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Quantitative historical analysis uncovers a single
dimension of complexity that structures global
variation in human social organization
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Do human societies from around the world exhibit similarities in
the way that they are structured, and show commonalities in the
ways that they have evolved? These are long-standing questions
that have proven difficult to answer. To test between competing
hypotheses, we constructed a massive repository of historical and
archaeological information known as “Seshat: Global History Data-
bank.” We systematically coded data on 414 societies from 30 regions
around the world spanning the last 10,000 years. We were able to
capture information on 51 variables reflecting nine characteristics
of human societies, such as social scale, economy, features of gover-
nance, and information systems. Our analyses revealed that these
different characteristics show strong relationships with each other
and that a single principal component captures around three-
quarters of the observed variation. Furthermore, we found that dif-
ferent characteristics of social complexity are highly predictable across
different world regions. These results suggest that key aspects of
social organization are functionally related and do indeed coevolve
in predictable ways. Our findings highlight the power of the sciences
and humanities working together to rigorously test hypotheses
about general rules that may have shaped human history.

cultural evolution | sociopolitical complexity | comparative history |
comparative archaeology | quantitative history

he scale and organization of human societies changed dra-
matically over the last 10,000 y: from small egalitarian groups
integrated by face-to-face interactions to much larger societies with
specialized governance, complex economies, and sophisticated
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information systems. This change is reflected materially in public
buildings and monuments, agricultural and transport infrastruc-
ture, and written records and texts. Social complexity, however, is
a characteristic that has proven difficult to conceptualize and
quantify (1, 2). One argument is that these features of societies are
functionally interrelated and tend to coevolve together in pre-
dictable ways (3, 4). Thus, societies in different places and at dif-
ferent points in time can be meaningfully compared using an overall
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Significance

Do human societies from around the world exhibit similarities
in the way that they are structured and show commonalities in
the ways that they have evolved? To address these long-
standing questions, we constructed a database of historical
and archaeological information from 30 regions around the
world over the last 10,000 years. Our analyses revealed that
characteristics, such as social scale, economy, features of gov-
ernance, and information systems, show strong evolutionary
relationships with each other and that complexity of a society
across different world regions can be meaningfully measured
using a single principal component of variation. Our findings
highlight the power of the sciences and humanities working
together to rigorously test hypotheses about general rules that
may have shaped human history.

measure of social complexity (2). Several researchers have attemp-
ted to come up with a single measure to capture social complexity
(5-7), but a more common approach has been to use proxy mea-
sures, such as the population size of the largest settlement (7, 8),
number of decision-making levels (9), number of levels of settlement
hierarchy (10), or extent of controlled territory (11). Others have
criticized this approach on the grounds that these proposed mea-
sures focus too narrowly on size and hierarchy (12, 13) or that there
are multiple dimensions or variable manifestations of complexity
(14). However, another common view is that different societies
have unique histories and cannot be meaningfully compared in
this way (15). Indeed, most historians have abandoned the search
for general principles governing the evolution of human societies
(16, 17). However, although every society is unique in its own
ways, this does not preclude the possibility that common features
are independently shared by multiple societies. How can we study
both the diversity and commonalities in social arrangements found
in the human past?

In this paper, we address these issues by building a global historical
and archaeological database that takes into account the fragmentary
and disputed nature of information about the human past. To test
hypotheses about the underlying structure of variation in human
social organization, we apply a suite of statistical techniques to
these data, including principal component analysis (PCA). We then
compare evolutionary trajectories in world regions by plotting the
estimated first principal component (PC) of variation against time.

Building a Comparative Database of Human History

Previous attempts to address these questions have been limited
by a reliance on verbal arguments (15, 18, 19), comparisons in-
volving a small number of polities (20, 21), noncomprehensive
data samples (3, 22), or nonsystematic methods of data coding
and purely descriptive analyses (6, 23-25). To advance beyond
purely theoretical debates and comparisons based on limited
samples, we have built a massive repository of systematically
collected, structured historical and archaeological data known as
“Seshat: Global History Databank” (26) (Materials and Methods).
In collecting data, we used a targeted, stratified sampling technique
that aims to maximize the variation in forms of social organization
captured from as wide a geographic range as possible [thus min-
imizing pseudoreplication of data points (27)]. Specifically, we
divided the world into 10 regions and in each, selected three
locations or “Natural Geographic Areas” (NGAs), representing
early, intermediate, and late appearance of politically centralized
societies (Fig. 1). The construction of this databank has been accom-
plished in collaboration with a large number of historical and
archaeological experts. Our goal is to capture the state of the
art knowledge about past societies, including where information
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is uncertain or there are disagreements between researchers
(Materials and Methods). The online version of the databank
(seshatdatabank.info/) illustrates how entries in the databank are
supported by explanations of coding choices and references (SI
Appendix, SI Methods).

Our unit of analysis is a polity: an independent political unit
that ranges in scale from groups organized as independent local
communities to territorially expansive, multiethnic empires. To
populate the databank, we coded information on all identifiable
polities (n = 414) that occupied each of the 30 NGAs at 100-y
time slices from the beginnings of agriculture (in some cases, as far
back as 9600 BCE) to the modern period (in some cases, as late as
1900 CE) (SI Appendix, SI Methods). To capture different aspects of
social complexity, we systematically collected data on 51 variables
that could be reliably identified and categorized from the historical
and archaeological records. These variables were then aggregated
into nine “complexity characteristics” (CCs) (Fig. 24). The first set
of variables relates to the size of polities: polity population (CC1),
extent of polity territory (CC2), and “capital” population (the size of
the largest urban center; CC3). A second set of variables measures
hierarchical complexity (CC4), focusing on the number of control/
decision levels in the administrative, religious, and military hierar-
chies and on the hierarchy of settlement types (village, town, pro-
vincial capital, etc.). Government (CC5) variables code for the
presence or absence of official specialized positions that perform
various functions in the polity: professional soldiers, officers, priests,
bureaucrats, and judges. This class also includes characteristics of
the bureaucracy (e.g., presence of an examination system), the ju-
dicial system, and specialized buildings (e.g., courts). Infrastructure
(CCb) captures the variety of observable structures and facilities
that are involved in the functioning of the polity. Information sys-
tem (CC7) codes the characteristics of writing, record-keeping, etc.
We also record whether the society created literature on specialized
topics, including history, philosophy, and fiction (texts; CCS).
Finally, economic development is reflected in monetary system
(CC9), which represents the “most sophisticated” monetary in-
strument present in the coded society, and indicates the degree
of economic complexity that would be possible. Our data collection
process also allows us to incorporate uncertainty in this coding or
disagreement among sources (Materials and Methods).

Testing Hypotheses About the Evolution of Social
Complexity
To test between the different hypotheses laid out above, we analyzed
these data using PCA, which assesses the extent to which different
variables are tapping into shared dimensions of variation. We
expected CC1-CC3 to cluster tightly together, as they all measure
size, albeit in somewhat different ways. Beyond this, if the variation
in social organization across different societies can be meaningfully
captured by a single measure of social complexity, we would pre-
dict that the different CCs would correlate strongly with each other
and be captured in one PC of variation onto which all CCs load. If
social complexity is predictably multidimensional, then other PCs
capturing significant amounts of variation might also be present.
We hypothesized that social complexity could be captured by
two PCs (7). Size variables (CC1-CC3) should exhibit a strong
relationship with hierarchical organization (CC4), as hierarchy is
often thought to be a necessary mechanism for enabling effective
information flows in large polities (19). We refer to the combi-
nation of size and hierarchy as “scale” (Fig. 24). The other variables
might form another dimension of “nonscale” complexity, perhaps
reflecting specialization of roles and the products that emerge from
such specialization. Another possibility is that these CCs covary
in other ways or are free to vary independently (that is, they do not
evolve together in a predictable manner). In the latter situation, we
would not expect correlational analysis or the PCA to reveal any
structure in terms of the relationships of these variables with each
other.
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Fig. 1. Locations of the 30 sampling points on the world map (the size of the dot reflects the antiquity of centralized societies within the world region). The

key to the numbers is in S/ Appendix, Table S1.

Contrary to these expectations, all nine CCs showed substantial
and statistically significant correlations with each other, with coef-
ficients ranging from 0.49 to 0.88 (SI Appendix, Table S4). We found
that a single PC, PC1, explains 77.2 + 0.4% of variance. The pro-
portion of variance explained by other PCs drops rapidly toward
zero (Fig. 2B). Furthermore, all CCs load equally strongly onto
PC1, indicating that PC1 captures contributions from across the
multiple measures of social organization used here (Fig. 2C and SI

Appendix). This result provides strong support for the hypothesis that
social complexity can be captured well by a single measure. In running
these analyses, we have to take into account a number of factors,
including missing data and various sources of autocorrelation. How-
ever, our results are robust to a large number of different assumptions
and potential sources of error and bias (SI Appendix, SI Results).
We can also test directly the idea that societies that developed
on distant world continents share enough similarities in their
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Fig. 2. (A) Nine CCs (ovals) aggregating 51 variables (S/ Appendix has details on all CCs). Line width and color are proportional to the correlation coefficients

between CCs (darker and thicker lines indicate stronger correlations). All CCs

are significantly correlated with one another (correlation coefficients range

between 0.49 and 0.88). Some variables show stronger linkages with each other, such as the scale variables (ovals shaded in gray), whereas money is less
strongly correlated with the other variables. (B) Proportion of variance explained by PCs. (C) Factor loadings for CCs on PC1 indicating strong contributions by
all CCs to a single dimension of social complexity. CP, capital population; G, government; |, infrastructure; L, levels; M, money; PP, polity population; PT, polity

territory; T, texts; W, information system (writing).
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Table 1. Cross-validation results for out of sample prediction of
CCs across all world regions

Predicted CC Overall p?
Polity population 0.84
Polity territory 0.76
Capital population 0.71
Levels of hierarchy 0.60
Government 0.53
Infrastructure 0.62
Information system 0.59
Texts 0.73
Monetary system 0.53

Prediction accuracy is measured with prediction p? (S Appendix, Table S2).
Overall p? values are calculated as an average of the p? values weighted by
the number of polities from which they are drawn.

complexity dimensions to allow for meaningful comparisons. We
used the statistical technique of k-fold cross-validation (28), in
which models are fitted on one set of data (“training set”) and
evaluated on another independent set (“testing set”). We re-
served all data for polities in a particular world region, such as
North America, as the testing set; developed predictive models
on the rest of the data (by regressing each CC in turn on other
CGs); and then, used the fitted models to predict each CC for
North American polities. We then repeated this analysis for all
other world regions. The accuracy of prediction is measured by
the coefficient of prediction, p?, which approaches one if pre-
diction is very accurate, takes the value of zero when prediction
is only as good as simply using the mean, and can take negative
values if model prediction is worse than the mean.

