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In this paper, a central-moments-based lattice Boltzmann method (CLBM) for incompressible thermal
flows is proposed. In the method, the incompressible Navier-Stokes equations and the convection-
diffusion equation for the temperature field are solved separately by two different CLB equations.
Through the Chapman-Enskog analysis, the macroscopic governing equations for incompressible thermal
flows can be reproduced. The consistent forcing scheme (Fei and Luo, 2017) is adopted to incorporate
forcing effect, and the implementation for CLBM is simplified by using simplified raw-moment sets.
Compared with several D2Q5 multiple-relaxation-time (MRT) lattice Boltzmann methods for the temper-
ature equation, the proposed method is shown to be better Galilean invariant through measuring the
thermal diffusivities on a moving reference frame. Numerical simulations for several typical problems
confirm the accuracy, efficiency, and stability of the present method. The grid convergence tests indicate
that the proposed CLBM for incompressible thermal flows is of second-order accuracy in space.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

As a mesoscopic numerical method based on the kinetic theory,
the lattice Boltzmann method (LBM) [1,2] has obtained remarkable
success in the applications to fluid flows and heat transfer prob-
lems during the past three decades [3–7]. The LBM solves a discrete
Boltzmann equation, designed to recover the Navier-Stokes (N-S)
equations in the macroscopic limit. The highly efficient and easy
algorithm of LBM makes it at affordable computational cost, while
the mesoscale nature allows its natural incorporation of microscale
and/or mesoscale physics [5].

In the standard collision-streaming algorithm for LBM, the sim-
plest collision operator is the single-relaxation-time (SRT) or BGK
operator, in which all the distribution functions are relaxed to their
local equilibrium values at an identical rate [1]. However, the
BGK-LBM may meet troubles of inaccuracy in implementing the
boundary conditions [8,9], as well as numerical instability at high
Reynolds number or low-viscosity flows [10,11]. Different from
the BGK operator, the collision step in the multiple-relaxation-
time (MRT) operator [10,11] is carried out in the raw-moment
space. Compared with the BGK-LBM, the MRT-LBM can enhance
numerical stability by carefully separating the time scales among
the kinetic modes [11,12], as well as improve the numerical accu-
racy for non-slip boundary conditions by choosing a so-called
‘‘magic” parameter [8,9]. However, the MRT-LBM introduces non-
Galilean artifact at non-unity Prandtl numbers in thermal lattice
Boltzmannmodels [13]. In 2006, a cascaded operator was proposed
by Geier et al. [14]. In the cascaded operator, the collision is carried
out in the central-moment space, thus it is gradually interpreted as
‘‘central-moments-based” operator [15–17]. The central-moments-
based LBM (CLBM) can enhance the numerical stability significantly
compared to the BGK-LBM [14,15,17–19], which is also essentially
due to the removal of the ‘‘ghost modes” [20]. Besides, Geier et al.
argued that the collision in the central-moment space shows some
advantages over the MRT operator in terms of numerical stability
and Galilean invariance [14]. More comparisons and discussions
between MRT and central-moments-based operators can be found
in [13,14,21].

Recently, CLBM has been extended to multiphase flows by
Lycett-Brown and Luo [18]. Compared with the BGK-LBM for
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multiphase flows, the proposed multiphase CLBM enables signifi-
cant improvement in reducing spurious currents near the phase
interface [18], and achieving higher stability range for the Reynolds
number [19]. They further extended the model with an improved
forcing scheme and made a breakthrough for large density ratio
multiphase flow with high Reynolds and Weber numbers simulta-
neously [22]. In addition, CLBM has also been extended to simulate
shallow water equations [23] and to simulate stationary flows cou-
pled with a preconditioned method [24]. To incorporate forcing
effect into CLBM, Premnath et al. proposed a forcing scheme by
method of central moments [25]. In Ref. [18], Lycett-Brown and
Luo adopted the forcing scheme for the BGK-LBM in the CLBM
directly. De Rosis also proposed alternative formulations to incor-
porate forcing terms [16,26]. Based on a general multiple-
relaxation-time (MRT) framework, a consistent forcing scheme in
CLBM was recently proposed by the present authors [27]. The pro-
posed consistent forcing scheme shows great advantages over sev-
eral previous forcing schemes in terms of consistency, accuracy,
and isotropy. More recently, a thermal cascaded LBM (TCLBM)
has been proposed by the present authors to simulate low-Mach
compressible thermal flows [28]. The TCLBM was based on the
double-distribution-function (DDF) approach, which is a widely
used method for constructing thermal LBMs in the LBM commu-
nity [6,29–32]. Shah et al. proposed another DDF-based CLBM to
simulate fluid and heat transport in porous media [33], in which
the D2Q9 density and temperature equilibrium functions were
used, and the forcing effect was incorporated by a simple method.
The model proposed by Shah et al. has been used to study convec-
tive heat transfer enhancement in jet impingement due to the
presence of porous media [34]. Meanwhile, Sharma et al. proposed
another DDF-based CLBM for convective heat transfer [35], where
the D2Q5 model was used for the temperature field. In this paper,
we propose a new CLBM for incompressible thermal flows based
on a general multiple-relaxation-time framework [27], which is
different from the previous methods [28,33,35] in three respects:
(1) the consistent forcing scheme [27] is used to incorporate forc-
ing effect; (2) the equilibrium central moments for the tempera-
ture field are also given by the continuous central moments of a
continuous ‘‘temperature” distribution [see in Eq. (22)]; (3) simpli-
fied raw moment sets are adopted for both the density and the
temperature distributions [see in Eqs. (6) and (16)].

