (that is once fixed, Hudson et al.

1987; McDonald and Kreitman 1991; Sawyer and Hartl 1992; Hurst 2002). Accordingly,

adaptation in the genome of a species is inferred when there is an excess of non-

synonymous divergence relative to its non-synonymous polymorphism. The divergence

and polymorphism in synonymous sites, which are assumed to be neutral, are used to

estimate the underlying mutation rate and the expected polymorphism and divergence

under  a  neutral  scenario.  However, the  estimation  of  α can  be  biased  due  to  the

segregation  of  slightly  deleterious  non-synonymous  mutations  (Eyre-Walker  2002).

Given a stable population size, α is underestimated under slightly deleterious mutations

because they tend to contribute more to polymorphism than to divergence. The DFE-

alpha  method  corrects  for  this  possible  bias  by  first  estimating  the  Distribution  of

Fitness Effects (DFE) of mutations from DNA sequence polymorphism data at selected

sites  by  a  gamma  distribution  and  then  calculating  how  many  non-adaptive

substitutions are expected to become fixed given the DFE inferred from polymorphism

data. Thus, as explained above, any excess of non-synonymous substitutions should

be attributable to adaptation. 

Several studies using genomics have estimated adaptation in embryonic development.

There is, for example, a large body of literature estimating the Ka/Ks ratio and related
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measures to uncover different selection regimes in genes with different biochemical or

physiological  functions  (as  defined  by  the  GO  terms)  (Rocha  and  Danchin  2004;

Salathe et al. 2006; Hanada et al. 2007; Zhang et al. 2007; Yang et al. 2012; Zhao et

al. 2013; Yang et al. 2014).  or in genes expressed in different developmental stages

(Davis et al. 2005; Roux and Robinson-Rechavi 2008; Artieri et al. 2009; Kalinka et al.

2010; Mensch et al. 2013; Piasecka et al. 2013). There are also several studies on

genes' phylogenetic age and evolution and development. The phylogenetic age of a

gene is the phylogenetic level at which homologues for a gene are found (e.g., if  a

gene has homologues among eukaryota the phylogenetic age is larger than if the gene

has homologues only among Drosophilids). Thus, it has been found that genes with

different evolutionary ages differ in their genomic properties (older genes tend to be

longer, highly expressed, with larger intron density and more constrained;  (Wolf et al.

2009).  Other  studies  have  also  found  a  relationship  between  the  rate  of  non-

synonymous substitutions in a gene and its expression bias, the level of restriction of

its expression in developmental time (Duret and Mouchiroud 2000; Subramanian and

Kumar 2004; Wright et al. 2004), codon usage (Sharp 1991; Marais et al. 2004; Rocha

and Danchin 2004) and expression level  (Pal et al. 2001; Subramanian and Kumar

2004; Drummond et al. 2005; Lemos et al. 2005).

This study differs in two main aspect from previous ones jointly analyzing evolutionary

genomics and development: (1) it is focused in space (embryo's anatomy) instead of

time (developmental stages) and (2) since it is a population genomics analysis, it  is

able to measure the rate of adaptive substitution (ωα)  and not just the rate of non-

synonymous substitutions  (as in  the  Ka/Ks ratio).  Thus,  our  aim is  to  estimate and

compare both adaptation and selective constraint through the body of D. melanogaster.

The time scale spans around 7.4 MY (Tamura et al. 2004), from the present to the most

recent  common ancestor  of  D. melanogaster and  D. yakuba,  the outgroup species

used in this study to estimate divergence. Adaption and constraint is estimated for six

different embryonic stages, from maternal stage 1-3 to stage 13-16, a stage shortly

before the larva hatches. As gene expression in the last embryonic stage analyzed (the

embryo-larva transition) closely resembles that of the larva stages  (Arbeitman et al.

2002) and no much cell movement or massive changes in gene expression are known

to  occur  at  this  stage  (Hartenstein  1993),  our  analysis  should  inform  also  about

adaptation over the larval body. We also study whether there is a relationship between

the number of anatomical structures in which a gene is expressed (that can be seen as

a measure of pleiotropy in the space of the embryo) and ωα. In addition, we measure

the phylogenetic age, expression bias and codon usage for the different anatomical
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structures  and  explore  whether  there  is  an  association  between  these  genomic

variables and selection during development.

Our morphological adaptation map is based in the analyses of spatial patterns of gene

expression for 5,969 genes (from text-based annotations of in situ hybridization data

directly  from  the  BDGP database,  Tomancak  et  al.  2007)  and  polymorphism  and

divergence in  these genes (from the DGRP project,  Mackay et  al.  2012).  We first

collected the lists of genes expressed in each different embryonic anatomical structure

considered in the BDGP (15 anatomical structures for which the expression data was

described  in  Tomancak  et  al.  2007;  see  Supplementary  Table  5  for  these).  The

polymorphism  and  divergence  (out  of  D.  yakuba)  of  the  genes  in  each  list  were

analyzed together (genes in  each list  were concatenated for  the analysis)  with the

DFE-alpha method (Eyre-Walker and Keightley 2009). With this method, we estimate

for  measures of  selection: (i)  α (ii)  the standard measure of  selective constraint,  ω

(Ka/Ks),  (iii)  ωα and (iv)  ωd,  the rate of  non-adaptive (neutral  or  slightly deleterious)

substitutions  relative  to  the  rate  of  neutral  substitutions.  The  rate  of  synonymous

substitutions was estimated following two different approaches. In the first one we use

the 4-fold degenerated sites. In the second approach, we use instead the short intron

sites in each gene (Halligan and Keightley 2006). The analysis based on short introns

has the advantage of  filtering out  the possible effect  of  codon usage (reviewed by