Our results show that the values of CCs can be predicted by
knowledge of other CCs (Table 1), and as Table 2 shows, median
p?* ranges between 0.08 (Southeast Asia) and 0.91 (North Amer-
ica), indicating that this predictive ability holds across all world
regions. Low p? values do occur for some variables and seem to be
lowest for those regions with the fewest number of polities to be
predicted (SI Appendix, SI Results). This is to be expected, as with
fewer cases to predict, there is less chance for general relationships
to be detected. Some decreases in p? may also occur if smaller
societies adopt some of the features, which make up CCs, from
other societies, because they may be useful in dealing with larger
societies (perhaps especially aspects of money and writing). Such
selective adoption may not necessarily lead to the rapid devel-

Table 2. Cross-validation results for out of sample prediction of
CCs summarized for different world regions
2

P
Predicted region Median Minimum Maximum n

Africa 0.72 0.37 0.90 a1
Central Eurasia 0.63 -0.38 0.86 9
East Asia 0.70 0.30 0.93 34
Europe 0.53 -0.31 0.84 43
North America 0.91 0.79 0.97 11
Oceania—Australia 0.14 -3.21 0.97 1
South America 0.74 —24.57 0.97 5
South Asia 0.46 -0.05 0.69 12
Southeast Asia 0.08 -4.27 0.91 8
Southwest Asia 0.71 0.19 0.79 39
All regions 0.62 0.53 0.84 203

Prediction accuracy is measured with prediction p? (S Appendix, Table S2).
Median, minimum, and maximum indicate the median, smallest, and largest
p? values across the nine CCs for the region, respectively.
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opment of other aspects of complexity. Lower p? may also occur if
some traits are retained when others are lost (see below).

Comparing Evolutionary Trajectories

Our results, thus, indicate that there is striking similarity in the
way that the societies in our global historical sample are organized.
Examining PC1 enables us to compare how social complexity
evolved in different parts of the globe over time. We plotted PC1
values estimated for each polity that occupied each of the 30 NGAs
at 100-y time intervals. Fig. 3 compares the trajectories of the NGAs
with early appearance of politically centralized societies in each
of the 10 world regions (S Appendix has all 30 trajectories). These
trajectories indicate a general increase in complexity over time,
albeit with occasionally substantial decreases in complexity (29).
This comparison shows that there are crucial differences in the
timing of takeoff and the rate of change as well as level of social
complexity reached in different regions by 1900—differences that
become clearly revealed through the analyses performed here. For
example, although it is well-known that complex societies of the
Americas emerged later than those in Eurasia, using our data, we
can quantify their differences in social complexity. The difference
in PC1 levels indicates that societies in the Americas were not as
complex as those from Eurasia at time of contact, which may be a
contributing factor in explaining why European societies were able
to invade and colonize the Americas (30).

The tight relationships between different CCs provide support
for the idea that there are functional relationships between these
characteristics that cause them to coevolve (3). Scale variables
are likely to be tightly linked, since increases or decreases in size
may require changes in the degree of hierarchy (both too few and
too many decision-making levels create organizational problems)
(19). A similar argument has been put forward for size and gov-
ernance (20). The production of public goods, such as infrastruc-
ture, may require solutions to collective action problems (31), and
these can be provided by governance institutions and professional
officials (32). Despite these linkages, because of their nature, dif-
ferent CCs are likely to show different temporal dynamics. Levels
of nonscale characteristics, such as information systems, monetary
systems, or infrastructure, may be retained and used even if a polity
does decrease in size. Indeed, by retaining such features, the scale
of the polity may more readily bounce back and return to its former
level. This cultural continuity may be one reason why the trends that
we see in our data are for social complexity to increase over time in
a cumulative, ratchet-like manner (3, 33-35). For example, polities
in our Italian NGA had writing, texts, and coins before the dramatic
rises in scale of the Roman republic and empire, and they retained
these features after the fall of Rome.

Discussion

One major conclusion from these analyses is that key aspects of
human social organization tend to coevolve in predictable ways.
This result supports the hypothesis that there are substantial
commonalities in the ways that human societies evolve. Thus,
societies can be meaningfully compared along a single dimen-
sion, which can be referred to as social complexity. Our analyses
suggest that the estimated first PC of social complexity can be
interpreted as a composite measure of the various roles, insti-
tutions, and technologies that enable the coordination of large
numbers of people to act in a politically unified manner. How-
ever, as noted in the Introduction to this paper, the term “social
complexity” has previously been defined and discussed in many
ways. Indeed, complexity is a term that has many colloquial mean-
ings, and there are many valid ways in which it could be applied to
human social organization. For example, the kinship systems of
some Australian Aboriginal groups, such as the Aranda, involve
many complicated rules that determine who can marry whom
(36, 37), and Turkana pastoralists have sophisticated social rules
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Fig. 3. Trajectories of social complexity in 10 world regions quantified by
PC1 values for locations where centralized, hierarchical polities first appeared in a
particular region. (A) Africa and east Asia. Broken lines indicate 95% confidence
intervals. (B) Southwest Asia, south Asia, Europe, and central Asia. (C) Southeast
Asia, North America, South America, and Oceania. Confidence intervals for B and C
are shown in S/ Appendix, Figs. $4 and S5. PC1 has been rescaled to fall between
0 (low complexity) and 10 (high complexity) to aid interpretation. Flat horizontal
lines indicate periods when there is no evidence of change from our polity data.

and norms that enable them to join together in large groups to
conduct cooperative raiding missions (38).

Building historical databases, such as Seshat, allows us to take
the vast amount of information about the human past and use it
to test and reject competing hypotheses in the same cumulative
process that characterizes the sciences (39, 40). It is important to
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emphasize that we attach no normative judgment to the measure
of social complexity that we have identified here; more complex
societies are not necessarily “better” than less complex societies.
We need to separate out these issues as well as ethnocentric
judgments about non-European societies (2) from the kind of
questions about how societies have actually evolved that we
address here (3).

Our purpose here is not to propose that one definition of
social complexity is superior to another. Instead, by supplying
evidence that at least some aspects of human societies evolve in
predictable and interconnected ways, this study illustrates that it
is possible to move beyond the kind of verbal arguments that too
often dominate debates about the evolution of human social
organization. Furthermore, quantitative comparative analysis forces
us to be more explicit about the evidence needed to support dif-
ferent claims and brings greater clarity to debates and discussions.
It is important to recognize that, in any study, including this one,
there are many subjective judgments about the coding of variables.
Our goal in establishing the databank is to provide a summary of
what is currently known about past human societies based on the
literature and the expert knowledge of academics. It is not our aim
to provide a more objective or definitive representation of such
evidence but rather, to make the decisions and assumptions behind
our data more explicit than has often been the case in the past. Our
databank thus allows others viewing these data to challenge these
decisions and provide alternative assessments. Future analyses can
then assess whether alternative coding decisions substantially affect
the results presented here.

The choice of variables and CCs themselves is also an important
consideration in evaluating these results. We have attempted to be
inclusive by choosing variables that would not favor particular
forms of governance from certain parts of the world as being more
complex. The variables are broad enough to allow for such features
to come from a variety of specific institutions and are not biased
toward Western forms of governance, which ultimately have their
origins in early states in Greece and Mesopotamia. Our govern-
ment variables (CC5), for example, capture the degree of special-
ization and professionalization of those involved in decision-making
in sociopolitical affairs, a characteristic that has long been central to
discussion of social complexity in different parts of the world (41).
Our information system and texts variables (CC7 and CCS, re-
spectively) capture the extent to which different types of informa-
tion are being recorded and transmitted and reflect diversity and
specialization in learning. Such information is potentially important
in organizing societies or enabling societies to solve adaptive prob-
lems. Again, the variables within this category are broad enough to
not be specific to any particular cultural tradition a priori. In
particular, writing has been independently invented in such distant
world regions as western Eurasia, east Asia, and Mesoamerica. As
with the coding of specific variables, future analyses could assess
whether the inclusion of alternative variables substantially affects
the results presented here. Importantly, if our choice of variables
was biased toward certain cultural-historical traditions, then this
would reduce the correlations between different aspects of com-
plexity, and these patterns would be different in different parts of
the world. However, the overall high degree of correlation between
CGCs, as our cross-validation results indicate, suggests that the
patterns that we have identified are relatively stable across regions.

The approach that we have taken in this paper can be used to
resolve other long-standing controversies in the study of human
societies. For example, some researchers have argued that traditional
approaches to social complexity have overemphasized hierarchical
relationships and did not pay enough attention to more horizontal
or heterarchical forms of complexity (13, 42). Power relationships
within societies can range from being autocratic or exclusionary
(certain individuals or groups aim to control sources of power) to
more corporate/collective, in which power is broadly shared across
different sectors of societies (12, 43, 44). Other authors have
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identified additional patterns that might be seen in human social
evolution (21, 45), which can be fruitfully studied with the ap-
proach in this article. Indeed, some of the features that we have
already coded, such as types and numbers of official positions, could
be important in addressing such issues. We are already collecting
data to test the idea that the balance between autocratic and
collective forms of power has changed systematically over time,
with autocratic forms being more prevalent in chiefdoms and
early states. The emergence of institutions that held despotic
leaders to account is argued to have occurred later (26), perhaps
in connection with the emergence of certain religions (46, 47).