The rest of the paper is structured as follows: In Section 2, the
two-dimensional (2D) CLBM for incompressible thermal flows is
presented. Numerical experiments are carried out for several
benchmark problems to validate the proposed method in Section 3.
Finally, concluding remarks are given in Section 4.

2. CLBM for incompressible thermal flows

In this section, the construction of the CLBM for incompressible
thermal flows is present. The macroscopic governing equations for
the flow fields are

r � u ¼ 0; ð1aÞ

@u
@t

þ u � ru ¼ � 1
q0

rpþ mr2uþ F; ð1bÞ

where u;p;q0;F and m are the velocity, pressure, reference density,
force field and kinematic viscosity, respectively. The convection-
diffusion equation for a scalar variable / with diffusion coefficient
D can be written as

@/
@t

þ u � r/ ¼ r � ðDr/Þ: ð2Þ
For incompressible thermal flows considered in this study, the
scalar variable and diffusion coefficient are specified as tempera-
ture T and thermal diffusivity a, respectively. To include the effect
of temperature field on the flow field, the Boussinesq assumption is
used and the force field is defined by

F ¼ �gbðT � T0Þjþ Fv ; ð3Þ
where g is the magnitude of gravitational acceleration, b is the ther-
mal expansion coefficient, j is the unit vector in the vertical direc-
tion, T0 is the reference temperature, and Fv is an external body
force.

2.1. CLBM for the flow field

The two-dimensional (2D) problems are considered in this
study, and the D2Q9 lattice [1] is used for the flow field. The lattice
speed c ¼ Dx=Dt ¼ 1 is adopted, where Dx and Dt are the lattice
space and time steps. The discrete velocities ei ¼ eixj i; eiy

�� �� �
are

defined by

eixj i ¼ ½0;1;0;�1;0;1;�1;�1;1�>; ð4aÞ

eiy
�� � ¼ ½0;0;1;0;�1;1;1;�1;�1�>; ð4bÞ
where i ¼ 0 . . .8; �j i denotes the column vector, and the superscript
> denotes the transposition.

To construct the central-moments-based collision operator, raw
moments and central moments for the discrete distribution func-
tions (DFs) f i are introduced [14],

kmn ¼ f i e
m
ixe

n
iy

���D E
; ð5aÞ

~kmn ¼ f i ðeix � uxÞmðeiy � uyÞn
��� �

; ð5bÞ

and the equilibrium values keqmn and ~keqmn are defined analogously by
replacing f i with the discrete equilibrium distribution functions
(EDFs) f eqi . In the literature, many researchers [14,16,26,18,19,23,2
4,22,25,27,28,33,35] adopted the recombined raw moments,
k20 þ k02 and k20 � k02, to treat the trace of the pressure tensor
and the normal stress difference independently, while the practical
implementation is tedious, especially for three-dimensional (3D)
models. To simplify the practical implementation, a simplified
method was proposed in [36], where the raw moments, k20 and
k02, were used and some modifications were made in the relaxation
matrix. In this work, the simplified raw-moment set is adopted,

Cij i ¼ k00; k10; k01; k20; k02; k11; k21; k12; k22½ �>; ð6Þ
and so do the recombined central moments ~Ci. To be more specific,
the raw moments are transformed from f i through a transformation
matrix M by Cij i ¼ M f ij i, and the central moments are shifted from

raw moments through a shift matrix N by ~Ci

��� E
¼ N Cij i [27,36]. The

expressions for M and N are written as,

M ¼

1 1 1 1 1 1 1 1 1
0 1 0 �1 0 1 �1 �1 1
0 0 1 0 �1 1 1 �1 �1
0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1
0 0 0 0 0 1 �1 1 �1
0 0 0 0 0 1 1 �1 �1
0 0 0 0 0 1 �1 �1 1
0 0 0 0 0 1 1 1 1