Hershberg and Petrov 2008) but in our dataset, only half of the analyzed genes have

short  introns  adequate  for  the  analysis.  The  results  of  both  analyses  are  largely

consistent (see below). We have also calculated whether the observed ω, ωα and ωd

values  are  higher  (or  lower)  than  those  expected  by  chance  alone.  For  that  we

performed a permutation test in which we assigned genes (from our dataset) to each

anatomical  structure  at  random and  recalculated  ω, ωα and  ωd  (while  keeping  the

number  of  genes per  anatomical  structure  and the number  of  genes co-expressed

between  anatomical  structures  as  in  the  original  data).  We  then  compared  the

observed  ω, ωα and  ωd values with those found by repeating this  permutation test

many times.  We also  performed another  statistical  test,  a  Student’s  t  statistical,  in

which we simply compare the  ω, ωα and  ωd  for  the set  of  genes expressed in  an

anatomical  structure and the set  of  genes that  are not  express in  such anatomical

structure.  These  two  statistical  tests  give  very  similar  results  (see  Supplementary

Tables  7 and 14).  See Material  and methods for  details  on the data analyzed,  its

processing and statistical analysis. 

6



Results

Selection at the germ layer level

First, we searched for differences in the selective regimes experienced by the tissues

derived from each of three primary germ layers of the Drosophila embryo. These germ

layers  constitute  the  first  three  tissues  in  embryonic  development:  ectoderm,

mesoderm and endoderm.  Later embryonic  and larval  tissues develop from one of

such germ layers. We analyzed the set of genes that are exclusively expressed in the

derivatives of each germ layer, that is, those genes whose expression overlapped for

two or three layers were excluded from the analysis. The number of genes analyzed for

each germ layer is provided in Supplementary Table 1. 

We found that the set of genes exclusively expressed in the ectoderm-derived tissues

are more constrained than those expressed in the other two layers (low  ω,  2-tailed

permutation test,  p = 0.004). On the other hand, the set of genes expressed in the

tissues derived from the mesoderm show higher rates of adaptive substitutions (high

ωα, 2-tailed permutation test, p < 0.001). Finally, the set of genes expressed exclusively

in  the  tissues  derived  from  the  endoderm,  show  a  relative  relaxation  of  selection

compared to the other two layers (high ωd, 2-tailed permutation test, p = 0.046).

Neither recombination rates, nor gene density nor mutation rates differ between the

genes expressed in each germ layer. Hence, these genome variables do not seem to

bias  our  measurements  of  differential  selection  (ANOVA analysis,  Supplementary

Tables 2-4). See Material and methods for details.

Selection at the anatomical structure level

We analyzed the set of genes expressed in each anatomical structure reported in the

BDGP  (Tomancak  et  al.  2007).  A  gene  was  counted  as  expressed  in  a  given

anatomical structure if it was expressed in in at least one developmental stage of the

structure.  The  studied  anatomical  structures  were  (Supplementary  Figure  1):

“Amnioserosa/Yolk”,  “Procephalic  Ectoderm/CNS”,  “Peripheral  Nervous  System

(PNS)”,  “Foregut”,  “Ectoderm/Epidermis”,  “Tracheal  System”,  “Salivary  Gland”,

“Hindgut/Malpighian  tubules”,  “Mesoderm/Muscle”,  “Head  Mesoderm/Circulatory”,

System/Fat  body”,  “Garland  cells/Plasmatocytes/Ring  gland”,  “Germ  line”  and

“Endoderm/Midgut”.  In  addition,  we  also  analyzed  the  genes  that  are  expressed
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ubiquitously  or  that  are  present  already  in  the  egg.  These  latter  genes  were

categorized following the original BDGP database  (Tomancak et al. 2007), either as

“Ubiquitous” or “Maternal”. The number of genes per anatomical structure can be found

in Supplementary Table 5.

We found that all four selective regimes analyzed vary through the embryo anatomy

(see Supplementary Figure 2 for  a schematic illustration of the results).  The genes

expressed in the anatomical structure “Garland cells/Plasmatocytes/Ring gland” and

these expressed in the “Germ line” exhibited high rates of adaptive substitution (higher

than the expected rate in random permutations of the genes in the database: high ωα,

2-tailed  permutation  test,  p = 0.018,  high  ωα,  2-tailed  permutation  test,  p = 0.018,

respectively).  The  same  was  found  for  those  genes  expressed  in  the  “Head

mesoderm/Circulatory system/Fat body”, but only with a marginal significance (high ωα,

2-tailed permutation test, p = 0.052). 

Contrastingly,  several  anatomical  structures  of  the  digestive  system  exhibit  a  high

constraint in the genes they express (higher than expected from the permutation test).

This is the case of the “Foregut” (low ω, 2-tailed permutation test, p < 0.001, low ωd, p

= 0.012), the “Hindgut/Malpighian tubules” (low ω, 2-tailed permutation test, p < 0.001,

low ωd, p = 0.018), the “Endoderm/Midgut” (low ω, 2-tailed permutation test, p < 0.001,

low  ωd,  p  = 0.018,  low  ωα,  p  = 0.024)  and  the  “Salivary  gland”  (low  ω,  2-tailed

permutation test, p < 0.001). In several neuroectodermic anatomical structures the set

of genes expressed showed also higher selective constraint than expected by chance

alone.  This  is  the case of  the “Peripheral  Nervous System” (PNS) (low  ω,  2-tailed

permutation test, p < 0.001, low ωα,  p = 0.016) and the “Procephalic Ectoderm/CNS”

(low ω, 2-tailed permutation test, p = 0.004, low ωd, p < 0.001). Higher constraint was

also found in the “Ectoderm/Epidermis” (low ω, 2-tailed permutation test, p < 0.001, low

ωd,  p  = 0.030,  low  ωα,  p  = 0.024),  and  the  “Mesoderm/Muscle”  (low  ω,  2-tailed

permutation test, p = 0.016). 