Our approach is also well-suited to go beyond identifying
patterns and investigate the processes of sociopolitical evolution.
The systematic compilation of long-term diachronic data for
multiple variables on a large number of societies has been rel-
atively rare in comparative history and archaeology (refs. 20, 35,
and 48-50 have comparative studies of evolutionary trajectories
for a smaller number of cases or time periods). Previous large-
scale comparative approaches have generally focused on comparing
evolutionary outcomes (end points) or snapshots at a single period
of time rather than entire long-term trajectories (25, 51-54). By
analyzing trajectories, we can both examine the processes that lead
to variation in human societies across space and time and also take
into account the historical changes that are contingent on the
particular conditions and past history of the societies involved
(3, 4, 55, 56).

In this study, the focus on looking at comparative changes over
time enables us to investigate questions about the tempo of
evolutionary change in human social systems. One pattern that is
already apparent (Fig. 3 and SI Appendix, Fig. S6) is that many
trajectories exhibit long periods of stasis or gradual, slow change
interspersed with sudden large increases in the measure of social
complexity over a relatively short time span. This pattern is
consistent with a punctuational model of social evolution, in
which the evolution of larger polities requires a relatively rapid
change in sociopolitical organization, including the development
of new governing institutions and social roles, to be stable (3, 4,
57). One example that has been investigated in previous work is
the emergence of bureaucratic forms of governance, which tend
to develop around the time when polities first extend political
control beyond more than a day’s round trip from the capital
(20). A related idea is that, if there are strong relationships be-
tween these variables and if change is relatively rapid, then so-
cieties may tend to evolve toward certain types of sociopolitical
organization based on associations between certain combinations
of traits (3, 24, 57). Cluster analysis of PC1 shows some initial
support for this idea, indicating a clear distinction between large
societies that exhibit many of the nonscale features of complexity
and smaller societies that lack most of these features, with other
potential groupings within these clusters (SI Appendix, SI Dis-
cussion and Figs. S12 and S13).

Our data also indicate a shift toward more complex societies
over time in a manner that lends support to the idea of a driving
force behind the evolution of increasing complexity (3, 10, 58,
59) (SI Appendix, SI Discussion, Fig. S11, and Table S9). Such a
driven trend is consistent with the hypothesis that competition
between groups, particularly in the form of warfare, has been an
important selective force in the emergence and spread of large,
complex societies (10, 11, 60). In future work, the kind of sys-
tematic approach that we have used here will allow us to assess
the large number of alternative mechanisms that have been
proposed to explain the evolution of social complexity (2, 11, 14,
26). We are currently expanding the Seshat databank to collect
information on agricultural productivity, warfare, religion, ritual,
institutions, equity, and wellbeing in past societies to assess such
competing hypotheses (26, 47, 61, 62).

Our focus in this paper has been on the increase in social com-
plexity over time. However, understanding the causes of collapses
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and decreases in social complexity is an equally important research
topic. As is clear in the evolutionary trajectories (Fig. 3 and S/
Appendix, Fig. S6), declines in social complexity, some quite dra-
matic, are frequently seen in most NGAs. Furthermore, some of
the large decreases are “hidden” when a polity collapses, but the
NGA is immediately taken over by another large-scale society
nearby. While different analytical approaches than the ones used
in this article and additional data will be needed to study the
processes explaining social collapse, such an investigation is entirely
within the scope of the Seshat project.

In summary, our results indicate that it is indeed possible to
meaningfully compare the complexity of organization in very
different and unconnected societies along a single dimension
(6, 30). Although societies in places as distant as Mississippi
and China evolved independently on different continents and
followed their own trajectories, the structure of social organi-
zation, as captured by the interrelations between different CCs, is
broadly shared across all continents and historical eras. Key ele-
ments of complex social organization have thus coevolved in highly
consistent ways across time and space. Differences in the timing of
takeoff, the overall rate of increase, and the depth of periodic de-
clines in social complexity provide us with highly informative data
for testing theories of social and cultural evolution. Our databank
was built via a collaborative relationship with humanities scholars
who provided expert knowledge of past societies and helped
guide data collection at all stages. This paper has shown the power
of the sciences and the humanities working together to help us
better understand the past by testing and rejecting alternative hy-
potheses about the general rules that have shaped human history.

Materials and Methods

Data. Data were collected as part of “Seshat: Global History Databank"” (26)
(S Appendix, SI Methods). We collected data in a systematic manner by di-
viding the world into 10 major regions (Fig. 1 and S/ Appendix, Fig. S1 and
Table S1). Within each region, we selected three NGAs to act as our basic
geographical sampling unit. Each NGA is spatially defined by a boundary
drawn on the world map that encloses an area delimited by naturally occurring
geographical features (for example, river basins, coastal plains, valleys, and
islands).

Within each world region, we looked for a set of NGAs that would allow us
to cover as wide a range of forms of social organization as possible. Ac-
cordingly, we selected three NGAs that varied in the antiquity of centralized,
stratified societies (giving us one early-complexity, one late-complexity, and
one intermediate-complexity NGA per region).

Our unit of analysis is a polity, an independent political unit that ranges in
scale from villages (local communities) through simple and complex chief-
doms to states and empires. To code social complexity data, for each NGA, our
team chronologically listed all polities that were located in the NGA or
encompassed it (S/ Appendix, SI Methods has a discussion of how we deal
with cases where identifying a single polity is not appropriate). For each
NGA, we start at a period just before the Industrial Revolution (typically
1800 or 1900 CE depending on the location) and go back in time to the
Neolithic (subject to the limitation of data). We chose a temporal sampling
rate of 100 y, meaning that we only included polities that spanned a century
mark (100, 200 CE, etc.) and omitted any polities of short duration that only
inhabited an NGA between these points. Data collection was accomplished
by a team of research assistants guided by archaeologists and historians who
are experts in the sampled regions and time periods. These experts also
checked all data collected by research assistants. SI Appendix, SI Methods
contains details about coding procedures, including how we decided on the
variables to include in the Seshat codebook and how we explicitly engaged
with such issues as missing data, uncertainty, and disagreement between
experts. We have created a website (seshatdatabank.info/) that illustrates
the databank. This online version currently displays information on the so-
cial complexity variables in the NGAs and polities analyzed in this study (see
also SI Appendix, SI Methods). The website shows how entries in the data-
bank are supplemented by explanations of coding decisions and references.
The goal of the databank is to make as explicit as possible the evidentiary
basis of inferences about the past and to share that information as widely
as possible.
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Multiple Imputation: Dealing with Missing Data, Uncertainty, and Expert
Disagreement. Because of the fragmentary nature of the information that
is available about past societies, it was not possible to reliably code all var-
iables for all polities. There is, therefore, a nontrivial amount of data points
for which we have been unable to assign even a broad range of possible
values because of a lack of evidence (3,700 of the total of 21,000). The
presence of such missing data is an important feature of our dataset, in that it
accurately reflects our current understanding (or lack of it) about any par-
ticular feature in any particular past society. Missing data, however, present a
challenge for the statistical analyses.

One way of dealing with incomplete datasets is to simply omit the rows in
the data matrix that contain missing values. There are two problems with this
approach. First, it can be very wasteful in that omitted rows may contain
much useful information relating to the variables that we were able to code.
Had we used this approach with our social complexity data, for example, we
would have to throw away nearly one-half of the rows. Second, case deletion
may lead to biased estimates, because there are often systematic differences
between the complete and incomplete cases. In our case, in many NGAs, small-
scale societies were present far back in time, and as a result, they are much
harder to code. Additionally, some regions of the world have been subject to
greater levels of research effort than others. Omitting many of the lesser known
cases because of their larger proportion of missing values would give too much
weight to later, better known societies from only some parts of the world. Asan
example, had we used the casewise deletion approach for our current dataset,
we would end up with only a single observation for Australia-Oceania. Such
unequal dropping of observations would very likely bias the results, since the
analysis would be dominated by such regions as Europe and southwest Asia
(each with ~40 complete rows in the data matrix).

To deal with missing values as well as incorporate uncertainty and expert
disagreement into our analyses, we use a technique known as multiple im-
putation (63), which utilizes modern computing power to extract as much
information from the data as possible. Imputation involves replacing missing
entries with plausible values, and this allows us to retain all cases for the
analysis. A simple form of imputation, “single imputation,” might replace any
unknown cases for a binary “present/absent” variable with simply “absent” or
to replace unknown cases of continuous variables with the mean for that
variable. These approaches have similar drawbacks to case deletion, in that
they tend to introduce a bias. Therefore, in this paper, we perform multiple
imputation: analysis done on many datasets, each created with different im-
puted values that are sampled in probabilistic manner. This approach results in
valid statistical inferences that properly reflect the uncertainty caused by
missing values (64). Multiple imputation procedures can vary depending on
the type of variable and the type of data coding issue faced.

Expert disagreement. In cases where experts disagree, each alternative coding
has the same probability of being selected. Thus, if there are two conflicting
codings presented by different experts and if we create 20 imputed sets, each
alternative will be used roughly 10 times.

Uncertainty. Values that are coded with a confidence interval are sampled
from a Gaussian distribution, with mean and variance that are estimated
assuming that the interval covers 90% of the probability. For example, if a
value of [1,000-2,000] was entered for the polity population variable, we
would draw values from a normal distribution centered on 1,500 with an SD
of 304. It is worth noting that this procedure means that, in 10% of cases,
the value entered into the imputed set will be outside the data interval
coded in Seshat. For categorical or binary variables, we sample coded values
in proportion to the number of categories that are presented as plausible.
For example, if our degree of knowledge does not allow us to tell whether a
certain feature was present or absent at a particular time, then the imputed
datasets will contain “present” for roughly one-half of the imputed sets and
absent for roughly one-half of the sets.

