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ABSTRACT 23 

In this paper, we demonstrate in a clear procedure the application of ADM1 to model a large-scale 24 

covered in-ground anaerobic reactor (Cigar), processing sugarcane vinasse from a biorefinery in 25 

Brazil. The biochemical make-up (carbohydrates, proteins, and lipids) of the substrate was analysed 26 

based on the food industry standards. Two distinct subsets of data, based on the sugarcane harvest 27 

season for bioethanol and sugar production in 2012 and 2014, were used to direct and cross validate 28 

the model, respectively. We fitted measured data by estimating two key parameters against biogas 29 

flow rate: the degradation extent (fd) and the first order hydrolysis rate coefficient (khyd). By cross-30 

validation we show that the fitted model can be generalised to represent the behaviour of the reactor 31 

under study. Therefore, motivated by practical and industrial application of ADM1, for both 32 

different reactors types and substrates, we show aspects on the implementation of ADM1 to a 33 

specific large-scale reactor for anaerobic digestion of sugarcane vinasse. 34 

Keywords ADM1, anaerobic digestion, biogas; simulation, sugarcane vinasse 35 

INTRODUCTION 36 

Sugarcane bioethanol has been produced in many countries/regions, such as Brazil, the USA and 37 

the European Union and is regarded as one of the most promising alternatives to replace fossil fuels. 38 

However, such interest has led to bioethanol expansion and the saying “what goes in must come 39 

out”, is especially true for the sugar-bioethanol industry, which produces huge amounts of residues, 40 

including sugarcane vinasse (SV), a dark brown wastewater after bioethanol distillation. The 41 

projections by the Agricultural Trade Office (ATO/São Paulo) of total bioethanol production in 42 

Brazil’s marketing year (MY) 2017/18 were 26.65 billion litres (11.83 billion litres of anhydrous 43 

bioethanol and 14.82 billion litres of hydrated bioethanol) (GAIN 2017). On average Brazilian 44 

biorefineries produce 12 L of SV for each litre of bioethanol. The trade-off between the 45 

concentration of alcohol and the viability of yeast limits the reduction of SV volumes.    46 

SV has been extensively worldwide used as fertilizer in the sugarcane fields given the presence of 47 

rich minerals, such as potassium, calcium, magnesium, phosphorus, and nitrogen. SV can also be 48 
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applied onto so-called  “sacrifice areas” in Brazil when not used as fertilizer. However, in both 49 

cases there is a great risk of environmental contamination. The emission and degradation of SV in 50 

the terrestrial and aquatic environment can cause severe impacts, such as eutrophication of rivers 51 

and lakes, ground water contamination and GHG (greenhouse gas) emissions (Moraes et al. 2015). 52 

Nevertheless, effective and economic biological treatment of SV, such as anaerobic digestion (AD) 53 

has been often cited as an option for mitigating the environmental impacts (Leite et al. 2015, 54 

Moraes et al. 2015). 55 

AD arises as a sustainable bioprocess to unlock the value of SV as an energy feedstock. It is a 56 

biological engineering solution that improves the attractiveness of bioethanol as an alternative fuel, 57 

both as a means of pollution potential reduction and through recovery of biogas for renewable 58 

bioenergy generation (Barrera et al. 2015, Leite et al. 2015). Moreover, biogas produced by AD can 59 

replace the burning of bagasse, which is a by-product from the first-generation bioethanol 60 

production, to encourage second-generation bioethanol production from bagasse (Moraes et al. 61 

2015). However, the industrial exploitation of SV has been hampered by inefficient reactors and/or 62 

their improper operation. An experimental approach coupled with mathematical models can support 63 

optimisation of a biological system and the prediction of reactor behaviour/efficiency under 64 

different conditions (Donoso-Bravo et al. 2011). Nevertheless, the industrial application of models 65 

is not widespread given the diversity and specific nature of most industrial processes (Batstone & 66 

Keller 2003). In addition, the complexity and non-linearity of the AD process and the considerable 67 

demand of experimental data for modelling purposes are barriers to modelling at industrial scale. 68 

To date, the Anaerobic Digestion Model No. 1 (ADM1) (Batstone et al. 2002) is commonly 69 

regarded as the most realistic and generic model to describe the main biochemical and physico-70 

chemical processes, and gas-liquid mass transfer in anaerobic digestion (Poggio et al. 2016). 71 

According to Batstone et al. (2006), ADM1 was originally developed: 1) for full-scale application 72 

in  plant design, operation, and optimisation, 2) as a working platform for model improvement 73 

based on validation studies, and 3) to fulfil the industry needs as a technology transfer tool, 74 



