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Abstract— We thoroughly investigate the downlink beamform-
ing problem of a two-tier network in a reversed time-division
duplex system, where the interference leakage from a tier-2 base
station (BS) toward nearby uplink tier-1 BSs is controlled through
pricing. We show that soft interference control through the
pricing mechanism does not undermine the ability to regulate
interference leakage while giving flexibility to sharing the spec-
trum. Then, we analyze and demonstrate how the interference
leakage is related to the variations of both the interference
prices and the power budget. Moreover, we derive a closed-form
expression for the interference leakage in an asymptotic case,
where both the charging BSs and the charged BS are equipped
with a large number of antennas, which provides further insights
into the lowest possible interference leakage that can be achieved
by the pricing mechanism.

Index Terms— Beamforming, convex optimization, interfer-
ence management, uplink-downlink duality, pricing, large-scale
antenna array, heterogeneous networks (HetNets).

I. INTRODUCTION

A. Motivation

W ITH the increasing density and heterogeneity of today’s
cellular networks, interference remains as one of the

key issues impacting the overall system performance [2], [3].
Equipped with multiple antennas, beamforming techniques
allow base stations (BSs) to exploit the spatial domain
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and manage interference more effectively than single-antenna
BSs [4]. More degrees of freedom (DoFs) become available
when large-scale antenna arrays are installed on the BSs,
which boost the network capacity [5] and the ability of
interference management [6].

From the optimization point of view, the centralized beam-
forming designs would offer the best possible network per-
formance in terms of interference management. However,
as the network size grows large, it becomes increasingly
complex to design the overall beamforming patterns of the
BSs [7]. Also, obtaining the network-wide up-to-date channel
state information, which is crucial for enabling coordina-
tions among the BSs, becomes more difficult for large-scale
networks [8]. The cost of installing the low-delay network-
wide backhaul links is high and can be even infeasible [9],
making the distributed designs an indispensable alternative.
Pricing-based interference control arises as a natural distrib-
uted interference management scheme [10], where distributed
beamforming designs based on pricing can achieve the same
network utility compared to the centralized counterpart [11].

The effectiveness of beamforming techniques for interfer-
ence mitigation relies on the accuracy of the channel state
information (CSI). By utilizing the channel reciprocity, time
division duplex (TDD) schemes are deemed as efficient proto-
cols for the BSs to acquire CSI with minimum resources spent
on signalling for channel measurement especially when the
numbers of antennas equipped at the BSs are more than the
number of users [12]. Among the family of TDD schemes,
the reverse TDD (R-TDD) system, where the directions of
the transmissions in two co-located tiers are reversed to each
other, has the unique advantage that the interference subspace
between a pair of BSs from different tiers can be accurately
measured due to their fixed locations [13]. Also, because more
antennas can be mounted to the BSs in tier-1 compared to
the BS in tier-2, the capacity of the uplink of the tier-2 BSs
in an R-TDD system can be significantly improved because
tier-1 BSs have more DoFs to avoid interference leaking
towards the tier-2 BSs [14], [15]. The R-TDD mode has also
been shown to improve the sum DoF of a two-cell network
as compared to the conventional TDD mode, especially in
the situation where the two BSs are equipped with different
numbers of antennas [16].
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Motivated by the potential advantages of R-TDD systems,
in this paper, we perform a detailed study on the interference
leakage from a tier-2 BS towards nearby tier-1 BSs against
pricing. Specifically,

1. We show that a pricing mechanism, in which the tier-2
BS is charged for causing interference to the tier-1 BSs,
can limit the cross-tier interference leakage below any
feasible targets. At the same time, the pricing mechanism
provides more flexibility in spectrum sharing compared
to the hard interference control counterpart.

2. We then analyze the behavior of the tier-2 BS under
the pricing mechanism. We prove that the interference
leakage towards a tier-1 BS is a decreasing function of
the price issued by the same tier-1 BS. Also, we show
that the power budget of the tier-2 BS limits the lat-
ter’s capability of avoiding interference leakage towards
the tier-1 BSs. Simulation studies verify these proved
behaviors of the tier-2 BS under the pricing mechanism.

3. To echo the trend of upgrading BSs with large scale
antenna arrays, we derive a closed-form expression
for the average interference leakage as a function of
the prices and other system parameters when all BSs
are equipped with large numbers of antennas. Verified
by simulations, the derived expression allows us to
accurately predict the interference leakage under such
scenarios, which facilitates the implementation of the
pricing-based interference control.

B. Related Work
Pricing-based distributed coordination of power allocation

and beamforming design has been studied in various network
models, where the main focus has been on finding the best
charges so that the performance of the distributed optimiza-
tions can be as good as the performance of the correspond-
ing centralized designs. A detailed discussion on distributed
pricing algorithms for power control and beamforming opti-
mization can be found in [10]. Therein, the authors describe
an iterative algorithm in a peer-to-peer network setting,
where each transmitter first updates its power/beamformer to
maximize its own payoff and then announces a price to nearby
transmitters. The price is calculated as the marginal loss of
its utility with respect to per unit of interference. It is also
revealed in [10] that the iterative algorithm converges if the
best response update of an underlying non-cooperative game
converges, and the Nash equilibrium point must satisfy the
Karush-Kuhn-Tucker (KKT) conditions of the corresponding
centralized optimization problem.

The idea of [10] has been applied for distributed beamform-
ing designs in several instances of multi-cellular networks.
For example, [11] formulates the pricing-based power mini-
mization problem as a non-cooperative game, where a Pareto-
optimal solution can be found by the fixed-point iteration
method [17]. [18] studies the maximization of a general
concave network-wise utility function in a multi-carrier
scenario. [19] focuses on the sum-rate maximization problem
in a single-carrier multi-cell network. The problem of energy
efficiency maximization based on distributed beamforming
design is considered in [20]. [21] designs the precoding

matrices of multiple-input multiple-output (MIMO) cognitive
radio networks in a distributed manner where the noise leakage
towards the primary network is maintained to be below some
given thresholds.

In heterogeneous networks (HetNets) where more than one
tier of transmitter-receiver pairs coexist, cross-tier interference
control is an important issue for performance optimization.
Pricing-based interference control mechanism, owning to its
capability of influencing the behaviors of the transmitting
nodes in the networks, has been considered in two-tier
HetNets [22]. Also, Stackelberg game model [23] is applica-
ble for interference control purposes in hierarchical HetNets,
where an entity with high privilege (usually a macro BS) is
able to issue prices against interference and the lower tier
must pay for the caused interference accordingly [24]–[26].
The same pricing mechanism has also been applied in radar
communication networks recently [27].

This paper differs from the previous studies in that we are
interested in how a tier-2 BS behaves in the pricing-based
interference control mechanism. Building on [1] in which we
mainly analyze the effect of power budget of the tier-2 BS
on the interference leakage towards a single tier-1 BS, in this
paper, we conduct detailed analyses on a more general system
setting with multiple tier-1 BSs. We show the equivalence
between interference control by pricing and by issuing explicit
interference constraints. Then, we show how the transmission
power of the tier-2 BS and the interference leakage from the
tier-2 BS changes with respect to the charge and the power
budget at the tier-2 BS. Moreover, we analyze the interference
leakage in the asymptotic scenario where BSs from both tiers
are equipped with a large number of antennas, since it is
expected that large-scale antenna arrays are to be incorporated
with the existing HetNets to meet the huge demand of future
data services [28].