Missing data. For missing data, we impute values as follows. Suppose that, for
some polity, we have a missing value for variable A and coded values for
variables B-H. We select a subset of cases from the full dataset, in which all
values of A-H variables have values and build a regression model for A. Not
all predictors B-H may be relevant to predicting A, and thus, the first step is
selecting which of the predictors should enter the model (information on
model selection is given below). After the optimal model is identified, we
estimate its parameters. Then, we go back to the polity (where variable A is
missing) and use the known values of predictor variables for this polity to
calculate the expected value of A using the estimated regression coeffi-
cients. However, we do not simply substitute the missing value with the
expected one (because as explained above, this is known to result in biased
estimates). Instead, we sample from the posterior distribution characterizing
the prediction of the regression model (in practice, we randomly sample the
regression residual and add it to the expected value). We applied the same
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approach to each missing value in the dataset, yielding an imputed dataset
without gaps.

The overall imputation procedure was repeated 20 times, yielding 20 im-
puted sets that were used in the analyses below. The 20 imputed datasets are
available online as Dataset S1.

Statistical Analysis.
PCA. PCA was used to investigate the internal correlation structure charac-
terizing the nine measures of social complexity. PCA was run on each imputed
dataset to estimate the proportion of variance explained by each PC (PC1-
PC9), component loadings (correlations between the original variables and
the PCs), and the values of PCs for each polity. Because we have 20 sets of all
of these results, we also report the confidence intervals associated with
these estimates. Values for PC1 derived from the 20 imputed datasets are
available online as Dataset S2.
Cross-validation. For the multiple imputation to be a worthwhile procedure,
we need to ascertain that the stochastic regression approach for predicting
missing values actually yields better estimates than, for example, simply using
the mean of the variable. To do this, we used a statistical technique known as
k-fold cross-validation (28). In addition to this methodological issue, this
cross-validation procedure allows us to address another substantive question,
namely the extent to which the relationships between variables are consistent
across different parts of the world. This is done by quantifying how well we can
predict the value of a particular feature of a particular society based on known
information about the values of other features in that society and the observed
relationships between the known and the unknown variables in other societies.

Cross-validation estimates the true predictability characterizing a statis-
tical model by splitting data into two sets. The parameters of the statistical
model are estimated on the fitting set. Next, this fitted model is used to
predict the data in the testing set. Because the prediction is evaluated on the
"out of sample” data (data that were not used for fitting the model), the
results of the prediction exercise give us a much better idea of how gener-
alizable the model is compared with, for example, such regression statistics
as the coefficient of determination, R>.

The accuracy of prediction is often quantified with the coefficient of
prediction (65):

where Y; indicates the observations from the testing set (the omitted val-

ues), Y,.’e is the predicted value, Y is the mean of Y;, and n is the number of
values to be predicted. The coefficient of prediction p? equals one if all data

are perfectly predicted and zero if the regression model predicts as well as
the data average (in other words, if the model is simply Y,.* =Y). Unlike the
regression R?, which can vary between zero and one, prediction p? can be
negative—when the regression model predicts data worse than the data
mean. Prediction p? becomes negative when the sum of squares of devia-
tions between predicted and observed is greater than the sum of squares of
deviations from the mean.

In k-fold cross-validation, rather than having simply a single fitting set
and one testing set, we divide the data into k sets. We selected those cases
that had complete coding for all variables and divided our dataset into
10 sets for each of our 10 world regions. Next, we set aside one region (for
example, Africa) and used the other nine regions to fit a regression model
for the variable of interest. Let us say that Y is polity population, and we are
interested in how well it can be predicted from knowing the population of
the capital, hierarchy levels, writing, etc. We fit a regression model to the
data from the other nine regions. We then predict the values of Y (polity
population in this case) for Africa using the known values for other variables
in African polities and the regression coefficients. Next, we omit another
region (for example, Europe) and repeat the exercise. At the end, we have
predicted all data points by the out of sample method, while fitting the
model on 9/10th of data at any given step.

One important aspect of this procedure is to guard against overfitting
(i.e., including too many predictor variables in the model), which is known
to yield much worse predictability than a model that uses the “right” number
of predictors (66). We have experimented with several methods of model
selection that prevent overfitting. We found that a frequentist approach in
which predictor variables are selected based on their P values (using the
0.05 threshold) does as well as the more commonly used model selection
approach using the Akaike Information Criterion (AIC) (66). In fact, AIC tended
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to slightly overfit compared with the frequentist approach. As the frequentist
approach has an additional advantage of consuming less computer time, we
used this approach for all cross-validation analyses reported below.

Multiple imputation, cross-validation, and PCA were all conducted using
scripts written in the R statistical programming language (67).
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Supplementary Methods
Structure of Seshat: Global History Databank

Background: Our collective knowledge about past societies is almost entirely in a form
inaccessible to scientific analysis; stored in historians’ brains or scattered over heterogeneous
notes and publications. The huge potential of this knowledge for testing theories about political
and economic development has been largely untapped. Founded in 2011, Seshat: Global History
Databank brings together the most current and comprehensive body of knowledge about human
history in one place (/). The Databank systematically collects what is currently known about the
social and political organization of human societies and how they have evolved over time (2).
Goal: The goal of Seshat is to enable researchers to conduct comparative analyses of human
societies and rigorously test different hypotheses about the social and cultural evolution of
societies across the globe and over long periods of human history.

Time frame: Currently Seshat focuses on the time period between the Agricultural and
Industrial Revolutions. The spatial reach is global, and eventually we plan to include in the
Databank information on any past societies, up to the present, for which historical or
archaeological data are available. However, reaching this goal will require many years and, as a
first step, we analyze a sample of 30 locations across the globe, stratified by the world region and
the antiquity of complex societies (see below). For each of the 30 global points we start at a
period just before the Industrial Revolution (typically, 1800 or 1900 CE depending on the
location) and go back in time to the Neolithic or equivalent period (subject to the limitation of
data).

Unit of analysis: Our unit of analysis is a polity, an independent political unit that ranges in
scale from villages (local communities) through simple and complex chiefdoms to states and
empires.

Variables: In addition to the social complexity variables analyzed in this paper, we also code
variables on warfare, religion and rituals, agriculture and resources, institutions, well-being, and
the production of public goods. Overall, the current codebook includes 1500 variables. These
variables are coded for any past polity that occupied one of our 30 world locations between the
Neolithic and Industrial Revolutions. Currently there are 414 such polities in Seshat. As of
September 2017, the Databank contains >200,000 coded values (“Seshat records”, see below).

Systematic sampling of past societies

In order to assess whether different societies show commonalities in the way they have evolved
we developed a geo-temporal, stratified sampling scheme to select the societies on which to
collect data. We designed our sampling scheme with two goals in mind: 1) to include as much
variation among the sampled societies as possible in terms of social organization, and 2) to
ensure representation of different parts of the world. This issue is challenging as societies can
expand or contract in geographical space, appear or disappear in the historical & archaeological
records, and show varying degrees of continuity with earlier or later societies.

Geographic sampling & Natural Geographic Areas (NGAs): To overcome these issues and
ensure that we collected data in a systematic manner we divided the world into ten major regions
(see Figure SI1 and Table SI1). Within each region we selected three natural geographic areas
(NGAs) to act as our basic geographical sampling unit. Each NGA is defined spatially by a
boundary drawn on the world map that encloses an area delimited by naturally occurring
geographical features (for example, river basins, coastal plains, valleys, and islands). The extent
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of the NGAs does not change over time, and NGAs thus act as our fixed points which determine
which societies we collected data for.

Stratification for maximizing variation in socio-political organization: Within each
world region we looked for NGAs that would allow us to cover as wide a range of forms of
social organization as possible. In effect we wanted to ensure that we captured information about
the kinds of societies that researchers have previously discussed in relation to social complexity
(“states”, “chiefdoms”, “stratified societies”, “empires” etc.) without using typological
definitions of such societies or employing a strong, limiting definition about what features such
societies should have. We also wanted to make sure that we captured information about societies
that are not traditionally thought of as complex (“small scale societies”, “egalitarian tribes”,
“acephalous societies”). This approach enables us to assess whether the different features of
these societies tend to co-occur and evolve in somewhat regular ways across time and space.
Accordingly, within each world region one NGA was selected that saw some of the earliest
developments of some kind of large-scale or centralized, stratified society that existing
scholarship would refer to as a “complex society”. We also chose another sampling point that
was the opposite; ideally, it was free of such societies until the modern or colonial period.
Finally, the third NGA was intermediate in terms of the time that political centralization
emerged. Because different world regions acquired centralized societies at different times there
can be substantial variation across ‘early complexity’ NGAs both in the time at which our
measures of social complexity start increasing and the degree of social complexity that is
eventually reached at the end of our sampling period. For example, Susiana, the early complexity
NGA in Southwest Asia has much longer history of large societies than Hawaii, the early
complexity NGA in the Pacific region.

Temporal sampling of polities: To populate the Databank, for each NGA we consulted the
literature and chronologically listed all polities that were located in the NGA, or encompassed it.
We chose a temporal sampling rate of one hundred years meaning that we only included polities
that spanned a century mark (100AD, 200AD etc.) and omitted any polities of short duration that
only inhabited an NGA between these points. This is short enough to capture meaningful
changes in the social complexity of historical societies, but not too short to lead to oversampled
data (“oversampling” results when the succeeding point in time contains the same information as
the preceding one, thus not adding to the overall information content of the data set in terms of
variability).