Finally, “Maternal” genes exhibit higher values of relaxed selection (high  ωd, 2-tailed

permutation  test,  p  = 0.026)  while  the  set  of  genes  in  the  anatomical  structures

“Ubiquitous”  and  “Amnioserosa”  genes  do  not  show  evidence  of  any  preferential

regime of selection. Very similar results were found when short introns, instead of 4-

fold degenerated sites, were used to estimate the mutation rate (Supplementary Table

6) and when a Student’s t  statistical  test  was used instead of  the permutation test

(Supplementary Table 7). Neither recombination rate, nor gene density nor mutation

rate  differ  between  the  genes  expressed  in  each  anatomical  structure  (ANOVA

analysis, Supplementary Tables 8-10).
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Analysis by stages

The previous anatomical structures were further analyzed by splitting them between

stages. In other words, each set of genes expressed in an anatomical structure and

stage  were  analyzed  independently  (even  for  the  genes  expressed  in  the  same

anatomical structure at some other stage). We analyzed a total of six developmental

stages than span the first 16 hours of the embryo development: stage 1 (1-3h), stage 2

(4-6h), stage 3 (7-8h), stage 4 (9-10h), stage 5 (11-12h) and stage 6 (13-16h). The list

of genes analyzed by anatomical structure and developmental stage can be found in

Supplementary  Table  11.  Figure  1  shows  the  results  obtained  in  this  analysis.

Supplementary  Table  12  shows  the  p-values  of  the  permutation  tests  for  each

anatomical  structure,  and  Supplementary  Figure  3  a  schematic  illustration  of  the

results. In general, the results are very similar to the ones in the previous section. The

anatomical structures in stage 13-16 (an embryonic stage close to the larva stage) are

the ones that most often exhibit ωα and ω values that are significantly different from the

ones expected by chance alone. We find evidence of relaxation of selection on the first

stage, where maternal genes are expressed. Very similar results were found for most

of the anatomical structures when short introns were used to estimate the mutation rate

(Supplementary Table 13) and when using the Student’s t statistical test instead of the

permutation test (Supplementary Table 14).

Relationship between phylogenetic age, Fop, expression bias, and adaptation

We also analyzed the relationship between the phylogenetic age (using  Drost 2014

data),  the  expression  bias  and  expression  level  (using  modENCODE  RNA-seq

expression data, Graveley et al. 2011), the frequency of optimum codons (Fop) and the

different  selection  regimes.  The  expression  bias  index  indicates  how  temporally

restricted is the expression of a gene during embryonic development. For a given gene,

an expression bias value of 1 means that it is only expressed in one developmental

stage, whereas a value of 0 means that it is expressed in all developmental stages

(see Material and methods). The frequency of optimum codons also ranges from 0 to 1,

0 indicates that no optimum codon is present in the sequence while 1 means that all

the codons used are the optimal ones.

We took the set of genes expressed in the anatomical structures and divided them in 5

equally sized categories (except for phylogenetic age, where categories were manually

defined) depending on their phylogenetic age (Supplementary Figure 4A). We did a

similar categorization of genes by expression bias levels (Supplementary Figure 4D),
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expression level (Supplementary Figure 4G) and Fop (Supplementary Figure 4J). See

Supplementary Tables 15-18 for the quantile categories.

The measurements of selection on the set of genes with distinct ages, Fop, expression

level and expression bias differ significantly. Supplementary Figure 4B and 3C show

that  older  genes  (categories  1  and  2)  have  higher  constraint  and  lower  rates  of

adaptive substitution (Supplementary Figure 4B and 4C). A very similar trend is found

for expression bias (Supplementary Figure 4E and 4F), with less biased genes showing

more constraint  and lower  rates  of  adaptive  substitution.  The contrary  is  found for

expression level (Supplementary Figure 4H and 4I) (measured as the logarithm of the

maximum  expression  in  RPKM  levels  using  modENCODE  RNA-seq  in  D.

melanogaster)  and  Fop (Supplementary  Figure  4K  and  4L).  Selective  constraint

decreases with both Fop and the expression level and the rate of adaptive substitutions

decreases with  Fop. As shown in Supplementary Figure 5, the anatomical structures

with the highest rates of adaptive substitution are not the anatomical structures with the

lowest  Fop, newest genes or highest expression bias. Therefore, these variables do

not seem to explain the differences in the rates of adaptive substitution found between

anatomical structures.

Relationship between phylogenetic age, Fop and expression bias

To acquire  a  better  understanding  of  the  results  in  the  previous  section,  we  also

analyzed  the  relationship  between  the  phylogenetic  age,  expression  bias  and

frequency of optimum codons (Fop) of the genes analyzed.

We found a positive correlation between phylogenetic age and expression bias (Figure

2) (Pearson’s  ρ = 0.490,  p = 0.039). Thus, genes that are younger phylogenetically

tend to be expressed in more specific stages than phylogenetically older genes, which

are  more  broadly  expressed  through  stages.  Furthermore,  genes  expressed  in

anatomical structures derived from the endoderm are phylogenetically the oldest on

average whilst  those derived from the ectoderm express the most  phylogenetically

recent  genes  (except  for  the  set  of  genes  expressed  in  the  salivary  glands).  The

“Segmental/GAP” anatomical structure is  also exceptional in expressing the newest

genes (note  that  during  development  these  genes  are  expressed before  the germ

layers are formed). A negative correlation is found between phylogenetic age and Fop

(Pearson’s ρ = -0.698, p = 1.27×10-3). The salivary glands also stand out for having one

of the highest Fop values. 
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Relationship between spatial pleiotropy, phylogenetic age, expression bias and

adaptation

Finally, the set of genes expressed in the 18 anatomical structures were divided in

eight  groups depending on the number  of  anatomical  structures in  which they are

expressed (1, 2, …, 7, 8 or more, see Supplementary Figure 6). These values can be

taken as  a  rough  measurement  of  the  pleiotropic  effects  of  a  gene  on  embryonic

anatomy and we call this index spatial pleiotropy.

