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Abstract 

This work explores the prospects of polymeric micro and nanofibres as drug delivery 

systems intended to facilitate transport of progesterone across vaginal mucosa by 

mucoadhesion. These fibres, due to their physical attributes, ability to improve drug 

solubility and high adsorption efficiency may be adapted for improved trans-mucosal 

drug delivery. Mucoadhesion on the other hand is being explored for improved 

dosage form residence times, targeting and therapeutic efficacy. Notwithstanding the 

potential utility of mucoadhesion and nanofibres, generating substantial amounts of 

mucoadhesive fibres is fraught with many challenges. 

In this work, pressurised gyration, a novel approach combining centrifugal force and 

pressure was used to produce fibres from combinations of polyethylene oxide (PEO), 

carboxymethyl cellulose sodium (CMC), sodium alginate and polyacrylic acid; 

polymers with inherent mucoadhesive properties. Nanofibres generated were 

characterised using scanning electron microscopy, infra-red and x-ray diffraction 

analyses to determine their morphology, size distribution and molecular composition. 

Furthermore, they were assessed by texture analyser and atomic force microscope 

for mucoadhesive performance after which PEO/CMC blends were selected for drug 

(progesterone) loading. The progesterone-loaded fibres were assessed, mainly for 

drug release and mucoadhesion. A new methodology based on classical 

mucoadhesion theories, where atomic force microscopy was used to map interfacial 

roughness and voids in adhering surfaces was developed for quantifying 

mucoadhesive properties of systems produced.  

In conclusion, this work has demonstrated the possibility of generating drug-loaded 

fibres as potential constructs for developing vaginal dosage forms for improved 

performance facilitated by mucoadhesion. Furthermore, a new approach to 

quantifying mucoadhesion between fibres and mucosa by AFM was developed, with 

outcome correlating favourably with forces required to detach interacting surfaces 

measured by texture analyser.   
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Chapter 1  

Introduction 

 

1.1 Introduction and background 

The increasing utility of nanofibres in diverse fields including bone and tissue 

engineering, drug delivery, filtration, conducting composites, photonics and fuel cells 

has been reported extensively (He et al., 2008).  It has been shown for instance how 

extremely light nanofibre offer excellent filtrations properties, support the growth of 

human, animal and bacteria cells and thus proving valuable in some decontamination 

technologies and tissue engineering (Leung and Ko, 2011, Pham et al., 2006) 

In addition, the unique physical properties of nanofibre can have remarkable utility in 

the area of drug delivery. A large surface area, specifically characterised by a high 

surface-to-volume ratio and porosity defined by relatively small pore size is usually 

the most cited benefit of nanofibre (Frenot et al., 2007, Bhardwaj and Kundu, 2010). 

The  prospects for enhancing delivery and improving performance and safety of drugs 

explains the increasing demand for highly structured materials such as nanofibres for 

drug delivery systems.  The benefit of the large surface area of nanofibre is even 

clearer when illustrated quantitatively, considering the entire cylindrical surface. For 

instance, a fabric made with 10nm fibres will have a surface area in the region of 

350m2/g compared to only 0.35m2/g for that made of 10µm fibres. Although higher 

surface areas are achievable with some nano-porous granules and powders, 

nanofibre units are easier handled and manipulated than powders (Schreuder-Gibson 

and Gibson, 2006). The easier manipulation of nanofibres implies a flexibility that can 

allow design for highly targeted and efficient drug delivery.   

One of the areas within drug delivery, where the properties of nanofibres can be most 

valuable is delivery through mucosa aided by adhesion. For instance, with vaginal 

drug delivery, the high surface area of nanofibre may aid extensive contact with the 
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vaginal mucosa and thereby facilitating drug transport. There is also flexibility with 

choice of material where particular polymers and their combinations, e.g. 

mucoadhesive polymers may be used for delivery systems with exceptional adhesive 

capabilities. Encapsulation of drugs such as tetracycline hydrochloride, captopril and 

hydrochlorothiazide in biodegradable nanofibres have been attempted in the past, 

though mainly by electrospinning (Qi et al., 2010, Beck‐Broichsitter et al., 2010, Wei 

et al., 2011). Considering the limitations of electrospinning, particularly with energy 

(electricity) costs associated  and the relatively low yield, even over long periods of 

spinning, a newly invented pressurised gyration system for producing nanofibres 

(Mahalingam and Edirisinghe, 2013) offers fresh prospects for a nanofibre-based 

drug delivery system. Pressurised gyration offers flexible processing environment 

which can be manipulated to produce structures fit for function and purpose.   

In order to produce nanofibres to meet the objective of a superior drug delivery system 

for topical mucosa application, an understanding of the starting material properties – 

polymers, in our case is essential. Till date, much of the attempt to understand and 

describe the behaviour of polymers has been with reference to their chain 

characteristics, usually including their dimensions, stiffness or flexibility and 

interaction with neighbouring chains (Shaw, 2012). Of these chain characteristics, as 

Shaw (2012) further explains, rheological behaviour properties, justifiably so is 

progressively utilised in research and industry as it closely links the physical 

characteristics of polymers to their processing and quality of finished products. As 

with many operations dependent on the physical transformation of polymer from one 

matter state to the other, the process of spinning fibre into the solid state from liquid 

polymer solution could be optimised by rheology. An understanding of polymer - 

solvent molecular interaction, and to some extents, polymer – polymer interaction 

within blends would be helpful for the objective of this study. Mucoadhesive properties 

of nanofibres, especially in this case, will be critical for the performance of system 
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intended as topical application through the mucosa is often reliant on the extent of 

adhesion to the site of drug application.  

Furthermore, some principles in rheology could be useful in putting into context some 

often complex relationships among flow, working pressure, molecular nature of 

polymer and particularly in this case, the angular forces from the gyrating apparatus 

being utilised. Because some industrial polymer materials are expressed in ranges, 

the viscosities of the solutions which offer a more specific characteristic in reference 

to the amount of polymer and solvent system are utilised. Several studies including 

those based on the Mark-Houwink equation, [η] = KMa (where [η] is intrinsic viscosity, 

M is molecular weight and K and a are values dependent on the polymer-solvent 

system in question) have been used to explain the relationship between polymer 

viscosity and molecular weight (Wang et al., 1991, Beer et al., 1999, Flory, 1954, 

Chuah et al., 2001, Kasaai, 2007). An analysis of the surface properties, particularly 

through the measurement of surface tension of various polymer solutions are also 

helpful in harnessing properties of starting materials for optimal production of 

nanofibres.  

 

1.2 Aim 

The aim of this study was to identify and analyse the various conditions required for 

optimal production of drug-loaded mucoadhesive nanofibres utilising blends of 

polymers with different adhesive profiles.  Fibres obtained from this project are 

intended as materials for design of a drug delivery system to be applied vaginally. It 

begun with some rheological analyses i.e. measuring the viscosities and surface 

properties of polymer solutions and finding their correlation with fibre produced. 

Relationships established may be helpful in predicting outcomes such as fibre quality, 

yield and dimensions. Once the fibres were obtained, characterisation studies were 

completed using such analytical methods as scanning electron microscopy, FTIR, 

and X-ray analysis to offer insights into the exact morphology, surface structure and 
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composition of the nanofibres, which are essential for effective design for a drug 

delivery system. An approach based on the fracture theory of mucoadhesion as well 

as a novel method purposely developed for this study were utilised in studying the 

mucoadhesive properties of fibres generated.   

 

1.3 Objectives of research 

The objectives enumerated below we set out to guide various tasks needed to 

achieve the aim of this project, 

 

1.3.1 Identification of suitable materials for nanofibre production 

Various polymers confirmed to have intrinsic mucoadhesive properties in different 

blends will be selected to produce fibres by PG. Preliminary literature search will be 

conducted, particularly on polymers widely known and confirmed to be safe for drug 

formulation, as the intended purpose of fibres to be generated is for drug delivery. 

Solvents or systems containing suitable proportions of different kinds of solvent will 

also be preselected, based on their utility, safety and capability of making suitable 

forms of liquid of materials to be converted to nanofibres  

 

1.3.2 Generating nanofibres from selected materials 

Optimising the production of nanofibres using a newly invented PG system. By way 

of optimisation, the major parameters that affect the structural integrity and 

appearance of fibres are investigated to determine which set of conditions produced 

nanofibres most suited for the design. Specifically, a relationship between the amount 

of polymer and quality of fibre is determined by varying material concentrations and 

blends. The influence of solution properties such as viscosity and surface tension on 

outcome of nanofibres, especially size distribution will be investigated. 
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1.3.3 Characterisation to identify physical attributes of fibres  

Fibres produced will be examined by SEM analyses for their morphology and cross-

sectional diameters (sizes). Relationships established between solution properties 

such as viscosity and surface tension and average fibre diameters will be noted and 

analysed to determine if they will be useful for predicting fibre outcome in production 

of subsequent batches.  

 

1.3.4 Characterisation to identify molecular composition and changes 

Further characterisation procedures including thermal analysis, FTIR and variable 

temperature FTIR, X-ray diffraction were carried out to identify any changes in terms 

of molecular composition and rearrangement during nanofibre formation. These 

analyses also provided a basis for classification and determining which batches of 

fibre will be more suited for the drug delivery systems anticipated 

 

1.3.5 Investigating mucoadhesive properties of fibres 

Forces required to detach a probe from a mixture of fibres and mucin in a simulated 

environment to mimic adhesion of fibres onto mucosa surfaces will be measured to 

help predict the relative mucoadhesive potential of various batches of fibres 

produced. The extent of fibre adhesion to mucosa surfaces is anticipated to be useful 

for predicting performance of our delivery systems. This concludes the first part of the 

study where the encapsulating system to be used for the delivery of the chosen drug 

is produced and characterised. 

 

1.3.6 Encapsulating the model drug progesterone in fibres  

The second part of the work will begin with encapsulating the active drug, 

progesterone in systems identified from previous work to have the best prospects in 

terms of mucoadhesion capabilities. The drug-loaded systems produced will be 

characterised to determine if inclusion of the model drug affected the physical and 
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molecular attributes of the nanofibre, as well as tested for mucoadhesive and drug 

release performance.   

 

 

Figure 1-1: Summary of study objectives  
 
 

 

1.3.7 Investigating the performance of drug-loaded systems  

The utility of progesterone-loaded nanofibres as drug delivery constructs will be 

examined. Two key areas crucial to the usefulness of systems for drug delivery 

through mucosa are permeation/release properties and their mucoadhesive 

capabilities. Permeation/release studies will be conducted using artificial membranes 

and Franz cells. This will end the second part of the work. 

Extensive mucoadhesion characterisation of progesterone-
loaded nanofibres

Investigating the performance of drug-loaded fibres  

Mucoadhesive studies Drug release studies

Loading of drug in fibres from materials identified to offer best 
mucoadhesive prospects

Characterisation of drug-loaded fibres
Investigate impact of drug inclusion on fibre 

properties as well as fate of loaded drug

Production of nanofibres from various polymer blends

Characterisations to identify physical and 
molecular properties of fibres

Preliminary mucoadhesive studies 

to identify suitable candidate for drug loading
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1.3.8 Investigating the mucoadhesion of fibres 

Mucoadhesion will be crucial to superior performance of delivery systems developed 

from nanofibres generated. Therefore, extensive investigation into this phenomenon 

will be major part of this work. Existing methodologies such as use of texture analyser 

to quantify fracturing forces between fibres interacting with mucosal surfaces to study 

extent of mucoadhesion occurring will be utilised. A suitable methodology based on 

atomic force microscopy analysis of points of interaction between fibres and mucosal 

surfaces will be explored and compared with outcomes from other methodologies 

 

1.3.9 Novelty in this research work 

The possibility of making mucoadhesive drug-loaded fibres from combination of 

inherently mucoadhesive polymers by simultaneous use of pressure and centrifugal 

force (pressurised gyration) is demonstrated for the first time. Furthermore, a new 

approach based on analysing interfacial roughness by atomic force microscopy for 

the quantification of mucoadhesion between polymeric nanofibers and mucosa 

membrane has been proposed. Results obtained correlates favourably with those 

from quantifying mucoadhesion by measuring force required to detach two interacting 

surfaces. Both findings are contributions towards exploring applications and 

assessing the performance of drug-loaded fibres as drug delivery systems.  
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1.4 Structure of thesis 

The figure below summarises the organisation of this thesis. Briefly, the main parts 

are introduction and literature review, three consecutive studies, conclusions and 

future recommendations. 

 

Figure 1-2: Chapter organisation of thesis 

 

•An overview of the thesis providing a concise background to 
various themes explored in this work, an outline of aim and 
objecives and organisation and scope of this thesis.

Chapter 1

•A literature review of theories, concepts and other studies relevant 
to themes explored in this work. This provides a context against 
which outcome from this work may be assessed, some challeges to 
be addressed by this work and future applications that may find 
outcome from this work useful.  

Chapter 2

•Detailed description of materials and equipment, experimental 
setups, procedures and protocols used throughout the study  Chaper 3

•Results and discussion from the first of three main studies 
conducted. This chapter discusses production and characterisation 
of nanofibres from blends of mucoadhesive polymers.

Chapter 4

•Results and discussion from the second of three main studies 
conducted. Loading of progesterone in nanofibres identified in 
Chapter 4 to have best mucoahesion properties.

Chapter 5

•Results and discussion from the last of three main studies 
conducted. Extensive mucoadhesion characterisation of 
progesterone-loaded nanofibres is discussed in this chapter

Chapter 6

•Two main sections; i) Conclusion where entire worked is 
summarised and main outcomes highlited and ii) Future work 
where recommendations including approach to dosage form design 
from nanofibres produced is discussed. 

Chapter 7
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Table 0-1: An overview of main themes discussed in Literature review. 

 

Nanotechnology 
 

  

Drug Delivery 
  

Mucoadhesion 

Nanotechnology 

Nanotechnology for drug delivery 

Nanostructures 

Nanoparticles 

Dendrimers 

Liposomes 

Nanofibres 

Nanofibres 

Applications 

Methods of production 

Self-assembly 

Phase separation 

Spinning (e.g. gyration) 

Pressurised Gyration 

Factors affecting outcome 

Solution properties 

Working pressure 

Rotation speed 

 Overview on drug deliver 

Health outcomes today 

Prospects for improvement 

Overview on vaginal delivery 

Model drug: Progesterone 

History of discovery 

Progesterone as of today 

Chemistry and pharmacology 

Delivery of Progesterone 

Oral 

Parenteral 

Vaginal 

Proposal of new approach 

Rational for this work  

 

 Mucoadhesion 

Overview 

Two-step principle of mucoadhesion 

Theories of mucoadhesion 

Factors affecting mucoadhesion 

Hydrophilicity 

Molecular weight 

Spatial conformation 

Drug /excipients 

Quantifying mucoadhesion 

Proposal of novel methods 

Nanotechnology and mucoadhesion for drug 

delivery  
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Chapter 2   

Literature review 

 

2.1 Introduction 

Utilising nanofibres for various applications including drug delivery is still an emerging 

area in nanotechnology. This literature review aims to put the research outcomes 

reported in this thesis in proper context by highlighting and exploring relevant theories 

and concepts within nanotechnology, specifically as applied to drug delivery.  This 

evaluation looks broadly into types and current applications of nanofibre and methods 

employed in developing these nanostructures. Secondly, the unique properties of 

nanofibres and how they can influence the structure and performance of various 

delivery systems when utilised for such purposes are discussed. Drug delivery aided 

by mucoadhesion of delivery systems onto mucosa membrane of vagina is a key 

strategy guiding the course of this project. Therefore, principles and theories 

underlying mucoadhesion, polymeric materials with inherent mucoadhesive 

properties and various methods of assessing mucoadhesion have been discussed. 