For those periods when the NGA is divided up among a multitude of small-scale polities (e.g.,
independent villages, or small chiefdoms) it is not feasible to code each individual polity. In such
instances we use the concept of 'quasi-polity,' which is defined as a cultural area with some
degree of cultural homogeneity that is distinct from surrounding areas and approximately
corresponds to an ethnological “culture” (3-5) or an archaeological sub-tradition (6). We then
collect data for each quasi-polity as a whole. This way we can integrate over (often patchy) data
from different sites and different polities within the NGA to estimate what a 'generic' polity was
like. This approach is especially useful for societies known only archaeologically, for which we
usually don’t know polity boundaries.

It is important to point out that our use of polities and quasi-polities is best understood as a
means of sampling the vast literature on past human societies rather than trying to impose a rigid
framework on the human past. Our data coding procedures enable us to capture changes in a
particular variable within the lifetime of a polity and also allow us to capture variation within a



polity or quasi-polity where there is such evidence. We are also able to flexibly incorporate
multiple lines of evidence and uncertainty as we outline below.
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Figure SI1. Locations of the 30 sampling points (Natural Geographic Areas) on the world map. For the
key to the NGA numbers see Table SI1. Map adapted from (1).

Table S11. The World Sample-30. The numbers of NGAs correspond to the numbers in Figures 1 and SI1.

World Region | Late Complexity Intermediate Early Complexity
Complexity

Africa Ghanaian Coast (1) Niger Inland Delta Upper Egypt (21)
(11)

Europe Iceland (2) Paris Basin (12) Latium (22)

Central Eurasia

Lena River Valley (3)

Orkhon Valley (13)

Sogdiana (23)

Southwest Asia

Yemeni Coastal Plain

(4)

Konya Plain (14)

Susiana (24)

South Asia

Garo Hills (5)

Deccan (15)

Kachi Plain (25)

Southeast Asia

Kapuasi Basin (6)

Central Java (16)

Cambodian Basin (26)

East Asia

Southern China Hills
(7)

Kansai (17)

Middle Yellow River Valley
(27)

North America

Finger Lakes (8)

Cahokia (18)

Valley of Oaxaca (28)

South America

Lowland Andes (9)

North Colombia (19)

Cuzco (29)

Oceania-
Australia

Oro, PNG (10)

Chuuk Islands (20)

Big Island Hawaii (30)




Data Collection

Identifying social complexity variables and creating complexity characteristic
measures:

Researchers from different disciplines have defined social complexity in different ways, each
definition emphasizing different aspects, and with different measures being put forward to
capture social complexity (7-74). As we stated in the Introduction, our approach is to be
inclusive in that we make an attempt to code a variety of aspects of what different disciplines
understand by social complexity, and attempted to be as “theory neutral” as possible in deciding
on the list of variables to collect information on. In coming up with this list of variables we
consulted a number of researchers who are historical and archaeological experts on societies
from a variety of regions and time periods, and who represent a variety of theoretical
persuasions. In total we identified ¢.70 variables relating to social complexity that could
potentially be coded across different societies (see Codebook:
http://seshatdatabank.info/methods/codebook/). Through our data collection process we found
that some of these variables were easier to capture than others, or had information that was more
widely recorded. For our final analyses we used information on the 51 variables that could
reliably be identified and coded. The nature of the historical and archaeological records means
that information can be patchy so we deliberately built some redundancy into our coding
procedures meaning that different variables act as proxies for nine complexity characteristics.
The first set of variables relates to the scale of societies: the total population of the polity, the
extent of territory it controls, and the size of the largest urban center (Figure 1 of the main
article). These variables were log-transformed prior to analysis.

Next come measures of hierarchical or vertical complexity (“levels of hierarchy” in Figure 1).
These focus on the number of control/decision levels in the administrative, religious, and
military hierarchies. Another measure of vertical complexity is the number of levels in the
settlement hierarchy. The four hierarchical variables were averaged to yield the “levels of
hierarchy” variable.

“Government” variables code for presence or absence of professional soldiers and officers,
priests, bureaucrats, and judges. This class also includes characteristics of the bureaucracy and of
the judicial system, and presence of specialized buildings (e.g., courts). Government variables
were aggregated by adding the number of binary codes indicating “present” and dividing them
by the total number of variables. The aggregated variable Government, thus is scaled between 0
and 1.

The variety of public goods and public works provided by the community is captured in
“Infrastructure.” Informational complexity is coded by the characteristics of the writing and
record-keeping (more generally, informational) systems. We also record whether the society has
developed specialized literature, including history, philosophy, and fiction. These binary codes
were treated the same way as Government, yielding aggregated variables Infrastructure, Writing,
and Texts (see Figure 1 of the main article).

Finally, the sophistication of the cash economy is reflected in Monetary System, which can take
values between 0 and 6, reflecting the “most sophisticated” monetary instrument present in the
coded society (Figure 1 in the main article). For example, if precious metals were used as money,
while foreign and indigenous coins and paper currency were absent, Money would take the value
of 3. If on the other hand, paper currency was present, the value of the aggregated variable is 6.
Presence of “less sophisticated” instruments does not affect the value of Money.


http://seshatdatabank.info/methods/codebook/

It was not possible to code data for all variables for all polities (see below). For our final dataset
we set a threshold that for a polity to be included 30% of the variables had to be coded (i.e., at
least 16 of the 51 social complexity variables). This was to strike a balance between
unnecessarily throwing away information by setting the threshold too high on the one hand, and
including too many poorly covered polities that might create problems in the analysis stage on
the other. We explored the effects of adjusting this threshold in confirmatory analyses below.

Data Coding Approach

Having identified the polities and quasi-polities, and defined our social complexity codebook
data collection occurred in two phases. In Phase I research assistants searched published articles
and books on a particular polity (often with advice from a regional or polity expert on what
sources were likely to be most useful) in order to find information about each variable and enter
it into the databank. In Phase II, where possible, experts on the polity, academic historians or
archaeologists, went over the data to check coding decisions made by RAs and help us fill the
gaps. Experts also indicate when the value should be coded as “unknown.” When two or more
experts disagree about the value or there is ongoing debate in the literature, all choices are
entered as alternatives. For quantitative variables whose values are known only approximately,
coders are instructed to enter a likely range [min, max] that roughly corresponds to a 90 percent
confidence interval (i.e., omitting possible, but unlikely or unrepresentative values).

We refer to a coded value for a particular variable for a particular polity as a “Seshat record.”
Seshat records have complex internal structure. First, there is the value of the coded variable. For
a numerical variable the value can be either a point estimate, or a range approximating the 90-
percent confidence interval. Binary variables can take the following values: present, absent,
inferred present, inferred absent, and unknown (a numerical variable can also be coded as
unknown). “Inferred” presence or absence indicates some degree of uncertainty: when direct
evidence of presence (for example) is lacking, but the expert can confidently infer it. For
example, if iron smelting has been attested both for the period preceding the one that is coded,
and for the subsequent period, we code it as “inferred present” even though there is no direct
evidence for it (assuming there are no indications that this technology was lost and then
regained). To incorporate this uncertainty into our analyses an inferred present codings is given a
value of 0.9 (rather than 1), and and inferred absent is given a value of 0.1 (rather than 0).
Binary variables can also have temporal uncertainty associated with them. For example, if we
know that iron smelting appeared in the NGA at some point between 300 and 600 CE, we code
period previous to 300 CE as absent, the period following 600 CE as present, and the period
between 300 and 600 CE as effectively “either absent, or present”.

As mentioned above, Seshat also reflects disagreements among the experts. When two or more
experts propose different values for the same variable, all are entered. These values can also
contain uncertainty. For example, a Seshat record may state that the population of a particular
polity at 300 BCE was either between 30,000 and 40,000 people (according to Expert I) or
between 60,000 and 120,000 (according to Expert II).

The second important part of a Seshat record is a narrative explaining why this particular
variable was coded in this particular way. Typically, this narrative is first written by an RA, who
may quote the relevant text from a reference (a book or an article). The narrative is then checked
and edited by experts as needed. Subsequent experts can add to it and disagree with previously
recorded estimates.

The third part of a Seshat record is the references to publications or other databases. As not all
the knowledge that can be brought to bear on these issues is necessarily in the literature a
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reference can also be attributed to an expert with knowledge of the polity. In such cases the
expert makes a judgment on the coding themselves and provides a justification.

We expect that Seshat records will evolve as more experts are involved in checking them, and as
new insights or evidence are produced by academic historians and archaeologists. As such
changes occur, they do not simply overwrite the previous information; instead, the Databank
stores these changes so that the evolution of any record can be examined at any later time. This
feature of Seshat Databank ensures continuity and accumulation of knowledge. It also identifies
gaps in our knowledge, where a lack of evidence prevents us from being certain about features of
societies in the past.

Data Availability

We have created a website (http://seshatdatabank.info/) that illustrates the Seshat and shows how
entries in the databank are supported by references, and explanations & justifications of the
codes. The full set of NGAs with information on the social complexity variables is open access
as an accompaniment to this publication. The databank is continually expanding and new
variables are being added in order to address other research questions. All data in Seshat will
eventually be made open access a certain period after data collection and analysis, creating a
unique resource for building and sharing knowledge about the human past.

Data on complexity characteristics and principal components are available as online
supplementary files (SI Datasets S1, S2). In future, researchers will also be able to download
updated or expanded versions of the databank from the website above as text files suitable for
analysis and reuse.