C. Organization

The rest of this paper is organized as follows. Section II
presents the system model of the two-tier R-TDD system.
Section III formulates the downlink beamforming problems
and analyzes the behavior of the tier-2 BS under the pricing
mechanism. Section IV presents a closed-form expression
for the interference leakage in the large-scale antenna array
scenario. Section V presents simulation studies. Finally,
Section VI concludes the findings of this study.

Notation: We use bold lower-case letters and bold upper-
case letters to denote column vectors and matrices, respec-
tively. Also, we use calligraphic upper-case letters to denote
sets, e.g., set A. The Hermitian of the vector a is denoted as a†,
and the transpose of a is denoted as aT . The positive semi-
definiteness of matrix A is described as A � 0. The optimal
value of a variable is marked by (·)∗. The n-by-n identity
matrix is denoted as In . The nearest integer to a is denoted
as �a�.

II. SYSTEM MODEL

Consider the system model in Fig. 1 where the tier-2 BS
serves K single-antenna users in the downlink. Each of the Q



1760 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 4, APRIL 2018

Fig. 1. The system model studied in this paper. The tier-2 BS serves K users
in its downlink, while the tier-1 BSs charge the tier-2 BS for the interference
caused by the latter.

tier-1 BSs, located within the transmission range of the tier-2
BS, receives signals in the uplink on the same frequency band
used by the tier-2 BS, and therefore the tier-2 BS causes
interference to the tier-1 BSs. The tier-2 BS is equipped with
N antennas and the q-th tier-1 BS is equipped with Mq

antennas. Denote K = {1, 2, . . . , K } as the set of the downlink
users connected to the tier-2 BS. Let wk ∈ CN×1 be the beam-
former applied for user k at the tier-2 BS, where C is the set
of complex numbers. The symbol vector transmitted by the
tier-2 BS at a particular time instance n can be written as

x(n) =
∑

∀k∈K
wk xk(n), (1)

where xk(n) is the data symbol of user k at time instance n.
The power of xk(n) is normalized to one, and the squared
Euclidean norm of wk provides the actual transmission power
for user k. Let hk ∈ CN×1 be the channel between the
tier-2 BS and its k-th user, where elements in hk are i.i.d.
complex Gaussian random variables with zero mean and unit
variance. The k-th user of the tier-2 BS has a minimum
SINR requirement which is denoted as γk > 0. Also, the
tier-2 BS has perfect knowledge of the channels between itself
and the users it serves.

The received signal at the k-th downlink user of the
tier-2 BS is given as

yk(n) = (hk(n))T x(n) + zk(n), (2)

where zk(n) is the additive white Gaussian noise (AWGN)
at user k, of which the variance is denoted by σ 2

k . Assume
xk1(n) and zk2 (n) are pairwise independent for all k1 and k2.
Similarly, assume that xk1(n) and xk2(n) are also independent
for all k1 �= k2. The SINR at the k-th downlink user of the
tier-2 BS is given as

SINRk = |w†
k hk |2∑

j∈K \{k} |w†
j hk |2+σ 2

k

, (3)

For notation simplicity, in the rest of this paper, the time index
superscripts are omitted because we assume that all channels
are quasi-static.

TABLE I

SUMMARY OF NOTATION

Denote �q ∈ C
N×Mq as the coefficient matrix of the

channel between the tier-2 BS and the q-th tier-1 BS. Also,
denote θq,m as the channel vector between the tier-2 BS and
the m-th antenna of the q-th tier-1 BS, where m ∈ Mq and
Mq = {1, 2, . . . , Mq }. We assume that the tier-2 BS knows
�q ∀q .

The tier-1 BSs would share their uplink spectrum with the
tier-2 BS if the interference caused by the tier-2 BS towards
the q-th tier-1 BS is kept below Lq . The tier-2 BS aims to
minimize its transmission power (i.e.,

∑
∀k∈K ||wk||2), subject

to SINR targets for its users, power budget constraint, and
interference leakage requirements. To achieve these goals,
the tier-2 BS needs to optimally choose its downlink beam-
formers solving the following optimization problem

(P1) : minimize{wk |k∈K }
∑

∀k∈K

||wk||2, (4a)

subject to
|w†

khk |2
∑

j∈K \{k} |w†
j hk |2 + σ 2

k

≥ γk, ∀k ∈ K ,

(4b)∑

∀k∈K

||wk ||2 ≤ Pmax, (4c)

∑

∀k∈K

||w†
k�q ||2 ≤ Lq , ∀q, (4d)

where Pmax denotes the power budget of the tier-2 BS and
Lq is the maximum allowable interference power from the
tier-2 BS to the q-th tier-1 BS. Table I summaries the defini-
tions of the notation.

III. INTERFERENCE CONTROL WITH PRICING:
SENSITIVITY ANALYSIS

In this section, we first show that the interference control
problem in P1 can be realized by a pricing mechanism.
We then analyze the behavior of the tier-2 BS under the pricing
mechanism for interference control.

A. Downlink Beamforming With Pricing

Based on the dual decomposition technique [29], the prob-
lem in P1 can be decomposed into two sub-problems at
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different levels. The sub-problem at the lower level concerns
with the design of the downlink beamformers of the tier-2 BS,
i.e.,

(P1-1) : minimize{wk |k∈K }
∑

∀k∈K

||wk ||2 +
∑

q∈Q

cq

∑

∀k∈K

||w†
k�q ||2,

(5a)

subject to
|w†

khk |2
∑

j∈K \{k} |w†
j hk |2 + σ 2

k

≥γk, ∀k ∈K ,

(5b)∑

∀k∈K

||wk||2 ≤ Pmax, (5c)

where cq is the Lagrange multiplier associated with the
q-th constraint in (4d). At the higher level, the other sub-
problem of P1 deals with the optimization of the Lagrange
multipliers cq for the tier-1 BSs, i.e.,

(P1-2) :
minimize{cq |q∈Q }

∑

∀k∈K

||wk(c)||2 +
∑

q∈Q

cq

∑

∀k∈K

||wk(c)†�q ||2

−
∑

q∈Q

cq Lq , (6a)

subject to cq ≥ 0, q ∈ Q . (6b)

In P1-2, c is the Q-by-1 vector containing [c1, c2, · · · , cQ ],
and wk(c) is the k-th downlink beamformer of the tier-2 BS
which is a function of c. We can interpret the formulations in
P1-1 and P1-2 as a pricing mechanism for interference control,
where the q-th tier-1 BS charges the tier-2 BS cq for each unit
of interference leaked to the former.

The equivalence between P1 and the problems P1-1 and
P1-2 suggests that the tier-1 BSs can use the soft interference
control mechanism in P1-1 to achieve the same interference
control targets set out in P1. In other words, without com-
promising the capability on interference control, the pricing
mechanism can serve as an alternative for interference control
purposes when the hard interference leakage budgets in (4d)
can be relaxed.