This research work is seeking to develop materials that can be utilised for optimal 

delivery of progesterone, specifically for the prevention of preterm labour among 

women considered high risk. Therefore, the chemistry and pharmacology of this drug 

has been explained briefly. Various methods and routes for administering the drug 

presently as well as lapses or shortfalls associated with their delivery have also been 

deliberated. And finally, suggestions for improving delivery of progesterone, 

especially through recent technologies such as nanofibre based dosage forms as 

demonstrated in this project have also been discussed. The review has been 

organised under three main themes as summarised in Table 2-1. The first is 

nanotechnology, a broad multidisciplinary endeavour offering principles and tools, 

some of which enabled the production of materials central to this study. The second 
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theme reviewed is drug delivery where current challenges and prospects in this area 

are discussed, with special emphasis on vaginal delivery of progesterone. The last 

part involves mucoadhesion, where various theories and factors affecting the process 

are discussed.  

2.2 What is nanotechnology? 

Nanotechnology as a word was first used in 1974 by Norio Taniguchi in a conference 

paper titled “On the Basic Concept of Nano-Technology’’ where he described it as a 

concept of processing i.e. separation, consolidation and deformation of materials by 

one atom or one molecule (Rogers et al., 2014). ‘Nano’, from which several other 

fields derive their names, and more commonly known to be the prefix representing 

10-9 comes from the Greek word nano meaning dwarf, rightly reflects the size of 

substances denoted as such.  

 

 

Figure 2-1: Dimensions of nanofibre and how they compare with human hair and pollen grain (Image 
magnification: X1000) 

 

Nanotechnology is largely considered a product of nanoscience and a definition of 

nanoscience has been suggested as a good starting point for explaining what 
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nanotechnology actually involves (Schmid, 2008). A report from Royal Society and 

the Royal Academy of Engineering defines nanoscience aptly as ‘the study of 

phenomena and manipulation of materials at atomic, molecular and macromolecular 

scales, where properties differ significantly from those at larger scale’ (Dowling et al., 

2004). Findings and outcomes from nanoscience typically inform nanotechnology 

where the design, characterisation and production of structures and systems are 

achieved by controlling the physical properties of materials involved at the nanometre 

scale. Nanotechnology based applications have and continue to support the 

generation of nanostructures which are crucial elements in a recent phenomenon, 

nano-formulation – a field within pharmaceutical research and development gaining 

much attention due to its attractive prospects. Nano-formulation is a broad concept 

involving various formulation strategies that aim to improve performance of 

therapeutic agents principally by particle size reduction of materials employed (Wais 

et al., 2016).   The nanostructures employed, widely varying in size, physical 

characteristics and functionality are already demonstrating various benefits which 

may be summarised under three main themes; improved bioavailability, efficient drug 

loading and better targeted delivery (Kumar, 2006). Nanofibre is an example of 

material that can be generated using suitable nanotechnology. The central theme of 

this project is to utilise nanotechnology-based approach in generating drug loaded 

nanofibres for developing delivery systems for better therapeutic outcomes.  

 

2.3 Nanotechnology for drug delivery: lessons from microbicide development 

For over three decades, many challenges yet to be surmounted have kept humans 

from developing an ideal microbicide capable of preventing HIV transmission in the 

safest possible manner. A detailed review of issues responsible for this slow progress 

points to formulation approach as a major concern. The majority of microbicide which 

has been in various phases of clinical trials (some examples shown in Table 2-1) are 

conventional semi-solid formulations, particularly in the gels designed to effectively 
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deliver a single dose of an antiviral agent at a time (Stone, 2002, Di Fabio et al., 2003, 

Ndesendo et al., 2008, Van Herrewege et al., 2004). Several of these formulations 

have failed to demonstrate adequate efficacy, safety and tolerability, thus prompting 

a re-evaluation of the current development paradigm (Hendrix et al., 2009, Abdool 

Karim and Baxter, 2014). Indeed the focus on formulating an effective microbicide for 

the prevention of HIV transmission is gradually expanding from earlier concepts that 

centred on gel and cream formulations to include such forms as films and fast 

dissolving solids (Rohan et al., 2013). However, there is still more room for improving 

upon the existing range of vaginal dosage forms intended for the delivery of 

microbicides. 

For a microbicide to effectively deliver the protection expected, highly complex multi-

level biochemical interaction among the host, virus and the drug would have to occur. 

Some details in these interaction remain unknown but recent efforts in establishing a 

framework for advancing knowledge required for developing microbicides has 

improved our understanding of the subject and has actually been translated into 

practical methodological approaches that are bringing us closer to achieving a 

suitable microbicide (Hendrix et al., 2009). Some of the key challenges identified 

during trial of these formulations, including disruption or inflammation of mucosal 

epithelium, effect of pH conditions and proteolytic enzyme action in the genital tract, 

inadequate delivery of active drug to target sites due to poor retention and 

inconvenience associated with use frequency of application are likely to be 

surmounted through strategies utilising nanotechnology applications (D'Cruz and 

Uckun, 2014). 

Thus, a strong case has been made for taking on new formulation approaches such 

us exploring the many options available in the area of nanotechnology. The possibility 

of utilising the unique physical and structural properties of nanostructures such as 

nanofibres, liposomes, dendrimers and nanoparticles (NPs) for addressing some of 

the specific issues seen in the current stock of microbicides are discussed. 
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Table 2-1: Some microbicidal candidates that has been in various phases of clinical trials recently 

 

Trial Name  Phase  Start Date  Countries  Candidate(s)  Completion 

Date  

FACTS 002  

An adolescent safety 

study designed to test 

the safety and 

acceptability of 

tenofovir gel in 16- and 

17-year-old South 

African young women 

II  July 1, 

2015  

South 

Africa  

1% Tenofovir 

gel  

December 

2016  

A13-128  

Safety of the 

TFV/LNG*, and TFV-

only intravaginal rings 

pharmacokinetics of 

TFV and LNG 

acceptability of 

intravaginal rings 

 

I  November 

30, 2014  

United 

States of 

America, 

Dominican 

Republic  

TFV ring, 

TFV/LNG* 

ring  

November 

2015  

MTN 017  

Assess the safety, 

acceptability, systemic 

and local absorption, 

and adherence of 

reduced glycerine 

tenofovir gel applied 

rectally 

II  September 

30, 2013  

Thailand, 

South 

Africa, 

United 

States of 

America, 

Puerto 

Rico, Peru  

Reduced 

Glycerine 1% 

Tenofovir Gel, 

TDF/FTC** 

(Truvada)  

June 2016  

IPM 027 (The Ring 

Study)  

To assess the safety 

and efficacy of a 

silicone elastomer 

vaginal matrix ring 

III  April 30, 

2012  

South 

Africa, 

Uganda  

Dapivirine 

Ring  

December 

2016  

 

 

* TFV/LNG = Tenofovir / levonorgestrel; ** TDF/FTC =Tenofovir disoproxil / emtricitabine 

 

Nanotech inspired approaches to formulating drugs and medical devices have proved 

to be successful in some therapeutic areas like cancer management. When 

extensively researched and adequately applied, these same technologies could be 

resourceful in the development of vaginally applied interventions such as 

microbicides for HIV prevention or progesterone inserts for preventing premature 

http://www.avac.org/trial/facts-002
http://www.avac.org/trial/a13-128
http://www.avac.org/mtn-017
http://www.avac.org/ipm-027-ring-study-0
http://www.avac.org/ipm-027-ring-study-0
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labour. Some significant transformations happening with drug delivery, brought about 

by applications of nanotechnology utilising nanostructures are discussed further. 

Structural description, processing methods for their fabrication, various interventions 

aimed at enhancing drug delivery and their future prospects are discussed specifically 

for each of the nanostructures cited.   

 

2.3.1 Polymeric NPs for microbicides 

NPs for drug delivery has been broadly defined to include particulate systems with 

mean diameter between 50 and 1000 nm (zur Mühlen et al., 1998). Polymeric NPs 

are typically the result of spontaneous self-assembling of amphiphilic polymers when 

dispersed in an aqueous medium (Uchegbu et al., 2013). The self-assembly is usually 

driven by methods such as probe sonication, micro-fluidisation and high pressure 

homogenisation. The therapeutic agents in NPs could be dissolved, encapsulated 

within or adsorbed onto the constituent polymer matrix.  

 

 

Figure 2-2: A schematic illustration of a) nanosphere showing how drug (small spheres) is dispersed throughout 
the polymer matrix and b) nanocapsule in which drug is confined in a reservoir bound by single membrane. 

 

Depending on the processing method utilised, the resulting structure could either be 

a nanosphere (Figure 2-2a) in which the active agent is dispersed throughout a 

polymeric matrix system in the particle or as a nanocapsule (Figure 2-2b) in which the 
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drug exist in a vesicular reservoir enclosed by single polymeric membrane (Letchford 

and Burt, 2007). 

NPs, due to their ability to overcome physiological barriers while delivering drug 

molecules to specific cells or tissue compartments either by passive or ligand 

mediated movements make them a highly versatile class of drug delivery systems 

(Mallipeddi and Rohan, 2010). NPs have demonstrated promising prospects for 

superior drug delivery, especially in the area of cancer pharmacotherapy (Prabhu et 

al., 2015) and this novel approach could be extended into the area of vaginal drug 

delivery for better outcomes. For instance targeted delivery of microbicide drugs into 

vaginal tissues through the use of NPs has recently been developed to overcome 

issues such as drug movement across mucosa barriers, physicochemical stability, 

solubility, and immunogenic response typically associated with conventional hydrogel 

formulations (Rohan and Sassi, 2009). If microbicides are to offer the necessary 

protection against HIV infection, it will be crucial for the active components of the 

formulation to navigate the many barriers in order to reach tissues hosting these 

viruses for optimal antiviral activity. Nanoparticles, when employed as carrier systems 

could aid the delivery of active drug to these tissues. Surface engineered dapirivine-

loaded polycaprolactone NPs have been demonstrated to have the potential to 

facilitate movement of the antiviral drug across mucosa barriers in the cervico-vaginal 

region (das Neves et al., 2012). Furthermore, microbicide formulations delivering 

active drug (dapirivine) through NPs have been confirmed to exhibit better antiviral 

activity due to increased intracellular drug delivery facilitated by better cellular uptake 

of the drug loaded NPs (das Neves et al., 2012). 

In addition to enhancing antiviral activity through more efficient drug transport across 

barriers and better cellular uptake, NPs can be instrumental in improving the 

acceptability and use of microbicides when their potential to protect active agents 

from untimely metabolism are applied to prolonging microbicidal activities.  
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Figure 2-3: Nanoparticle (purple) as carrier system for melittin (green) and how they inhibit infection by fusing 
with HIVs (spiked small circles), subsequently destroying their protective envelopes. Molecular bumpers (small 
red ovals) shield the system from attacking much larger mammalian cells thereby enhancing selectivity for the 
viruses.  (Photo credit: Washington University in St. Louis) 

 

A poly (D,L-lactide-co-glycolide) NP delivering the highly potent anti-HIV protein PSC-

RANTES was shown to offer superior antiviral activity over an extended period, thus 

confirming the prospects of achieving longer acting microbicide action when active 

drugs are presented in NP carrier systems (Ham et al., 2009). Some pioneering and 

innovative work in utilising NPs to interfere with HIV infectivity is currently underway. 

Melittin, a cytolytic peptide component of bee venom, incorporated into shells of 

perfluorocarbon NPs (Figure 2-3) has been proven to inhibit HIV infectivity by 

disrupting lipid viral envelopes while remaining safe and actually therapeutic for host 

cells (Hood et al., 2013, Jallouk et al., 2014). Chitosan NPs containing tenofovir with 

exceptional mucoadhesive properties are also being developed to target mucosa 

reservoirs of HIV in areas such as the vaginal epithelial tissues (Meng et al., 2011). 

Some of these positive developments strengthen arguments that nanotechnology 

offers immense opportunities for developing ideal microbicides in the near future. 

 

2.3.2 Dendrimers for microbicides 

Dendrimers (illustrated in Figure 2-4) are highly branched and usually symmetrical 

three-dimensional structures with a well-defined architecture where peripheral groups 

are joined to the core by branching units (Murugavel, 2014). They are classified as 

supramolecular (Astruc et al., 2010) in that they are typically a chemical system made 
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up of a discrete number of assembled subunits rather than a single unit (Lehn, 1995, 

Lehn, 1988). Dendritic molecules can be visualised as repetitive layers of 

multifunctional blocks of a protected and unprotected scheme of complimentary 

monomers typically resulting in a fractal-like tree in which each incorporated layer 

serves as a platform for the successive layer (Tomalia and Cheng, 2012). The first 

completely characterised repetitively branched and polyfunctional molecule was 

generated by Vogtle and co-workers from a protocol based on cycles of nucleophile 

amine addition to electron-poor cyanoalkene, followed by reduction of the cyano 

groups which in turn yields new amine moieties for further reactions (Buhleier et al., 

1978).  

 

 

Figure 2-4: Schematic illustration of dendrimer showing the core (G0) and branching points (G1 – G4) which 
serve as platforms for either expanding the network of molecules with more basic units (Dendron) or with 
different functional groups for a specific activity (Photo credit: Oleg Lukin) 
 

Several other contributions like Vogtle's, particularly those from the research groups 

of Newkome, Denkewalter and Tomalia (Newkome et al., 1985, Denkewalter et al., 

1982, Tomalia et al., 1985) build upon experiments setting out some fundamental 

principles of molecular organisation pioneered by Flory in the middle of the 20th 

century (Flory, 1942) 
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Table 2-2: Chemical groups used in modification of some classical dendrimers for enhanced antiviral activity 
against HIV 

 

Dendrimer type 
[Code name of specific 
compound and 
reference] 

Functional group delivering anti-HIV 
activity 

Site and mode of anti-
HIV activity 

Polyamidoamine 
(PAMAM) 
 
[BRI2932, (Witvrouw et 
al., 2000)] 

  

 
Attaches to gp120 to 
inhibit binding to MT-4 
cells  
 
 
 
 
 

Polyamidoamine 
(PAMAM) 
 
[BRI6195, (Witvrouw et 
al., 2000)] 

 

 
 

 
Attaches to gp120 to 
inhibit binding to MT-4 
cells and capable of 
permeating host cell 
to inhibit reverse 
transcriptase and 
integrase activities 
during replication 
 

Gallic acid-triethylene 
glycol (GATG) 
 
[[G1]-CO2Na 
(Doménech et al., 
2010)] 

 

 
 

Complexes with C-
terminal domain of 
viral capsid protein 
which results in 
disruption of capsid 
assembly for 
maturation of HIV type 
1  

Carbosilane 
 
[2G-S16, (Chonco et al., 
2012) 

 

 
 

Combines with both 
gp120 on viral surface 
and CD4 on host cells 
to disrupt fusion of 
virus onto host cell 

 

 

Extensive research into the possible applications of dendrimers in diverse biological 

and medical fields is currently ongoing (Caron et al., 2010, Mintzer and Grinstaff, 

2011, Nasibullah et al., 2013, Noriega-Luna et al., 2014). Some properties of 

dendrimers including their nanoscopic size and uniformity, flexible molecular structure 
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and presence of multiple peripheral functional groups to facilitate conjugate formation 

with a wide range of drug molecules make dendrimers highly suited for targeted 

delivery of drugs (Kesharwani et al., 2014), and hence the rigorous investigations into 

their potential as drug delivery systems, especially in the area of cancer 

pharmacotherapy and delivery of macromolecules (Cheng et al., 2011, Brannon-

Peppas and Blanchette, 2012, Lim and Simanek, 2012, Parhi et al., 2012, Parveen 

et al., 2012).  