Supplementary Results

Cross-Validation

Predictability of variables: K-fold cross-validation was applied to the subset of data in which all
rows lacked missing values (n = 203). For these cross-validation analyses where there was a
range of estimates, we used the midpoint; similarly, we took an average of values where experts
disagreed. Cross-validation results indicate that regression models can predict all variables much
better than the mean (Table 1, Table SI2), with overall predictability (p?) varying between 0.53
and 0.84. Overall p? in Table 1 and the values for all regions in bold in Table SI2 are calculated
as an average of the p? values weighted by the number of polities from which they are drawn.
Predictability between regions: Overall different world regions are well predicted by the
relationships between variables observed in other world regions (Table 1, Table SI2). However,
there is some degree of variability between world regions in this respect. In several regions
(Africa, Central Eurasia, East Asia, North America, and Southwest Asia) regression models
predict all variables better than the mean (no negative prediction p°). For Europe, only writing
has a negative p”. Other regions (Oceania-Australia, South America, and Southeast Asia) have
between two and four negative p’s (Table SI2). However, these are the same regions that have
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very few complete observations (n < 10). Thus, it appears that the probability that variables are
not well-predicted is a function of the sample size being predicted (Fig SI2), rather than some
sort of difference between the predicted region and the “global norm”. The fact that Europe,
Central Eurasia, East Asia, Africa and Southwest Asia are generally well-predicted supports the
hypothesis that these different aspects of complexity are functionally linked and co-evolve
together. However, an alternative explanation is that the co-occurrence of traits may simply be
due to the fact that these regions have been historically connected and traits have tended to
spread between them. Going against this alternative explanation it should be noted that North
America is also well predicted by models built on the data from those other regions, even though
it developed largely in isolation from other world regions prior to 1500 CE.

Table SI2. Prediction p? as estimated by Cross-Validation. Italics mark world regions with n < 10
observations. “New World” refers to the combined results of predicting North American, South
American, and Oceania-Australia polities by fitting regression models on “Old World” polities (see
“confirmatory analyses”).

Region PolPop | PolTerr | CapPop | Levels | gov't | infra writing | Texts | money | n
All Regions 0.84 0.76 0.71 | 0.60 | 0.53 0.62 0.59 | 0.73 | 0.53 | 203
Africa 0.90 0.89 0.72 | 0.68 | 0.63 0.57 0.73 1083 | 037]| 41

Central Eurasia 0.64 0.34 0.63 | 0.29| 0.42 0.76 | -0.38 | 0.86| 0.76 9

East Asia 0.84 0.70 0.77 | 0.30 | 0.65 0.70 0731093 | 037 | 34
Europe 0.84 0.68 0.69 | 0.57 | 0.40 053] -0.31|036| 0.20| 43
North America 0.92 0.92 0.80| 097 | 0.91 0.84 079|096 | 089 | 11

Oceania-Australia | 092 | -0.46 097 | 0.74 | -3.21 0.60 | -2.60| 0.14 | -1.69 1

South America 0.97 0.95 0.78 | 0.59 | -4.15 | -24.57 0.89| 048 | 0.74 5
South Asia 0.56 0.46 0.69 | -0.05 | 0.62 0.69 040 | 046 | 046 | 12
Southeast Asia -0.35| -4.27 0.30| 0.60 | 0.08 | -0.25 0.47 | 091 | -1.15 8

Southwest Asia 0.79 0.75 0.72 | 0.57 | 0.35 0.78 0.19 | 0.71| 0.58| 39

“New World” 092| 092| 081| 089| 050| 071 072|081 | 0.82| 17
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Fig SI2. Minimum (Min) Prediction p? shows a positive relationship with number of polities (N) being
predicted. This indicates that with fewer polities to predict the chances of obtaining low levels is greater,
as general relationships have less opportunity to be observed.

Table SI3. Optimal number of predictor variables varies across response variables. Significant predictor
variables in these minimum adequate models are indicated by asterisks.

Predictor Variables
Response | PolPop | PolTerr | CapPop | levels | gov't | infra | Writing | texts | money
PolPop * * * *
PolTerr *
CapPop * *
levels * * * *
gov't * * *
infra * * * *
writing * * * * *
texts * * *
money * *




Assessing optimal number of predictor variables: In earlier analyses we assessed the number of
predictor variables required in the minimum adequate models. The optimal number of predictor
variables needed to predict the response variable varied from one (PolTerr) to as many as five
(writing, see Table SI3).

A general result of the cross-validation analysis is that it confirms that there is enough
information within the dataset to allow internal prediction, which is the basis for the method of
multiple imputation. We now turn to the results of multiple imputation for principal component
analysis.

Principal components analysis based on multiple imputation

Principal Components Analyses were conducted on 20 imputed datasets. Below we report mean
values from across these datasets and 95% confidence intervals.

All nine CCs were highly and significantly correlated with each other. Correlation coefficients
varied between 0.49 (government and writing) and 0.88 (polity population and polity territory).
Only a single principal component, PC1, has an eigenvalue greater than 1 (Table SI4, Fig SI3 —
analyses conducted in SPSS). It explains 77.240.4 percent of variance. The proportion of
variance explained by other principal components drops rapidly towards zero (e.g. PC2 explains
only 6.0+0.4 percent). Furthermore, when we examine the “loadings” of the nine variables on
PC1 (correlations between raw variables and PCs), we observe that all variables contribute about
equally to PC1 (Figure SIS, Table SI5). Loadings on PC2 (Table SIS5) seem to capture a slight
residual but negative relationship between “social scale” variables (capital and polity population,
hierarchical levels, and polity territory) and informational/economic complexity (writing, texts,
and money). This could reflect cases where these features have diffused from large-scale
societies where they were originally developed to smaller societies, or cases where large-
societies have reduced in size but still retained these features. However, it should be emphasized
that PC2 is not well-supported so we should be careful not to over-interpret this result. Overall,
these results support the idea that different aspects of social organization have co-evolved in
predictable ways, and that social complexity is a concept that can be well-represented by a
measure such as PCl1.
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Table SI4. Eigenvalues (means and standard deviations) for PCAs based on 20 imputed
datasets. Only PCI has an eigenvalue above the standard threshold of 1.

Eigenvalue Figenvalue

PC mean STD

1 6.95 0.02
2 0.54 0.02
3 0.42 0.01
4 0.35 0.01
5 0.22 0.01
6 0.20 0.00
7 0.15 0.01
8 0.09 0.00
9 0.07 0.00

Eigenvalue

o

Fig SI3. Scree plot of mean eigenvalues for PCAs based on 20 imputed datasets. Only PCI has
an eigenvalue above the standard threshold of 1. The PCs also show a characteristic elbow after
the first PC.
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Table SI5. Pairwise correlations between the nine Complexity Components and the first two Principal
Components (PCI and PC2). Correlations between variables were calculated only for cases in which
there was no missing data (n=203). Correlations between variables and PCs calculated using full dataset
with imputed values (n=414).

PolPop | PolTerr | CapPop | levels | gvrnmt | infrastr | writing | texts | money
PolPop 0.88 0.85 | 0.78 | 0.66 0.75 0.66 |0.77 | 0.66
PolTerr | 0.88 0.74 | 0.70 | 0.59 0.63 0.61 | 0.69| 0.54
CapPop | 0.85 0.74 0.76 | 0.61 0.75 0.56 |[0.71| 0.59
levels 0.78 0.70 0.76 0.68 0.72 0.51 |[0.69| 0.63
gvrnmt | 0.66 0.59 0.61 | 0.68 0.74 0.49 |0.67 | 0.57
infrastr | 0.75 0.63 0.75 | 0.72 | 0.74 0.57 [0.76 | 0.71
writing | 0.66 0.61 0.56 | 0.51 | 0.49 0.57 0.80 | 0.65
Texts 0.77 0.69 0.71 | 0.69 | 0.67 0.76 0.80 0.70
money | 0.66 0.54 0.59 | 0.63 | 0.57 0.71 0.65 |0.70
PC1 0.95 0.87 091 | 0.89 | 0.88 0.88 0.86 |0.92| 0.79
PC2* -0.23 | -0.30 | -0.27 |-0.21 | 0.08 0.09 0.33 |0.23| 0.34

* PC2 did not produce an eigenvalue greater than 1 in the PCA analysis and its importance should not be
over-interpreted
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Figure SI4. Proportion of variance explained by each principal component from the PCA. Error bars
indicate 95% confidence intervals.
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Figure SI5. CC loadings on PCI. Error bars indicate 95% confidence intervals (note the restricted range
on the Y axis, indicating that any differences in loadings between CCs are relatively small).
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Social Complexity Trajectories

Below we present the values for PC1 plotted through time for each NGA (Figure S16). We have
grouped NGAs into their world regions to aid comparisons. The values for PC1 have been
rescaled here so that they go from 0 (“low complexity”) to 10 (“high complexity”), to assist in
interpretation. The broken thin lines indicate 95% confidence intervals. The more missing
values, which have to be imputed, and the more uncertainty and disagreement, the wider the
confidence interval is. These trajectories are mapped geographically and shown simultaneously
in a video (Movie S1).

In line with previous analyses of social evolution, trajectories of the polities in each of our world
regions show an overall increase in social complexity (6, /3), but also show episodic declines
(15-17). Additionally, many other interesting features are revealed by these trajectories. For
example, the trajectory for Latium (modern day Rome in the “Europe” world region) shows a
fairly straightforward pattern and reflects a significant increase of complexity in the early Iron
Age (tenth-ninth century BC), an apex during the early-middle Imperial Period (first-third
century AD) and a dramatic decrease after the fall of the Roman Empire (476 AD). In the Konya
Plain in Southwest Asia there are several of these increases and decreases, but still with an
overall upward trend. The trajectory of social complexity dramatically increases at the beginning
of the Early Bronze Age (3000 BC), and reaches the peak during the Hittite (1600-1200 BC), the
Achaemenid (500-330 BC), the Roman (1-330 AD), the Byzantine (330-1000 AD), and The
Ottoman Empire (1453-1922 AD). This also illustrates how the polities that inhabit and control
our NGAs (and are thus included in our dataset) may actually originate from outside the NGA. In
Susiana, also in Southwest Asia, social complexity significantly increases at the beginning of
Susa II period (3800 BCE), and reaches the highest point during the Achaemenid (559-330 BC),
the Seleucid (312-63 BC), and the Sasanian Empire (224-651 AD), and with several other
fluctuations. The sometimes dramatic increase in social complexity seen at various points in
these trajectories could be evidence for the idea that social organization evolves in punctuated
bursts, as societies restructure and new forms of organization emerge over relatively short
periods (/8-20). However, in our data, some of these observed changes may actually be due to
more complex societies from other regions conquering the NGA, as the Konya case illustrates.
This idea will be formally tested in future work, using statistical techniques to test between
competing hypotheses about the mode and tempo of social evolution (19, 20).