For any given price vector c, the problem in P1-1 can be
solved by the uplink-downlink duality between the downlink
beamforming problem and its uplink counterpart [30]. Denote
{λk ≥ 0|k ∈ K } and μ ≥ 0 as the Lagrange multipliers of (5b)
and (5c), respectively. The Lagrangian dual problem of P1-1 is
given as

(P1-1-Dual) :
maximize{λk |k∈K },μ

∑

∀k∈K

λkσ
2
k − μPmax, (7a)

subject to (μ + 1)IN +
∑

q∈Q

cq · �q�†
q +

∑

j∈K \{k}
(λ j h j h

†
j )

−λk

γk
hkh†

k � 0, ∀k ∈ K . (7b)

The constraint in (7b) implies that

v†
k [(μ + 1)IN +

∑

q∈Q

cq · �q�†
q +

∑
j∈K \{k}(λ j h j h

†
j )

−λk

γk
hkh†

k ]vk ≥ 0

⇒ λkv†
khkh†

kvk

v†
k [
∑

j∈K \{k}(λ j h j h
†
j ) + �(c, μ)]vk

≤ γk, k ∈ K ,

(8)

where vk is the k-th uplink beamforming vector and

�(c, μ) � (μ + 1)IN +
∑

q∈Q

cq · �q�†
q . (9)

Then, P1-1-Dual is equivalent to the following problem

(P1-1-Dual-Eqv) : maximize{λk ,vk |k∈K },μ
∑

∀k∈K

λkσ
2
k − μPmax,

subject to (8). (10)

Using similar techniques in [30], it can be shown that

v∗
k = A−1

k hk

h†
kA−1

k hk

, (11)

and the optimal downlink beamformer for user k in P1 can be
calculated as

w∗
k = εkv∗

k , (12)

where

Ak �
∑

j∈K \{k}
(λ∗

j h j h
†
j ) + �(c, μ∗), (13)

[ε2
1 ε2

2 · · · ε2
K ]T = �−1[σ 2

1 σ 2
2 · · · σ 2

K ]T , (14)

�[k,k] = |(v∗
k)

†hk |2
γk

= γ −1
k , (15)

�[ j,k] = −|(v∗
j )

†hk |2, ∀ j �= k. (16)

From (11), (12), and (13), it is clear that the tier-1 BSs can
change the behavior of the tier-2 BS by adjusting c, because c
affects the set of optimal uplink beamformers {v∗

k |k ∈ K }, and
{v∗

k |k ∈ K } determines the directions of the optimal downlink
beamformers of the tier-2 BS.

B. Behavior of the Tier-2 BS Under the Pricing Mechanism

Before analyzing how the tier-2 BS responses to the pricing
control, we present the following property of P1-1 that is
useful for subsequent analyses.

Theorem 1: The problem P1-1 is strictly convex and it
satisfies strong duality.

Proof: The proof is similar to [1, Th. 1] and is omitted.

Suppose there is a feasible instance of P1-1 denoted as P1,
where c = c1. Also, suppose that P2 is another instance of
P1-1 in which everything is the same as that in P1 except
c = c2. Let {w∗

k (c1)|k ∈ K } and {w∗
k (c2)|k ∈ K } be the set of

the optimal downlink beamformers of instances P1 and P2,
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respectively. Also, we define the following variables for nota-
tion simplicity,

Tx(c) �
∑

k∈K

||w∗
k (c)||2, (17)

IFq(c) �
∑

k∈K

|| (w∗
k (c)

)†
�q ||2, (18)

Obj−q (c) �
∑

k∈K

||w∗
k (c)||2 +

∑

q ′ �=q

cq ′
∑

k∈K

|| (w∗
k (c)

)†
�q ′ ||2,

(19)

where Tx(c) represents the optimal transmission power of
the tier-2 BS, IFq(c) gives the interference leakage from the
tier-2 BS to the q-th tier-1 BS when the former employs
optimal downlink beamformers, and Obj−q(c) denotes the
optimal objective function of P1-1 except the interference
charge due to the q-th tier-1 BS. The next theorem shows
the variation of IFq(c) and Obj−q (c) with respect to cq .

Theorem 2: For a feasible P1-1, Obj−q(c) is an increasing
function of cq , and IFq(c) is a decreasing function of cq .

Proof: See Appendix B.
Theorem 2 states that the interference leakage from the

tier-2 BS towards the q-th tier-1 BS decreases as cq increases
while {cq ′ |∀q ′ �= q} remains fixed. From the equivalence
between P1 and the problems P1-1 and P1-2, the fact that
IFq is a decreasing function of cq implies that when the q-th
tier-1 BS increases cq in P1-1, it is equivalent to the situation
that the same tier-1 BS reduces Lq in P1.

Also, when Q = 1, Theorem 2 implies that Tx(c) increases
as the only tier-1 BS increases its price. To see this, observe
that Obj−q(c) reduces to

∑
k∈K ||w∗

k (c)||2 when Q = 1. The
intuition behind this observation can be understood from the
equivalence between P1 and the problems in P1-1 and P1-2,
that increasing cq when Q = 1 is equivalent to tightening
the constraint in (4d). The same observation can be extended,
as shown in the next corollary, to the case for Q > 1 when
all tier-1 BSs increase their prices by the same factor.

Corollary 1: Tx(c1) ≤ Tx(c2) if c2 = ξ · c1, where ξ ≥ 1.
Proof: See Appendix B.

On the other hand, when Q > 1 increases, the fact that
Obj−q(c) increases when cq increases does not suggest a fixed
pattern of change on the transmission power of the tier-2 BS.
We will demonstrate in Fig. 3 of the simulation studies that the
transmission power of tier-2 BS can either increase or decrease
when cq increases.

Given a feasible instance of P1-1, Theorem 2 and Corol-
lary 1 indicate the possibility that the tier-2 BS would transmit
at its maximum power for some charge c. The next lemma
and its corollary reveal the behavior of the tier-2 BS when it
operates at its maximum power and the charge increases.

Lemma 1: Suppose D1 and D2 are two feasible instances
of P1-1-Dual, where the parameters in D1 are the same as
those in D2 except c = c1 in D1 and c = c2 = ξ · c1 in D2,
where ξ ≥ 1. Also, suppose the tier-2 BS transmits at its
maximum power in D1. Denote {λ∗

1,c1
, λ∗

2,c1
, . . . , λ∗

K ,c1
, μ∗

c1
}

and {λ∗
1,c2

, λ∗
2,c2

, . . . , λ∗
K ,c2

, μ∗
c2

} as the optimal solutions of

D1 and D2, respectively. Then,

λ∗
k,c2

λ∗
k,c1

= μ∗
c2

+ 1

μ∗
c1

+ 1
= ξ. (20)

Proof: See Appendix C.
Corollary 2: When the tier-2 BS uses its maximum power

at c = c1, it will use its maximum power for any c = ξ ·
c1, where ξ ≥ 1. Moreover, the optimal beamformers of the
tier-2 BS when c = ξ · c1 are the same as those when c = c1.

Proof: The first part of the corollary is a direct conse-
quence of Theorem 1. The second part of the corollary can be
seen by plugging (20) into (11).

Corollary 2 suggests that the power budget of the tier-2 BS
is related to the amount of interference leakage from the
tier-2 BS towards a tier-1 BS, that the tier-2 BS becomes
more able to reduce interference leakage if its power budget
increases. We make this point clear in the following sensitivity
analysis on the power budget of the tier-2 BS.

Theorem 3: Suppose P3 is a feasible instance of P1-1
where the tier-2 BS uses its maximum power, and denote the
optimal objective function of P3 as Obj3. Let Obj4 denote the
optimal objective function of P4, where P4 is exactly the same
as P3 except Pmax is reduced by δ > 0. Then, Obj4 > Obj3.

Proof: Because P1-1 satisfies strong duality, according
to [31], we have

Obj4 ≥ Obj3 + μ∗δ. (21)

Then, because the tier-2 BS uses full power, μ∗ > 0 due to
the complementary slackness, and the theorem follows.

We can make the following two observations from
Theorem 3

1) When Q = 1, because the tier-2 BS transmits at a
lower power level in P4 than in P3, (21) suggests
that the interference leakage towards the single tier-1
BS increases when the saturated power budget of the
tier-2 BS decreases.