 4 

developing operational strategies and evaluating the performance of controllers (Batstone & Steyer 75 

2007). Although the ADM1 Scientific Technical Report (STR) states that the model was developed 76 

for application in industry (Batstone et al. 2006), its industrial use to describe a large-scale covered 77 

in-ground  anaerobic reactor (Cigar) to process wastewater from sugarcane biorefinery has not been 78 

reported in the literature. In addition, the practical application of ADM1 under real operating 79 

conditions is a difficult task, and the modelling framework presented here addresses some of the 80 

issues generating substantial information assessing the viability of model application using real 81 

plant data.  82 

The research reported in this paper applies ADM1 in a clear procedure to model the first large-scale 83 

Cigar in Brazil, which processes SV to produce biogas and generate bioelectricity for supply to the 84 

local grid. The Cigar is one of the components integrating a full biogas plant.  85 

Good modelling practice requires both direct and cross validation and to this end a reasonable 86 

volume of data must be available and divided into two subsets. Direct validation consists in 87 

evaluating the ability of the model to reproduce the experimental data used for estimating the 88 

parameters. It is a necessary condition but not enough to accept the ability of the model to 89 

reproduce the behaviour of the system under study. In fact, even fitting well the data used for 90 

parameter estimation, the model may not be generalized to represent the behaviour of the system 91 

under study by using another subset. Therefore, in this work two subsets of data, based on the 92 

sugarcane harvest season for bioethanol and sugar production in 2012 and 2014, were used to direct 93 

and cross validate the model, respectively. 94 

METHODS 95 

Cigar set-up and operation 96 

The modelled large-scale anaerobic methanogenic reactor for digestion of SV, Cigar, is located in 97 

the area of Ester Mill in the city of Cosmópolis, South East, Brazil. It was designed based on 98 

historical qualitative and quantitative data for SV produced by Ester mill, and its design 99 

characteristics are shown in Table 1. In the study periods presented here of 2012 (from May 2012 to 100 
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December 2012) and 2014 (from August 2014 to November 2014), the Ester Mill sugar production 101 

was 110,400 and 100,200 tonnes, respectively. Within the same periods, the hydrous bioethanol 102 

production was 69 million and 62 million litres, respectively. 103 

Table 1. Cigar design parameters and main operational data. 104 

Parameter Value Units 

Flow rate of SV 39.5 m3 h-1 

Concentration of organic matter 30 kg COD m-3 

Organic Loading Rate (OLR) 1.99 kg COD m-3 day-1 

Reactor volume 15,000 m3 

Headspace volume 4,800 m3 

Hydraulic Retention Time  15 days 

Conversion rate 0.228  m3 CH4 kg COD-1 

Biogas rate production 491 Nm3 h-1 

Methane rate production (55%) 270  N m3 h-1 CH4
 

The reactor is operated under mesophilic conditions at approximately 37o C. The average hydraulic 105 

retention time (HRT) was 15 days and Cigar was inoculated with sludge from industrial and 106 

domestic sewage treatment plants for the first time in 2010. The blanket of microorganisms in the 107 

reactor reached maturity after one and a half years (i.e., steady-state).  108 

Figure 1 presents a simplified schematic flow diagram for Cigar and the other components (mix 109 

tank, hydrogen sulphide scrubber, and gas engine) of the biogas plant. Cigar is a 3-chamber reactor 110 

where chamber 1 and 2, represent 60% and 20% of total reactor volume, respectively. The 111 

remaining 20% volume of chamber 3 is responsible for settling most of the biological activated 112 

sludge. The SV from the biorefinery is mixed with liquor from chamber 1 to recirculate the 113 

alkalinity, with effect of an overall rise in the influent pH. This mixture enters Cigar from the 114 

bottom and flows upwards, as in a typical upflow anaerobic sludge blanket (UASB) reactor, without 115 

the phase separator at the top, providing favourable physical and chemical conditions for sludge 116 

flocculation. An automated pumping station adjusts flow rates in Cigar, which was measured online 117 

using an electromagnetic flow meter model OPTIFLUX KC1000F/6 (Krohne) with a signal 118 

converter IFC 100. The flow rate was adjusted based on the organic loading in the SV. Over the 119 

study periods, in 2012 and 2014, there were significant variations in the COD concentration and 120 

flow rate as can be observed in Figure 2.  121 
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The biogas produced is drawn from the reactor headspace and transferred to an aerobic biological 122 

scrubbing system for removal hydrogen sulphide. The biogas is then burned in a gas engine 123 

connected to a 1 MWe containerized power generation set to produce bioelectricity feeding the 124 

local energy grid.  125 

 126 
Figure 1. Simplified biogas plant-wide layout under study. 127 

 128 
Figure 2. Averages of COD concentrations and flow rate in 2012 and 2014.  129 

Cigar monitoring 130 

Influent and effluent  131 

The mixed influent from the mix tank and the effluent from chamber 3 were sampled, analysed, and 132 

recorded based on the biogas plant operating routine, containing the most relevant information at 133 

the lowest cost of monitoring. Since the reactor was located in a remote area, the biogas plant 134 