We first analyzed the relationships between the eight groups and the phylogenetic age,

Fop and expression bias. For that we resampled 100 times with replacement the genes

of each group. Results are shown in the Figure 3. We found a negative correlation

between the number of anatomical structures in which a gene is expressed and its

phylogenetic age (Figure 3A, Pearson's  ρ:  0.777,  p = 0.0233) and expression bias

(Figure 3B, Pearson’s ρ: -0.900 p = 0.002) and a positive correlation with Fop (Figure

3C, Pearson’s ρ: 0.926, p = 9.51×10-4)

When we analyzed the evidences of selection in each group of genes, we found a

negative correlation between spatial pleiotropy and both  ω (Figure 4A,  Pearson’s  ρ:

-0.890,  p = 0.003) and  ωd  (Figure 4B, Pearson’s  ρ: -0.749,  p = 0.032). Thus, genes

expressed in  a low number of  anatomical structures seem to be,  on average,  less

selectively  constrained  than  genes  expressed  in  a  high  number  of  anatomical

structures.  No  correlation  was  found  between  ωα and  the  number  of  anatomical

structures in which a gene is expressed (Figure 4C) and, as shown in Supplementary

Figure 5D, the anatomical structures with the highest  ωα are not the ones where the

genes are expressed in the smallest number of other anatomical structures (so again

our  results  are  not  simply  explainable  from  differences  in  these  variables  among

anatomical structures).

11



Discussion

This work measures which parts of the embryo’s body exhibit significantly higher ωα, ωd

and ω values and which exhibit significantly lower  ωα,  ωd and ω values in the genes

they  express  compared  to  the  rest  of  genes  expressed  in  the  other  anatomical

structures of the embryo. The anatomical structures with high ωα,  values should be

interpreted as body regions with high rates of adaptive substitution for the amino acid

sequences of the gene products they express, while the anatomical structures with low

ωα  values should be interpreted as body regions where such adaptive changes have

barely occurred from the current  populations of  D. melanogaster to  its most  recent

common ancestor  with  D.  yakuba.  The  anatomical  structures  with  high ω and  ωd,

values, instead, should be interpreted as body regions under relaxed natural selection,

while the anatomical structures with low ω and ωd values should be interpreted as body

regions under a history of selective constraint.

The latest embryonic stage analyzed, stage 13-16, shows the most contrasting values

of ωα and ω between anatomical structures. In this stage, the anatomical structures and

the gene co-expression spatial  patterns,  are  positioned and shaped in very similar

ways than in those of the larva (no major morphogenetic rearrangements occur from

that stage onwards,  (Hartenstein 1993)). In that sense, the results in this latest stage

could be taken as a proxy for adaptation over the body parts of the functional larva.

In  summary,  we  found  high  rates  of  adaptive  substitution  in  the  “Germ  line”,  the

“Garland  cells/Plasmatocytes/Ring  gland”  and  perhaps  also  the  “Head

mesoderm/Circulatory system/Fat body”.  Most  of the rest  of  the body seems under

selective constraint. Our results are consistent with previous results from other non-

development studies. Thus, our results of adaptation in the “Germ line” are consistent

with  previously  reported  high  Ka (Civetta  and  Singh  1995;  Wyckoff  et  al.  2000;

Meiklejohn et al. 2003; Pröschel et al. 2006; Haerty et al. 2007; Assis et al. 2012) and α

(Pröschel  et  al.  2006) in  testis-  or  sperm-specific  genes  and  sperm-related  genes
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already expressed in germ line cells  (Civetta et al. 2005; Bauer DuMont et al. 2007).

The category “Garland cells/Plasmatocytes/Ring gland” is closely linked to the immune

system. Plasmatocytes conform the 95% of all the immune cells in  D. melanogaster

(similar to our macrophages, (Ratheesh et al. 2015) and the ring gland has been also

related  to  the  immune  system  (Christesen  et  al.  2016).  The  immune  system  has

already  been  shown  to  exhibit  high  rates  of  adaptive  substitution,  high  α, in  D.

melanogaster (Schlenke and Begun 2003; Jiggins and Kim 2007; Obbard et al. 2009;

Early et al. 2017). 

Overall, our results suggest that there is a high degree of conservation over the genes

expressed over most embryonic anatomy and some degree of adaptive substitutions in

the  set  of  genes  expressed  in  anatomical  structures  involved  in  reproduction  and

immunity.. We can state that selective constraint is pervasive over most of the embryo’s

anatomy except  for  anatomical  structures  that  show evidence  of  adaptation  in  the

embryo  (sperm-related  genes  expressed  in  germ  line  cells)  but  in  the  adult  too

(immune system and sperm-related genes). 

Our analysis does not explain why some specific anatomical structures show high rates

of adaptive substitutions but helps in discarding some simple explanations. Thus, for

example, the high ωα in some anatomical structures does not seem to be related to the

expression of genes with low levels of  pleiotropy in those anatomical structures, at

least  as  compared  to  the  genes  expressed  in  other  anatomical  structures

(Supplementary  Figure  5D).  Genes  with  a  high  expression  bias  influence

developmental processes in a restricted time window while genes expressed in few

anatomical  structures  affect  only  the  developmental  processes  in  those  anatomical

structures. In both cases, a gene is affecting only a small number of processes and,

thus,  it  can be said to have a low level  of  pleiotropy. Very pleiotropic  genes have

reiteratively been suggested to change more slowly in evolution than genes with little

pleiotropy. This is because the more processes a gene influences the more unlikely it

is, statistically, to change without compromising one of those processes (Duboule and

Wilkins 1998; Otto 2004). In fact, we found that the higher the expression bias, the

higher, on average, ωα and ω are (as found also in (Duret and Mouchiroud 2000; Wright

et al. 2004; Larracuente et al. 2008). The smaller the number of anatomical structures

in which a gene is expressed, the higher ω. In spite of that, the anatomical structures

showing the highest rates of adaptive substitution do not express genes with higher

expression biases (Supplementary Figure 5C) or genes expressed in less anatomical

structures  than  other  anatomical  structures  (Supplementary  Figure  5D).  The  same

applies to the anatomical structures with low ω, they do not express genes that have

low  Fop (Supplementary Figure 5A) or are especially old (Supplementary  Figure 5B)
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compared to the genes expressed in other anatomical structures. In that respect, these

results do not accommodate for easy genomic explanations but rather suggest that

there may be some functional features of the “Garland cells/Plasmatocytes/Ring gland”

and “Germ line” that have favored the accumulation of adaptive substitutions in the

genes they express, at least compared with other parts of the anatomy, regardless of

their pleiotropic effects.