2) When Q > 1 and cq = c ∀q ∈ Q , the objective function
of P1-1 reduces to Tx(c) + c · ∑Q

q=1 IFq(c). Because
the transmission power of the tier-2 BS in P4 is less
than that in P3, the total interference leakage towards all
tier-1 BSs in P4 is larger than that in P3.

IV. ASYMPTOTIC ANALYSIS OF

INTERFERENCE UNDER PRICING

In the previous section, we have analyzed the behavior
of the tier-2 BS against pricing. To further enhance our
understanding of the cross-tier interference against pricing,
in this section, we attempt to derive a closed-form expression
for the interference leakage. We show that such expressions
can be obtained when both {Mq |q ∈ Q } and N grow large,
where such scenarios are expected to be proliferated in the
coming 5G era [14].

We start from the channel model of the system where all
BSs are equipped with large scale antenna arrays. We assume
that the distances between the antennas at each tier-1 BS are
far enough, such that the small-scale fading experienced by
the received signals at different antennas are independent of
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each other. Moreover, we assume that the distance between the
tier-2 BS and each tier-1 BS is much larger than the antenna
spacing at the tier-1 BS, such that the large-scale fading gain
between an antenna at the tier-2 BS and an antenna at the
q-th tier-1 BS is equal to a fixed value lq .1 We assume that
the tier-1 BSs are equipped with more antennas than the
tier-2 BS, i.e., Mq > N ∀q .

Following the above assumptions, we can model the channel
between the tier-2 BS and the q-th tier-1 BS as �q = √

lq�̂q ,
where �̂q = [θ̂q,1 θ̂q,2 . . . θ̂q,Mq ] consists of Mq zero-
mean independent complex Gaussian vectors with covariance

matrix IN . Note that �̂q�̂
†
q is a central Wishart matrix

with Mq DoFs and covariance matrix IN , i.e., �̂q�̂
†
q ∼

WN (Mq , IN ) [32].
Similarly, we assume that h j and hk are independent for j �=

k, ∀ j, k ∈ K . Also, assume hk = √
lk · ĥk for k ∈ K , where

lk denotes the large-scale fading gain between the tier-2 BS
and user k and ĥk is a zero-mean complex Gaussian vector
with covariance matrix IN , such that ĥk ĥ†

k ∼ WN (1, IN ). For
tractability, we assume that the tier-2 BS always has sufficient
transmission power budget such that μ∗ = 0.

Based on the above channel model, we now show that
the interference leakage can be expressed in terms of system
parameters in a more explicit way when the number of
antennas at the tier-2 BS goes large. Denote IFk,q as the
interference leakage from the k-th downlink beam of the
tier-2 BS towards the q-th tier-1 BS. From (11) and (12),
we have

IFk,q � ||(w∗
k )

†�q ||2 = ε2
k

l2
k

· ||h†
kA−1

k �q ||2
||ĥ†

kA−1
k ĥk ||2

. (22)

In the following lemma, we obtain the interference leakage
when N goes large.

Lemma 2: When N → ∞,

IFk,q
a.s.−−−−→

N→∞
γklqσ 2

k
lk

·
Mq∑

m=1

[
tr{A−2

k,q,m }
(1+cq lq tr{A−1

k,q,m })2

]

tr{A−1
k }2 , (23)

where

Ak,q,m � Ak − cq · θq,mθ†
q,m . (24)

Proof: See Appendix D.
The expression in (23) is a complicated function of

{cq ′ |q ′ �= q}. To describe IFk,q as a closed-from expression
for the prices, we need to simplify the traces of matrix
inverses in (23). Assume that the tier-1 BSs set prices such
that cqlq � 1 ∀q . Then, for sufficiently large {Mq |q ∈ Q },
Appendix E shows that

tr{A−1
k } ≈ tr{T−1

k }, (25a)

tr{A−1
k,q,m} ≈ tr{T−1

k }, (25b)

tr{A−2
k,q,m} ≈ tr{T−2

k }, (25c)

1The same assumption has been made in many works studying MIMO
systems such as [5] and [12].

where

Tk �
∑

j∈K \{k}
λ∗

k lk ĥ j ĥ
†
j +

∑

q∈Q

cqlq�̂q�̂†
q , ∀k ∈ K . (26)

Notice that Tk is a linear combination of Wishart matrices.
According to [33], Tk can be approximated as

Tk ≈ 	kd−1
k · Sk, (27)

where 	k �
∑

j �=k λ∗
j l j + ∑

q cqlq Mq , dk �
⌊
	 2

k 
−1
k

⌉
,


k �
∑

j �=k(λ
∗
j )

2 l2
j + ∑

q c2
q l2

q Mq , and Sk ∼ WN (dk, IN ).

To express tr{T−1
k } and tr{T−2

k } as continuous functions of the
system parameters, Appendix F shows that

λ∗
k ≈ γkl−1

k N−1, k ∈ K . (28)

Also, Appendix G demonstrates that

dk ≈ 	 2
k 
−1

k (29)

when cqlq ≥ λ∗
klk ∀q, k.

We are now ready to obtain a closed-form expression on the
average interference leakage in terms of the system parameters
{Mq , lq , cq , N, lk , γk, σk |q ∈ Q , k ∈ K }. The expression for
the average interference leakage is given in Theorem 4, and
the properties of the average interference leakage with respect
to cq are shown in Theorem 5.

Theorem 4: When N → ∞ and cqlq � 1 ∀q, the average
interference leakage from the k-th beam of the tier-2 BS
towards the q-th tier-1 BS can be found as

E[IFk,q ] ≈ γkσ
2
k lq Mq · dk

lk N · (dk − N) · (1 + cqlq
	−1

k dk N
dk−N )2

, k ∈ K .

(30)

Proof: See Appendix H.
Theorem 5: Assume (28) holds, then E[IFk,q ] is a decreas-

ing function of cq for all k ∈ K . Consequently, E[IFq ] is a
decreasing function of cq . Moreover,

lim
cq→∞ E[IFk,q ] = γkσ

2
k lq

lk
·
(

Mq

N
− 1

)
, k ∈ K . (31)

Proof: See Appendix I.
Theorem 5 shows that the average interference leakage from

the tier-2 BS in the asymptotic region preserves its property
shown in Theorem 2, that the interference leakage towards
the q-th tier-1 BS reduces as cq increases. Also, with the
approximations in (28) and (29), we can express the average
interference leakage from the tier-2 BS as a function of system
parameters in closed-form.

More importantly, (31) gives the least interference leakage
that a tier-1 BS can expect using the pricing scheme. This
allows us to predict the feasibility of P1 for some given value
of Lq . Observe that

1) (31) decreases as the number of antennas at the tier-2
BS increases. Also, (31) is linearly proportional to
the number of antennas at the q-th tier-1 BS. Indeed,
the tier-2 BS would have more DoFs to avoid causing
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Fig. 2. A randomly generated network topology for N = 5, K = 3, and
M = 1.

interference towards the tier-1 BS when N increases and
Mq decreases.

2) If the ratio between Mq and N is fixed, then (31) is
deterministic when Mq and N both increase. In other
words, it is the ratio between the number of antennas
mounted on the BSs that determines the minimum
interference leakage.

3) Moreover, (31) increases linearly with both γk and σk .
This can be understood as higher SINR targets or higher
noise power would impose more constraint on the tier-
2 BS, which inevitably makes it harder for the tier-2 BS
to avoid interference leakage.

4) Finally, (31) increases if lq ∀q ∈ Q increases or if
lk ∀k ∈ K decreases. The former is intuitively clear,
while the latter is true because the tier-2 BS would
need to increase its transmission power if the large-
scale fading between the tier-2 BS and the users become
severe.