2
66666666666666664

3
77777777777777775

; ð7aÞ
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N¼

1 0 0 0 0 0 0 0 0
�ux 1 0 0 0 0 0 0 0
�uy 0 1 0 0 0 0 0 0
u2
x �2ux 0 1 0 0 0 0 0

u2
y 0 �2uy 0 1 0 0 0 0

uxuy �uy �ux 0 0 1 0 0 0
�u2

xuy 2uxuy u2
x �uy 0 �2ux 1 0 0

�u2
yux u2

y 2uxuy 0 �ux �2uy 0 1 0

u2
xu

2
y �2uxu2

y �2uyu2
x u2

y u2
x 4uxuy �2uy �2ux 1

2
66666666666666664

3
77777777777777775

:

ð7bÞ
Compared with the expressions for M and N in [27], the expres-

sions here are simpler and can reduce the computational cost, and
this effect could be much more evident for 3D models.

By relaxing each central moment to its equilibrium counterpart
independently, the post-collision central moments are given by

~C�
i

��� E
¼ ðI� SÞ ~Ci

��� E
þ S ~Ceq

i

��� E
þ ðI� S=2Þ Cij i; ð8Þ

where Ci are the forcing source terms in central moment space, and
the block-diagonal relation matrix is given by,

S ¼ diag ½s0; s1; s1�;
sþ; s�
s�; sþ

� �
; ½sm; s3; s3; s4�

	 

; ð9Þ

with sþ ¼ ðsb þ smÞ=2 and s� ¼ ðsb � smÞ=2. The equilibrium central
moments of f eqi are set equal to the continuous central moments
of the Maxwellian-Boltzmann distribution in continuous velocity
space [14,18,25],

~Ceq
i

��� E
¼ q;0;0;qc2s ;qc

2
s ;0;0;0;qc

4
s

� �>
; ð10Þ

where q is the fluid density, and cs ¼
ffiffiffiffiffiffiffiffi
1=3

p
is the lattice sound

speed. The corresponding EDF is in fact a generalized local equilib-
rium [25,36]. According to He et al. [37], the forcing terms in dis-
crete velocity space are written as

Ri ¼ F
q

ei � uð Þ
c2s

f eqi : ð11Þ

Consistently, the forcing source terms in central-moment space
are defined as [27],

Cij i ¼ NM Rij i ¼ ½0; Fx; Fy;0;0; 0; c2s Fy; c2s Fx; 0�>: ð12Þ
In the streaming step, the post-collision discrete DFs in space x

stream to their neighbors xþ eiDt along the characteristic lines as
usual

f iðxþ eiDt; t þ DtÞ ¼ f �i ðx; tÞ; ð13Þ

where the post-collision discrete DFs are determined by

f �i
�� � ¼ M�1N�1 ~C�

i

��� E
. The hydrodynamics variables are obtained by,

q ¼
X8
i¼0

f i; qu ¼
X8
i¼0

f iei þ DtF=2: ð14Þ

In the present method, the incompressible approximation [38]
is employed, i.e., q ¼ q0 þ dq, and dq is the density fluctuation.
Using the Chapman-Enskog analysis, the incompressible N-S equa-
tion in Eq. (1) can be reproduced in the low-Mach number limit
[25]. The kinematic and bulk viscosities are related to the relax-
ation parameters by m ¼ ð1=sm � 0:5Þc2sDt and n ¼ ð1=sb � 0:5Þc2sDt,
respectively.
2.2. CLBM for the temperature field

In this subsection, a new D2Q5 (the five discrete velocity set is
defined in Eq. (4), ei ¼ eixj i; eiy

�� �� �
i ¼ 0;1; . . .4j� 


) CLBM is pro-
posed to solve the convection-diffusion equation for the tempera-
ture field. Similarly, the raw moments and central moments of the
temperature distribution functions gi can be defined by

kTmn ¼ gi e
m
ixe

n
iy

���D E
; ð15aÞ

~kTmn ¼ gi ðeix � uxÞmðeiy � uyÞn
��� �

: ð15bÞ
In the D2Q5 lattice, the simplified raw-moment set is

also used (rather than the recombined raw-moment set

CT
i

��� E
¼ kT00; k

T
10; k

T
01; k

T
20þ02; k

T
02�20

h i>
used in [35]),

CT
i

��� E
¼ kT00; k

T
10; k

T
01; k

T
20; k

T
02

h i>
; ð16Þ

and so do the recombined central moments ~CT
i

��� E
. Analogously, the

raw moments and central moments can be calculated through a
transformation matrix MT and a shift matrix NT , respectively