Our results also indicate that the differences in ωα and ω between anatomical structures

are not  related to differences in  Fop or  phylogenetic  age.  We do find,  however, a

negative relationship between Fop and ωα  and between Fop and phylogenetic age. A

negative correlation between codon bias (Fop) and the rate of adaptive substitutions

should be expected since for any given protein the codon changes that improve protein

function would often be different from the codon changes associated with more efficient

codon usage  (Andolfatto 2007)shberg and Petrov 2008;  Presnyak et al.  2015). The

coding regions of older genes, in addition, have been molded by natural selection for

longer times and, thus, are more likely to have reached and optimal codon usage (as

observed). The reasons why phylogenetically more recent genes show higher ωα and ω

may be a bit  more complex. On the one hand, we found that younger genes show

higher expression biases and tend to be expressed in less anatomical structures than

older genes. This suggests a scenario in which newly arising genes would start with

very restricted expressions (both in anatomical space and developmental time) and

have, thus, a low level of pleiotropy that would facilitate their evolution. On the other

hand,  older  genes  are  more  likely  to  be  metabolic  or  housekeeping  genes  with

essential  functions  that  are unlikely  to  change in  an adaptive  way  (Hastings  1996;

Duret  and  Mouchiroud  2000;  Zhang  and  Li  2004).  Either  way  the  fact  is  that  the

differences in rates of adaptive substitution between the sets of genes expressed in the

different anatomical structures do not relate to differences in Fop or phylogenetic age.

In other words, the anatomical structures expressing the set of genes with the highest

ωα  and  ω are not the ones expressing the genes with the lowest (or even especially

low) Fop or expressing the youngest (or especially young) genes. Again, our results do

not accommodate for easy genomic explanations such as Fop or phylogenetic age. 

There are two anatomical structures that appear in our analysis as an exception to

many of the trends identified. The salivary glands express relatively phylogenetically

old genes that, in contrast to the rest of the ectoderm, exhibit rather high Fop. The high

Fop may be explainable by both the old age of the genes expressed and the fact that

many of the genes expressed in the salivary glands are well known to be expressed at

very high levels  (Andrew et al.  2000). Genes that are expressed at high levels are

known to have, usually, rather high  Fop because this allows for a faster  and more
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efficient translation (Gingold and Pilpel 2011; Quax et al. 2015), and we do in fact found

this  same  result  when  plotting  Fop against  the  levels  of  expression  of  genes

(Supplementary  Figure 7). We also found that while the endoderm as a germ layer

seems to be under relaxed selection, the anatomical structure “Endoderm/Midgut” is

under constraint.  This apparent contradiction is explained by the fact that the germ

layer  analysis  considers  genes  that  are  expressed  exclusively  in  germ layer  while

anatomical  structure  analysis  does  not  only  consider  genes  that  are  expressed

exclusively in an anatomical structure (because there is not enough of them). Out of

the 303 genes that are exclusive of the endoderm, 206 (70%) are also annotated as

“Maternal”. Maternal genes exhibit evidence of relaxed selection and, thus, explaining

the relaxation observed in the “endoderm”.

The “Segmental/GAP” anatomical structure is also exceptional since it expresses the

newest genes. These genes are expressed very early on before the germ layers form.

Previous studies have shown that, in fact, there is substantial variation between diptera

on which genes act early in development as segmental and gap genes (Wotton et al.

2015). Since these genes are all transcriptional factors it is not surprising that they are

all relatively young (old genes tend to be metabolic genes involved in processes shared

among distantly related groups).

There  are  a  number  of  caveats  to  be  considered  in  our  results.  First,  it  is  not

necessarily the case that the amount of adaptive amino acid substitutions in the set of

genes expressed in an anatomical structure accurately reflects the amount of adaptive

phenotypic  change  in  that  embryo  part.  Development  is  a  complex  process,  with

myriads  of  genetic  and  cell  bio-mechanic  interactions,  that  leads  to  a  complex

relationship  between  genetic  variation  and  phenotypic  variationerch  1982;  Salazar-

Ciudad 2006). It  can be, for example, that some anatomical structures show only a

small  number  of  adaptive  changes  in  the  genes  they  express,  and  then  not  be

detectable from our methods, but that those genetic changes have comparatively large

effects on the phenotype. Second, we consider only changes in coding-regions while

there  is  plenty  of  evidence  of  adaptation  resulting  from  changes  in  regulatory

regionsidson  2006).  Third,  variation  in  a  gene  can  have  an  effect  on  anatomical

structures where such gene is not expressed (e.g. extracellularly diffusible proteins or

genes involved in the production mechanical forcesazar-Ciudad et al. 2003). Although

all these caveats should be kept in mind there is no reason to expect that, a priori, the

complexity  of  the  genotype-phenotype  map  (or  for  that  matter  the  amount  of  cis-

regulation, signaling or mechanical forces) is dramatically different between anatomical

structures.  Then  our  comparison  between  anatomical  structures  is  unlikely  to  be

dramatically affected by these caveats.
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 Population genomics is concerned with genome variation, but natural selection acts

upon the phenotype, not directly on the genotype, and the genomic dimension, albeit

necessary, is not sufficient to account for a complete picture of organismal adaptation

(Casillas and Barbadilla 2017).  Trying to measure the action of  natural  selection in

genes specifically expressed in different organs or across development can contribute

to get  a more systemic view of  the causes and consequences of  evolutionary and

functional effects of genomic variation. This will also contribute towards aunified fitness-

phenotype-genotype  map  in  systems  evolutionary  biology  (Casillas  and  Barbadilla

2017).
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Material and methods

This section is divided into two parts. In the first one we describe how the expression

data was obtained and processed to obtain a list of genes for each embryonic germ

layer or anatomical structure. In the second part, we explain how genes expressed in

these layers or structures were analyzed to estimate adaptation and other selective

regimes as well as the statistical analyses performed.