Ester Mill 

Mix tank 

Gas engine 

Hydrogen sulphide 

scrubber 

C
h

a
m

b
e

r 
1

 

C
h

a
m

b
e

r 
2

 

C
h

a
m

b
e

r 
3

 

Power grid 

Influent 

Biogas 

Electrical energy 

Desulfurized biogas 

Liquor recycle 

Effluent  

811 

980 985 
1003 

969 

829 
803 

494 503 

542 
511 

960 

31322 

19900 

28165 

34810 
33634 

29953 

39885 

51304 

53945 

63670 
64820 

66876 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

80000 

0 

200 

400 

600 

800 

1000 

1200 

May-12 Jun-12 Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 Dec - 12 Aug-14 Sep-14 Oct-14 Nov-14 

Flow rate [m³/d] COD [kg/m³] 



 7 

counted on a laboratory scale to carry out same day analyses to avoid either sample storage or 135 

transport. Recorded data from online and offline analyses provided by the plant operators were used 136 

in the model simulations. The sample collection and physico-chemical analyses of the mixed 137 

influent in the mix tank and the effluent in chamber 3, were done frequently by plant operators 138 

according to the protocols described by the Standard Methods for the Examination of Water and 139 

Wastewater (APHA 2012) – Table 2. 140 

Table 2. Physico-chemical parameters analysed, method and frequency. 141 

Parameter (APHA, 2012) Frequency 

Temperature 2550 constant (online) 

pH 4500 constant (online) 

COD concentration 5220 daily (offline) 

Total solids (TS)  2540B weekly (offline) 

Total volatile solids (TVS)  2540E weekly(offline) 

Total suspended solids (TSS)  2540D weekly (offline) 

Volatile suspended solids (VSS)  2540E daily (offline) 

Volatile fatty acids (VFA)  5560 daily (offline) 

Partial alkalinity  2320 daily (offline) 

Total Kjeldahl nitrogen (TKN) 4500 fortnightly (offline) 

Total ammonia nitrogen (TAN)  4500 fortnightly (offline) 

The biochemical composition of the substrate was divided amongst, carbohydrates, lipids and 142 

proteins, and analyzed according to the following analytical methods: carbohydrates by the Lane & 143 

Eynon (1923) method and lipids by the Bligh & Dyer (1959) method. The total protein content was 144 

estimated by multiplying the total Kjeldahl nitrogen by factor 6.25, based on the food industry 145 

standard for protein determination (Mariotti et al. 2008). The inert fraction in the influent was 146 

calculated as ash content (i.e., the difference between the average of TS and VS). 147 

Biogas  148 

The biogas flow was measured online using a Vortex M84 flow meter (Foxboro®) and its content 149 

(%CH4) was measured using a Landtec GEMTM 2000. Equipment calibrations were undertaken 150 

constantly to ensure accuracy in the measurements.  151 

Modelling methods 152 

Cigar implementation and inputs 153 
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Cigar was implemented as a single stage model in Aquasim 2.1 d (Reichert 1998) and modelled as a 154 

mixed liquid reactor with constant volume, and gas diffusion to a mixed gas headspace. For model 155 

simplicity and simulation efficiency the three chambers in the Cigar were lumped together and 156 

modelled as a CSTR reactor. In fact, samples at different points (chamber 1, recycle point, and 157 

chamber 3) were analysed for COD, TSS, and VSS (results not shown); the results were comparable 158 

in their values and showed a certain degree of sludge dispersion in the reaction zone. For this main 159 

reason we believe that our reactor should be modelled as a CSTR. Reactors such as UASBs can 160 

behave as CSTR, given their hydrodynamics influenced by the fluid flow characteristics, particles 161 

sizes, multiphase interactions, chaotic advection, and substrate dispersion (Heertjes & Kuijenhoven 162 

1982, Peña et al. 2006). 163 

The original ADM1 as described in the IWA STR (Batstone et al. 2002) was used in this paper. 164 

Different researchers have developed and proposed a series of extensions to functionally upgrade 165 

the ADM1 to allow for plant-wide phosphorus (P) simulation (Flores-Alsina et al. 2016, Solon 166 

2017) and the influence of ionic strength (as activity corrections) and ion pairing (Solon et al. 167 