Furthermore, the unique architecture of dendritic molecules, especially that of its 

interior with enough void volume makes it ideal for doping with a wide range of 

molecules for desirable functioning (Tomalia and Cheng, 2012). Presently, drug-

dendrimer conjugates of anticancer drugs including fluorouracil, methotrexate, 

doxorubicin, paclitaxel, camptotecin and a few more are being investigated for 

improved physical attributes and performance. In addition to anticancer drugs, 

several other classes of medicines including anti-inflammatory and antimicrobial 

agents are being investigated for presentation as drug-dendrimer units (Tomalia and 

Cheng, 2012) 

The attractive characteristics of dendrimers are being utilised for the development of 

safer and more efficient microbicides. First of all, dendrimers by themselves can be 

inherently antiretroviral when some functional groups capable of interfering with viral 

adhesion to cells are incorporated onto their surface during synthesis (Jiménez et al., 

2012). Some functional groups designed to confer anti-HIV activity on certain classes 

of dendrimers are shown in Table 2-2. Proteins present on surface of viruses bind 

multiple carbohydrates on target host cells during invasion (Gajbhiye et al., 2009). 

Groups similar to these carbohydrates on host cell surfaces can be incorporated onto 

dendrimers peripheries to act as preferred receptors for invading viruses thus sparing 

host cells and therefore preventing infection. These have been successfully tested 

with some influenza viruses and the principle can be explored for the synthesis of 

dendrimers to be used as microbicides (Tsvetkov et al., 2002, Roy, 1996). In addition 
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to preventing viral binding to host cells, polyanionic dendrimers have been shown to 

affect the life cycle of viruses, including HIV (Tephly, 1991). Carboxylated fullerene-

based dendrimers for instance are known to inhibit viral protease and reverse 

transcriptase in acutely HIV infected primary human lymphocytes (Schinazi et al., 

2001). The molecular structure of dendrimers, apart from allowing the incorporation 

of specific functional groups to confer antiviral capabilities also facilitates the 

conjugation of other antiretroviral compound for possible multi-targeted activities 

against the transmission of viruses. Two of the most widely studied antiretroviral for 

microbicide development, tenofovir and maraviroc are reported to have been 

successfully conjugated onto polyanionic carbosilane dendrimers in separate 

formulations (Sepúlveda-Crespo et al., 2015). Formulations combining two different 

dendrimers to be used as microbicides have also been reported (Sepúlveda-Crespo 

et al., 2014). In both dendrimer-dendrimer and dendrimer-drug combinations, where 

lower overall concentrations offered greater antiviral activity than usually seen in 

monotherapies, a case for using a combination formulation to offer optimal activity 

from low doses for minimal incidence of toxicity and emergence of resistant viral strain 

has firmly been established (das Neves et al., 2012) 

Irritations, possible epithelial injury and inflammation from local application of 

microbicides have emerged as serious concerns (Beer et al., 2006, W Buckheit, 

2012). It is therefore interesting to learn that many dendrimer-based microbicides 

currently in development appear to be less irritant to the mucosa environment where 

their application is intended. Following the formulation and evaluation of polyanionic 

carbosilane dendrimers G3-S16 and G2-NF1, it was observed that in addition to 

blocking the entry of HIV into target host cell, these dendrimers protected the 

epithelial layer from cell disruption. Furthermore, these dendrimers did not induce any 

inflammatory cytokines or caused an irritation or vaginal lesion upon application 

(Córdoba et al., 2013). 
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A similar observation of biocompatibility and encouraging antiviral activity was 

recorded when water-soluble anionic carbosilane dendrimer (2G-S16) was studied 

(Chonco et al., 2012) confirming the consistent safety profile among these kinds of 

dendrimers when employed as microbicides. The activity and safety profiles of 

dendrimer based formulations has so far been promising. The nano-range 

microbicide which is furthest in the development phases, dendrimer based 

Vivagel®(Starpharma, Melbourne, Australia) performed well on safety and efficacy at 

preliminary animal testing and is progressing into human trials (Roy et al., 2015). 

Phase I clinical trials have been completed with some favourable general outcomes 

though further progression seems to have been halted because of excessive 

inflammation and damage to epithelial tissue (McGowan et al., 2011, Moscicki et al., 

2012). It has been observed though that current nanotechnology being explored for 

microbicide formulation is shifting from utilising inherent antiviral activity of the 

nanostructures to using them as systems to deliver highly active antiretroviral drugs 

(das Neves et al., 2010). Therefore, the prospects of utilising the flexible structure of 

dendrimers to deliver active drug for prevention of HIV transmission remains positive 

and worth considering. 

As outcomes from clinical trials on conventional formulations of microbicides has 

largely been negative (Grant et al., 2008), shifting our focus onto nanostructures such 

as dendrimers in pursuit of an ideal microbicide seem to be a step in the right 

direction. 

 

 2.3.4 Liposomal microbicide 

Liposomes (Figure 2-5), from a Greek root word meaning 'fat body' is a multi-layered 

phospholipid structure with a hollow core, the inner portion usually made of a polar 

phosphate group and the outer consisting of one or more bilayers of natural or 

synthetic lipids (Watwe and Bellare, 1995). Liposomes made of natural phospholipids 

are physiologically inert, weakly immunogenic and of low toxicity (Immordino et al., 
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2006). Furthermore, due to their combined hydrophilic and lipophilic nature, a wide 

range of drugs with different lipophilicities can be effectively encapsulated within 

liposomes, the highly hydrophilic ones staying in the polar compartment, the lipophilic 

ones in the lipid layers and those with intermediate partition coefficients easily 

apportioning between the polar and lipid portions of the liposome (Gulati et al., 1998). 

The applicability of liposomes have been further enhanced recently due to a steady 

progression from conventional liposomes to a new generation of liposomes 

developed through modulation of lipid constituents, size and charge adjustments and 

surface modification (Torchilin, 2005).  

 

Figure 2-5: Schematic representation of a) Liposome showing assembly of phospholipids in a bilayer that yields 
both aqueous and lipid compartments within the structure and b) various lamellarity and sizes; small unilamellar 
vesicles (SUV), large unilamellar vesicles (LUV), giant unilamellar vesicle (GUV), multilamellar and multivesicular 
 

 

Structurally, the lipid microenvironment of some newer generations of liposomes, the 

so-called lipid raft achievable from peculiar lipid composition utilising 

glycosphingolipids (GSLs), sphingomyelins and cholesterols make them capable of 

serving as platforms of membrane with associated activities such as signal 

transduction, cell adhesion and lipid/protein organisation, thus increasing their appeal 
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for biomedical applications (Anderson and Jacobson, 2002, Helms and Zurzolo, 

2004, de Gassart et al., 2003). 

These physical characteristics of liposomes and their widening applicability due to 

their continuous improvement make them very attractive for consideration as delivery 

systems, especially in cases where drug solubility is an issue. With regards to 

microbicide activity against HIV transmission in the vagina, some potential challenges 

are anticipated. In order to inhibit activities of viruses that have broken through the 

physical barrier provided by microbes, active drug, ideally in nano delivery systems, 

capable of matching the ease with which viruses travel through epithelial layers to 

infect cells would be required to inhibit viral activity either at point of entry or within 

tissues (Pope and Haase, 2003, Vanić and Škalko-Basnet, 2013). Furthermore, the 

carrier system delivering the active drug ought to have minimal interference with 

vaginal flora and pH, minimal irritation to the mucosa as well as being effective in 

protecting the drug from sudden changes in the vaginal environment e.g. vaginal 

fluids due to arousal and release of semen (Vanić and Škalko-Basnet, 2013). 

Studies looking into the potential of liposomes as delivery systems for microbicides 

and capable of meeting these requirements have reported some optimistic outcomes 

indicating that these nanostructures could be the future of effective microbicides. The 

membrane-like characteristics of liposomes are also thought to have a potential of 

fusion with viron material, thus giving these structures some possibility of interfering 

with HIV transmission by competing with host membrane for uptake of the virus. 

Several liposomal membranes based on their lipid composition have been assessed 

for the potential of fusion with HIV-1 virus and found to be in the order cardiolipin 

(CL)  phosphatidylinositol > CL/dioleoylphosphatidylcholine (DOPC) (3:7), 

phosphatidic acid > phosphatidylserine (PS), PS/cholesterol (2:1) > PS/PC (1:1), 

PS/phosphatidylethanolamine (1:1) > DOPC, erythrocyte ghosts (Larsen et al., 1993, 

Malavia et al., 2011) 
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In a study evaluating a liposome formulation of MC-1220, a highly potent and 

selective NNRTI on the prevention of HIV transmission through the vagina of non-

human primate models (Caron et al., 2010), it was found that formulating MC-1220 in 

a liposomal gel allowed high amount of drug loading in a small volume of formulation, 

thus solving some of the bioavailability issues typically seen in conventional gel 

formulations (Loftsson and Masson, 2001). In addition, the liposomal formulations of 

the NNRTI were seen to be less irritating to mucosa tissues. Finally, and most 

importantly, it was observed that the liposomal formulation offered some protection 

against viral transmission and in fact reduced the viral load in infected models. 

Another work that investigated the feasibility of liposomes for use as microbicides  

(Wang et al., 2012) utilised octylglycerol (OG), a synthetic lipid derived from human 

breastmilk and has been shown to destabilise viral envelopes and therefore a 

potential microbicide (Isaacs, 2001, Isaacs and Thormar, 1991, Skinner et al., 2010). 

In this study, liposomes were produced from combinations of OG and phosphatidyl 

choline in ratios that ensured in vitro antiviral activity and at the same time sparing 

the natural vaginal flora. Activities of the liposomes were compared to two 

conventional gel formulations. 

 

 2.2.5 RNA interference (RNAi) as strategy for microbicidal action 

Nanotechnology offers platforms for drug delivery strategies utilising biologics, 

especially where highly specific molecular or biological interference is required for 

therapeutic outcomes (Farokhzad and Langer, 2009). One of such interventions 

principally disrupt RNA activity to yield desired outcome. RNAi is described as a post-

translational and post-transcriptional inhibition of gene expression typically brought 

about by destruction of specific RNA molecules and this biological process has been 

demonstrated as capable of preventing HIV transcription, thus having some 

promising prospects in the prevention of viruses infecting host cells (Lee et al., 2002, 

Zhang et al., 2006). With regards to preventing HIV transmission through microbicidal 
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action in the female reproductive mucosa, some pioneering work utilising small-

interfering RNA (siRNA) densely packed into biodegradable polymer NPs have been 

used to bring about silencing of endogenous genes in the genital track, ultimately 

resulting in protection against challenge from the infectious pathogens (Woodrow et 

al., 2009). In another study detailing the impact of siRNA on viral transmission, vaginal 

instillation of siRNA targeting Herpes Simplex virus 2 (HSV2), an important cofactor 

in HIV transmission was confirmed to reduce overall lethal viral challenge in mice thus 

suggesting siRNAs as an important and a suitable component of microbicide 

formulation (Palliser et al., 2006). Outcomes from these studies and several others 

have established RNAi firmly as a strategy for preventing viral infections and hence 

siRNAs as valuable components for the development of future microbicides. 

However, a massive challenge remains with delivery of siRNAs as these structures 

are highly unstable in serums and delivery across cell membranes. Delivery strategies 

showing promise so far, such as liposomal, viral or NPs delivery are heavily reliant on 

nanotechnology and therefore adds to the compelling case being made for utilising 

nanotechnology for developing the next generation of microbicides (Nguyen et al., 

2008). The future of RNAi as a strategy for disease cure and prevention is promising 

and this is attested by the vibrant pharmaceutical companies' involvement in research 

currently ongoing in this field, especially with regards to delivery of these nucleic 

acids. 

 

2.3.6 Nanofibre 

A nanofibre typically has two similar external dimensions (making up the cross-

sectional area) within the nanoscale and the third dimension, usually the length, 

significantly larger (Glavas-Dodov et al., 2002). Nanofibres, described as slender, 

elongated thread-like structures within the nanoscale are characterised by 

exceptionally high specific area that allows a higher proportion of atoms of interest to 

be on the fibre surface (He et al., 2008).  
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Figure 2-6: a) Nanofibres produced by pressurised gyration (Mahalingam and Edirisinghe, 2013) b) revealing 
porosity that can be utilised for optimal drug delivery (Illangakoon et al., 2016) c) atomic force micrograph 
showing encapsulating abilities of nanofibers (Mahalingam et al., 2014) and  d) nanofibre based tampon (photo 

credit: University of Washington) intended for protection against HIV transmission 

 

 

This physical attribute has been claimed to enable ‘quantum efficiency, nanoscale 

effect of unusually high surface energy, surface reactivity, high thermal and electrical 

conductivity and high strength’(He et al., 2008). Nanofibres are currently produced by 

widely varying methods including molecular self-assembly, thermally induced phase 

separation and fibre spinning (Luo et al., 2012). Of all these methods, fibre spinning, 

a term used to describe the various methods of fibre formation by extrusion through 

a spinneret appears to be the most widely used method. Electrospinning and 

centrifugal spinning are two of fibre spinning methods commonly used.    

Nanofibres, depending on constituent materials and conditions of fabrication could 

exhibit widely varying morphology and structural properties. However, features such 
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as high surface area to volume ratio and well defined porosity are typical of nanofibres 

and have often been reasons why they are desirable for drug delivery applications 

(Pillay et al., 2013). High  surface area per unit mass of nanofibres could be 

harnessed to overcome solubility issues seen in many active pharmaceutical 

ingredients (API) e.g. ibuprofen, usually by combining them with hydrophilic materials 

of nanofibres (Williams et al., 2012). In addition, controlling the matrix properties such 

as fibre diameter and porosity by manipulating fabrication parameters allows for the 

incorporation of delicate molecules such as proteins and DNA into nanofibre 

constructs such as meshes for site-specific delivery in the body (Pillay et al., 2013). 

Significantly higher encapsulation efficiency is attainable when active ingredients are 

incorporated into nanofibres (Xie and Wang, 2006, Liao et al., 2006). Achieving drug 

loading more than 90% offers the possibility of designing highly efficient delivery 

systems with fewer additives and excipients. This ultimately enhances the safety 

profile of the formulation since unwanted materials, which have to be metabolized 

and eliminated are already in minimal quantities. Drug delivery systems utilising 

polymeric nanofibres as basic units can be designed, e.g. using electrospinning with 

multi-axial needles to obtain multi-compartment assembly delivering different active 

drugs from a single unit. Basically, multiple APIs may be encapsulated in different 

nanofibres and combined to be presented as one unit. The multi-targeted approach 

is a viable option since the individual encapsulations prevents the active ingredients 

from interacting among themselves regardless of their proximities, until onset of drug 

action. Finally, the potential of modulating drug release from nanofibre systems by 

varying their material constituents makes these structures attractive for drug delivery 

(Kenawy et al., 2009). Considering the wide array of suitable materials available for 

making nanofibres, several possible combinations may be selected for a specific 

release kinetic desired. The starting point for most nanofibre production requires the 

materials to be in solution or melt. Therefore, most materials, especially polymers, 

once converted to the suitable liquid state and such properties as viscosity and 
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surface tension optimized may be transformed into nanofibres by the appropriate 

method. This feature of making nanofibres enable the accommodation of a wide 

range of materials such as drugs e.g. paclitaxel, biologicals e.g. human nerve growth 

factor (hNGF) and functional polymers e.g. surface-glycosylated polycaprolactone 

thereby (Hu et al, 2014) enhancing the prospects of manipulating release kinetics 

through choice of materials. 