Anatomical structures analysis

For the patterns of gene expression over the fly embryo's anatomy we used the BDGP

database  (Tomancak  et  al.  2007).  This  is  a  high-throughput  database  of  mRNA

expression spanning different embryonic stages. Each such stages actually includes a

set of contiguous stages, thus, our stage 1 includes stage 1 to 3 of the fly development,

stage 2 corresponds to stages 4 to 6, stage 3 to 7 and 8, stage 4 to 9 and 10, stage 5

includes stages 11 and 12 and stage 6 includes 13 to 16. This database has been the

subject  of  previous  statistical  studies  (Kumar  et  al.  2011;  Salvador-Martínez  and

Salazar-Ciudad 2015) but not combined with populational genomic data as in here.

Based on the expert analysis of whole-mount in situ RNA-hybridization images,  the

BDGP  database  contains,  for  each  gene,  the  list  of  the  embryonic  anatomical

structures in which it is expressed (http://insitu.fruitfly.org/insitu/html/downloads.html/).

We removed genes with “no staining” as their unique term. We updated and validated

those  ID  using  FlyBase  converting  id  tool  obtaining  5,969  genes

(http://flybase.org/static_pages/downloads/IDConv.html).  Finally,  we  collapsed  the

original  anatomical  structure  dataset  into  18  different  anatomical  structures  as

described in Tomancak et al. 2007.

Germ layer analysis

To make a gene list for each germ we classified the anatomical structures by the germ

layer to which they are derived from (e.g., dorsal epidermis is classified as ectoderm).

A gene was assigned to a certain germ layer if it was expressed only in in anatomical

structures belong to it (and in those of any other germ layer). 

Genomic variables

Fop. The levels of codon bias, measured as Fop (Frequency of optimal codons) were

estimated using CodonW (http://codonw.sourceforge.net/, Peden 1999). The Fop index
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is the ratio of optimal codons to synonymous codons. Values range between 0 (where

no optimal codons are used) and 1 (only optimal codons are used).

Expression bias and expression level. We have estimated expression bias, based

on Yanai et al. 2005 formula (Yanai et al. 2005) see below), using modENCODE data

(Graveley et al. 2011) (retrieved from FlyBase r6.06) from the stages “em0-2” to “em16-

18” as the equivalent for stages 1 (1-3) and stage 6 (13-16):

τ=
∑
j=1

n

1− ( log S j/ logSmax )

n−1

Where S is the logarithm of RPKM (Reads Per Kilobase per Million mapped reads) and

n is the number of developmental stages. τ ranges from 0 to 1, with values close to 0

indicating broadly expressed genes and values close to 1 indicating genes with highly

biased expression. 

Phylogenetic  age.  We  assigned  a  phylogenetic  age  to  each  gene  using  the

phylostratigraphic maps of  D. melanogaster from  Drost 2014. These maps assign a

phylogenetic age to each protein-coding gene in a species of interest (in this case D.

melanogaster) based on the phylogenetic level at which orthologous for that gene are

found (e.g., if a gene has orthologs at the level of eukaryota the phylogenetic age is

older than if a gene has only orthologs among Drosophilids). With this method, each

gene can be assigned a discrete age category, or phylostratum (PS), corresponding to

hierarchically ordered phylogenetic nodes along the tree of life database (Drost et al.

2015).  Although  there  is  a  concern  regarding  the  accuracy  of  phylostratigraphy

inferences,  as  they  rely  on  BLAST  searches,  which  show  some  limitations  when

sequences are highly diverged  (Elhaik et al. 2005),  Domazet-Lošo et al. 2017 have

shown that this phylogenetic data is not biased and that BLAST is appropriate. In this

work, they also show that the ectoderm is expressing evolutionary younger genes than

in  the  endoderm  and  mesoderm.  We  downloaded  the  PS  dataset  on  May  2015

(available  in  http://dx.doi.org/10.6084/m9.figshare.1244948/).  As  this  dataset  uses

FlyBase protein IDs as identifiers, we used the R packages biomaRt  (Durinck et al.

2005) version 2.22 and AnnotationDBI  (Pages et al.) version 1.28.2 to convert them

into FlyBase Gene IDs.

Population genomic analysis

In this section, we explain how we analyzed the genomic data in genes lists for each

anatomical structure or layer to estimate adaptation and constraint.

Database

18

http://dx.doi.org/10.6084/m9.figshare.1244948/


The  population  genomic  data  comes  from  168  inbred  lines  of  D.  melanogaster

sequenced  in  the  Freeze  1.0  of  the  Drosophila  Genetic  Reference  Panel  (DGRP)

project  (Mackay et  al.  2012) mapped to  the release  5  of  the  Berkeley  Drosophila

Genome Project (http://www.fruitfly.org/sequence/release5genomic.shtml/). The DGRP

population was created collecting gravid females from a single population of Raleigh,

North  Carolina  (USA),  followed  by  the  full-sibling  inbreeding  approach  during  20

generations to obtain full homozygous individuals. After this, the residual heterozygosis

in the samples is expected to be 1.4% (inbreeding coefficient F = 0.986). The expected

1.4% of residual heterozygosis was true for 90% of the sequenced chromosome lines.