2015). However, those updates were not implemented in this study, given the lack of P 168 

measurements in the available experimental data and the relative low ionic strength of the SV. 169 

Regarding the latter, Solon et al. (2015) recommends to implement the correction for ADM1 in case 170 

of high ionic strength (e.g. I > 0.2 mol L−1) such as in manure and high-solids digestion. 171 

Likewise, different inhibition parameters and functions, compared to the original ADM1 172 

implementation have been recommended, for instance, for ammonia (Wett et al. 2014, Wilson et al. 173 

2012) and VFA (Pratt et al. 2012). Especially regarding ammonia, there are experimental evidences 174 

that free ammonia inhibition coefficients are higher than previously believed (Batstone et al. 2010). 175 

However, given the lack of consensus in the scientific community, the original implementation was 176 

maintained in our study. 177 

Stoichiometric and kinetic parameters were based on the work of Rosén & Jeppsson (2006). The 178 

ADM1 composite material Xc, which describes the substrate, was discarded as suggested in Poggio 179 
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et al. (2016), avoiding a two-step solubilisation processes; instead the substrate was described 180 

directly in terms of its carbohydrates, proteins, lipids and inerts fraction. The ash fraction was 181 

included in the loadings to predict the accumulation of the non-biodegradable fraction of the 182 

substrate in the Cigar. TS, VS measurements and the calculated ash fraction were read into 183 

Aquasim as real list variables.  184 

Initial conditions were established by running a whole year steady-state simulation of the same 185 

system, and considering a constant loading rate equal to the average of the measured loading rates 186 

of 2012 and a constant substrate composition equal to the average of the measured compositions of 187 

2012 - the outputs of that simulation were used as initial conditions for the simulations here 188 

presented and kept the same in the two data sets. 189 

The temperature was set to 310 K (37o C) based on average historical mesophilic conditions 190 

measured for Cigar. Real list variables were read into Aquasim for daily COD measurements and 191 

daily feed flow rates, which were highly variable over the Cigar operation. 192 

Substrate fractionation  193 

The fractionation of the substrate into three biochemical compound groups: carbohydrates, proteins, 194 

and lipids is a critical step for appropriate ADM1 implementation (Ramirez et al. 2009a). ADM1 is 195 

COD-based to describe the organic matter transformations. Therefore, the elemental formula of 196 

each biochemical compound, which allocates the calculated theoretical oxygen demand (ThOD), 197 

was used to obtain concentrations in kgCOD m-3. The proportions of individual organic fractions 198 

(i.e., carbohydrates, proteins, and lipids in kg m-3) were multiplied by the ThOD of each compound.  199 

Charge balance 200 

The charge balance was included for the description of the substrate loadings. The following 201 

dynamic state variables in ADM1, Sac, Spro, Sbu, Sva, Sin, and Sic have a charge, whilst all other 202 

variables are electro-neutral (Nopens et al. 2009). One of the approaches for modelling acid-base 203 

equations is the charge balance, described by Eq. (1) for anaerobic digestion. The unknown 204 

variables are SCAT, SAN, and pH, with two degrees of freedom. In our case, the pH values of the 205 
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influent stream were used (setting 𝛼-values, OH-, and H+) to remove a degree of freedom. The other 206 

degree of freedom was removed when SCAT exceeded SAN, then SAN was set to zero and vice versa to 207 

close the charge balance (Poggio et al. 2016).  208 

𝑆CAT − 𝑆AN = 𝑆𝑎𝑐𝛼𝑎𝑐 + 𝑆𝑝𝑟𝑜𝛼𝑝𝑟𝑜 + 𝑆𝑏𝑢𝛼𝑏𝑢 + 𝑆𝑣𝑎𝛼𝑣𝑎 + 𝑆𝐼𝑁𝛼𝐼𝑁 + 𝑆𝐼𝐶𝛼𝐼𝐶 + 𝑂𝐻− + 𝐻+               (1)                209 

Only total VFA was routinely analysed by plant operators and most VFA in SV was assumed to be 210 

mostly acetate, as shown in Leite et al. (2015). Inorganic carbon SIC, calculated through partial 211 

alkalinity measurements (real alkalinity for anaerobic reactors 5.75<pH initial<8) was set to zero, as 212 

the pH of the influent was always below 5. The TAN measured in the substrate was entered as SIN 213 

(inorganic nitrogen fraction). The specific charge coefficient 𝛼𝑖 was calculated as described in 214 

Nopens et al. (2009). The hydrogen and hydroxide ions were determined as H+= 10-pH and OH- = 215 