14



Figure S16 Evolutionary trajectories of our PCI variable for each NGA within each of our 10 world

regions
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Confirmatory analyses

In order to produce our main results we had to make a number of decisions and assumptions
about how to conduct our statistical analyses. We have performed a number of confirmatory
analyses to check the robustness of these results and show the effects of making different
assumptions or decisions.

Adjusting the inclusion threshold

In earlier analyses we tested the effects of using different inclusion thresholds (our chosen
default value being 30%). We tested the effects of performing PCA on datasets using 10%, 50%
, and 100% (i.e. only cases with complete codings) coverage thresholds (in the latter case
multiple imputation was not required to impute missing values). Adjusting the inclusion
threshold had little effect on the proportion of variance explained by PC1: 10% cutoff — n=409,
r2=0.76; 50% cutoff - n=409, r2=O.77; 100% - n=205, r2=70.6). Our results are therefore not an
artefact of either our inclusion threshold, or the multiple imputation procedure.

Accounting for sampling biases

In our main dataset some NGAs have a greater coverage than others due to differences in the
timing of the beginnings of agriculture in different regions, and the level of research effort that
has previously gone in to studying different regions of the world. Although we have attempted to
offset some of these biases through our stratified sampling approach, there remains the
possibility that parameter estimates from our results may be biased due to uneven coverage. We
therefore used bootstrap resampling to create random sub-samples that lead to more balanced
datasets. We did this in two ways: 1) Our analysis treats individual polities that span multiple
centuries into separate polities for each century. Therefore, for any given polity that produced
identical entries across centuries we resampled to produce only one entry per polity. 2) To ensure
even geographic coverage, we resampled 10 polities per world NGA. If our main results are due
to an overrepresentation of certain NGAs we would expect to see a large drop in the percentage
of variance explained by PC1 in these confirmatory analyses. Sampling of one entry per polity
had almost no effect on the proportion of variance explained by PC1 (n=285, 1’=0.79), and
resampling of 10 polities per NGA only resulted in a relatively small drop in the proportion of
variance explained by PC1 (n=300, 1°=0.69).

As a broader check on whether our findings have been driven by a bias to data availability in
Africa and Eurasia (the “Old World”) we fit models on data from the Old World and predict the
remaining three regions (North America, South America, and Oceania-Australia, or the “New
World”). Even though the New World polities developed without contacts with the Old World
polities, they are highly predictable, with coefficients of prediction ranging between 0.5 and 0.92
(Table SI2). Prediction in the opposite direction is more problematic due to the smaller number
of societies and the smaller range of variation. Scale variables are predictable at 0.29-0.77, but
all other variables (except money) produced negative values. Rather than being indicative of
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different co-evolutionary processes occurring in the Old and New World the lower predictability
based on the New World is likely to be due to the smaller amount of variance in our complexity
characteristics found in this part of the world. This difference in degree of variance in complexity
characteristics between the Old and New world itself could result from differences in the rate at
which innovations in the non-scale complexity characteristics that could support large scale
societies were developed. It is well known that centres of the emergence of large-scale societies
were more isolated from one another in the New World, and large-scale societies there did not
spread as much as in the Old World until after European contact (2/). In the New World the rate
of adoption of depended on societies developing them independently. However, in the Old
World the rate of adoption was elevated through being able to borrow such innovations from
neighbouring societies (22). The fact that we can predict the values for complexity characteristics
for the New World based on the values and relationships from the Old World suggests that
similar co-evolutionary processes were indeed at play in both regions even if societies within
these regions had their own unique evolutionary trajectories and specific histories.

Effects of variable choice

To assess whether our results are dependent on the particular variables combination of variables
included in the analyses we ran two further sets of analyses: 1) we included only one population
variable (polity population) and all the other non-population complexity characteristics, 2) we
included only one population variable and removed one of the non-scale complexity
characteristics (CC8:“texts”). The first analysis helps us assess whether the results are biased by
the inclusion of several population variables, potentially leading to an overestimate of the
importance of PC1 and an underestimate of any other dimensions of complexity. The second
analysis helped us assess whether the inclusion of a particular non-scale variable, which could be
argued to be more relevant to certain cultural traditions, was biasing our results. These additional
analyses again had remarkably little impact on our findings: including only one population
variable returns a single principal component that explains 78.7% (£0.4%) of the variance, while
also removing “texts” returns a single principal component that explains 77.7% (+0.4%) of the
variance (see tables SI6&S17). These results are not that surprising as examining the loadings of
the original PCA indicates that all variables load approximately equally onto PC1. Interestingly,
the cross-validation analysis shows a slight reduction in the predictability of polity population
when the other population variables are not included (table SIS). Again this is perfectly
understandable from the previous results - the population variables have some of the strongest
correlations with each other (which is, after all, why we are examining the effect of removing
them) so removing two of them means the ability to predict polity population relies on the
slightly weaker correlations with the other variables.

Overall, these confirmatory analyses suggest that our main findings are robust to the specific
choices we have adopted for our analysis.
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Table S16. Principal Component Analysis including only Polity Population as a direct population

variable (analyses conducted in SPSS, variables included: PolPop, Levels, Government, Infrastructure,
Information System, Texts, Money)

Principal  Eigenvalue Eigenvalue % of % of
component mean STD Variance Variance
mean STD
1 5.51 0.01 78.74 0.19
2 0.42 0.01 6.04 0.08
3 0.36 0.01 5.20 0.09
4 0.27 0.00 3.91 0.06
5 0.19 0.01 2.71 0.08
6 0.16 0.01 2.27 0.10
7 0.08 0.00 1.13 0.04

TableSI 7. Principal Component Analysis removing the non-scale variable “texts” (analyses conducted
in SPSS, variables included: PolPop, Levels, Government, Infrastructure, Information System, Money)

Principal  Eigenvalue Eigenvalue % of % of
component mean STD Variance Variance

mean STD

1 4.66 0.01 77.66 0.22

2 0.42 0.00 7.00 0.07

3 0.31 0.01 5.13 0.13

4 0.27 0.00 4.48 0.07

5 0.19 0.01 3.14 0.09

6 0.16 0.01 2.58 0.11

Table SI8. Comparison of cross-validation (p?) prediction scores from analyses with all variables and
analyses that only include Polity Population as population variable.

CV Analysis PolPop | PolTerr CapPop | Levels | gov’t | infra writing | Texts money
All population

variables 0.84 0.76 0.71 0.60 | 0.53 0.62 0.59 0.73 0.53
Only Polity ) )

Population 0.66 0.63 ] 053 0.58 0.59 0.75 0.53
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Testing the Multiple Imputation Method

We have also assessed whether the multiple imputation method used in this study could have
introduced bias into our results. The results above indicate that running analyses on cases that are
fully coded does not substantially change parameter estimates or overall findings. At an earlier
phase in our investigations to further examine this issue we created 100 artificial data sets that
randomly introduced missing values into our “complete data set”, reproducing the pattern of
missing values in the “overall data set” at that time. We then applied the MI procedure to each of
them. Each artificial data set was constructed as follows. We started with the first row of the
complete data set. The program then chose a random row in the overall data set and determined
if there were any missing values in the row. If yes, then missing values were added to the first
row of the complete dataset for any variables that had missing data in the row from the overall
data set. This procedure was repeated for the second row of the complete data set, and so on. The
result was that the artificially constructed data set had the same pattern of missing values as the
overall data set. The artificial data set was then subjected to the multiple imputation procedure in
exactly the same way as the overall data were analyzed, except the results were based on 10
imputations, to speed up the calculations.

By comparing the PCA results based on the artificial dataset with results from the
complete dataset, we see that the Multiple Imputation procedure accurately captures the overall
patterns in the data both in terms of the number and pattern of PCs produced (Figure SI7), and
the loadings of the different variables on to PC1 (Figure SI8). We repeated this analysis for 100
artificial data sets and compared the distribution of the proportion of variance explained by PC
for both the estimated PCls and the true PC1. The true value of PC1 is 0.706, while the mean
and the mode of the estimated PC1, based on 100 artificial data sets with missing values, is 0.685
and 0.695, respectively (Figure SI9). The distribution is asymmetric, suggesting that the
estimates based on MI procedure are biased—they tend to under-predict the true PC1. However,
the degree of this bias is tiny (0.01 between the true value and the most likely estimate, the
mode). Furthermore, the bias is conservative in that replacement of missing values by MI results
in slightly under-predicting the true PC1). Taking these considerations together, we conclude that
our overall MI procedure works very well for the goals of our study and has not created a bias
that is driving our results and conclusions.
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Figure SI7. Comparison of factors extracted from the real dataset (ved line), and the 10 artificial
datasets, which had missing values added and then replaced via the multiple imputation procedure.
Multiple imputation does not introduce a bias in the artificial datasets in comparison to the real dataset.
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Figure SI8. Comparison of variable loadings onto PC1 from the real dataset (ved line), and the 10
artificial datasets, which had missing values added and then replaced via the multiple imputation
procedure. Multiple imputation does not introduce a bias in the artificial datasets in comparison to the
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Figure S19. Distribution of proportion of variation explained by PCI in 100 artificial datasets, which had
missing values added and then replaced via the multiple imputation procedure. The true value for PC1
(indicated by an asterisk) is well within the range of estimates in the artificial datasets, and is only
slightly higher than the modal value for the artificial datasets. Artificial datasets tend to lead to a slight
underestimate of the true value for PCI.
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Supplementary Discussion

Sampling of NGAs and generality of findings

Currently our database contains 30 NGAs from which we have sampled the polities that
controlled these areas over long periods of human history. Our decision to stratify our sampling
efforts by broader world regions and onset of large-scale societies means we have extensive
coverage of the diversity of human social and political organization. Limiting our sample to 30
NGAs was a necessary practical step in making headway in building a comparative historical
database on this scale. Examining the maps (Fig 1, and SI1) it appears that at first glance there
are large areas that do not have NGAs from which we have sampled polities. However, large
parts of these areas (particularly in North America, South America, and Australia) were not
inhabited by agriculturalists at the time of contact with Europeans and therefore are not our focus
for constructing our database (which focuses primarily on post-paleolithic, agricultural polities).
Other areas, particularly in more northern latitudes or desert areas, were sparsely populated and
would therefore not add many extra polities. The choices made about which particular NGAs to
choose was also partly based on practical concerns about having sufficient information and
having the interest and availability of regional experts who were able to guide the process of data
collection. In future it would be good to add further NGAs to regions such as sub-Saharan Africa
that are currently relatively sparsely sampled. Collecting data for these areas faces important
challenges due to the fact that traditionally such areas have received less academic attention than
some other parts of the world, and in some cases there are substantial issues around preservation
of archaeological remains (e.g. tropical rainforest soils are often not conducive to preservation).