In the simulation studies, we will verify the accuracy of the
expressions in (30) and (31).

V. SIMULATION STUDIES

In this section, we verify the analytical results in
Sections III-B and IV based on the following simulation
parameters. Specifically, let {ϑi |i ∈ Q ∪ K } be the normal-
ized distance between the tier-2 BS and the i -th tier-1 BS/
tier-2 user. The path loss exponent is set to three, and we set
li = ϑ−3

i ∀i ∈ Q ∪ K . Also, γk = 1 and σ 2
k = 0.1 for all k.

Fig. 2 depicts the transmission power of the tier-2 BS and
the interference leakage towards tier-1 for some fixed values
of {ϑi |i ∈ Q ∪ K } when Q = 1, N = 5, M = 3, and K = 3.
We have the following observations:

1) When Pmax = 1 Watt, the transmission power of the
tier-2 BS increases as c increases, and the tier-2 BS
always has more power than it uses for all c values
concerned in Fig. 2. Also, the tier-2 BS is forced to
reduce its interference power towards the tier-1 BS as
c increases. The tier-2 BS can reduce its interference

Fig. 3. Tx(c) and IFq (c) when Q = 2, N = 4, M1 = M2 = 3, and K = 3.

towards the tier-1 BS because it has enough power for
interference mitigation. This phenomenon is predicted
by Theorems 2 and 1.

2) When Pmax = 0.17 Watt, the tier-2 BS has to use its
maximum power when c takes the value close to 40.
Also, the tier-2 BS causes the same interference towards
the tier-1 BS for all c values that is larger than 40. This
phenomenon reflects the validity of Corollary 2, i.e., the
tier-2 BS will use the same set of downlink beamformers
for all c values larger than 40.

3) When Pmax = 0.15 Watt and c is larger than or equal
to 20, the interference from the tier-2 BS towards the
tier-1 BS is larger than that when Pmax = 0.17 W for
the same set of c values. Intuitively, the tier-2 BS would
be less able to reduce interference leakage if it has less
power budget; see [1, Th. 3].

Fig. 3 further verifies the observations made in Sec. III-B
when two tier-1 BSs charge the tier-2 BS for causing inter-
ference, where we set K = 3, N = 4, and M1 = M2 = 3.
From Fig. 3, we can observe that the interference leakage
towards the first (second) tier-1 BS decreases when c1 (c2)
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Fig. 4. E[IFq ] against c1, where Q = 3, M1 = M2 = M3 = 300, N = 100,
and K = 3. The dashed lines are results from simulation, the solid lines
are results from (30), and the dash-dotted line is the lower bound of E[IF1]
from (31).

Fig. 5. E[IF1] for different ratios between Mq and N , where Q = 3,
M1 = M2 = M3, and K = 3.

increases and c2 (c1) remains fixed, which matches the first
part of Theorem 2. On the other hand, Fig. 3(a) shows that
when c2 increases, Tx(c) can either increase or decrease. For
example, when c1 = 20, Tx(c) decreases when c2 increases
from 0 to 10, and the same quantity increases when c2
further increases. At the same time, IF1(c) increases but at a
decreasing rate of change. This observation can be explained
by the equivalence between P1 and the formulations in
P1-1 and P1-2. First, observe that increasing c2 in the scenario
of Fig. 3 has the effect of reducing L2 and increasing L1 in P1;
this can be seen in Fig. 3(b) that IF1(c) increases and IF2(c)
decreases as c2 increases. Then, the feasible region of P1, due
to the changes in L1 and L2, can be modified such that a
better objective function (Tx(c)) becomes feasible.

Figures 4, 5, and 6 examine the accuracy of (30) when
both the tier-2 BS and the tier-1 BSs are equipped with large
number of antennas, where Q = 3. In all the three figures,
cq is set to be 0.1 × l−1

q for all q , except that c1 in Fig. 4

is set equal to 0.1ξl−1
q , where ξ changes between [1, 51].

Fig. 6. E[IFq ] against K , where Q = 3, M1 = M2 = M3 = 300, and
N = 100.

The simulation result for E[IFq ] is obtained by averaging
1000 random realizations of �̂q ∀q and ĥk ∀k, where the
values of ϑi ∀i ∈ Q ∪ K are fixed.

More specifically, Fig. 4 shows that the average interference
leakage expression in (30) accurately predicts the trend that
IFq reduces as cq increases. Although we use the assumption
that cqlq � 1 when deriving (30), the result from Fig. 4
indicates that (30) can accurately predict the average interfer-
ence leakage for relatively small cq for all q ∈ Q . Moreover,
as c1 increases, E[IF1] converges to a value that is accurately
predicted by (31).

Fig. 5 shows that the prediction in (30) becomes more
accurate when N increases. This is expected because (30) is
obtained when N → ∞. On the other hand, the results from
Fig. 5 suggest that the prediction in (30) gives an error of only
about 10% for N = 20, indicating that (30) can be used as an
accurate estimate for moderate values of N . Also, we can see
that the interference leakage increases as the ratio between Mq

and N increases, which matches the observation from (31).
Fig. 6 depicts the average interference leakage against the

number of users served by the tier-2 BS. Note that the large-
scale fading gains lk ∀k ∈ K are fixed in the simulation.
Observe that the average interference leakage increases as K
increases. Also, the prediction in (30) remains accurate for
K = 10, where the difference between (30) and that obtained
using simulation is only about 7%.

VI. CONCLUSION

We have analyzed a network model where multiple tier-1
BSs charge a near-by tier-2 BS for causing interference, while
the tier-2 BS tries to minimize its transmission power plus the
price payable to the tier-1 BSs subject to SINR targets of the
tier-2 users and the power budget of the tier-2 BS. We have
demonstrated that such a pricing mechanism could achieve the
same interference leakage control targets, if feasible, as the
mechanism where the tier-1 BSs impose explicit interference
leakage constraints. Then, we have analyzed the effect of
pricing and the effect of the power budget of the tier-2 BS
on the pricing-based interference control scheme. Moreover,
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we have derived a closed-form expression for the interference
power experienced by a tier-1 BS when both the tier-2 BS and
the tier-1 BSs were equipped with large numbers of antennas,
which demonstrated how the interference leakage was related
to various system parameters such as the number of users and
the number of antennas. Simulation studies have verified the
accuracy of the analytical results, indicating that the derived
expression can be used to predict the average interference
leakage against pricing.

APPENDIX A
USEFUL LEMMAS

Lemma 3 [34]: Let A ∈ CN×N be a Hermitian matrix that
is invertible. Then, for any given vector x ∈ CN and any given
scalar τ ∈ C such that A + τxx† is invertible,

x†(A + τxx†)−1 = x†A−1

1 + τx†A−1x
.

Lemma 4 [34]: Let A ∈ CN×N and assume that A has uni-
formly bounded spectral norm. Also, let x, y ∼ CN (0, IN )).
Assume that x, y, and A are mutually independent. Then,

1) x†Ax − trA
a.s.−−−−→

N→∞ 0, and

2) x†Ay
a.s.−−−−→

N→∞ 0.

Lemma 5 [32]: For a central Wishart matrix W ∼
Wn(m, In) with m > n,

E

[
tr{W−1}

]
= n

m − n
while, for m > n + 1,

E

[
tr{W−2}

]
= mn

(m − n)3 − (m − n)
.