10(-pKw+pH) (pKw=14).  216 

The dynamic state variables changed according to feed streams, thereby SCAT and SAN were 217 

calculated at given dates taking into account pH, VFA, inorganic nitrogen, inorganic carbon, and 218 

accurate temperature measurement in the laboratory. Inputs for SCAT and SAN were read into 219 

Aquasim as real list variables.   220 

Kinetic fractionation 221 

The COD input of SV, as in any anaerobic digestion system of organic residues, was divided into 222 

biodegradable and non-biodegradable fractions (Angelidaki & Sanders 2004). The degradation 223 

extent (fd) was introduced to describe the degradable ThOD fraction of substrate that is converted to 224 

methane (Jensen et al. 2011). This degradable fraction is made up of soluble fraction fs and a 225 

particulate fraction (1-fs). The non-degradable fraction (1-fd) is composed essentially of an inert 226 

fraction XI. The literature shows that hydrolysis and disintegration rates originally suggested in 227 

ADM1 are too high and are more likely to describe activated sludge substrate (Vavilin et al. 2008, 228 

Köch et al. 2010). The disintegration step was omitted assuming direct hydrolysis of proteins (Xpr), 229 

carbohydrates (Xch), and lipids (Xli) (Jensen et al. 2011). The particulate components of the substrate 230 

(i.e., carbohydrates, proteins, and lipids) have different hydrolysis rates (Mata-Alvarez et al. 2011). 231 
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However, without experimental measurements of the products of hydrolysis (sugar, aminoacids, 232 

LCFA) the calibration of the three hydrolysis parameters would result in a higher uncertainty in the 233 

obtained values of the parameters. Therefore, to increase the parameters identifiability, only one 234 

"lumped" first order hydrolysis rate parameter is considered and calibrated. A similar approach is 235 

also followed by Lübken et al. (2007), Arnell et al. (2016), Batstone et al. (2009).   In addition, the 236 

hydrolysis of particulate substrate, which is described as rate-limiting step in anaerobic digestion 237 

(Vavilin et al. 2008), was implemented by a first order hydrolysis kinetics.  238 

Parameter estimation 239 

Preliminarily, the state at the end of the first period (2012) was assumed as the initial condition for 240 

parameter estimation. Further, we estimated two key parameters used to indicate the degradable 241 

COD: the degradation extent (fd) and the first order hydrolysis rate coefficient (khyd), in attention to 242 

reactor dynamic inputs (Batstone et al. 2009). Also, the choice of hydrolysis was initially based on 243 

the evidence that kinetic parameters used to describe hydrolysis of carbohydrates, proteins, and 244 

lipids are assumed as unrealistic values in the original ADM1 (Kazadi Mbamba et al. 2016). Both 245 

parameters were estimated and validated against biogas flow rate. They were estimated by a 246 

function implemented in Aquasim to minimize the sum of the squares of weighted deviations 247 

between measurements and calculated model outcomes (Reichert, 1998).  248 

𝑋2 = ∑ (
𝑦𝑚,𝑖 − 𝑦𝑖(𝑝)

𝜎𝑚,𝑖
)

2𝑛

𝑖=1

                                                                                                                              (2) 249 

where ym,i is the ith measured value of the target measurement, assumed to be a normally distributed 250 

random variable; yi (p) is the model prediction at the time corresponding to data point i, which could 251 

be considered a function of the set of parameters p to be estimated; 𝜎m,i is the standard error of the 252 

measurement ym,i and weights each term of the sum. 253 

The secant algorithm in Aquasim was selected for numerical minimization of Eq. (2) due to 254 

possible nonlinearity of the model equations and numerical integration procedure (Lübken et al. 255 

2007). The standard error of the estimated parameters are calculated by Aquasim as an output of the 256 
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secant algorithm, and then divided by the estimated values to determine the uncertainty in the 257 

parameters. We therefore present a more reliable evidence of representing model uncertainty than 258 

providing only model goodness of fit values (Jensen et al. 2011).  259 

Model validation 260 

To assess the accuracy of predictions for direct and cross validation using two subsets of data based 261 

on the sugarcane harvest season in 2012 and 2014, the relative absolute error (rAE) between 262 

measured and simulated values was determined as per Eq. (3), where ym,i is the ith measured value, 263 

assumed to be a normally distributed random variable; yi(p) is the model prediction at the time 264 

corresponding to data point i, which could be considered a function of the set of parameters p to be 265 

estimated and n is the number of observations. This allow us to classify the quality of predictions 266 

according two classes (Batstone & Keller 2003): high (±10%) or medium (10% - 30%) accurate 267 

quantitative prediction.  268 

𝑟𝐴𝐸 =  

∑ (
|𝑦𝑚,𝑖 − 𝑦𝑖(𝑝)|

𝑦𝑚,𝑖
)𝑛

𝑖=1

𝑛
                                                                                                                       (3) 269 