CT
i

��� E
¼ MT gij i; ~CT

i

��� E
¼ NT CT

i

��� E
: ð17Þ

Explicitly, MT and NT are expressed as

MT ¼

1 1 1 1 1

0 1 0 �1 0

0 0 1 0 �1

0 1 0 1 0

0 0 1 0 1

2
666666664

3
777777775
; ð18aÞ

NT ¼

1 0 0 0 0

�ux 1 0 0 0

�uy 0 1 0 0

u2
x �2ux 0 1 0

u2
y 0 �2uy 0 1

2
66666664

3
77777775
: ð18bÞ

The collision in central moments can also be written as

~CT;�
i

��� E
¼ ðI� STÞ ~CT

i

��� E
þ ST ~CT;eq

i

��� E
; ð19Þ

where ST ¼ diagðko; k1; k1; k2; k2Þ is the diagonal relaxation matrix.
Similar to the Maxwell-Boltzmann distribution, we define a contin-
uous ‘‘temperature” equilibrium distribution in the continuous
velocity space ðnx; nyÞ,

geq ¼ T
2pc2T

exp �ðn� uÞ2
2c2T

" #
; ð20Þ

where cT is the ‘‘sound speed”. Then we take the important step by
equating discrete central moments of geq

i to the continuous central
moments of geq,

geq
i ðeix � uxÞmðeiy � uyÞn
��� � ¼ Z 1

�1

Z 1

�1
geqðnx � uxÞmðny � uyÞndnxdny:

ð21Þ
Thus the equilibrium values of ~CT

i can be written as

~CT;eq
i

��� E
¼ T;0;0; Tc2T ; Tc

2
T

h i>
: ð22Þ

The post-collision temperature distribution functions g�
i can be

obtained by
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g�
i ¼ M�1

T N�1
T

~CT;�
i

��� E
: ð23Þ

The streaming step for g�
i also takes the form

giðxþ eiDt; t þ DtÞ ¼ g�
i ðx; tÞ: ð24Þ

The temperature T is computed as

T ¼
X4

i¼0
gi: ð25Þ

As shown in Appendix A, the convection-diffusion Eq. (2) can be
recovered by the above D2Q5 CLBM, and the thermal diffusivity is
related to the relaxation parameter through a ¼ ð1=k1 � 0:5Þc2TDt.
Fig. 1. Comparison of the temperature profiles at t� ¼ 2:0 simulated by different
methods.

Fig. 2. Comparison of thermal diffusivities measured by each method at different
values of Ma.
3. Numerical experiments

In this section, we conduct several benchmark cases to verify
the effectiveness and accuracy of the proposed CLBM for incom-
pressible thermal flows. Unless otherwise specified, the lattice
sound speed for the D2Q5 CLBM is set to cT ¼ ffiffiffiffiffiffiffiffi

1=2
p

, the tunable
relaxation parameters for high-order central moments are set to
1.0, and the non-equilibrium bounce-back method [39] and non-
equilibrium extrapolation method [30] are adopted for velocity
and temperature boundary conditions, respectively. It should be
noted that the half-way bounce-back scheme has also been
extended to implement general boundary conditions for the
convection-diffusion equation and shows high accuracy and stabil-
ity. More information on the boundary treatments can be found in
[40,41] and the references cited therein.

3.1. The decay of a temperature wave

Firstly, the decay of a temperature wave on a moving frame is
considered. The problem is specified by the following velocity
and temperature fields:

u ¼ ½0;A�: ð26aÞ

T ¼ T0 þ B sin /ðy� AtÞ½ � expð�/2atÞ: ð26bÞ
where A represents the vertical reference velocity component,
B ¼ 0:01 is the initial amplitude of the temperature wave,
T0 ¼ 1:0 is the reference temperature, / ¼ 2p=L, and L ¼ 100 is
height of the computational domain. Periodic boundary conditions
are used along the x and y axes. The velocity field is given, thus only
the D2Q5 CLBM is adopted to solve the temperature field. Another
two D2Q5 MRT LBMs in [32,41] are also used for comparison, and
they are denoted by MRT-LBM1 and MRT-LBM2, respectively.

Firstly, the case at Mach number Ma ¼ A=cs ¼ 0:3 is considered.
The profiles for the dimensionless temperature T� in different
methods at the time t� ¼ 2:0 are shown in Fig. 1, where
T� ¼ ðT � T0Þ=B and t� ¼ /2at. It is found that the simulation result
of the present CLBM is in good agreement with the analytical solu-
tion, while there are visible differences between the numerical
solutions by the other two methods and the analytical solution.
The measured thermal diffusivity of the simulated fluid is obtained
by measuring the time decay of the temperature wave. Then, the
measured thermal diffusivities of each method at different Mach
numbers are compared in Fig. 2, while the originally given thermal
diffusivity is a ¼ 0:05. For the present D2Q5 CLBM, the measured
thermal diffusivity is independent of the reference velocity (or
Ma) and always agrees with the given value. For the other two
D2Q5 MRT LBMs, the measured diffusivities decrease with the
increase of the reference velocity. To be specific, the relative errors
atMa ¼ 0:3 are around 12% and 8% for MRT-LBM1 andMRT-LBM2,
respectively.
As shown in the above, the present method has better Galilean
invariance compared with the two MRT methods. However, the
mixed derivative terms still exist in the present method, and can-
not be eliminated naturally due to the limit of the D2Q5 lattice (see
in Appendix A). To restore the complete Galilean invariant, addi-
tional correction terms [42] or more symmetrical lattice, such as
D2Q9 lattice, are needed.