DGRP lines showing high values of residual heterozygosity (>9%) were observed to be

associated  to  large  polymorphic  inversions(Huang  et  al.  2014) and  they  were  not

included in the analyses (Huang et al. 2014). For computationally reasons, the program

used for estimating the rate of adaptive substitution (DFE-alpha, see below) needs that

all  sites  are  sampled in  the  same number  of  individualsEyre-Walker  and Keightley

2009). Hence, the original data of 168 lines set has been reduced to 128 isogenic lines

by randomly sampling the polymorphisms at  each site without replacement.  Finally,

residual  heterozygous  sites  and  sites  with  the  lowest  or  no  quality  values  were

excluded from the analysis.

Estimation of natural selection on gene coding regions

We  estimated  natural  selection  on  non-synonymous  sites  using  the  DFE-alpha

software  under  a  two-epoch  demographic  model  (Eyre-Walker  and  Keightley

2009)Eyre-Walker  and  Keightley  2009).  Coding  exon  annotations  from  D.

melanogaster  were  retrieved  from  FlyBase  (release  5.50,  http://flybase.org/,  last

accessed March 2013). Genes 1:1 orthologs across D. yakuba - D. melanogaster were

obtained from FlyBase (http://flybase.org/). We used  D. yakuba as outgroup species

because, aside from its high coverage (9.1x, Clark et al. 2007), the time elapsed since

its divergence from D. melanogaster (7.4 MY, Tamura et al. 2004) is more suitable for

estimating adaptation (Keightley and Eyre-Walker 2012). In closely related species (as

is the case of D. melanogaster and D. simulans, which diverged 2.3 MY ago, Russo et

al.  1995),  the  estimated  rate  of  adaptive  substitution  can  be  biased  due  to  (i)  an

erroneous  attribution  of  polymorphism  to  divergence,  (ii)  ancestral  polymorphism

contributing to divergence and (iii)  differences in  the rate of  fixation of  neutral  and

adaptive mutations. These authors find that the adaptive rate estimated from closely

related  species  (as  in  the  case  of  D.  melanogaster and  D.  simulans)  may  be

underestimated  by  ~10% or  more.  For  that,  D.  yakuba as  outgroup  gives  a  more

reliable estimation of the adaptive rate than the closest  D. simulans (Keightley and
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Eyre-Walker  2012).  A  multiple  genome  alignment  between  the  DGRP  isogenic

linesMackay et al. 2012) and the D. yakuba genomeClark et al. 2007) using the BDGP

5  coordinates  was  obtained  from  the  publicly  available  database  at

http://popdrowser.uab.cat/  Ràmia et al. 2012)   (Ràmia et al. 2012). For each gene, we

took all non-overlapping coding exons, independently of their inclusion levels. When

two exons overlapped, the largest was chosen for subsequent analyses. Only exons

without frameshifts, gaps or early stop codons were retained. In this way, we tried to

avoid  potential  alignment  errors  that  would  inflate  our  mutation  rate  estimates  and

create  an  artefactual  positive  correlation  between  them.  Exonic  sequences  were

trimmed in order to contain only full codons. We calculated the number of substitutions

and  the  folded  site  frequency  spectrum  (SFS,  Ronen  et  al.  2013) for  zero-fold

degenerate sites, using an ad hoc Perl script. We used a custom-made Perl script to

estimate the number of short intron substitutions and to compute the folded SFS. Jukes

and Cantor correction for multiple hits was applied (Jukes and Cantor 1969)Jukes and

Cantor 1969). 

Several  measures  summarizing  selection  at  the  DNA  level using  data  from

polymorphism and divergence are inferred from the DFE-alpha method  (Eyre-Walker

and Keightley 2009). Briefly,  this software uses a maximum-likelihood (ML) method

based on polymorphism data to infer the distribution of fitness effects (DFE) of new

mutations. It assumes two classes of sites in the genome: neutral sites (synonymous)

and selected sites (nonsynonymous) and contrasts the site frequency spectrum (SFS)

at these two classes. As a neutral reference, we used the 4-fold degenerate sites (and

short intron sites for some cross-validating analysis, as it has been shown that evolve

more neutral  (Halligan and Keightley 2006). For our target sequence, we used 0-fold

degenerate sites.  Provided the SFS at both neutral and selected sites together with

divergence data, allows DFE-alpha the calculation of  α and  ωα. Furthermore, in our

analysis  we  include  another  measure,  ωd,  which  represent  the  proportion  of  non-

adaptive substitutions (slightly deleterious and neutral) relative to the neutral rate. 

To estimate these selection measures, it is necessary to concatenate data from several

genes because estimates from a single gene cannot be obtained due to the lack of

segregating (or divergent) sites for some site classes. We only analyzed anatomical

structures expressing a minimum of 150 genes to have enough statistical power.

Statistical analysis

Permutation test. To assess whether anatomical structures or germ layers undergo

differential  selection  compared  to  other  genes,  a  permutation  test  was  applied.

Permutation  test  are  better  suited  for  avoiding  statistical  Type  I  errors  and  are
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considered a robust alternative to the Bonferroni correction dealing with dependent test

(Sham and Purcell 2014). One of the main advantages of this method is that it can be

applied  to  any  statistic,  and  can  incorporate  distributional  and  dependence

characteristics inherent to the data used, making it a robust test  (Westfall and Young

1993).  Importantly, using permutation tests,  the null  distribution is  empirical,  i.e.,  is

obtained by calculating all possible, or a very large number of, values of the statistic

under rearrangements of the labels on the observed data points  (Berry et al. 2016).