RESULTS  270 

SV characterization and biochemical fractionation 271 

The SV feed stream for Cigar in both periods of study was characterized based on samples analysed 272 

in the laboratory scale biogas plant. The average results from 2012 and 2014 are shown in Table 3. 273 

Average COD and total solids in 2014 were both twice those in 2012. This can be explained 274 

because the biorefinery produced more sugar than bioethanol in 2014/2015, leaving higher 275 

concentrations in the SV. Also high concentration of organic matter in SV is generally followed by 276 

an increase in organic acids levels, which explains about twofold of VFA in 2014 compared to 277 

2012.  278 

 279 

 280 
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Table 3. Average substrate characterization ± standard deviation in 2012 and 2014. 281 

Parameter 2012  2014 Units 

pH 4.03±0.4 4.04±0.2 n/a 

COD concentration 30.55±11.2 61.04±7.6 g L-1 

Total solids (TS)  24.06±7.8 42.22±6.3 g L-1 

Total volatile solids (TVS)  17.15±7.5 32.21±4.2 g L-1 

Total suspended solids (TSS)  11.4±8.4 10.18±5.2 g L-1 

Volatile suspended solids (VSS)  8.22±6.3 5.54±2.1 g L-1 

Volatile fatty acids (VFA)  2.36±0.8 4.02±1.4  g L-1 

Partial alkalinity  0 0 gCaCO3 L
-1 

Total Kjeldahl nitrogen (TKN) 0.41±0.09 0.45±0.16 g L-1 

Total ammonia nitrogen (TAN) 0.15±0.11 0.19±0.08 gN-NH4 L
-1 

Table 4 shows the results of the substrate biochemical fractionation in carbohydrates (fch), proteins 282 

(fpr), and lipids (fli) on a COD basis. The carbohydrates concentration is higher than lipids and 283 

proteins as found in Barrera et al. (2015). However, it is noteworthy that protein content of the SV 284 

analysed in this study was relatively high when compared to other studies (Leite et al. 2015, Barrera 285 

et al. 2015). In the bioethanol distillery the yeast Saccharomyces cerevisiae resulting from alcohol 286 

fermentation is composed by 26.95% of crude protein, which may be lost during the process to the 287 

SV. Another assumption for the high protein content is possibly the estimation using a constant 288 

factor of 6.25 as reported in Mariotti et al. (2008).  289 

Table 4. Fractionation of substrate into biochemical compounds. 290 

Biochemical 

compost 

Concentration 

(g/L) 

Elemental* 

formula 

ThOD 

(gCOD/gVS) 

Concentration 

(gCOD/L) 
(% CODth) 

Carbohydrates (fch) 4.4 C6H10O5 1.184 5.21 44% 

Proteins (fpr) 2.6 C5H7O2N 1.415 3.68 30% 

Lipids (fli) 1.1 C57H104O6 2.874 3.16 26% 

*Angelidaki & Sanders (2004) 291 

The charge balance influences directly the reactor pH and its results are shown in Table 5, indicated 292 

as state variables in ADM1. Despite the fact plant operators claimed to analyse the influent frequently, 293 

necessary data to calculate SCAT and SAN was only found at given dates shown in Table 5. This in turn 294 

would possibly affect the results of pH, which is an interaction of all charge bearing species in the 295 

system, and will be discussed later.  296 

 297 
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Table 5. Substrate description based on charge balance. 298 

Date pH 
VFA - Sac 

(gCOD L-1) 

ADM1 state variables 

SIC 

(kmol m-3) 

SIN 

(kmol m-3) 

SCAT 

(kmol m-3) 

SAN 

(kmol m-3) 