 

2.4 Applications of nanofibre 

Many unique physical properties of nanofibres, arising mainly from their ultrahigh 

surface area and well-defined porosity, enable them to be suitable for several different 

applications. Most of the applications of nanofibres presently being explored can be 

classified under one of these main areas – filtration, drug delivery, tissue engineering, 

microelectronics and sensing, protective clothing and food processing (Wei, 2012).  

Of all the areas of nanofibre application, it appears their utility in drug delivery and 

tissue engineering has seen unprecedented levels of research and publicity, possibly 

because of the crucial developments and solutions being offered (Sill and von Recum, 

2008, Cui et al., 2016, Sill and von Recum, 2015).  

Widely varying materials, both biodegradable e.g. poly (lactic-co-glycolic acid) and 

non-biodegradable e.g. graphene can be selected as materials for fabrication of 

nanofibres. For this reason, suitable combinations of materials with physical and 

chemical properties complimenting each other can be used in developing nanofibre 

drug delivery systems with such desirable properties as an ideal solubility for an 

optimal release profile. The possibility of forming nanofibres from a wide range of 

materials also gives better prospects for compatibility, in that materials most 

compatible with the active ingredient can be selected for developing the delivery 

systems. Furthermore, the wider surface area of nanofibre which makes it suitable 

platform to take on a higher proportion of atoms of interest (He et al., 2008), in this 
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case active pharmaceutical ingredients allows for efficient loading of drug and 

therefore cutting out the use of unnecessary amounts of excipients during formulation. 

Due to their exceptionally desirable physical properties which supports such benefits 

as efficient drug loading, the flexibility with choice of materials for fabrication and their 

structural versatility that allows them to be delivery systems through adsorption or 

encapsulation, nanofibres have been used extensively for the delivery of antibiotics, 

anticancer drugs and various macromolecules such as DNA, siRNA and other 

proteins such as bovine serum albumin (Hu et al., 2014). 

In the area of biomedicine and specifically tissue engineering, the same enhanced 

surface properties of nanofibres described above have been identified to enable these 

nanostructures to perform as platforms that support the interaction of cells and growth 

factors for the repair or replacement of damaged tissues (Rim et al., 2013). This 

performance as a functional platform supporting cell adhesion and growth, particularly 

derived from the continuous structure  has conferred attractive prospects in areas 

such as orthopaedics (Christenson et al., 2007) 

 

2.5 Methods for nanofibre generation 

As mentioned earlier, most nanofibres are currently produced by one of three 

methods – self-assembly, phase separation or spinning. Nanofibre generation by 

spinning, which includes electrospinning and centrifugal spinning, is by far the 

predominant method in use today. All structures used in this project were obtained by 

spinning and specifically, by the simultaneous use of high speed centrifugal spinning 

and high pressure. 

 

2.5.1 Molecular self-assembly 

Molecular self-assembly is responsible for formation of a wide variety of complex 

biological structures. Molecular self-assembly is the spontaneous reorganisation of  
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molecules in equilibrium conditions into stable and structurally well-defined 

aggregates joined by non-covalent bonds (Whitesides et al., 1991). Observations 

from this phenomenon have informed strategies being utilised in chemical synthesis 

of supramolecular structures typically within the nano-range e.g. peptide amphiphiles 

(PA) which is presented as nanofibre (Chen and Liu, 2015). Thus self-assembly is 

one of the main methods of producing nanofibres and PA nanofibres for instance can 

have fibre diameters as small as 10nm, a size significantly smaller than fibres 

generated from other methods such as electrospinning (Zhang, 2003).  

  
 

 
 

Figure 2-7: A scheme illustrating a self-assembly process 

 

Notwithstanding, poor mechanical strength due to fragility of molecules e.g. peptides 

involved  and high complexity associated with generation of nanofibre by self-

assembly has limited the use and applicability of this method, and subsequently 

impeded its progress into being useful and capable of large-scale fabrication (Chen 

and Liu, 2015). 

 

2.5.2 Phase separation 

Another method of fabricating nanofibres is by phase separation. In phase separation, 

a homogeneous polymer solution is thermodynamically separated typically by thermal 

induction or in few instances, by addition of a nonsolvent to cause two phases of 

polymer rich gel and a solvent rich component. Any remaining solvent in polymer rich 
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component is extracted, first by using water, then cooling below the glass transition 

temperature and finally freeze-dried under vacuum to obtain a nanofibrous scaffold 

(Barnes et al., 2007). Unlike self-assembly, this method is very simple as it does not 

require any specialised equipment and can easily offer batch-to-batch consistency. 

The utility of this method is however seriously limited by choice of materials as only a 

narrow range of polymers can yield nanostructures by this method and so upscaling 

prospects has not been fully explored thus confining phase-separation to a laboratory 

scale method for nanofibre production (Jayaraman et al., 2004) 

 

2.5.3 Spinning 

Lastly, methods based on spinning such as electrospinning and centrifugal spinning 

are being used to produce nanofibres. Nanofibres are basically generated by 

electrospinning through the uniaxial stretching of a viscoelastic solution (Teo and 

Ramakrishna, 2006).  

 

Figure 2-8: Schemes illustrating a) Centrifugal spinning and b) Electrospinning, two main methods for generating 
nanofibres by spinning (Ren et al., 2013, Li et al., 2010) 

 

 

In this method of generating nanofibres, where the setup is essentially made up of 

high voltage supply, a capillary tube typically in the form of a needle and a metal 
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collecting screen, high voltage is used to create electrically charged jet of polymer 

solutions through a capillary and before reaching the collection plate, solvent 

evaporates from the jet thereby solidifying to become fibres (Huang et al., 2003). 

Other methods for fibre generation, based on spinning include use of centrifugal 

spinning with or without pressure. In this method, a polymer solution contained in a 

closed vessel with orifices is forced out upon high speed rotation and fibre forming 

during flight of solution jets with simultaneous solvent evaporation and drying up 

(Padron et al., 2013, Mahalingam and Edirisinghe, 2013). In pressurised gyration for 

instance, several variables such as pressure, rotation speed, solution properties and 

room conditions such as temperature and humidity can all be adjusted to yield fibres 

with specific physical attributes that are just right for applications being sought. 

 

2.5.3.1 Nanofibre generation using Pressurised gyration 

The potential utility of nanofibres in diverse arrears including engineering, 

biomedicine, pharmaceutical and textile industries has driven demand for these 

structures in recent times. The unique characteristics of nanofibres makes them 

versatile and hence easily adaptable to meet varied requirements wherever needed. 

In this light, extensive research into the efficient and up-scaled production of nanofibre 

materials is on the rise in recent times.  

Nanofibres till date have largely been produced by fibre spinning, thermal controlled 

phase separation and bio-fabrication usually by molecular self-assembly (Luo et al., 

2012). Fibre spinning, specifically electrospinning appears to be the method mostly 

used in generating nanofibres (Zhou et al., 2009). Notwithstanding its popularity, this 

method of production is yet to see any meaningful upward transition into mass scale 

level to meet the ever-increasing demand of nanofibres because of a number of 

challenges, notably the need for high voltage and very low rate of production. These 

challenges clearly present the need for simpler and versatile production methods that 

can easily be up-scaled into production levels capable of meeting existing demands. 
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Figure 2-9: Schematic diagram of a pressurised gyration apparatus 
 

Fibre production method driven by centrifugal forces and with prospects of easy 

adaptation for mass production of nanofibres because of its simplicity, higher 

production rate and versatility is gaining attention in recent times(Padron et al., 2013). 

A variant of using centrifugal forces in drawing out fibres from solutions and melts, 

where the spinning is carried out under pressure has been reported (Mahalingam and 

Edirisinghe, 2013). The process has been termed ‘Pressurised gyration’. Spinning 

fibres under pressurised conditions has the benefit of being able to manipulate an 

additional parameter, pressure and thus a wider flexibility in producing fibres with 

different cross-sectional diameters.  

As shown in the schematic diagram in Figure 2-9, the setup is made of a cylindrical 

aluminium vessel of approximately 60mm in cross-sectional diameter and 35mm in 

height. There are nozzles approximately 0.5mm wide surrounding the pot, about 

10mm from each other. The vessel is attached to a DC motor capable of rotations of 

up to 36,000 rpm. Finally, there is a lid connected to a source of high pressure to 

enable fibre spinning in a pressurised environment.   
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In order to generate fibres from this set up, the vessel with all its connections are held 

in place securely by a retort stand and clamps. The gyration process is carried out in 

a Perspex box to ensure safety.  Aliquots of the solution to be spun into fibres are 

placed in the vessel and covered. Rotation begins at the same time as pressure is 

being applied. Each cycle takes between 2-5 minutes depending on the experimental 

conditions. Fibres ejected through the nozzles are collected and stored until required 

for further analyses. 

 

2.6 Factors affecting outcome of fibre formation 

2.6.1 Solution properties 

Two of solution properties widely reported to have effect on fibre formation by 

spinning are viscosity and surface tension(Padron et al., 2013, Lu et al., 2013). 

Basically solution concentration, type of solvent system and molecular weights of 

materials affect fibre production outcomes by influencing their rheological properties 

and hence studying the viscosity and surface tension of solutions offer an effective 

means of quantifying the extent of correlation between solution properties and fibre 

characteristics (Lu et al., 2013). There ought to be some minimum forces to overcome 

the surface tension of liquids for polymer jets and subsequently fibre formation to 

occur. Again, solutions or melts ought to have optimal viscosities, which usually imply 

suitable chain entanglement for each material in order for fibres to be drawn out of 

the liquids(Padron et al., 2013). Therefore, for any material to be transformed into 

nanofibres, an optimal combination of viscosity and surface tension which reflects 

such properties as suitable amount of chain entanglement will be required. 

 

2.6.2 Working pressure 

It has been demonstrated that increasing the working pressure can drastically reduce 

the fibre diameter. A three-fold increase in working pressure, for instance has been 

reported as capable of reducing fibre diameter six times (Mahalingam and 
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Edirisinghe, 2013). The effect of pressure on the outcome of fibre formation has been 

explained by its role in rate of solvent evaporation and their interaction with centrifugal 

force at the orifice against surface tension of the solution.  

 

2.6.3 Rotational velocity 

It is firmly established that the angular velocity with which fibres are spun out affect 

the physical properties of the fibre, especially the fibre thickness. The effect of velocity 

on the fibre size has been explained by further expansion of fibre trajectory outward. 

The effect of increasing velocity, apart from reducing fibre size also results in more 

uniformly sized fibres (Padron et al., 2013). In this regard, for a fairly uniform sized 

fibre to produced, especially when those in the nano range is desired, spinning ought 

to occur in appreciably high speed. 

 

2.7 Drug delivery 
 

2.7.1 Overview 

Drug delivery systems (DDS) have seen remarkable improvements recently and as 

discussed earlier, strategies utilising polymer-based nanostructures e.g. liposomes 

and nanoparticles have been and continue to improve pharmacological and 

therapeutic performance of many drugs (Allen and Cullis, 2004). Notwithstanding 

these positive developments in drug delivery, there remain more room for improving 

drug delivery via vaginal route, especially for systemic effects as this area has not 

seen as much interest and developments as others like the oral and parenteral routes 

for drug delivery. There are now advances in nanofabrication that makes possible the 

generation of materials that could be utilised in developing more efficient systems for 

systemic delivery of drugs via the vaginal route. A group of the population that stand 

to benefit from improved drug delivery via the vaginal route are women considered at 

risk of going into early labour (Dodd et al., 2008, Fuchs et al., 2014), as presently, a 



58 
 

more likely clinical intervention involves daily administration of intramuscular injection 

of progesterone, an approach that can be very inconvenient. Vaginal delivery systems 

whose performance may be aided by mucoadhesion, for instance in terms of 

improved resident times for better bioavailability and lower dosage frequency could 

replace the current regimen dominated by parenteral administration.  

  

2.7.2 Vaginal drug delivery 

The human vagina has been a route for administering drugs since ancient times 

(Hussain and Ahsan, 2005). However, it was mainly used to deliver drugs for local 

effects until 1918 when it was found to be capable of systemic delivery (Macht, 1918). 

Since then, this route of administration has gained relevance as a viable option for 

drug delivery in modern medicine. Several classes of medicine are currently approved 

for vaginal application (some listed in Figure 2-10).  In this era of increasing discovery 

of poorly soluble new chemical entities (NCE), protein based therapeutics and other 

biologics, vaginal delivery of drugs for systemic use is increasingly being considered 

as alternative to oral administration (Baloglu et al., 2009, Bassi and Kaur, 2012, 

Hussain and Ahsan, 2005). Furthermore, where local effect or less invasive route of 

administration is desirable, vaginal delivery of a drug presents a more viable 

therapeutic strategy than many other routes (Fallowfield et al., 2006) 

The human vagina is a fibromuscular S-shaped canal, between 6 and 12 cm long and 

connecting the cervix to the vulva vestibule (Neves et al., 2014). The upper portion is 

wider and almost horizontal when in upright posture and the lower part is convex in 

shape (Funt et al., 1978). This anatomical positioning and shape contributes to the 

retention of objects inserted deep into the vagina, thus making it a suitable destination 

for application of such materials as dosage forms and medical devices (Barnhart et 

al., 2004). In addition, the increased surface area of the vagina arising from several 

rugae and extensive vascularisation facilitating access to major blood vessels and 
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organs like the inferior vena cava and uterus offer immense potential for systemic 

drug delivery (Katz et al., 2007, De Ziegler et al., 1997). 

 

 

Figure 2-10: Types of vaginal dosage form presently in use. 

 

 

Some advanced methods of drug delivery to the vagina has recently been reported. 

Coconut-oil core cationic nanocapsule of clotrimazole prepared from 

Eudragit® RS100 polymer has been reported to offer prolonged delivery of the 

antifungal drug to the vagina, offering better antifungal activity against Candida sp. 

compared to ordinary clotrimazole creams (Santos et al., 2014). In another example, 

Paclitaxel delivered as mucus-penetrating nanoparticles made form poly(lactic- co -

glycolic acid) was reported as being more effective in suppressing tumour growth and 

prolonging the median survival in animal models (Yang et al., 2014).  