Therefore, in the case of our analysis, the null distribution of adaptive and constraint

rates is different for the different analysis as each one is comprised of different number

and combination  of  genes.  Specifically, we first  build  a matrix  where each column

represents each anatomical structure or layer and each row represent a gene. The

matrix is filled with 0 and 1, with 0 indicating no expression and 1 indicating expression

of each gene in an anatomical structure or germ layer. To generate the expected null

distribution, the gene ID labels in the matrix are re-shuffled at random. Each re-shuffle

of  the  labels  represents  a  new  permuted  dataset  in  which  genes  are  distributed

randomly between anatomical structures (or germ layers) while keeping constant the

number of genes per anatomical structure (or germ layer) and the number of genes co-

expressed between each anatomical structure (as in the original dataset). This allows

us to infer the null distribution of the statistical output (α, ω, ωα, ωd) simultaneously for

all  the anatomical structures. This re-shuffling process was repeated 1,000 times to

obtain the null distribution. A 2-tailed p-value was obtained by counting the number of

replicates  above  or  below the  observed  value  in  our  analysis  divided  by  the  total

number of replicates (1,000) and multiplying this value by 2 (Supplementary Figure 8). 

T-test. We also calculated the significance of all the comparisons between germ layers

and  anatomical  structures  with  a  t-test.  We  compared  the  values  (α, ω, ωα, ωd)

measured in a given germ layer or anatomical structure against those measured in the

set of genes that are not expressed in that given germ layer or anatomical structure.

Each two groups were split in groups of 30 genes and were analyzed only if they had a

minimum of  25  observation.  The  DFE-alpha  measures  are  estimated  for  all  these

groups. The t-test is invalid for small samples from non-normal distributions, so we first

check if the data follows a normal distribution using a Shapiro-Wilk test of normality. If

the  observations  follow  a  non-normal  distribution,  we  apply  a  non-parametric  test

(Wilcoxon test) instead of a t-test to perform the mean comparison. Finally, t-test (or

Wilcoxon test) p-values were corrected by FDR.

Correlation  analysis  was  performed  in  R  (v3.3.2,  R  Core  Team  2015)  using  the

cor.test() function.
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Figure legends

Figure 1.  Preponderant  selection on the genes expressed in each anatomical

structure  among  stages.  Stage  1.  Relaxation  on  “Maternal”.  Stage  2.  Selective

constraint  on  “Ectoderm/Epidermis”  and  “Procephalic  ectoderm/CNS”  and  positive

selection  on  “Germ  line”.  Stage  3.  Selective  constraint  on  the  Intestinal  tract

(“Hindgut/Malpighian  tubules”,  “Endoderm/Midgut”)  and  positive  selection  on  “Germ

line”.  Stage  4.  Selective  constraint  on  “Mesoderm/Muscle”,  Intestinal  tract

(“Hindgut/Malpighian tubules”,  “Endoderm/Midgut”).  Stage 5.  Selective constraint  on

Intestinal  tract  (“Hindgut/Malpighian  tubules”,  “Foregut”,  “Endoderm/Midgut”),

“Procephalic ectoderm/CNS” and “Tracheal system”.  Stage 6. Selective constraint on

“PNS”,  “Procephalic  ectoderm/CNS”,  “Ectoderm/Epidermis”,  Intestinal  tract

(“Hindgut/Malpighian tubules”,  “Foregut”,  “Salivary glands”,  “Endoderm/Midgut”),  and

positive selection on “Head mesoderm/Circulatory system/Fat body” and “Germ line”.

Not shown:  Stage 3. Selective constraint on “Ubiquitous” and “Ectoderm/Epidermis”.

Stage  4.  Selective  constraint  on  “Ubiquitous”  and  “Ectoderm/Epidermis”.  Stage  5.

Selective  constraint  on  “Ubiquitous”,  “Ectoderm/Epidermis”,  “Head

mesoderm/Circulatory system/Fat Body”. Stage 6. Selective constraint on “Ubiquitous”,

“Mesoderm/Muscle”  and  positive  selection  on  “Garland/Plasmatocytes/Ring  gland”.

See text for p-values and Supplementary Figure 2 for a schematic version of this figure.

Since several anatomical structures under constraint overlap in the figure, some are

represented in dark blue and some in light blue to facilitate visualization. Abbreviations:

amg,  anterior  midgut  rudiment;  pc,  pole  cells;  hg,  hindgut;  pmg,  posterior  midgut

rudiment; hms, head mesoderm; ms, mesoderm; mp; Malpighian tubules; fb, fat body;

mg,  midgut;  go, gonads;  sg, salivary glands. Images modified from Hartenstein 1993

with permission. 

Figure 2 Relationship between phylogenetic age and expression bias and Fop. A.

Positive correlation between phylogenetic age and expression bias. B. Negative
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correlation between phylogenetic age and  Fop.  Each dot represents the mean of

each anatomical structure. It is represented the germ layer of origin of each anatomical

structure. Blue: ectoderm origin, yellow: endoderm origin, green: mesoderm origin, red.

Figure  3.  Relationship  between  spatial  pleiotropy  and  the  phylogenetic  age,

expression bias and Fop. The gene dataset was divided in eight groups depending

on the number of anatomical structures in which they are expressed (1, 2, …, 7, 8 or

more,  see  Supplementary  Figure  4).  Each  group  is  obtained  resampling  with

replacement 100 times the genes in each group. A. Negative correlation between the

spatial pleiotropy and phylogenetic age. B. Negative correlation spatial pleiotropy and

expression bias. C. Positive correlation between the spatial pleiotropy and the Fop.

Figure 4. Relationship between spatial pleiotropy and selective constraint, ω (A),

relaxation, ωd (B), and adaptation, ωα (C). A. A negative correlation is found between

ω and spatial  pleiotropy.  B.  A negative correlation is found between  ωd and spatial

pleiotropy. C. No correlation is found between ωα and the gene groups. Each group is

estimated by resampling with replacement 100 times the genes in each group. 
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