  2012 

05/09 4.15 2.793 0 0.0117 0 0.0054 

02/10 3.87 2.029 0 0.0117 0 0.0083 

09/10 3.85 2.806 0 0.0122 0 0.0076 

16/10 3.53 2.305 0 0.0196 0 0.0180 

23/10 3.85 2.241 0 0.0086 0 0.0050 

30/10 4.74 1.631 0 0.0089 0.003 0 

06/11 4.09 3.525 0 0.01071 0 0.0011 

14/11 4.00 2.664 0 0.0143 0 0.0083 

20/11 4.17 3.563 0 0.0085 0.003 0 

23/11 3.99 3.191 0 0.0173 0 0.0025 

27/11 4.24 3.274 0 0.0275 0.001 0 

 2014 

01/08 4.12 3.807 0 0.025 0 1.67E-10 

06/08 4.21 7.942 0 0.0214 0.005 2.05E-10 

13/08 4.28 5.059 0 0.0277 0 2.41E-10 

15/08 4.47 5.059 0 0.0286 0 3.74E-10 

27/08 3.8 4.353 0 0.0338 0 7.99E-11 

29/08 4.2 4.301 0 0.0344 0 2.01E-10 

03/09 4.18 4.680 0 0.0339 0 1.92E-10 

05/09 4.15 4.699 0 0.329 0 1.79E-10 

10/09 4.03 4.179 0 0.0274 0 1.36E-10 

17/09 4.21 5.322 0 0.0236 0 2.05E-10 

19/09 3.84 4.051 0 0.0189 0 8.76E-11 

26/09 4.19 2.343 0 0.0216 0 1.96E-10 

01/10 4.21 4.693 0 0.257 0 2.05E-10 

03/10 3.9 3.428 0 0.0264 0 1.01E-10 

08/10 3.45 3.351 0 0.0238 0 3.57E-11 

 299 

Performance of the CIGAR 300 

Figure 3 shows a good correlation between the average organic loading and the biogas flow rate, as 301 

should be expected in a non-inhibited system. However, the biogas production tends to decline 302 

relatively to the OLR in 2014.  303 
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 304 
Figure 3. Averages of biogas and organic loading rate in 2012 and 2014 305 

Ammonia inhibition is a key phenomenon affecting the dynamic of anaerobic digestion, especially 306 

the acetoclastic methanogenesis. A wide range of inhibiting ammonia concentrations has been 307 

reported in the literature, with the inhibitory TAN concentration that caused a 50% reduction in 308 

methane production rate ranging from 1.7 to 14 g/L (Chen et al. 2008). The inhibitory effect is due 309 

to free ammonia rather than ion ammonium: in the original ADM1 implementation, the 50% 310 

inhibitory concentration for the free ammonia is recommended at 0.0018 M, (i.e., 25 mg/L N-NH3).  311 

In this study, the TAN concentration in the vinasse was, on average, 0.15 and 0.19 g/L in 2012 and 312 

2014, respectively, which at an experimental average pH of 7.5 and at 37o  C, corresponds to a free 313 

ammonia concentration of 5.7 and 7.3 mg/L N-NH3. Considering these values, it can be concluded 314 

that ammonia inhibition plays a minor role in the dynamics of the system. Furthermore, we show in 315 

Figure 3 a good correlation between the average organic loading and the biogas flow rate, as should 316 

be expected in a non-inhibited system. 317 

Initial simulations, kinetic fractionation and parameter estimation 318 

Initial dynamic simulations were performed to evaluate deviations between simulated and measured 319 

biogas, which are graphically evident in Figure 4. The default value for khyd and the assumed value 320 

for fd are presented in Table 6. Both values were reduced after parameter estimation based on biogas 321 

yield showing great sensitivity. This study confirms that default ADM1 values of 10 d-1 for 322 

hydrolysis constants are high as suggested in (Lübken et al. 2007, Vavilin et al. 2008).The 323 
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degradability fd of 50% estimated is consistent with the characteristics of SV, which is composed by 324 

easily degradable organic material, mostly in the form of acetate and reducing sugars. In addition, 325 

as shown in Poggio et al. (2016) khyd and fd are correlated parameters, which leads to increased 326 

uncertainty as observed in khyd. However, their correlation can offset possible adjustments between 327 

both parameters (Jensen et al. 2011).  328 

 329 
Figure 4. Initial dynamic simulations and results for measured biogas (markers) and simulated 330 
biogas (line). 331 

Table 6. Results of model parameter estimation including intial values and standard erros. 332 

Parameters Initial values Estimated Standard errors (%) 

fd 0.70 * 0.50 2.7 

khyd 10 a 0.66 18.4 
 a ADM1 STR  *assumed value 333 

Direct validation  334 

The simulations in Figure 5 indicate that, after parameter estimation of fd and khyd, there is a good fit 335 

between simulated and measured biogas. The biogas prediction was assessed as medium, regarding 336 

18.2% of rAE. However, possible discrepancies between measurements and simulation results may 337 

be attributed to the ADM1 gas/liquid transfer coefficients for all gases, which in fact differ from 338 

reality (Ramirez et al. 2009b). 339 

 340 
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 341 

 342 
Figure 5. rAE for simulated results (line) and measured data (markers) for biogas production in 343 
2012 – direct validation. 344 