3.2. Normal plate velocity problem with a temperature difference

The normal plate velocity problem is a fully developed channel
flow, where the upper plate moves with a uniform velocity u0, and
a uniform normal flow with velocity v0 is injected through the bot-
tom plate and withdrawn from the upper plate. The analytical
solution of the flow is given by [43],

ua

u0
¼ expðRe � y=LÞ � 1

expðReÞ � 1
; ð27Þ

where the Reynolds number is based on the width of the channel, L,
and defined by Re ¼ v0L=m. For the present study, a temperature



628 L. Fei et al. / International Journal of Heat and Mass Transfer 120 (2018) 624–634
difference DT ¼ TH � TL is considered, where TH and TL are the tem-
peratures at upper hot plate and lower cold plate, respectively. The
steady temperature profile satisfies [29],

Ta � TL

DT
¼ expðRePr � y=LÞ � 1

expðRePrÞ � 1
; ð28Þ

where Pr ¼ m=a is the Prandtl number.
In all the simulations, we set TH ¼ 1:0; TL ¼ 0; m ¼ 0:1 and

u0 ¼ 0:02. Firstly, we set the Reynolds number Re ¼ 10;
v0 ¼ Rem=L with L ¼ 50. Periodic boundary conditions are adopted
at the inlet and outlet of channel, and the length of the channel is
covered by 5 grids to save the computational cost. Three simula-
tion cases with Pr ¼ ½0:1;1;10� are conducted to verify the numer-
ical performance of the present method at a wide range of the
Prandtl number. As shown in Fig. 3, the numerical results for the
non-dimensional temperature T� ¼ ðT � T0Þ=DT are in very good
agreement with the analytical solutions.

Then we set the Prandtl number corresponding to air, Pr ¼ 0:71,
with different values of the Reynolds number, Re ¼ ½10;20;30�. The
width of the channel is covered by a series of grid nodes,
L ¼ ½20;40;80;160�, to validate the convergence rate in space.
The relative errors of temperature and velocity are calculated
according to the following definitions,
0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Fig. 3. Comparison of numerical temperature profiles (symbols) and the analytical
solutions (solid lines) at different values of the Pr.

Fig. 4. Relative errors of temperature (left) and velocity (right) change with gr
½2:0013;2:0025;1:9988� (left) and ½1:9895;1:9601;1:9364� (right), respectively.
ET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðT � TaÞ2P

T2
a

s
; Eu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðu� uaÞ2P
u2
a

s
: ð29Þ

The relationships between grid sizes and relative errors of the
present method are plotted in Fig. 4, and the slope of each fitting
line is close to 2.0. This demonstrates that the method proposed
is of second-order convergence rate in space.
3.3. Rayleigh-Bénard convection

In this section, the Rayleigh-Bénard convective flow is con-
ducted to check the ability of simulating incompressible thermal
flows with an external force field. In the 2D Rayleigh-Bénard con-
vective flow, the fluid is enclosed between two parallel stationary
walls, with high temperature TH at the bottom and low tempera-
ture TL at the top, and experiences the gravity. The gravity field
is incorporated by Eq. (3).

The flow is characterized by the length-width ratio of the flow
domain L : H, the Prandtl number Pr ¼ m=a and Rayleigh number
Ra ¼ gbDTH3=ðmaÞ. In the simulations, we set L� H ¼ 60� 30;
Pr ¼ 0:71; TH ¼ 1:05; TL ¼ 0:95, and T0 ¼ ðTH þ TLÞ=2 ¼ 1:0. The
characteristic velocity of the convection is uc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTH

p
, and the

Mach number is defined as Ma ¼ uc=cs. For a given Rayleigh num-
ber, the viscosity is calculated according to m ¼ MacsH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr=Ra

p
. To

set up the simulation, an initial small disturbance is given to the
density field along the horizontal center line,

qðx;H=2Þ ¼ q0 1:0þ 0:001 cosð2px=LÞ½ �; ð30Þ

while the densities at other points are initialized as q0, and
q0 ¼ 1:0.