Apart from the possibility of being useful for the systemic delivery of some drugs, the 

vaginal route offer prospects for other drug delivery strategies. For instance, the 

vaginal structure and environment can be adapted for long term delivery of some 

medications, e.g. contraceptives, where strict adherence is required for desired effect. 
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Figure 2-11: a) Cross-section of female reproductive tract showing vaginal canal, b) schematic illustrating active 
substance pathways for systemic circulation following application of a vaginal formulation, c) silicone elastomer 
vaginal ring and d) an inserted ring in a female reproductive tract 

 

 

Vaginal rings for delivering contraceptives over several months have been shown to 

maintain constant serum levels of the drug, thus offering an effective solution to 

problems often arising from nonadherence to oral contraceptives such as through 

missed dose (Potter et al., 1996). This also takes away the daily burden of taking pills 

orally and therefore a more convenient approach. Adverse drug effects such as 

gastrointestinal disturbances, typically occurring after oral administration of a drug 

can be mitigated by delivering via vaginal route. For instance, gastrointestinal 

disturbances resulting from the oral administration of bromocriptine were drastically 

reduced when given vaginally, in addition to improved bioavailability (VERMESH et 

al., 1988). Vaginal route is also particularly helpful for systemic delivery of drug 
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susceptible to extensive hepatic metabolism or when intestinal absorption capacity is 

impaired and also helpful for avoiding possible drug-drug or drug-food interactions in 

the gastrointestinal system (Tozer, 1996). In a more recent study, vaginal delivery of 

subunit vaccines (plasmid DNA) was confirmed to induce better immunity when 

compared to rectal or intranasal delivery (Lowry, 2015) 

Notwithstanding the promising prospects of optimized pharmacotherapy offered by 

this route, there remains challenges. Perhaps the first and most obvious disadvantage 

of vagina as a route of drug administration is its gender specificity (Neves et al., 2014). 

Drug delivery through the vagina is only possible for women. The other challenges 

associated with vaginal delivery of drug mainly involves cultural perceptions about 

insertions into the vagina, perceived interference with personal hygiene and possible 

interference with coitus in sexually active women. Likely local irritations, urination and 

widely varying pharmacokinetics following vaginal administration of drugs also pose 

some challenges in this route of administration  (Srikrishna and Cardozo, 2013).    

 

2.8 Progesterone 
 

2.8.1 History of the discovery of progesterone  

The discovery of progesterone hormone, its role in reproduction and much of what 

we know about it presently, though largely attributed to the works of Corner and his 

colleagues in the early to mid-twentieth century actually started several centuries 

before, when some fundamental discoveries in anatomy were made (Corner Sr, 

1974). The history of progesterone discovery could be traced to a young Dutchman, 

Regner de Graaf who wrote extensively on the female reproductive system in the 

seventeenth century (De Graaf, 1965).  
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Figure 2-12: Regner de Graaf whose study of female reproductive anatomy laid the foundations upon which 
George Washington Corner built on to discover and isolate progesterone (photo credit: Museum Boijmans Van 
Beuningen and Wellcome Images from Wikimedia Commons ) 

 

 

He was the first to describe the corpus luteum in 1672, after which Louis-Auguste 

Prenant suggested the corpus luteum was an internal organ of secretion (Prenant, 

1898). Thereafter, several experiments to ascertain the function of this organ, 

including its action on the endometrium were undertaken and reported by renowned 

anatomists including Ludwig Fraenkel, Paul Ancel and Paul Bouin between 1903 and 

1910 (Corner Sr, 1974). 

The tipping point in the discovery of progesterone and its function was when George 

Washington Corner demonstrated that the corpus luteum was necessary for survival 

of the pre-implantation embryo, and subsequently working with G W Allen to isolate 

the hormone which was used to maintain pregnancy in a rabbit with ablated ovaries 

(Corner, 2015).  

Following Corners work which brought much clarity to the subject of corpus luteum 

and the hormone it secrets, there appear to have been, as one publication puts it ‘a 

dramatic neck-and-neck scientific race’ towards the isolation of pure progesterone 

(Frobenius, 1997). By 1934, at least four scientific groups working independently from 

http://alma.boijmans.nl/nl/object/BdH%2022806%20(PK)/
http://alma.boijmans.nl/nl/object/BdH%2022806%20(PK)/
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each other had reported on the isolation and purification of progesterone (Butenandt 

and Westphal, 1934, Hartmann and Wettstein, 1934, Slotta et al., 1934, Allen, 1935). 

So building on their predecessors work in area of human reproduction, various 

scientists contributed their due in the discovery of the hormone progesterone and its 

functions and several decades on, this wonderful hormone and our understanding of 

its role have remarkably improved healthcare through many of its interventions 

including those in the area of Assisted Reproductive Technology (ART), infertility and 

preterm delivery and catamenial epilepsy (Chakravarty et al., 2005, Devinsky et al., 

2005). There had to be an efficient and cost-effective way of obtaining substantial 

quantities of progesterone if they were to be useful in healthcare. Between isolating 

and purifying progesterone and producing commercial quantities of the compound as 

we see today, there had been serious challenges with synthesis of practically useful 

amounts. At the early stages of progesterone production, according to one account, 

considerable amounts of cholesterol, about a ton from the brain and spinal cord of 

farm animals was required for just 20 pounds of the starting material from which 

progesterone would be synthesised (Hudson). Not long afterwards, by 1940, the 

pioneering works of Russel Marker which led to the partial chemical synthesis of 

progesterone from steroids derived from some varieties of yams (Marker and 

Krueger, 1940) ushered in an era of cost efficient production of progesterone in 

commercial quantities thus facilitating the use of this hormone in diverse fields of 

medicine, especially in reproductive healthcare.  

 

2.8.2 Progesterone as of today 

2.8.2.1 Assisted reproduction 

The discovery, isolation and purification of progesterone, a hormone so crucial for 

conception, pregnancy and other related activities in humans remains one of the most 

remarkable developments in health science.  In fact, progesterone supplementation 
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has become a routine in most assisted reproductive activities including IVF as it is 

thought to help create a conducive environment for successful embryo implantation 

(Williams et al., 2001, Yanushpolsky et al., 2008). Progesterone has been confirmed 

to bring about uterine relaxation i.e. decreasing contraction frequency which is 

typically associated with embryo displacement and implantation failure in IVF 

procedures (Fanchin et al., 1998, Fanchin et al., 2001). A thorough review by the 

Food and Drug Authority (FDA) on relevant scientific data established that IVF cycles 

utilising long acting Gonadotropin-releasing hormone analogues (GnRH) and 

progesterone supplements resulted in significantly higher pregnancy rates compared 

to placebo or no hormonal supplementation (Medicine, 2008). Furthermore, a newer 

understanding of the role of this hormone regarding women’s wellbeing in general 

and particularly in their reproductive activities have ensured better outcomes in this 

area of healthcare.  

The birth of Louise Jay Brown on 25th July, 1978 signified landmark achievement in 

reproductive healthcare and medical science in general. The first ever in vitro 

fertilisation (IVF) had resulted in the live birth of a healthy and normal baby girl. 

Gynaecologist Patrick Steptoe and physiologist Robert Edward’s many years journey 

along an uncharted course characterised by obtaining eggs from ovaries, developing 

ways of fertilising them in a laboratory and hundreds of embryo transfers had finally 

paid off with a revolutionary outcome never seen in human history (Eley, 2015).  

 

            

Figure 2-13: First IVF baby Louise, a midwife and the pioneers of the procedure Robert Edwards (L) and Patrick 
Steptoe (R) and b) an egg being injected with a single sperm using a micro-needle during an IVF procedure 
(photo credit: Getty Images and Science Photo Library) 
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Of course, such an endeavour calls celebrations with all the fanfare and media 

attention that could be mustered. Some breakthroughs in medicine prior to this great 

achievement, and contributed to the success of the first IVF, though kept silent over 

the years ought to be applauded as ground-breaking in their era. Indeed, the fact that 

progesterone supplementation has become part of most assisted reproductive 

activities today confirms the contribution of discovery and isolation/synthesis of 

progesterone to the current advancement we see in the area of reproductive 

healthcare.  

In addition to its control of the female reproductive function, progesterone has been 

identified to play key roles in development of lobular-alveoli structures in the breast 

during puberty, sexual receptive behaviour in the brain and in bone remodelling, 

though information currently available on all of these additional functions are very 

limited (Graham and Clarke, 1997). 

 

2.8.2.2 Supporting pregnancy 

Progesterone’s intervention in preparing the female reproductive system for 

conception and supporting pregnancy has been known for nearly a century and the 

exogenous form was widely used in preventing preterm birth for much of the 1980s 

and 90s until safety concerns halted its use (Fuchs et al., 2014). Thereafter, outcome 

from several clinical trials reassessing the significance of exogenous progesterone in 

maintaining pregnancy to full term, especially in women considered high risk has 

revived interest in this treatment regimen, thus triggering efforts in developing dosage 

forms capable of better control of serum levels of the administered hormone to ensure 

minimal side effects (Dodd et al., 2008, Valenta et al., 2001).   

This renewed interest in using progesterone for medical interventions, especially in 

supporting pregnancies in women at risk of going into early labour would translate 

into actual benefit for users only when a number of provisions are made. These 

include the availability of a range of dosage forms capable of effective delivery of 
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progesterone to extents where suitable serum levels required for optimal outcomes 

are obtained. Typically classified as Class II under the biopharmaceutical 

classification system, progesterone’s bioavailability is significantly limited by its low 

solvation rate and often require some formulation interventions if intended for oral 

administration (Dahan and Hoffman, 2006, Reddy and Karunakar, 2011). In addition, 

rapid metabolism of the hormone mainly in the liver following ingestion presents 

significant limitations to oral administration of progesterone (Levy et al., 1999). Other 

routes of administering exogenous progesterone would be preferred considering the 

many drawbacks associated with oral administration. However, these alternate 

methods of administering the hormone are not without challenges. Injecting oil-based 

progesterone intramuscularly ensures reliable absorption but the pain associated and 

possibility of local irritation and cold abscess make patients less compliant with this 

route (Devroey et al., 1989). Limitations in oral and parenteral routes of administration 

have made vaginal method the most established way of delivering progesterone for 

optimal outcomes. Notwithstanding, inconsistent serum concentrations have been 

identified among pessaries or suppositories utilising different fat or glycol bases (Price 

et al., 1983) thus creating the need for a formulation strategy capable of delivering 

more predictable outcomes in progesterone pharmacotherapy. 

Nearly all of the dosage forms of progesterone intended for local application are fat-

based (Convention, 2011). There are strong indications suggesting significant 

differences in bioavailability of progesterone following administration of dosage forms 

with different fat bases (Price et al., 1983). So clearly, a dosage form formulated with 

entirely different material, in this case from a combination of polymers in 

nanostructure basic units offers new opportunities for adaptation to suit specific 

release patterns. This would be a positive addition to the overall strategy of managing 

preterm labour with progesterone. 
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2.8.3 Chemistry of progesterone 

Progesterone is a steroidal hormone. Steroids are a group of natural or synthetic fat 

soluble organic compounds among lipids, characterised by a molecular core of four 

fused rings (three 6-Carbon rings and one 5-Carbon ring) typically made of 17 carbon 

atoms (Lednicer, 2011).  

 

Figure 2-14: Progesterone molecule with four fused rings, double bond between Carbon position 4 and 5 and 
two ketone groups at 3 and 20, giving the name Pregn-4-ene-3,20-dione. 

 

A 5-Carbon naturally occurring diene hydrocarbon, isoprene pyrophosphate (IPP) 

serves as starting synthon for many natural compounds in plants and animals, 

including steroids. IPP itself is formed by addition of acetyl group to activated 

acetoacetate to form glutarate which is then reduced by enzyme HMG-CoA-

reductase (3-hydroxy-3-methylglutaryl-CoA) to mevalonic acid. This intermediate 

undergoes further reactions including esterification, decarboxylation and 

isomerisation to become IPP. Transformations through a cascade of several 

reactions make up the biosynthesis of steroidal hormones. 

Progesterone, as used today, is usually obtained either by semi-synthesis from 

phytochemicals such as diosgenin and soy-bean derived stigmasterol or by total 

synthesis through cascade of ring closures such as a type utilising aldehydes as 

starting material (Lednicer, 2010) 
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Figure 2-15: Semi-synthesis of progesterone from diosgenin using  Marker's degradation process 

 

 

The scheme above illustrates steps required for semi-synthesis of progesterone from 

diosgenin. This method, pioneered by Russel Marker (Marker and Krueger, 1940), 

sometime known as Marker’s degradation basically through kinetic control degrades 

the sapogenin side-chain of diosgenin while leaving functional groups in the steroid 

nucleus intact. In this approach, the pyran ring on the side-chain is opened by 

hydrolysis while the resulting 26-hydroxyl and the 3-hydroxyl on the steroid nucleus 

acetylated and esterified respectively to render the remaining furan on the side-chain 

more susceptible to opening by oxidation. Further selective oxidation of 20, 22 double 

bond by chromic acid and conversion of the ester at position 3 to ketone yields 

progesterone (Dewick, 2009). Alternatively, semi-synthesis of progesterone can be 

done through formation of a conjugated system by Oppenauer oxidation of 3-hydroxyl 

to ketone, side-chain degradation of stigmasterol through ozonolysis, iminium-

enamine tautomerisation and selective oxidation of double bonds. Total synthesis of 

progesterone in three main schemes, the first being synthesis of aldehyde from a 

Grignard reagent. This is then converted into a phosphonium ylide in the second 
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stage before finally being transformed through a series of reactions, including a 

biomimetic cationic cyclization reaction to yield progesterone (Johnson et al., 1971).  

 

2.8.4 Pharmacology of progesterone 

The actions of progesterone, like all its agonists and antagonists are facilitated in 

target tissues by progesterone receptor (PR) a type of nuclear receptor (Giangrande 

and McDonnell, 1998). Nuclear receptors are a class of structurally related gene 

products that act as receptors for some compounds including several steroids, thyroid 

hormones, retinoids and some fat soluble vitamins (Tsai and O'Malley, 1994, 

Mangelsdorf et al., 1995). An insight into the structure and role of PR will be helpful 

for better understanding of physiological activities of progesterone. PRs exist mainly 

as proteins, PR-A and PR-B though another isoform PR-C which lacks DNA binding 

domain (DBD) and confined primarily to cytosolic compartment in cells has been 

identified (Spitz, 2008). PR-B differs from PR-A only by an additional sequence of 

amino acid in the N-terminus, and this difference has been identified as reason why 

PR-B in general is a stronger activator than PR-A (Conneely et al., 2003, Spitz, 2008). 

Progesterone’s interaction with PR triggers a significant conformational changes in 

these proteins which in turn initiate a cascade of activities leading to transcription 

initiation complex in specific target genes and thereby eliciting response in a variety 

of female reproductive activities as well as non-reproductive interventions like 

neuroendocrine actions (Conneely et al., 2003). Or understanding of progesterone 

induced reproductive functions has improved considerably in recent times thanks to 

extensive research into tissue specific roles PR-A and PR-B in mediating activities in 

the female reproductive system. For instance PR is now definitely known to be 

essential mediators of ovulation after experiments analysing ovarian phenotypes of 

progesterone receptor knockout (PRKO) mouse established that PR is specifically 

required for luteinising hormone (LH) dependent rapture that brings about ovulation 

(Conneely et al., 2003, Lydon et al., 1995). Similar studies have also confirmed the 
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mediating role of PRs in other activities such as uterine development, preparation for 

and support of pregnancy and mammary gland development (Conneely et al., 2002)    

 

2.8.5 Delivery of progesterone 

2.8.5.1 Oral administration 

Until micronized progesterone formulation begun, oral administration of progesterone 

was seriously limited by low bioavailability, thus making synthetic progestin with much 

higher oral bioavailability widely used for conditions requiring the hormone 

(Remington and Allen, 2013). Oral formulations utilising micronized progesterone, 

though with still low bioavailability have been found to be useful for some conditions 

when given 100-400mg daily. Extensive intestinal and hepatic metabolism of 

progesterone have account for the poorly sustained serum levels and low 

bioavailability following oral administration of this hormone drug (Levy et al., 1999) 

Since the oral route remains the easiest, most convenient and preferred method of 

drug administration, more efforts are being channelled into developing dosage forms 

that can deliver this hormone orally without compromising its bioavailability.  