The deviations between simulated and measured outputs of methane and carbon dioxide levels after 345 

the parameter estimation of fd and khyd were also evaluated. The results are shown in Figure 6 (A) 346 

and 6 (B), respectively. A good fit was achieved both for methane and carbon dioxide, which is an 347 

indicator for a realistic substrate characterization (Lübken et al. 2007). These predictions were 348 

assessed as high accuracy quantitative for methane with 6.8% of rAE and medium for carbon 349 

dioxide with 11.4 % of rAE.     350 

   351 
Figure 6. rAE for simulated results (line) and measured data (markers) for methane (A) and carbon 352 

dioxide (B) – direct validation. 353 
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The difference between the concentrations of anions and cations calculated in the feeds predicts the 354 

pH in the system (Ramirez et al. 2009b). The simulations of pH variable, shown in Figure 7 (A) and 355 

6 (B), tend to underestimate the pH in both periods. This lack of fit could be explained by possible 356 

inaccuracies in the description of the charge balance of the substrate, with cations and anions 357 

loading, being calculated only during the dates presented in Table 5; apart from these dates yearly 358 

average values were used. Only between day 20 and 30 for the period of 2012 the model was able 359 

to improve the fit.  360 

      361 
Figure 7. Simulated results (line) and measured data (markers) for pH in both periods under study: 362 
2012 (A) and 2014 (B). 363 

The model tends to over predict the COD concentrations (Figure 8), although, the trend is 364 

qualitatively followed by an increase in the COD concentrations. 365 

 366 
Figure 8. Simulated results (line) and measured data (markers) for COD concentrations in 2012. 367 

Cross validation 368 
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The cross validation procedure was implemented to check whether the model gives a reliable 369 

picture of the quality of the prediction on a second dataset after parameter estimation. To this end, 370 

the same values for the estimated parameters were kept in the cross validation. The Cigar operation 371 

summed up 96 days in 2014 under the same setup previously described in 2012.  372 

As presented in Figure 9, samples of biogas in 2014 are fewer than in 2012 but do so clearly and 373 

visibly a good fit between measured and simulated biogas. At the same time, the quality of biogas 374 

prediction was classified as medium accuracy showing a higher error (rAE 20%) resulting in a 375 

lower quality of prediction. This suggests that an increased solids concentration in the vinasse in 376 

2014, as observed in Table 3, compared to 2012 may be affecting the estimated hydrolysis constants 377 

of 0.66 d-1, which are sensitive to solids concentration (Köch et al. 2010). 378 

 379 
Figure 9. rAE for simulated results (line) and measured data (markers) for biogas production in 380 
2014 – cross validation. 381 

The rAE of 6.6% and 8% for methane and carbon dioxide, respectively, confirm the well fitted 382 

visual impression of the plots in Figure 10 (A) and 10 (B). The error for methane in the cross 383 

validation (rAE 6.6%) was quite similar to direct validation (rAE 6.8%), and validates the value of 384 

the estimate degradation extent (fd) describing the degradable ThOD fraction of substrate that is 385 

converted to methane. Again, followed by a lower error (rAE 8%) for carbon dioxide in the cross 386 
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validation (Figure 10 (B)), a good prediction of biogas composition showed an evidence of realistic 387 

substrate characterization (Lübken et al. 2007).       388 

   389 
Figure 10. rAE for simulated results (line) and measured data (markers) for (A) methane and (B) 390 
carbon dioxide – cross validation. 391 

As noted in Figure 11, there were significant fluctuations in the measured COD concentrations that 392 

could not be explained by the model in 2014. This result suggests that possibly, some parameters 393 

not calibrated in this study are reflecting an inconsistency between simulated and measured COD 394 

concentrations.  395 

  396 
Figure 11. Simulated results (line) and measured data (markers) for COD concentrations in 2014. 397 

 398 

 399 

 400 

 401 
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CONCLUSIONS 402 

Motivated by practical and industrial application of ADM1, for both different reactors types and 403 

substrates, we have demonstrated in a clear procedure the implementation of ADM1 to specific 404 

large-scale reactor for anaerobic digestion of sugarcane vinasse. The substrate characterization for 405 

ADM1 in terms of its biochemical make-up (i.e., carbohydrates, proteins, and lipids), based on the 406 

food industry standards were found to be valid when applied to describe sugarcane vinasse. The 407 

quality of the predictions supported by the uncertainty of the estimation of the parameters, as given 408 

by their calculated standard errors, provides a trustworthy assessment of the model performance on 409 

future data. However, the lack of data to provide ADM1 charge balance inputs to cover all dynamic 410 

feed streams resulted in poor pH simulations. 411 

Therefore, taking into account the scale of the reactor presented here and the complexity of ADM1, 412 

a practical industrial application to model a large-scale anaerobic digester under dynamic feed 413 

streams, is a useful tool to predict the biogas yields and its composition.  414 
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