The characteristic time of the system can be expressed by
tc ¼ H=uc ¼ Hcs=Ma. It is known that the iterations needed for
the convergence are proportional to tc . Firstly, we change Ma from
0.1 to 0.31 with a 0.03 interval, and calculate the needed time steps
until convergence. From Fig. 5, we certainly confirm the linear rela-
tion between the needed time steps and 1=Ma. Throughout the
variation range of Ma, the relative changes of the Nusselt number
(defined in Eq. (31)) are only 0:11%;0:10% and 0:08% for the Ray-
leigh numbers at 2500, 3000, and 5000, respectively. We try to
check the effectiveness and accuracy for a relatively high Ma at a
wider range of Ra. In the following simulations, the Mach number
is set to be Ma ¼ 0:3. In addition, it should be noted that a precon-
ditioned method can also be used to reduce the computational cost
in CLBM [24].
id sizes at Pr ¼ 0:71. The slopes of the fitting lines at Re ¼ ½10;20;30� are



Fig. 5. Time steps needed for convergence change with the reciprocal of Ma.

Fig. 7. Isotherms for Rayleigh-Bénard convective flows. From top to bottom,
Ra ¼ 2000, 10,000 and 50,000.
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According to the linear stability theory, the driven force by the
density variations induced by the temperature variations will be
balanced by the viscous force when Rayleigh number is lower than
a critical value Rac , while if the Rayleigh number is increased
above the threshold, the driving force will dominate and
convection will be induced. To determine the critical Rayleigh
number, we measure the evolution of the maximal vertical
velocity in the system Vmax for a series of Rayleigh numbers,
Ra ¼ ½1702;1704;1706;1708;1710�. It can be seen in Fig. 6 that
Vmax will keep increasing/decreasing approximately linearly in
the early period, depending on Ra. The critical Rayleigh number
is determined by solving zero value for the growth rate of Vmax

with the least-square method. Compared with the exact value in
the linear stability theory, Rac ¼ 1707:76, the value based on our
method, 1706.82, is satisfying.

Flows at different Rayleigh numbers are then simulated. Fig. 7
displays the normalized temperature T � T0ð Þ=DT at Ra ¼ 2000,
10,000 and 50000. When the Rayleigh number increases, we can
see two clear trends in the figures: the mixing of the hot and cold
+ + + + + + + + + + + + + + + + + + +

+

Fig. 6. The evolution of Vmax with time at Ra ¼ ½1702;1704;1706;1708;1710�.
fluids is enhanced, and the temperature gradients near the bottom
and top walls are increased, both of which mean the convective
heat transfer is enhanced in the domain. In the meantime, as
shown in Fig. 8, the vortex is gradually distorted with the increase
of the Rayleigh number, which also means the enhancement of
convection. To quantify this, the Nusselt number in the system is
calculated [44],

Nu ¼ 1þ uyT
� �

H
aDT

; ð31Þ

where the square bracket represents the average over the whole
system. Nusselt numbers obtained at various Rayleigh numbers
are compared with the reference data in Table 1. The simulation
results are in good agreement with the analytical values in [44].
On the whole, the relative errors for the present method are smaller
than the method in [45], while only 60� 30 nodes are used in the
present method compared to 100� 50 nodes in [45].

In the end, we illustrate the snapshot of the temperature field at
Ra ¼ 109 in Fig. 9. It is interesting to find that the proposed method
is stable for Ra reaching up to 109 with only 220 nodes in the ver-
tical direction. Hence, the commendable stability of the method is
confirmed. As also shown in Appendix B, by comparing the achiev-
able Re for the lid-driven cavity flow at the samemesh, it is demon-
strated that CLBM improves the numerical stability significantly
compared to the BGK-LBM. However, the study of high-Ra or
high-Re thermal flows is beyond the scope of the current paper.



Fig. 8. Streamlines for Rayleigh-Bénard convective flows. From top to bottom, Ra ¼ 2000, 10,000 and 50,000.
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4. Conclusions

In this paper, we have developed a central-moments-based lat-
tice Boltzmann method (CLBM) for incompressible thermal flows.
Combined with the D2Q9 CLB equation for the flow field, another
D2Q5 CLB equation is designed to reproduce the temperature
equation. Through the Chapman-Enskog analysis, the macroscopic
governing equations for incompressible thermal flows can be
recovered. Compared with some existing thermal LBMs
[32,35,41], the proposed model achieves better Galilean invari-
ance. Numerical simulations for several typical problems confirm
the accuracy, efficiency, and stability of the present method. It is
shown that a relatively high Mach number can be adopted in the
present method for Rayleigh-Bénard convective flow (at Ra 6
50,000), thus the computational cost can be reduced significantly.
The method developed retains the simplicity and numerical effi-
ciency of the standard LBM. Furthermore, it is straightforward to
extend this method to simulate 3D problems. Besides, the model



Table 1
Comparison of Nusselt number between the present numerical results and the results in Refs. [44,45].