APPENDIX B
PROOF OF THEOREM 2 AND COROLLARY 1

For the proof of Theorem 2, suppose c2(q) > c1(q) and
c2(q ′) = c1(q ′) ∀q ′ �= q . That is to say that only the q-th tier-1
BS in P2 sets its price larger than that in P1, but any other
tier-1 BSs sets the same price in both P1 and P2. The strict
convexity of the problem (see Theorem 1) and the assumption
that {w∗

k (c1)|k ∈ K } is the optimal solution of P1 suggest that

Obj−q(c1) + c1(q) · IFq(c1)

≤ Obj−q(c2) + c1(q) · IFq(c2) (32)

⇒ 1

c1(q)
Obj−q(c1) + IFq(c1)

≤ 1

c1(q)
Obj−q(c2) + IFq(c2). (33)

Similarly, the assumption that {w∗
k(c2)|k ∈ K } is the optimal

solution of P2 suggests that

Obj−q(c2) + c2(q) · IFq (c2)

≤ Obj−q(c1) + c2(q) · IFq(c1) (34)

⇒ 1

c2(q)
Obj−q(c2) + IFq(c2)

≤ 1

c2(q)
Obj−q(c1) + IFq(c1). (35)

Adding (33) and (35) gives

1

c1(q)
Obj−q (c1) + 1

c2(q)
Obj−q (c2)

≤ 1

c1(q)
Obj−q(c2) + 1

c2(q)
Obj−q(c1)

⇒ c2(q)
(
Obj−q (c1) − Obj−q (c2)

)

≤ c1(q)
(
Obj−q(c1) − Obj−q(c2)

)
. (36)

Because c2(q) > c1(q) ≥ 0, we must have

Obj−q (c1) − Obj−q (c2) ≤ 0 (37)

in order to have (36). Therefore, Obj−q(c) is an increasing
function of cq . Adding (32) and (34) gives

c1(q) · IFq (c1) + c2(q) · IFq(c2)

≤ c1(q) · IFq(c2) + c2(q) · IFq(c1)

⇒ c1(q)
[
IFq(c1) − IFq (c2)

]

≤ c2(q)
[
IFq(c1) − IFq(c2)

]
. (38)

Again, because c2(q) > c1(q) ≥ 0, we must have

IFq(c1) − IFq(c2) ≥ 0. (39)

Similar to the proof of Theorem 2, for the proof of
Corollary 1, we have the following inequalities

Tx(c1) +
∑

q∈Q

c1(q) · IFq(c1) ≤ Tx(c2) +
∑

q∈Q

c1(q) · IFq(c2)

(40)

Tx(c2) +
∑

q∈Q

c2(q) · IFq(c2) ≤ Tx(c1) +
∑

q∈Q

c2(q) · IFq(c1)

(41)

If we multiply (40) by ξ and add the result to (41), we have

(ξ − 1)Tx(c1) ≤ (ξ − 1)Tx(c2) ⇒ Tx(c1) ≤ Tx(c2). (42)

APPENDIX C
PROOF OF LEMMA 1

Let μ̂ � μ + 1, P1-1-Dual can be written as

minimize
{λk |k∈K },μ̂

μ̂Pmax − Pmax −
∑

∀k∈K

λkσ
2
k , (43a)

subject to
λk

γk
hkh†

k − μ̂IN −
∑

q∈Q

cq · �q�†
q

−
∑

j∈K \{k}
(λ j h j h

†
j ) � 0, ∀k ∈ K , (43b)

− λk ≤ 0, ∀k ∈ K , (43c)

1 − μ̂ ≤ 0. (43d)

Let {Zk |Zk � 0, Zk = Z†
k , k ∈ K }, {αk |αk ≥ 0, k ∈ K }, and

β ≥ 0 be the Lagrange multipliers of (43b), (43c), and (43d),
respectively. The Lagrangian dual function of P1-1-Dual can
be written as

g(Z,α, β) = inf
λk ,μ̂

{
μ̂Pmax − Pmax −

∑

∀k∈K

λkσ
2
k

+
∑

k∈K

tr(ZkMk) −
∑

k∈K

(αkλk) + β(1 − μ̂)
}
,

(44)
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where Z includes all elements in {Zk |k ∈ K }, α includes all
elements in {αk |k ∈ K }, and Mk � λk

γk
hkh†

k −μ̂IN −∑q∈Q cq ·
�q�†

q −∑
j∈K \{k}(λ j h j h

†
j ) for k ∈ K . Note that g(Z,α, μ̂)

gives a lower bound on the optimal value of P1-1-Dual because
tr(ZkMk) ≤ 0 for k ∈ K given that Zk � 0, Zk = Z†

k , Mk � 0,
and Mk = M†

k [31, p. 52]. The Lagrangian dual problem of
P1-1-Dual can thus be written as the following.

(P1-1-Dual-Dual) :
maximize

Z,α,β
g(Z,α, β), (45a)

subject to Zk � 0, Zk = Z†
k , k ∈ K , (45b)

αk ≥ 0, ∀k ∈ K , (45c)

β ≥ 0. (45d)

After some manipulations, (44) can be rewritten as

g(Z,α, β)

= inf
{λk |k∈K },μ̂

{
μ̂[Pmax −

∑

k∈K

tr(Zk) − β] − Pmax

+
∑

k∈K

[λk
( tr(Zkhkh†

k)

γk
−

∑

j∈K \{k}
tr(Z j hkh†

k)

− σ 2
k − αk

)] −
∑

q∈Q

cq

∑

k∈K

tr(Zk�q�†
q) + β

}
. (46)

To avoid g(Z,α, β) from being minus infinity, we must

have Pmax − ∑
k∈K tr(Zk) − β ≥ 0 and

tr(Zkhkh†
k )

γk
−

∑
j∈K \{k} tr(Z j hkh†

k) − σ 2
k − αk ≥ 0 for k ∈ K . Therefore,

P1-1-Dual-Dual is equivalent to the following problem

maximize
Z,α,β

− Pmax −
∑

q∈Q

cq

∑

k∈K

tr(Zk�q�†
q) + β, (47a)

subject to
tr(Zkhkh†

k)

γk
−

∑

j∈K \{k}
tr(Z j hkh†

k) − σ 2
k

−αk ≥ 0, k ∈ K , (47b)

Pmax −
∑

k∈K

tr(Zk) − β ≥ 0, (47c)

Zk � 0, Zk = Z†
k , k ∈ K , (47d)

αk ≥ 0, ∀k ∈ K , (47e)

β ≥ 0. (47f)

Notice that strong duality holds between P1-1-Dual and
P1-1-Dual-Dual because we can always find a solution to
P1-1-Dual such that all the constraints are not active [35].