 

 

Figure 2-16: Progesterone presented as a) Oval and b) round shaped gelatine capsules containing an oil 
suspension of the drug for oral administration (photo credit: Pill Identifier, drug.com) 

 

 

Progesterone is now commonly administered orally as a soft gel capsule containing 

an oil suspension of the micronized active drug (Figure 2-16). Several patents 
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claiming procedures for formulating micronized suspension in oils for superior 

performance and bioavailability have been filed (Maxson et al., 1992, Liu et al., 2015). 

A particularly interesting claim involved wet-milling the micronized progesterone with 

a mixture of oils and subsequently using the wet-milled composition for producing the 

final dosage form (Abidi et al., 2012). These and many other claims reflect efforts put 

into improving the oral delivery of progesterone. Two of the most widely circulated 

oral progesterone-in-oil formulation which are very popular for hormone replacement 

therapy (HRT) and menstrual disorders are Prometrium® and Utrogestan® (British 

Medical and Royal Pharmaceutical Society of Great, 2015). These soft gel capsules 

are remarkable improvement over conventional oral formulations such as 

compressed tablets. But their serum concentrations and bioavailability profiles 

following their administration are still far less desirable compared to other routes, thus 

limiting their usefulness in managing other conditions requiring sustained levels of the 

hormone (Nahoul et al., 1993) 

Still within the scope of oral administration of drugs, newer strategies such as 

formulations that allow complete disintegration and absorption of active drug within 

the buccal cavity could be explored for systemic delivery of progesterone. The earliest 

record of a solid dosage form intended for complete dissolution and absorption in the 

oral cavity is seen in patent documents filed by Tanaku et al in 1975 (Tanaka et al., 

1977). This formulation was however designed to release its active ingredient over 

prolonged periods and therefore depending on the palatability or otherwise of 

ingredients therein, or even the feeling of an unusual object at the site of 

administration over a long period, it probably was not very convenient mode of drug 

administration albeit the intent of improving drug delivery. Several attempts at 

improving upon this pioneering work in orally dissolving solid formulations resulted in 

a number of technologies for producing fast-dissolving oral tablets by the early 1990s 

(Kearney et al., 2002). Most popular among these technologies, Zydis® which utilise 

a freeze-drying process to create an extremely porous structure that allows ingress 
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of saliva to facilitate rapid disintegration of the tablet, usually in a few seconds (Katou 

et al., 1993).  

Significant limitations associated with conventional orally administered dosage forms 

such as swallowing difficulties among a segment of the population including those 

with dysphagia, elderly or children, onset of drug action and bioavailability has 

inspired technologies and innovations that still allow for oral administration of these 

dosage forms while mitigating the problems limiting their use (Hirani et al., 2009). 

These innovations can be extended to making oral administration of progesterone 

more effective and worthwhile as current orally disintegrated tablets (ODTs) 

technologies are capable of formulating steroids that can escape the dreaded first 

pass effect for desirable bioavailability profiles (Slavkova and Breitkreutz, 2015).  

 

 
Table 2-3: An overview of existing dosage forms of Progesterone and their routes of administration 

 

Route of 

administration 

Dosage form Indication  Unit 

presentation 

Oral Capsule Preventing endometrial 

hyperplasia in hormone 

therapy for postmenopausal 

women 

 

Amenorrhoea 

200 mg 

 

 

400 mg 

Parenteral  Solution for 

injection 

Dysfunctional uterine 

bleeding 

 

Amenorrhoea 

50 mg/ml 

Vaginal Gel 

 

 

 

Suppositories 

Amenorrhoea 

 

Infertility procedures 

 

Maintaining pregnancy 

Preventing preterm labour 

4% 

 

8% 

 

25 - 200 mg 

 

 

Progesterone absorbed through oral mucosa directly into systemic circulation may be 

effective for obtaining appreciable bioavailability and thereby making it useful for 

managing a variety of medical conditions requiring progesterone. Indeed, some 
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formulations of progesterone, capable of rapid disintegration sublingually have been 

carried out and tested, albeit on a very limited scale, some as far back as 2001 (Ruiz 

and Daniels, 2013, Vaugelade et al., 2001). Progress with developing progesterone 

dosage forms in this direction has been palpably slow, and as indicated in the current 

edition of Remington: The Science and Practice of Pharmacy, there is still not ‘good 

clinical data’ on this dosage form (Remington and Allen, 2013). There are immense 

opportunities presented by ODT technology for effective oral delivery of progesterone 

and moving more rapidly in this direction will ensure overall improvement in 

pharmacotherapy dependent on exogenous progesterone.     

 

2.8.5.1 Parenteral delivery 

Progesterone, when administered by the parenteral route is usually given 

intramuscularly. High plasma concentration of the drug is seen within 2 hours of 

administration through this route with peak serum levels attained after 8 hours (Nillius 

and Johansson, 1971).  

 

Figure 2-17: Progesterone-in-oil injection (a). The formulation must be administered intramuscularly (b) which 
makes it more invasive and problematic over long period of use (photo credit: Westward pharmaceuticals, NJ, 
USA and Prentice Hall Health Drug Guides).   

 

 

Serum levels equivalent to those seen during luteal phase are reported to be obtained 

following intramuscular administration of 25mg progesterone (Johansson, 1972). In 
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many respects, the parenteral route of administering progesterone, compared to the 

oral route seem to offer better prospects for attaining desirable serum levels in a 

timely manner. In a study comparing the performance of various formulations of 

progesterone, it was found that 200mg of micronized progesterone given orally 

attained only about 10% of the bioavailability of 50mg progesterone given parenterally 

(Simon et al., 1993). Furthermore, the drug administered as injection reached serum 

peak levels in about 2.5 hours compared to the oral formulation which required nearly 

9 hours to reach peak concentrations. 

Notwithstanding the benefits of using parenteral progesterone, including rapid onset 

of action and desirable serum levels attained in shorter time, this method of 

administration has not been widely accepted as the first line approach due to a 

number of issues. Patients requiring long term use of the drug, e.g. for pregnancy 

support will need daily injections to maintain appropriate serum levels over long 

periods. This can be uncomfortable, painful and most likely affect compliance with 

this regimen. These injections have actually been confirmed as causing inflammation 

a characterised by redness and sometimes abscess at the site of administration 

(Tavaniotou et al., 2000). 

Long-acting (LA) progesterone formulations could be helpful in mitigating the 

associated discomfort as less frequent dosing and hence fewer injections would be 

required to maintain desirable serum levels. Solid lipid structures within nanoscale 

range such as solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and 

lipid drug conjugate (LDC) are increasingly being used to improve parenteral 

application of drugs(Mehnert and Mäder, 2001, Wissing et al., 2004, Yoon et al., 

2013, Dolatabadi et al., 2015). Although these formulations are usually utilised as 

carrier systems to confer stealth and targeting functions for optimised drug action 

especially in cancer pharmacotherapy, varying their material for composition and 

modification of processing conditions could make them useful as long acting 

progesterone systems for parenteral use.  
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LA parenteral formulations are well accepted and used extensively in managing 

conditions such as psychotic disorders, for contraception/hormone therapy and 

currently being considered for the application of antiretroviral in the prevention and 

management of HIV infections (Baert et al., 2009). Current technologies for 

formulating nanosuspensions and solid nanoparticles and the availability of a wide 

range of biocompatible materials can be utilised for the development of long-acting 

progesterone for less frequent parenteral application. In addition, technologies 

available today which facilitate the formulation of long-acting parenterals in different 

forms such as injectable monoliths and in situ-forming depots (Owen and Rannard, 

2016) further broaden the prospects of developing suitable progesterone injectables 

that offer desirable treatment outcomes. These new technologies for developing LA 

parenterals, when fully explored could offer options that can make the full clinical 

benefits of progesterone be realised when administered as injections. 

 

2.8.5.2 Vaginal progesterone 

Progesterone administered vaginally appear to be the most effective and practical 

method as many of the issues relating to the oral or parenteral route are usually non-

existent. Nonetheless, formulations containing higher amounts of progesterone are 

typically required for optimal serum levels. For instance in supporting pregnancies in 

women with history of recurrent miscarriage and confirmed progesterone deficiency, 

while 100mg daily dose of progesterone injection given intramuscularly may be 

adequate, 200-400 mg progesterone in vaginal formulations would be required for the 

same clinical effect (Brayfield, 2014).This relatively inefficient delivery via vaginal 

route has performance and toxicity implications, highlighting the need for improved 

formulations via this route. 
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Figure 2-18: Cyclogest, a brand of progesterone administered vaginally. Release from this formulation was 
compared to progesterone-loaded fibres produced in this study (photo credit: LD Collins & Co Ltd, UK). 

 

 

Formulations commonly employed for vaginal application of progesterone are either 

in the form of semisolids such as gels and creams or as solids, commonly pessaries. 

Gel preparations are typically presented in strengths around 8% and often employed 

in managing infertility due to inadequate luteal phase (Committee, 2015). 

Progesterone pessaries on the other hand come in strengths of 200 or 400 mg and 

usually better suited for daily administration in support of pregnancy as well as 

managing premenstrual syndrome and post-natal depression.  

As with most conventional formulations delivering drugs via the vaginal route, 

progesterone gels and pessaries presently in use present many challenges (Hussain 

and Ahsan, 2005). First, low retention time for these formulations within the vagina 

imply less opportunity for the absorption of adequate amounts of the active drug for 

optimal therapeutic outcomes. Then there is the issue of leakage which often results 

in various extents of messiness around site of application and ultimately an 

unpleasant patient experience. One formulation strategy currently being considered 

as capable of mitigating some of the issues currently seen in administration of 

conventional vaginal formulations is the design of mucoadhesive dosage forms 

(Hussain and Ahsan, 2005). In this approach, interactions between components of 

the vaginal epithelium, mainly glycoproteins (mucin) and those of the dosage forms 
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are expected to bring about suitable level of adhesion capable of holding the delivery 

system in place long enough for optimal release and uptake of active drug. 

Mucoadhesive systems are usually designed from polymers such as polyacrylic acids 

and cellulose derivatives which typically have appreciably high adhesive capabilities. 

Some mucoadhesive preparations for vaginal application currently in trials such as 

ACIDFORM® (lactic acid, citric acid and potassium bitartrate formulated with 

preservatives, gelling agents and humectants (glycerine))  have demonstrated better 

intra-vaginal retention and potential for drug release up to 12 hours , two 

characteristics that can be utilised for improved delivery of drug via the vaginal route 

(Andrews et al., 2009). Other attempts at utilising nanofibre properties for improved 

drug delivery via the vagina include use of electrospun fluconazole-loaded nanofibres 

which showed prolonged and superior anti-microbial activity (Sharma et al., 2016). 

Furthermore, possibility of designing multiple delivery systems from nanofibres and 

upscaling their manufacture to meet realistic demand as alternative materials for 

making vaginal dosage forms have been reported (Hou et al., 2013, Krogstad and 

Woodrow, 2014). All of these affirm the promising prospects of drug loaded 

nanofibres as candidates for superior delivery of drugs via the vaginal route. 

An investigation into making progesterone-loaded nanofibres which combines 

enhanced mucoadhesive capabilities with other known nanofibre material properties 

is one of the main objectives of this study. Materials generated are expected to be 

formulated into appropriate dosage forms administered vaginally for supporting 

pregnancies in women considered at risk of going into preterm labour. This could 

potentially replace the invasive regimen of intramuscular injection applied daily over 

several weeks (Fonseca et al., 2007, Simon et al., 1993), a significant contribution 

towards antenatal healthcare among women in need of such therapy  
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2.9 Mucoadhesion 
 

2.9.1 Overview 

Mucoadhesion is defined as an interactive state in which two material surfaces, at 

least one being biological in nature and typically a mucosa membrane are held 

together by interfacial forces for a prolonged period of time (Smart, 2005).  

 

Table 2-4: Some mucoadhesive polymers used to improve performance of various pharmaceutical preparations 
(Wang et al., 2000, Dehghan and Kha, 2009, Akiyama et al., 1998) 

polymer Drug incorporated  Feature 

   

Polyacrylic acid with 
PEG 

Botulinum toxin  Mucoadhesion from polymers 
prolong gastric retention of this 
formulation when administered 
orally 

   

Sodium alginate Captopril This polymer confers substantial 
mucoadhesion capabilities to 
captopril microcapsules for 
prolonged release in stomach  

   

Carboxymethyl 
cellulose 

Famotidine Increasing amounts of 
carboxymethyl cellulose in this 
formulation improved 
mucoadhesion of famotidine 
microspheres 

   

Chitosan  Amoxicillin  Chitosan improves in situ gelation 
nanoparticle formulation of 
amoxicillin 

   

Positively charged 
gelatine 

Amoxicillin Improved mucoadhesive 
properties of modified gelatine 
microspheres of amoxicillin 

   

polyglycerol esters of 
fatty acids 

Furosemide   Improved mucoadhesive 
properties of microspheres for 
better bioavailability 

   

Polyethylene oxide Famotidine Confers mucoadhesive properties 
to nanosuspensions of famotidine  

 

 

Utilising mucoadhesion for more effective drug delivery has and continues to attract 

more attention within the pharmaceutical sciences as substantial evidence exists to 

support claims of improved dosage form residence time, therapeutic efficacy, 
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improved drug targeting in cancer therapy and delivery of biologicals such us peptides 

and antibodies through a variety of routes of administration such as ocular, nasal, 

buccal and vaginal (Andrews et al., 2009, Mansuri et al., 2016). 

 

2.9.2 Two-step principle of mucoadhesion 

The exact mechanism underlying mucoadhesion remains under discussion (Carvalho 

et al., 2010). Notwithstanding this uncertainty, classical observational theories 

deduced from several investigations into polymer-mucin interactions explain 

mucoadhesion in two main steps, regardless of underlying theory. These are the 

contact stage and the consolidation stage (Huang et al., 2000, Hägerström and 

Edsman, 2003). The first step involves the spreading and swelling of the 

mucoadhesive material following moisture absorption to facilitate extensive contact 

with the mucosal membrane. At the consolidation stage, the mucoadhesive materials 

interact with the membrane; one suggestion being that moisture plasticizes the 

systems allowing molecules from these materials to break free and form linkages with 

mucins in the mucosal layer by weak Van der Walls and hydrogen bonds (Smart, 

2005). Both the contact and the consolidation stage working together to bring about 

mucoadhesion.  

 

2.9.3 Theories of mucoadhesion 

In addition to the two-step principle of how two surfaces are held together during 

mucoadhesion, several theories have been used to explain this complex 

phenomenon. These include the electrostatic explanation where opposing electrical 

charges from interacting surfaces sustains mucoadhesion. Others are the adsorption 

theory which suggests that a mucoadhesive device is held to the mucosa surface by 

secondary chemical interactions such as hydrogen bonding and electrostatic 

attraction while the wetting theory describes affinity between surfaces facilitated by 
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surface energetics, predominantly in liquid bioadhesive systems (Kaelble and 

Moacanin, 1977, Peppas and Buri, 1985). On the other hand, the diffusion theory 

which is used quite extensively explains how mucoadhesion is brought about by 

interpenetration of polymer and mucin chains into each other. The rate and extent of 

penetration, dependent on such factors as diffusion coefficient and nature of 

mucoadhesive chains, their mobility and contact time, determines the strength of 

mucoadhesion (Leung and Robinson, 1990).The fracture theory, presently used 

widely in assessment of mucoadhesion, explains mucoadhesion in terms of the 

amount of force required to completely detach interacting surfaces (Chickering and 

Mathiowitz, 1995, Mathiowitz et al., 1999).  Last of all, there is the mechanical theory 

which describes mucoadhesion in terms of surface roughness and the filling up of 

irregular surface spaces, interfacial surface behaviour and surface energy dissipation 

(Peppas and Sahlin, 1996). 