Present method Results in Ref. [45]

Cases Analytic Nu [44] Nu Relative error Nu Relative error

2000 1.212 1.213 0.08 – –
2500 1.475 1.477 0.13 1.474 0.07
3000 1.663 1.667 0.24 – –
5000 2.116 2.121 0.24 2.104 0.57
10,000 2.661 2.672 0.41 2.664 0.64
20,000 3.258 3.271 0.4 – –
30,000 3.662 3.668 0.16 3.605 1.56
50,000 4.245 4.229 0.38 4.133 2.64

Fig. 9. Snapshot of the temperature field at Ra ¼ 109.
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developed can also be applied to other convection-diffusion prob-
lems directly.
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Appendix A. Chapman-Enskog analysis of the CLBM for
temperature field

The explicit expressions for M�1
T and N�1

T are as follows.

M�1
T ¼

1 0 0 �1 �1
0 1=2 0 1=2 0
0 0 1=2 0 1=2
0 �1=2 0 1=2 0
0 0 �1=2 0 1=2

2
6666664

3
7777775
; ð32Þ
N�1
T ¼

1 0 0 0 0
ux 1 0 0 0
uy 0 1 0 0
u2
x 2ux 0 1 0

u2
y 0 2uy 0 1

2
6666664

3
7777775
: ð33Þ

According to Eqs. (17) and (22), we can obtain

CT;eq
i

��� E
¼ N�1

T
~CT;eq
i

��� E
¼ ½T; Tux; Tuy; Tðc2T þ u2

x Þ; Tðc2T þ u2
yÞ�

>
: ð34Þ

The collision step in Eq. (19) and streaming step in Eq. (24) and can
be integrated into one step as,

giðxþ eiDt; t þ DtÞ � giðx; tÞ ¼ �M�1
T N�1

T STNTMT gi � geq
i

�� �
: ð35Þ

According to the Chapman-Enskog expansion, the following
multiscale expansions are usually introduced,

giðxþ eiDt; t þ DtÞ ¼
X1

i¼0

en

n!
ð@t þ ei � rÞngiðx; tÞ; ð36aÞ

gi ¼ gð0Þ
i þ egð1Þ

i þ e2gð2Þ
i þ . . . ; @t ¼ e@t1 þ e2@t2; r ¼ eri;

ð36bÞ
where e is the expansion parameter. Using these expansions, the
D2Q5 CLBM in Eq. (35) can be written in the consecutive orders
of e,

Oðe0Þ : gð0Þ
i ¼ geq

i ; ð37aÞ

Oðe1Þ : ð@t1 þ ei � r1Þgð0Þ
i ¼ � 1

Dt
M�1

T N�1
T STNTMT gð1Þ

i

��� E
; ð37bÞ
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Oðe2Þ : @t2g
ð0Þ
i þ ð@t1 þ ei � r1Þgð1Þ

i þ Dt
2
ð@t1 þ ei � r1Þ2gð0Þ

i

¼ � 1
Dt

M�1
T N�1

T STNTMT gð2Þ
i

��� E
: ð37cÞ

If we multiply the matrix MT on both sides of Eq. (37), the cor-
responding equations in the raw-moment space can be rewritten
as,

Oðe0Þ : CT;ð0Þ
i ¼ CT;eq

i ; ð38aÞ

Oðe1Þ : ðI@t1 þ Ex@x1 þ Ey@y1ÞCT;ð0Þ
i ¼ � 1

Dt
N�1

T STNTC
T;ð1Þ
i ; ð38bÞ

Oðe2Þ : @t2C
T;ð0Þ
i þ ðI@t1 þ Ex@x1 þ Ey@y1Þ I� 1

2
N�1

T STNT

	 


CT;ð1Þ
i ¼ � 1

Dt
N�1

T STNTC
T;ð2Þ
i ; ð38cÞ

where Ei ¼ MT ½diagðe0i; e1;i; . . . ; e4iÞ�M�1
T ði ¼ x; yÞ can be written

explicitly as

Ex ¼

0 1 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

2
66666664

3
77777775
; ð39aÞ

Ey ¼

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

2
66666664

3
77777775
: ð39bÞ

Writing out the equations for the conserved raw moment CT
0,

the following equations can be obtained,

Oðe0Þ : CT;ð0Þ
0 ¼ CT;eq

0 ; ð40aÞ

Oðe1Þ : @t1C
T;ð0Þ
0 þ @x1C

T;ð0Þ
1 þ @y1C

T;ð0Þ
2 ¼ � k0

Dt
CT;ð1Þ

0 ; ð40bÞ

Oðe2Þ : @t2C
T;ð0Þ
0 þ @t1 1� k0

2

	 

CT;ð1Þ

0

� �
þ @x1 1� k1

2

	 

CT;ð1Þ

1

� �

þ @y1 1� k1
2

	 

CT;ð1Þ

2

� �

¼ � k0
Dt

CT;ð2Þ
0 : ð40cÞ

According to Eq. (40a), we have CT;ðnÞ
0 ¼ 0ðn > 0Þ. From Eq.