Denote D′
1 and D′

2 as the corresponding P1-1-Dual-
Dual instances of D1 and D2, respectively. Also, denote
{Z∗

k,c1
, α∗

k,c1
, β∗

c1
|k ∈ K } and {Z∗

k,c2
, α∗

k,c2
, β∗

c2
|k ∈ K } as the

optimal solutions to D′
1 and D′

2, respectively. Because we have
assumed that the tier-2 BS uses all its power in D1, μ̂∗

c1
> 1

due to the complementary slackness. Also, from Theorem 1
and the complementary slackness, we have μ̂∗

c2
> 1, Moreover,

λ∗
k,c1

> 0 and λ∗
k,c2

> 0 for k ∈ K because the users
clearly need to transmit at positive power levels in order to
achieve positive SINR targets. Then, due to the complementary

slackness, we have

α∗
k,c1

= α∗
k,c2

= 0, k ∈ K (48)

and

β∗
c1

= β∗
c2

= 0. (49)

The problems D′
1 and D′

2 can then be written as

(D′
1) :
maximize

Z
− Pmax −

∑

q∈Q

c1(q)
∑

k∈K

tr(Zk,c1�q�†
q), (50a)

subject to
tr(Zk,c1 hkh†

k)

γk
−

∑

j∈K \{k}
tr(Z j,c1 hkh†

k)

− σ 2
k ≥ 0, k ∈ K , (50b)

Pmax −
∑

k∈K

tr(Zk,c1) ≥ 0, (50c)

Zk,c1 � 0, Zk,c1 = Z†
k,c1

, k ∈ K , (50d)

and

(D′
2) : maximize

Z
− Pmax − ξ

∑

q∈Q

c1(q)
∑

k∈K

tr(Zk,c2 �q�†
q),

(51a)

subject to
tr(Zk,c2 hkh†

k)

γk
−

∑

j∈K \{k}
tr(Z j,c2hkh†

k)

− σ 2
k ≥ 0, k ∈ K , (51b)

Pmax −
∑

k∈K

tr(Zk,c2) ≥ 0, (51c)

Zk,c2 � 0, Zk,c2 = Z†
k,c2

, k ∈ K ,

(51d)

respectively. Clearly, D′
1 and D′

2 are equivalent because they
have the same constraints and equivalent objective functions.
Therefore,

Z∗
k,c1

= Z∗
k,c2

⇒
∑

k∈K

tr(Z∗
k,c1

�q�†
q) =

∑

k∈K

tr(Z∗
k,c2

�q�†
q), k ∈ K .

(52)

Now, from the strong duality between P1-1-Dual and
P1-1-Dual-Dual and (49), we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ̂∗
c1

Pmax − ∑
k∈K

(λ∗
k,c1

σ 2
k ) = −

Q∑
q=1

c1(q)
∑

k∈K
tr(Z∗

k,c1
��†)

μ̂∗
c2

Pmax − ∑
k∈K

(λ∗
k,c2

σ 2
k ) = −

Q∑
q=1

c2(q)
∑

k∈K
tr(Z∗

k,c2
��†).

(53)

From (52) and (53), we have
∑

k∈K (λ∗
k,c2

σ 2
k ) − μ̂∗

c2
Pmax

∑
k∈K (λ∗

k,c1
σ 2

k ) − μ̂∗
c1

Pmax
= ξ. (54)

Given {λ∗
k,c1

, μ̂∗
c1

|k ∈ K } as the optimal solution of D1,
we now propose {λ∗

k,c2
= ξλ∗

k,c1
, μ̂∗

c2
= ξμ̂∗

c1
|k ∈ K } as the
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optimal solution of D2. We examine the validity of our pro-
posal by checking its feasibility and the optimality. To check
the feasibility, observe that because {λ∗

k,c1
, μ̂∗

c1
|k ∈ K } satisfies

the constraints in P1-1-Dual when c = c1, it follows that
{λ∗

k,c2
= ξλ∗

k,c1
, μ̂∗

c2
= ξμ̂∗

c1
|k ∈ K } satisfies the constraints in

P1-1-Dual when c = c2. To check the optimality, observe that
{λ∗

k,c2
= ξλ∗

k,c1
, μ̂∗

c2
= ξμ̂∗

c1
|k ∈ K } satisfies (54). Therefore,

{λ∗
k,c2

= ξλ∗
k,c1

, μ̂∗
c2

= ξμ̂∗
c1

|k ∈ K } is indeed an optimal
solution of D2. The lemma then follows by recalling that
μ̂ = μ + 1.

APPENDIX D
PROOF OF LEMMA 2

To obtain the expression of IFk,q when N goes to infinity,
we first rewrite the numerator of IFk,q as

||h†
kA−1

k �q ||2 =
Mq∑

m=1

||h†
kA−1

k θq,m ||2

=
Mq∑

m=1

||h†
k(Ak,q,m + cqθq,mθ†

q,m)−1θq,m ||2

=
Mq∑

m=1

∣∣∣∣∣∣

∣∣∣∣∣∣

√
lklq · ĥ†

kA−1
k,q,m θ̂q,m

(1 + cqlq θ̂
†
q,mA−1

k,q,m θ̂q,m)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

(55)

=
Mq∑

m=1

lklq ĥ†
kA−1

k,q,m θ̂q,m θ̂
†
q,mA−1

k,q,m ĥk

(1 + cqlq θ̂
†
q,mA−1

k,q,m θ̂q,m)2
(56)

where (56) is true due to Lemma 3. Then, by applying lemma 4
to (56) and the denominator of IFk,q , we have

||h†
kA−1

k �q ||2 a.s.−−−−→
N→∞

Mq∑

m=1

⎡

⎣ lklq tr{θ̂†
q,mA−2

k,q,m θ̂q,m}
(1 + cqlq tr{A−1

k,q,m})2

⎤

⎦

a.s.−−−−→
N→∞

Mq∑

m=1

[
lklq tr{A−2

k,q,m}
(1 + cqlq tr{A−1

k,q,m})2

]
(57)

and

||ĥ†
kA−1

k ĥk ||2 a.s.−−−−→
N→∞ tr{A−1

k }2 (58)

respectively, where “
a.s.−−−−→

N→∞ ” denotes almost sure convergence.

Moreover, to obtain the value of εk when N goes to infinity,
observe that

�[ j,k] = − lk |ĥ†
j A

−1
j ĥk |2

l j |ĥ†
j A

−1
j ĥ j |2

a.s.−−−−→
N→∞ 0 (59)

due to lemma 4. Then, �
a.s.−−−−→

N→∞ diag[γ −1
1 γ −1

2 · · · γ −1
K ],

and

ε2
k

a.s.−−−−→
N→∞ γkσ

2
k . (60)

Summarizing the results from (22), (57), (58), and (60),
we obtain the asymptotic expression of IFk,q as shown in (23).

Fig. 7. ηth versus M, where N = 100 and ε = 0.01.

APPENDIX E
JUSTIFICATION ON THE APPROXIMATIONS IN (25)

Here, we show that tr{A−1
k } ≈ tr{T−1} is valid when M is

sufficiently large and cqlq � 1 ∀q .

Let η be one of the eigenvalues of �̂q�̂
†
q . The probability

density function (PDF) of η is given as [36]

pη = 1

N

N∑

i=1

ϕi (η)2ηM−N e−η, (61)

where

ϕi �
[

(i − 1)!
(i − 1 + M − N)!

] 1
2

L M−N
i−1 (η) (62)

and L M−N
k (η) = 1

k! e
ηηN−M dk

dηk (e−ηηM−N+k ) is the Laguerre
polynomial of order k. Based on the PDF of η, we numerically
search for ηε , where ηε is the threshold value such that the
probability of the event η ≤ ηε is equal to ε. Fig. 7 shows
the value of ηε versus Mq , where N = 100 and ε = 0.01.
We can see that ηε is much larger than one when Mq becomes
large. This means that it is very unlikely that any eigenvalue

of �̂q�̂
†
q is close to one for sufficiently large Mq .

Given that η is an eigenvalue of �̂q�̂
†
q , we know that

cqlqη + 1 is an eigenvalue of cqlq�̂q�̂
†
q + IN . Because

cqlq � 1 and η � 1 with high probability, we have
cqlqη ≈ cqlqη + 1 with high probability. This means that the
eigenvalues of Ak are approximately the same as those of Tk .
Consequently, we have tr{A−1

k } ≈ tr{T−1
k }.