 

2.9.4 Factors affecting mucoadhesion 

Mucoadhesion is a highly dynamic process typically influenced by several factors 

(Ahuja et al., 1997, Peppas et al., 2000). Some of the most important factors affecting 

mucoadhesion such as molecular structure (chain arrangement) and weight, spatial 

conformation and concentration are derived from the non-biological system involved 

in adhesion, typically materials easily wettable and swellable e.g. most hydrophilic 

polymers (Ahuja et al., 1997). Secondly, there are factors contributed by the biological 

system, often a mucosal surface, such as mucin turnover which influence the process 

usually by limiting contact or residence times or by amount of functional groups 

available for interlocking (Swarbrick and Boylan, 2000). Furthermore, when occurring 

in vivo, conditions such as disease states where microbial activities or inflammatory 

interventions affect the physiology of mucosal tissues can greatly affect 

mucoadhesion (Swarbrick and Boylan, 2000). Lastly, environmental factors such as 

pH and temperature and concentration of active drug in system where mucoadhesion 
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is occurring may affect the process. Some of these factors relevant to this study are 

discussed further (Blanco-Fuente et al., 1996). 

 

2.9.4.1 Hydrophilicity 

The ease with which mucoadhesive polymers may be wetted and swell is known to 

influence mucoadhesion significantly. In aqueous condition, many of the functional 

groups such as hydroxyl and carboxyl are freed up to facilitate adhesion by 

interactions such as hydrogen bonding (Carvalho et al., 2010). In addition, swollen 

polymers have maximum distance between their chains making them more flexible 

and allowing for more and efficient interpenetration which eventually influence 

mucoadhesion. (Rahamatullah Shaikh et al., 2011).  

 

2.9.4.2 Molecular weight of polymer 

Interpenetration of polymer bringing about mucoadhesion is known to be favoured at 

lower molecular weights (less steric hindrance to interpenetration) while higher 

molecular weights (enough to reach critical length required for entanglement) results 

in stronger entanglement, both conditions greatly influencing mucoadhesion. 

Therefore, a balance between interpenetration and entanglement will be required for 

optimal adhesion. Furthermore, it has been established that bioadhesion increases 

with molecular weight up to 100,000, beyond which no further gain dependent of 

weight alone is realised (Gurny et al., 1984). 

 

2.9.4.3 Spatial conformation 

In addition to molecular weight and chain length of polymers, the spatial 

arrangements of molecules are known to influence bioadhesion. For instance PEO 

with molecular weight of 200,000 is known to have bioadhesion similar to dextrans 

with weights up to 19,500,00 under similar conditions (Jiménez-castellanos et al., 

1993). The helical structure of dextrans shielding many of the functional groups like 
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hydroxyl primarily responsible for adhesion is attributed to this unusual observation, 

thus confirming the influence of spatial conformation in mucoadhesion. 

 

2.9.4.4 Drug/Excipients concentration 

Drug or excipient concentrations can affect mucoadhesion in a number of ways. It 

has been established that drug complexation with polymers may either limit amount 

of water, increase elasticity between interacting systems and resulting in stronger 

adhesion or in the presence of large amounts of water, precipitation of drug-polymer 

complexes leading to decreased adhesion (Blanco-Fuente et al., 1996). In addition, 

different charge distribution over drugs and polymers e.g. a cationic drug and anionic 

polymer may bring about electrostatic interactions leading to internal cohesion, thus 

influencing bioadhesion (Donnelly et al., 2007). 

 

2.9.5 Quantifying mucoadhesion 

In the last three decades, mucoadhesion has continued to gain attention as a viable 

approach for improving drug delivery. However, a comprehensive assessment of this 

phenomenon still appears difficult. Factors relevant to an approach for quantifying 

mucoadhesion has been the subject of several investigations (Mortazavi and Smart, 

1995, Leung and Robinson, 1990). Several methods, including measuring forces 

required to detach two surfaces (Carvalho et al., 2010), tracking the extent of polymer 

reaction with mucin, for instance by measuring fluorescence intensities, zeta potential 

or levels of turbidity (Cook and Khutoryanskiy, 2015, Rençber et al., 2016) and more 

recently, by using atomic force microscopy (AFM) to study footprints such us dried 

out surfaces prior to mucoadhesion (Joergensen et al., 2011, Davidovich-Pinhas and 

Bianco-Peled, 2010, Brako et al., 2015)have been attempted for quantifying 

mucoadhesion. Tremendous efforts and resources have been dedicated to accurately 

quantifying mucoadhesion but findings from these investigations often point to 
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conflicting outcomes (Joergensen et al., 2011). A key reason assigned to the 

inconsistent outcomes from studying mucoadhesion is the lack of standardised 

protocol for assessment.  

 

2.9.5.1 Combining mucoadhesive theories for comprehensive quantification 

A novel method of assessing mucoadhesion was developed as part of the study 

reported in this thesis. An AFM assessment of the roughness at the interface between 

nanofibre and mucosa was conducted and compared to see how well they correlated 

with forces required to detach them. The extent of filling up of irregular spaces was 

also analysed. According to the mechanical theory, adequate filling up of cavities on 

mucosa surface results in stronger mucoadhesion. Deducing from the diffusion and 

mechanical theories of mucoadhesion described, it was hypothesised that interfacial 

roughness may correlates to degree of interpenetration between polymer functional 

groups and mucin, hence a smoother interface may imply closer interaction, sufficient 

filling up of surface cavities and therefore stronger mucoadhesion. Testing this 

hypothesis is the basis for studying mucoadhesion by quantifying the roughness at 

intersection of the two layers. The physical attributes of nanofibres that make them 

attractive material for mucoadhesive drug delivery are the surface properties i.e. area 

and topology. The experimental design in this work combines the diffusion and 

mechanical theories which typically utilise surface topology as a prime determinant of 

mucoadhesion and is hence more likely to give a more effective assessment of the 

interactions taking place. Fracture and interfacial properties of two surfaces in 

mucoadhesive interaction were studied using texture analyser and AFM respectively. 

This approach of mucoadhesion quantification was used to investigate the effects of 

varying amounts of carboxyl methylcellulose included in polymer blends on adhesive 

the adhesion prospects of nanofibres generated by pressurised gyration.      
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2.9.6 Nanotechnology and mucoadhesion for drug delivery 

Nanotechnology enables encapsulation of active drug into nanofibres. Selecting 

appropriate material and applying further modification, suitable mucoadhesive 

properties may be conferred onto these drug-loaded nanostructures. Nanofibres are 

emerging strongly as material of choice when mucoadhesion is desirable. Due to their 

large surface area, unique surface topology, porosity and minimal moisture content, 

nanofibres are known to significantly improve adhesiveness of systems utilising them 

(Malik et al., 2015, Singh et al., 2015). Furthermore, their ability to enhance drug 

solubility and high adsorption efficiency potentially make them suitable carriers from 

trans-mucosal drug delivery (Malik et al., 2015). These sum up the rationale for 

producing drug-loaded nanofibres by PG which has good prospects of upscaling for 

yields to meet realistic demands. This approach to producing drug-loaded 

mucoadhesive nanofibres offer many parameters that may be adjusted to optimise 

outcome of production. These include flexibility with choice of material, solution 

properties e.g. viscosity, production conditions such as rotation speed and pressure 

and environmental factors e.g. room temperature and humidity. 

Producing substantial quantities of nanofibres with good mucoadhesive prospects will 

be a positive addition to efforts in improving drug delivery across mucosa membranes. 

It is expected that outcomes from the work reported subsequently in this thesis will 

be a significant contribution to improving drug delivery across mucosal membranes.  
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Chapter 3  

Experimental details 

 

3.1 Introduction 

In this chapter, materials and equipment used throughout the project are described in 

detail. With respect to materials used, a thorough description, rational for selection as 

well as details of suppliers are given. For equipment, details of the manufacturers or 

suppliers in addition to an overview of their operation and instrumental settings are 

set out in relevant sections discussing various procedures. The parameters analysed 

by these equipment and their relevance to the objectives of this project are highlighted 

in this section.  

 

3.2 Materials  

In generating various kinds of nanofibre materials, which was the predominant 

procedure throughout the project, polymers – specifically polyethylene oxide 

(facilitating fibre generation), and carboxymethyl cellulose, sodium alginate and 

polyacrylic acid; polymers with enhanced mucoadhesive properties in acidic 

conditions (Khutoryankiy, 2011). Further details on these polymers are given later on 

in this section. Various mixtures of alcohols and water in different proportions were 

also utilised in efforts to determine the best possible solvent system capable of 

facilitating the production of high quality drug loaded fibres. The active drug used in 

all experiments is Progesterone. Several other compounds were also used in buffer 

and physiological fluid preparations which were required for conducting some of the 

experiments. 
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3.2.1 Polyethylene oxide 

White to off-white in colour and with slightly ammoniacal odour, polyethylene oxide is 

a free-flowing powder with crystalline melting point between 62-67 ⁰C (Dhawan et al., 

2005). Chemically, it is describes as a non-ionic homopolymer of ethylene oxide units 

with formula (CH2CH2O) n , where n is the average number of oxythylene groups 

present (Row et al., 2009). Its desirable characteristics including extremely low 

toxicity, as confirmed in animal studies, rapid and complete elimination after ingestion 

and appreciable swelling capacity have contributed to its extensive use in the food 

and pharmaceutical industry. 

Polyethyleneoxide, due to its molecular structure and response when subjected to 

deformation (Peterlin, 1971) is an extremely useful material for nanofibre production. 

In addition, it has been identified as a valuable spinning agent capable of improving 

the prospects of other materials such as polysaccharides to be spun into nanofibres 

(Kriegel et al., 2009, Desai et al., 2008, Duan et al., 2004).  

 

 

Figure 3-1: Molecular structure of Polyethylene oxide 

 

 

Lack of adequate chain entanglement has been identified among the main reasons 

for the difficulties associated with producing nanofibres from alginates and cellulose 

based materials by themselves (Lee et al., 2009). Hence PEO, known for its excellent 

properties as a carrier for spinning materials into nanofibres was used to aid the 

successful spinning of our mucoadhesive polymers into fibres. It is worth noting that 
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PEO itself also has desirable mucoadhesive properties and hence the additive 

benefits from individual polymers is utilised when blends are used for production of 

the nanofibres. 

 

3.2.2 Carboxymethyl cellulose sodium 

Carboxymethyl cellulose sodium, a sodium salt of polycarboxymethyl ether of 

cellulose is white to off-white granular powder without taste and odour. It is a soluble 

derivative of cellulose in which carboxymethyl groups are bound to some hydroxyl 

groups on the cellulose backbone structure made up of glucopyranose monomer 

units. Largely considered as non-irritant and nontoxic material, its viscosity increasing 

property in addition to its desirable safety profile make it useful for many 

pharmaceutical applications, including suspension and stabilising agents as well as 

tablet binder and disintegrant (Row et al., 2009).  

 

 

 

Figure 3-2: Molecular structure of Carboxymethyl cellulose sodium  

 

Since becoming commercially available in the early half of the previous century, this 

polymer has been found so useful in several industries including those of food, drugs 

and cosmetics, paper, ceramics, paints and adhesives (Hollabaugh et al., 1945). With 

regards to nanofibre production and their applications, cellulose-based materials for 
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membranes for antimicrobial activity, enzyme immobilisation and drug delivery have 

been used and reported (Taepaiboon et al., 2007, Lee et al., 2009). Electrospinning 

has been the method employed in all of the nanofibre production cited. Processing 

nanofibres from carboxymethyl cellulose by pressurised gyration would be among the 

pioneering works utilising cellulose derivative for drug delivery at nanoscale level.  

 

3.2.3 Sodium alginate 

Sodium alginate is presented as a white to pale yellowish-brown powder produced by 

neutralising alginic acid extracted from brown seaweed with a base, typically sodium 

bicarbonate. Alginate has been used extensively in diverse biomedical and 

pharmaceutical systems because of its favourably physical and chemical properties, 

with gel formation, low toxicity and biocompatibility being the more obvious reasons. 

The relatively mild crosslinking structure makes alginate a preferred biopolymer for 

encapsulation of delicate macromolecules including proteins, cells and nucleotides 

as the structure and function of these biologics remain intact to a significant extent 

within the alginic systems (Gombotz and Wee, 2012, Lee and Mooney, 2012).  

 

 

Figure 3-3: Molecular structure of Sodium alginate  

 

Another interesting feature of alginates that inspired its selection for this study is the 

strength of its interaction with mucosa surfaces. This feature partly explained by the 

charge distribution around the molecule makes alginates good choice of polymer for 
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drug delivery through mucosa where mucoadhesive properties. There are studies to 

confirm how alginates compares favourably to other known mucoadhesive polymers 

such as carboxymethyl cellulose, polystyrenes and chitosan (Chickering and 

Mathiowitz, 1995). It is expected that nanofibres incorporating alginates would 

contribute to a superior performance by enhanced attachment to the mucosa area for 

drug application. 

 

3.2.4 Polyacrylic acid 

Polyacrylic acid is white lightweight powder with a slight characteristic odour 

principally used in pharmaceutical semisolids as rheology modifiers. A smooth feel 

obtained from its aqueous mixtures makes them ideal for inclusion in several 

pharmaceutical and cosmetic products for topical application.  

 

 

 

Figure 3-4: Molecular formula of Polyacrylic acid  

 

 

Mucoadhesive properties of polyacrylic acid though highly dependent on pH make 

them valuable polymers for drug delivery, especially through the mucosa. It has been 

demonstrated that the carboxyl groups need to be in an acidic environment for 

significant mucoadhesive ability and sharply diminish in environments when pH 

begins to rises above 4   (Park and Robinson, 1987). As mentioned earlier, the typical 
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acidic environment of the vagina for instance could improve the strength of 

attachment and thereby enhancing the performance of a delivery system whose 

mucoadhesive properties are potentiated in acidic environment. This consideration 

explains the reason for selecting polyacrylic acid as one of the materials for making 

nanofibres intended to be used for the design of a drug delivery system for vaginal 

application. 

 

3.2.5 The active drug – Progesterone  

Progesterone has been discussed extensively in section 2.5. Briefly, it is an 

endogenous steroidal hormone with crucial roles in human reproduction and activities 

such as metabolic intermediate in the synthesis of other hormones such as 

corticosteroids (King and Brucker, 2010). Chemically, as typical of steroids, it is 

synthetic fat soluble organic compounds characterised by a molecular core of four 

fused rings (three 6-Carbon rings and one 5-Carbon ring) and made of 17 carbon 

atoms (Lednicer, 2011). Progesterone is known to exist in two crystal forms (α and β 

types which melt at 129°C and 121°C) which are easily interconverted and have 

similar physiological activities (Payne et al., 1999). Laboratory grade progesterone 

are available in different physical forms and two of these with average particle size 

100 and 10 µm were employed in this project. The rationale was to investigate the 

effect of drug particle size on the performance of delivery systems developed from 

them. This drug is considered to be effective for supporting pregnancy to term in 

women considered at risk of early labour has been firmly established through various 

studies (Dodd et al., 2008) and hence the choice as active drug for this project.  