(38b), we can get,

CT;ð1Þ
1 ¼ �Dt

k1
@t1ðTuxÞ þ @x1ðTc2T þ Tu2

x Þ
h i

; ð41aÞ

CT;ð1Þ
2 ¼ �Dt

k1
@t1ðTuyÞ þ @y1ðTc2T þ Tu2

yÞ
h i

: ð41bÞ

Substituting Eqs. (41) into Eq. (40c), we can get

Oðe2Þ : @t2T�r1 Dt
1=k1�0:5 0

0 1=k1�0:5

	 

@t1ðTuxÞþ@x1ðTc2T þTu2

x Þ
@t1ðTuyÞþ@y1ðTc2T þTu2

yÞ

 !" #
¼ 0:

ð42Þ
The term @t1ðTuxÞ can be rewritten as,

@t1ðTuxÞ ¼ ux@t1ðTÞ þ T@t1ðuxÞ: ð43Þ

Combining Eq. (40b) with the incompressible N-S equation, it can
be expressed as

@t1ðTuxÞ¼�ux @x1ðTuxÞþ@y1ðTuyÞ
� ��T ux@x1ðuxÞþuy@y1ðuxÞþ@x1ðpÞ=q0�Fx1

� �
¼�@x1ðTu2

x Þ�@y1ðTuxuyÞ�T@x1ðpÞ=q0þTFx1;

ð44Þ

and similar expression can be given for @t1ðTuyÞ. It should be noted
that the above expressions for @t1ðTuxÞ and @t1ðTuyÞ also apply to
many other thermal LBMs [32,35,41]. The four terms on the right
side of Eq. (44) can be discussed separately. Firstly, in single-
phase flows, numerical errors by the last term are often negligible
[42]. Then, as is known, dp ¼ c2s dq, thus the third term is also neg-
ligible in the low-Mach limit. Specifically, in all the simulations at
Ma ¼ 0:3 in Section 3.3, the measured dq is always less than 0.05.
The first two terms are the sources of non-Galilean artifact. Com-
pared to the methods in [32,35,41], the linear terms can be restored
in the present method due to the choice of raw moment equilibria
in Eq. (34). After discarding the last two terms and combining Eqs.
(44), (42) and (40b), we can obtain

@tT þ u � rT ¼ r � arTð Þ � a=c2T @xyð2TuxuyÞ
� �

; ð45Þ

where the thermal diffusion coefficient, a ¼ ð1=k1 � 0:5Þc2TDt, is
assumed to be spatially independent. Analogously, for the methods
in [32,35,41], we can obtain

@tT þu � rT ¼r � arTð Þ � a=c2T @xyð2TuxuyÞ þ @xxðTu2
x Þ þ @yyðTu2

yÞ
h i

:

ð46Þ
As can be seen, the error terms introduced by the present

method are less than those by the methods in [32,35,41]. By choos-
ing a larger cT , the errors terms can be further decreased to some
extent. Another interesting argument is that at least half of the
errors in [32,35,41] can be removed in the present method, under
the assumption of isotropic velocity gradient, due to the fact
u2
x þ u2

y P 2uxuy. To eliminate the mixed derivative terms, addi-
tional correction terms [42] or the D2Q9 lattice can be adopted.
In general, the convection-diffusion equation for the temperature
field can be recovered by the present D2Q5 CLBM in the low-
Mach limit.
Appendix B. Comparison between the present CLBM and the
stand BGK-LBM

The 2D lid-driven cavity flow is simulated to fully exploit the
stability property of the algorithm. The top wall of a square cavity
moves along x direction with a constant velocity u0 ¼ 0:1, while
the other walls are fixed. The Reynolds number is defined as
Re ¼ u0L=m, where L is the cavity length (height). By choosing
L ¼ 80, a series of numerical cases are carried out using the present
D2Q9 CLBM and the standard BGK-LBM [1]. The standard half-way
bounce-back scheme is used for all the walls, and the tunable
relaxation parameters in CLBM are set to be 1.0. As can be seen
in Figs. 10 and 11, unphysical numerical oscillations occur at
Re ¼ 800 for the standard BGK-LBM, while the density field and
velocity field are still smooth at Re ¼ 2800 for the present CLBM.



Fig. 10. Contour lines for density (left) and vertical velocity component (right) at Re ¼ 800 by standard BGK-LBM. A total of 15 equally divided contours, between the
minimum and the maximum, are plotted.

Fig. 11. Contour lines for density (left) and vertical velocity component (right) at Re ¼ 2800 by CLBM. A total of 15 equally divided contours, between the minimum and the
maximum, are plotted.
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