The validity of tr{A−1
k,q,m} ≈ tr{T−1

k } and tr{A−2
k,q,m} ≈

tr{T−2
k } can be realized by the fact that �̂q�̂†

q has similar

eigenvalues as �̂q�̂†
q − θ̂q,m θ̂

†
q,m for sufficiently large Mq ,

such that the eigenvalues of Ak,q,m are similar to those of Tk .

APPENDIX F
APPROXIMATION OF λ∗

k

From (11), when N → ∞, we have

v∗
k = A−1

k hk

h†
kA−1

k hk

a.s.−−−−→
N→∞

A−1
k hk

lk · tr{A−1
k } . (63)

From the argument in Appendix VI, we know that the
eigenvalues of Ak and Tk are approximately the same. Also,
Ak = Tk + IN , indicating that the eigenvectors of Ak and Tk

are the same. Therefore, we use the approximation Ak ≈ Tk .
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From (27), Tk ≈ 	kd−1
k · Sk , where Sk is a Wishart

matrix with dk DoFs and covariance matrix IN . Then, T−1
k ≈

	−1
k dk · S−1

k , where S−1
k is an inverse-Wishart matrix with

dk DoFs and covariance matrix IN such that E[tr{S−1
k }] =

N
dk−N and E[S−1

k ] = IN
dk−N−1 [37]. Using respectively E[S−1

k ]
and E[tr{S−1

k }] to approximate S−1
k and tr{S−1

k }, we can
approximate v∗

k as

v∗
k ≈ E[S−1

k ]hk

lk · E[tr{S−1
k }] = (dk − N)hk

lk N(dk − N − 1)
≈ ĥk√

lk N
, (64)

where we have used the approximation dk − N − 1 ≈ dk − N
for large N in (64).

From lemma 4, when N → ∞ and vk = ĥk√
lk N

∀k, the left
hand side of (8) converges to

λk ĥ†
khkh†

k ĥk

ĥ†
k [
∑

j∈K \{k} λ j h j h
†
j + �(c, μ)]ĥk

a.s.−−−−→
N→∞ λklk N. (65)

Then, the optimal value of λk for P1-1-Dual in this case is
clearly γkl−1

k N−1.

APPENDIX G
APPROXIMATION OF dk

Define M̌ � min{Mq |q ∈ Q }. When cqlq ≥ λ∗
klk ∀q, k,

we have

	 2
k >

∑
j �=k

∑
q
λ∗

j l j cqlq Mq +
∑

q
c2

ql2
q M2

q

>
∑

j �=k
(λ∗

j )
2l2

j M̌ +
∑

q
c2

ql2
q Mq M̌ . (66)

Then, we can observe that

dk >

⌊∑
j �=k(λ

∗
j )

2l2
j M̌ +∑

q c2
ql2

q Mq M̌
∑

j �=k(λ
∗
j )

2l2
j +∑

q c2
ql2

q Mq

⌉
= M̌ > N. (67)

Because N is assumed to be large, we can use the following
approximation dk ≈ 	 2

k 
−1
k .

APPENDIX H
PROOF OF THEOREM 4

From lemma 5 in Appendix VI, we can evaluate the average
traces of T−1

k and T−2
k as

E[tr{T−1
k }] ≈ 	−1

k dk · E[tr{S−1
k }] = 	−1

k dk N

dk − N
(68)

and

E[tr{T−2
k }] ≈ 	−2

k d2
k · E[tr{S−2

k }]
= 	−2

k d3
k N

(dk − N)3 − (dk − N)
, (69)

respectively. We can then obtain the average interference
leakage when N → ∞ as

E[IFk,q ] ≈ γklqσ 2
k

lk
·

Mq∑
m=1

[
E[tr{T−2

k }]
(1+cqlqE[tr{T−1

k }])2

]

E[tr{T−1
k }]2

= γklqσ 2
k Mq · E[tr{T−2

k }]
lk · E[tr{T−1

k }]2 · (1 + cqlqE[tr{T−1
k }])2

= γklqσ 2
k Mq · dk(dk − N)

lk N · [(dk − N)2 − 1] · (1 + cqlq
	−1

k dk N
dk−N )2

≈ γklqσ 2
k Mq · dk

lk N · (dk − N) · (1 + cqlq
	−1

k dk N
dk−N )2

, (70)

where (70) is true because

(dk − N)2 − 1 = d2
k − 2dk N + N2 − 1

≈ d2
k − 2dk N + N2 = (dk − N)2 (71)

for large N .

APPENDIX I
PROOF OF THEOREM 5

Following (29) and (30), we can rewrite E[IFk,q ] as

E[IFk,q ] = γkσ
2
k lq Mq · 	 2

k

lk N · (	 2
k − 
k N) · (1 + cqlq

	k N
	 2

k −
k N
)2

, k ∈ K .

(72)

Let 	k,q �
∑

j �=k
γk
N + ∑

q ′ �=q cq ′lq ′ Mq ′ ∀k ∈ K and


k,q �
∑

j �=k
γ 2

k
N2 + ∑

q ′ �=q c2
q ′ l2

q ′ Mq ′ ∀k ∈ K , such that
	k = cqlq Mq + 	k,q and 
k = c2

q l2
q Mq + 
k,q when the

approximation in (28) is used. The derivative of E[IFk,q ] with
respect to cq is

∂E[IFk,q ]
∂cq

= −
2l2

qγkσ
2
k Mq	k ·

(
c3

ql3
q M2

q N	k,q + f1 + f2 + f3

)

lk ·
[
c2

ql2
q M2

q + cqlq	k,q
(
2Mq + N

) + f4

]3 ,

(73)

where

f1 � c2
ql2

q M2
q

[
(	 2

k,q − N
k,q ) + (Mq − N)
k,q

]
, (74a)

f2 � cqlq	k,q

[
2Mq	 2

k,q + (
2Mq − N

)

k,q

]
, (74b)

f3 � (	 2
k,q − N
k,q ) · (	 2

k,q + 
k,q Mq ), (74c)

f4 � 	 2
k,q − N
k,q . (74d)

Because Mq > N ∀q , one can easily verify that 	 2
k,q −

N
k,q > 0 ∀k ∈ K for N → ∞. Therefore, the functions f1,
f2, f3, and f4 always take positive values. This means that
∂E[IFk,q ]

∂cq
< 0 ∀k ∈ K , and therefore E[IFk,q ] is a decreasing

function of cq for all k ∈ K .
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Because E[IFq ] = E[∑K
k=1 IFk,q ] = ∑K

k=1 E[IFk,q ], where
E[IFk,q ] is a decreasing function of cq for all k, we conclude
that E[IFq ] is a decreasing function of cq .

To find the limit value of E[IFk,q ] when cq goes large,
we can rewrite (72) as

E[IFk,q ] = γkσ
2
k lq Mq	 2

k (	 2
k − 
k N)

lk N[(	 2
k − 
k N) + cqlq	k N]2

(75)

where

	 2
k = (cqlq Mq + 	k,q )2

= c2
q l2

q M2
q + O(cq), (76)

	 2
k − 
k N = c2

q l2
q(M2

q − Mq N) + O(cq),

(77)

[(	 2
k − 
k N) + cqlq	k N]2 = c4

q l4
q M4

q + O(c3
q). (78)

Note that E[IFk,q ] is a ratio between two polynomials of cq ,
and we only need to know the term of the highest orders of cq

to find the limit, i.e.,

lim
cq→∞ E[IFk,q ] = γkσ

2
k lq Mq

lk N
· c4

ql4
q M2

q (M2
q − Mq N)

c4
ql4

q M4
q

= γkσ
2
k lq(Mq − N)

lk N
. (79)
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