We currently have no strong reason to suspect that the addition of agricultural polities from other
areas would substantially alter our findings (however this remains an open possibility that can be
addressed in future). For example, if we examine polities in a region such as North America,
where social complexity emerged relatively late, we do not see a substantial difference in the
relationships and trajectories we have been able to identify in other places (Fig SI6, Fig
SI10,Table SI2). As we increase our coverage of polities in future we will be able to further
examine the similarities and differences both within and between regions. Currently there are
two areas where we have begun to intensify the coverage of NGAs: Meso-America (where we
have begun coding polities in the Basin of Mexico and the Petén Basin [Mexico/Guatemala]),
and Europe (where we have identified NGAs relating to the spread of the Neolithic). An
interesting point of comparison in future studies may be to include more pastoral or hunter-
gatherer societies to assess whether different modes of subsistence affects the patterns we have
identified here. Differences in resource type can affect the way individuals are distributed in
space, which may have consequences for the types of institutions that are effective for joining
individuals and groups together. More generally, the fact that we have been able to detect
consistent patterns in the evolution of social complexity indicates that, even though our coverage
is not comprehensive, we are still able to uncover important principles that are applicable to wide
variety of societies from differing cultural, historical, and ecological contexts.

22



47 ® ab, o

hierarchical levels

Polity Population

Figure SI10. Relationship between Hierarchy and Polity Population for medium and late complexity
polities in the North America region (Cahokia and Finger Lakes NGAs, but not Oaxaca)(black triangles),
and all other NGAs. The distribution of North American polities sits within the distribution of the other
polities, and there are similar correlation coefficients between these variables for both sets of polities
(North America: r=0.83, All other NGAs: r=0.76). This indicates that the North American polities did not
evolve in a substantially different way from polities in other regions.

Testing Evolutionary Trend Mechanisms

Our approach is also well-suited to go beyond identifying patterns in socio-political
evolution and investigate why social complexity has shown a tendency to increase over time.
One idea that we can address by examining the temporal changes in our data is what kind of
mechanism lies behind the trend towards increasing complexity. Evolutionary biologists
distinguish between two types of general trend mechanisms: passive and driven (23-25). This
concept has also been applied in previous work to examine related issues around the evolution of
socio-political complexity in human societies (20, 26). A passive trend relates to the fact that our
starting point might be close to the lowest possible value (a “wall”’), which means that there is
more scope for change in one direction rather than another. Once away from the “wall” increases
and decreases are equally likely. Over time the maximum level of complexity is expected to
increase as this area of “trait space” can be expanded into, but there is nothing that particularly
favours more complex organisms or societies. In a driven trend there is a force that actively
favours larger values of the feature in question (i.e. more complex organisms/societies are at a
selective advantage and a more likely to produce ancestors). The idea that larger, more complex
societies have an advantage in competition between groups has a long history in anthropology,
archaeology and related disciplines (73, 27-32). Diagnostic features of driven trends are that
increases are more common than decreases, which is the case for almost all regions in our data

23



set (the average extent of increases is also generally greater - both in absolute terms and as a
proportion of prior complexity)(Table SI9). Another way of distinguishing between trends is to
examine how the distribution of the trait in question changes over time. In a passive trend the
mean of the distribution increases due to the tail of the distribution increasing. In a driven trend,
however, the mode of the distribution also increases, which seems to match what we see in our
data (Figure SI11). Overall, the present results are consistent with the idea that competition
between groups, particularly in the form of warfare, has been an important driving force in the
emergence of large, complex societies. Future work will test competing ideas about the cause of
this driven trend towards increased complexity.

Table S19. Number and extent of increases and decreases in complexity across regions. Values were
calculated from differences between values in PCI from one polity to the next.

Net Change in PC1 Proportional Change

REGION Inc  Dec in PC1
Min Max Mean Min Max Mean

AFRICA 31 19  -1.67 2.59 0.28 -0.24 3.81 0.18
CENTRAL ASIA 19 21 -351 4.49 0.17 -046 1.17 0.10
EAST ASIA 38 12 -1.14 3.01 025 -0.15 188 0.08
EUROPE 36 18 -1.67 2.27 022 -0.68 1.23 0.08
NORTH AMERICA 17 7 =213 2.33 0.17 -1.00 6.67 0.37
OCEANIA 8 1 -0.84 2.60 043 -0.30 1.32 0.29
SOUTH AMERICA 11 7 =279 3.24 027 -046 1.13 0.12
SOUTH ASIA 27 11 -3.19 4.78 028 -0.56 1.45 0.14
SOUTHEAST ASIA 11 6 -0.64 2.35 033 -0.09 1.51 0.14
SOUTHWEST ASIA 50 34 -381 5.78 0.16 -0.58 2.07 0.08

24



204

0
207

204

Frequency

7
32890001 32080002 3280002 328000 3080005 3290009 328000, 3290006

0
204

0

o
204

320001

o=
209

320002

PC1

Figure SI11. Changing distribution of Social Complexity over time. The mode of the distribution takes
increasingly greater values over time, which is consistent with a driven evolutionary trend. Rows are
1000-year time slices, dates reflect upper date boundary (e.g. 7000BCE refers to 7999BCE to 7000BCE)



Co-evolution, punctuated change, and “types” of socio-political organization

Our analyses indicate that are strong co-evolutionary relationships between different features of
human societies. If correlated change in these features is relatively rapid, then certain “types” of
socio-political organization may become apparent based on recurring associations between
certain combinations of traits (/8-20). Examining the evolutionary trajectories of the different
NGAs (Fig 3, SI6) the data appear to show long periods of stasis or gradual, slow change,
interspersed with sudden large increases in the measure of social complexity over a relatively
short time span. This pattern is consistent with a punctuational model of social evolution, in
which the evolution of larger polities requires a relatively rapid change in socio-political
organization including the development of new governing institutions and social roles in order to
be to stable (/8-20). The assessment of these evolutionary rates will require more formal testing
in future investigations and will need to take into account the fact that some periods of stasis
indicate periods when the data from our polities show no change. This may reflect an absence of
evidence and could potentially lead to errors in the assessment of rates of change. There do
appear to be many instances of limited amounts of change prior, and many horizontal lines are of
relatively short duration which would not substantially affect rate estimations. It therefore seems
unlikely that these patterns are completely an artefact of the way our data are organized as a time
series. Another consideration is the possibility that large changes in PC1 could indicate a new
polity taking control of an NGA rather than the kind of change within a society that is envisioned
under the punctuational change hypothesis.

To provide an initial assessment of the idea that societies may fall into certain types we
conducted a Hierarchical Cluster analysis of PC1. The dendrogram in Figure SI12 shows some
initial support for the idea of distinct “types”, with a relatively large distance between two main
clusters. This indicates a clear distinction between societies with large populations that exhibit
many of the non-scale features of complexity, and smaller societies that often lack most of these
features (see Fig SI12 (left)). Other potential groupings within these clusters may also indicate
important stable combinations of traits that will be investigated in future research (Figure SI13).
In line with previous empirical investigations of this question (71, 19, 20, 33), the clusters
identified in these analyses may indicate that certain combinations of traits are indeed
evolutionary stable. Typological schemes of human societies (e.g. band, tribe, chiefdom, state)
have been common in studies of socio-political evolution (/3, 34-36). These schemes have often
been criticized, partly because the categories are seen as rigid and do not focus enough on how
and why changes occur (see (20)). The clusters identified in the present analyses should not be
thought of as strict categories as there remains substantial variation within each of the clusters.
However, the present study further indicates how we can test hypotheses about the degree to
which human groups exhibit the kind of patterned variation that traditional typological schemes
are attempting to capture, or indeed test hypotheses about other kinds of patterned variation (37-
39). Our historical, comparative approach illustrates how this can be done in a manner that
enables us to empirically assess the degree of variation within and between categories, and can
help in understanding how and why changes between categories can occur.
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Fig SI12. Hierarchical cluster analysis of PC1
from each polity, based on average linkage
between groups (x-axis)(analysis conducted
using SPSS)(right). Two main clusters are
discernible due to the large average distances
between them. Within each of these clusters
two sub-clusters are identified (A&B and
C&D). Values of Polity population and
government (below) showed peaked
distributions within each of the main clusters
in line with the idea that these clusters
represent distinct “types” of socio-political
organization.
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Fig S113. Distributions of different CCs by the four main clusters identified above. Variation in
characteristics such as polity population, hierarchical levels, and government seem to be well-
summarized by the four clusters, where as a characteristic such as “texts” seems to be better summarized
by just two clusters (main clusters 1(A&B) and 2(C&D)).
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