 

3.2.6 Solvents 

Water and alcohols were used in developing solvent systems capable of forming 

consistent polymer-drug mixtures for best possible fibre outcomes. Ethanol proved to 

be the preferred alcohol to be used in solvent systems for producing high quality 
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progesterone-loaded nanofibres. Ethanol’s miscibility with water has made it an 

attractive and a general-purpose solvent in several operations, including formulations 

in the pharmaceutical industry. Other alcohols investigated for their suitability as 

component of solvent system for generating nanofibres were propanol and butanol. 

 

3.2.7 Surfactants 

Polysorbate 80 (Tween 80) was used in attempts to formulate polymer-drug solution 

to determine its suitability in making constituent mixture of materials with different 

water solubilities in place of alcohol. Polysorbate 80 is slightly yellowish oily liquid with 

faint and characteristic odour. It is an emulsifying agent particularly useful for 

solubilising oil-soluble APIs such as progesterone. 

 

Figure 3-5: Polysorbate 80 with hydrophilic and lipophilic groups aiding its function as surfactant and emulsifier. 

 

 

3.2.8 Physiological fluids and buffers 

Drug permeation and mucoadhesive assessments were conducted with the help of 

simulated vaginal fluid (SVF) and phosphate buffer. The rationale for choosing these 

was to observe the performance of materials produced under conditions closely 

resembling vaginal environments. The SVF was prepared according to an existing 

formulation (Marques et al., 2011) and contained sodium chloride, potassium 

hydroxide, calcium hydroxide and bovine serum albumin (BSA). The remaining 

ingredients were acetic acid, lactic acid, glucose, urea, glycerol and mucin.  
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3.2.9 Membranes for mucoadhesive study 

Cellulose acetate of pore size 0.2µm, used as artificial membrane in mucoadhesive 

studies was obtained from Sartorius, Gottingen, Germany. Fresh mucosa for 

mucoadhesive study was from lamb oesophageal tissue arranged and delivered from 

a local abattoir by Giggly Pigs, Romford, UK. 

 

3.3 Procedures 
 
 

3.3.1 Characterisation of solutions 

Solution characterisation mainly involved measuring viscosity and surface tension of 

liquid preparations form which fibres were spun. These are the two most important 

properties affecting nanofibre processing and outcome, as established by 

Mahalingam and Edirisinghe (2003) in their pioneering experiments on fibre 

generation by PG. 

 

3.3.1.1 Viscosity 

The viscosity for each polymer solution or blend was measured using Brookfield DV-

111 viscometer (Harlow, Essex UK) at a specific shear stress indicated where 

relevant. The Brookfield DV-111 is a rotational viscometer that measures the absolute 

viscosity of fluids using the torque of a rotating spindle submerged in the fluid being 

analysed to calculate the resistance to flow. In simple terms, the viscosity measured 

by this equipment is a function of the resistance encountered by the spindle as it 

rotates through the liquid being analysed at a particular shear stress. In measuring 

viscosity, 5ml of solution was placed in a tube and spindle (Number 18) lowered into 

the tube such that it was completely submerged in the solution being analysed. 
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Figure 3-6: Schematic illustration of rotational viscometer 

 

At a shear stress of 3.5 Pa, suitable point for consistent readings for the viscosity 

range of all liquids analysed, the dynamic viscosity of each solution was taken and 

noted. Four additional measurements were taken for each batch of solution. The 

mean and standard deviation from the five measurements were used in subsequent 

analyses. 

 

3.3.1.2 Surface tension 

Solution surface tension measurements were done using Kruss K9 tensiometer 

(Hamburg, Germany). The Wilhelmy plate method, in which a thin platinum plate 

(Kruss PL21, Hamburg, Germany) is positioned perpendicular through the liquid 

being analysed and the force required to break contact between the plate tip and 

liquid surface measured was used in assessing the surface tension of solutions. The 

surface tension is given as a function of the force (F), the wetted perimeter of the 

platinum tip (𝑙) and contact angle 𝜃 (Butt et al., 2006). The equation is given below:  

𝛾 =
𝐹

𝑙 cos(𝜃)
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When complete plate wetting by the liquid being analysed has occurred, which is 

usually the case in this method, the contact angle, 𝜃 is 0. Cos 0 is 1 therefore 

effectively, surface tension measured by this method is given as a ratio of F and 𝑙, 

calculated as 2w + 2d (Figure 3-7b) where w and d are width and thickness of the 

platinum plate respectively.  

 In assessing these, the platinum plate connected to a balance was dipped into 20ml 

of solution in a 25ml beaker on a fixed stage. The platinum plate was gradually 

removed from the liquid with the automated balance recording the tension at the air-

liquid interface. In all, five measurements were taken for each solution sample and 

the mean and standard deviations used in subsequent analyses 

 

 

Figure 3-7: Schematic illustration of tensiometer and 3D of the plate's interaction with liquid sample (Butt et al., 

2006) 

 

3.3.1.3 Particle size analysis 

In search of optimal conditions for producing good quality nanofibres with suitable 

level of drug loading, two batches of the active drug presented in different particle 

size classes were analysed to determine how their sizes affected outcome of fibre 

produced.    
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Figure 3-8: Mastersizer 3000 used in progesterone particle size analyses 

 

Their particle size distributions were analysed using Mastersizer 3000 laser diffraction 

analyser (Malvern Instruments, Worcester, UK). 1g of progesterone from either batch 

was uniformly dispersed in 20ml of deionised water and transferred into the sample 

dispersion unit of the analyser. This amount of progesterone was enough for the 

needed obscuration for accurate measurement of its particle sizes. The automated 

process of applying the laser and measuring the intensity of light scattered was 

started and subsequently, the particle size classes in the sample, presented as a 

histogram were recorded. Six measurements were taken and used to determine the 

differences in particle size between the two samples. 

 

3.3.2 Solutions for generating nanofibre 

Solutions used throughout the project for generating nanofibres were classified into 4 

groups, according to their components. These are solutions containing single polymer 

without active drug, single polymer with active drug, polymer blends without active 

drug and polymer blends with active drug. All solution constituents were measured 

by weight and specified in various sections discussing outcomes following their 

conversion into fibres. Solutions were typically made by weighing the dry constituents 

together before adding appropriate amount of solvent, except for those containing 
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more than one polymer where each polymer was made into a solution before mixing 

desirable amounts together to obtain various the needed blend.  

For progesterone-loaded fibres, desirable proportions of polymers and drug 

(progesterone) occurring as mixtures were obtained by weighing out the powders and 

solvents separately and mixing together. Continuous magnetic stirring followed by 

sonication for 10 minutes using Branson Sonifier 250 (Danbury, Connecticut USA) 

ensured that liquid preparations were appreciably uniform. Mixtures prepared were 

stored in airtight bottles until required for fibre generation. 

 

3.3.3 Fibre generation 

Fibres were generated by pressurised gyration (PG) from each of the mixtures 

described in section 3.3.2. PG is a manufacturing approach that combines centrifugal 

force and applied pressure via a gaseous medium to generate fibres, usually in the 

nanoscale diameter range, from solutions (Mahalingam and Edirisinghe, 2013) and 

from molten liquids (Xu et al., 2016).  

 

 

Figure 3-9: Pressurized gyration apparatus 
 

The setup used, shown in Figure 3-9, comprises of a cylindrical aluminium vessel of 

approximately 60mm in cross-sectional diameter and 35mm in height. The pot 

incorporates orifices of approximately 0.5mm diameter dispersed horizontally around 
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the circumference, spaced 10mm apart. The vessel is attached to a DC motor capable 

of rotations of up to 36,000 rpm. Finally, there is a lid connected to a source of gas 

source to enable fibre spinning in a pressurised environment. To produce nanofibres, 

aliquots of the liquid preparation are placed in the vessel and covered. Rotation 

begins at the same time as pressure, typically from a nitrogen source, is being 

applied; as the fluid is forced through the orifices, the solvent is evaporated off the jet 

during flight leaving a formed fibrous material on the surrounding collecting shields. 

Each manufacturing cycle takes between 2-5 minutes depending on the experimental 

conditions. Fibres ejected through the nozzles are collected and stored until required 

for further analyses. 

For each cycle of fibre production in this project, 3 ml of solution was placed in the 

aluminium vessel and spun at a rotation speed of 24,000 rpm and working pressure 

of 0.15 MPa room temperature conditions (approximately 25⁰C/45% relative 

humidity). These conditions were selected after trial runs at 10000, 24000 and 36000 

rpm rotation speeds and pressures 0.1, 0.15 and 0.2 MPa.  

 

3.3.4 Characterisation of fibres 

3.3.4.1 SEM imaging and analysis 

Samples from each batch of fibres were analysed by scanning electron microscope 

(SEM), JEOL JSM 630 IF (Tokyo, Japan) for the morphology, and in particular the 

size distribution of fibres. Fibres were mounted on SEM stubs with the aid of two-

sided adhesive carbon discs obtained from Agar Scientific, Stansted, UK. Each 

mounted sample of fibres was gold coated for 90 seconds using Quorum Q150R 

pumped sputter coaters (Quorum Technologies, Lewes, UK). Coated samples were 

analysed at operating voltage of 5kV. Record of images was produced with the aid of 

SemAfore software, also from the SEM manufacturer. 
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3.3.4.2 FTIR analyses of fibres 

Fibre samples were analysed for different chemical properties to help verify the 

presence and extent of miscibility during blend formation. In addition, the content of 

nanofibres produced from solutions incorporating progesterone were analysed to 

confirm that indeed fibres generated contained active drug.   All of these 

investigations were carried out using the Attenuated Total Reflection Fourier 

Transform Infrared spectroscopy (ATR–FTIR) Vertex 90 spectrometer (Bruker, 

Coventry, UK), and spectrographs were interpreted using OPUS Viewer version 6.5, 

a software also from Bruker, Coventry, UK. A baseline (background) scan at a 

resolution of 4 cm-1 before each sample was mounted on the platform, adjusted and 

secured to be in contact with the scanning probe and finally scanned 32 times using 

same parameters used for background scans. Secondly, variable temperature FTIR 

scans were taken using Specac Golden Gate (Orpington, UK) heating controller 

attached to the FTIR spectrometer to track chemical changes in nanofibres under 

elevated temperature conditions. Scans were taken at 2°C intervals between 50 and 

80°C to study the effect of heat on the samples beyond the melting point of 

polyethylene oxide typically between 60 and 65°C for the grade used. 

 

3.3.4.3 X-ray analyses of fibres  

Structure and crystalline forms of the content of fibres were studied using D/Max-BR 

diffractometer (RigaKu, Tokyo, Japan) with Cu Kα radiation (λ = 1.5148 Å). Prior to 

measuring X-ray diffractions, materials in the form of either powders and nanofibres 

were pressed gently into a 20mm aluminium sample tray and the surface made even 

by levelling with a glass slide. This was then mounted onto the diffractometer and 

analyses conducted at 40mV and 30mA over 2θ range of 5−60° at a rate of 2°/min. 

Data obtained were converted to diffractograms and evaluated using OriginPro 7.0 

software (OriginLab Corporation, MA, USA). 
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3.3.4.4 UV analysis of drug content in fibres 

The progesterone content within the fibres generated was determined following the 

standard assay procedure of dissolution in ethanol for detection by UV at 241 nm 

(NCBI, 2004). UV analysis was chosen as PEO has no active UV chromophores and 

hence minimal interference with assay of progesterone was anticipated. 1 mg of fibres 

were dissolved in 10 ml of absolute ethanol in a volumetric flask. The flask was swirled 

gently over a period of 24 hours to ensure complete removal of progesterone from 

fibres into the ethanol. 3 ml of resultant solution was drawn and analysed 

spectrophotometrically at 241 nm using a Jenway 6305 UV/Visible 

spectrophotometer (Bibby Scientific, Staffordshire, UK).    

 

3.3.4.5 Calibration and calculations for UV analyses 

Standard solutions in concentration range 1.875 X 10-3 to 2.5 X 10-2 mg/ml of pure 

progesterone in ethanol were prepared by serial dilution.  

 

  

 

 
Figure 3-10: Calibration curve and equation used to calculate amount of progesterone in nanofibre samples 
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The absorbances of these solutions were taken at 241 nm (λmax of Progesterone) to 

obtain a calibration curve (Figure 3-10) from which progesterone content in nanofibres 

produced were quantified. 

Using the equation of the calibration curve, 𝑦 = 54𝑥 + 0.02, concentration (𝑥) from 

absorbance readings (𝑦) were obtained by the equation:  

 

(𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 − 0.02) ÷ 54 

 

Calculation example 

1mg sample of nanofibre in 10ml of ethanol; this is equivalent to 0.1mg/ml 

If this sample records an absorbance of 0.8 when measured at 241 nm, then using 

the calibration curve equation which is (𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 − 0.02) ÷ 54, progesterone 

concentration from this nanofibre sample is found to be 0.014 mg/ml 

Total nanofibre weight is 0.1 mg 

Progesterone content is 0.014 mg 

Therefore % wt. of progesterone is 
0.014

0.1
× 100 = 14% wt. 

 

3.3.4.6 Hot Stage Microscopy 

Hot-Stage Microscopy (HSM) studies were conducted on a Leica DM 2700 M 

microscope (Leica Microsystems, Wetzlar, Germany) fitted with Infinity 2 digital 

camera (Lumenera Corporation, Ottawa, Canada). The unit was used to visually 

observe the melting of fibres on a FP5/FP52, heating stage unit controlled by FP90 

central processor unit, both from Mettler-Toledo Ltd, Leicester, UK. Fibres containing 

progesterone were heated from 50 – 130 °C at a rate of 2 °C/min while plain PEO 

fibres were heated from 50 – 70 °C at the same rate. 
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3.3.5 Mucoadhesive studies 

3.3.5.1 Measuring detaching force by Texture Analyser 

In assessing mucoadhesion with texture analyser, three different methods were used. 

The first involved measuring tensile strength of gel prepared from nanofibre samples 

and SVF plus mucin mimicking the vaginal environment. A relationship between 

tensile strength of gels and mucoadhesion is well established (Hägerström and 

Edsman, 2001) and this was the basis for developing this methodology to compare 

mucoadhesive properties of samples produced. For many decades, different methods 

have been adapted for measuring tensile strength of gels (Ben‐Arie, 1955). In this 

study, texture analyser was adapted for this purpose. The second and third methods 

involved separation of adhering surfaces and measuring the forces involved. The 

forces measured, which correlates extent of mucoadhesion were interpreted as such. 

Each of these methods are described further. 

 

3.3.5.2 Assessing tensile strength of gels 

The extent of interactions between fibres and mucin under simulated conditions 

similar to a vaginal environment were studied using Texture analyser, TA-XT2 (Food 

technology Corporation, Virginia, USA) shown in Figure 3-11. The approach used 

was to measure the breaking properties of mixes of the polymer and simulated mucus 

(Tamburic and Craig, 1997).  A predetermined force of 20g was applied by an acrylic 

probe of cross sectional area of 50mm2 for a contact period of 0.1 second. Pre-test 

speed of probe was 0.5mm/s while return speed was 0.5mm/s over 4mm distance.  

The force required to break up polymer/mucin gel by separating the probe from the 

sample was measured; it was ensured that the breakage occurred within the gel 

rather than between the gel and probe.  
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Figure 3-11: Texture Analyser TA-XT2 used for measuring fracture force in mucoadhesion assessment 

 

3.3.5.3 Assessing adhesion between fibres and mucosal membrane 

Interactions between nanofibres and mucosa membrane surface under simulated 

conditions mimicking a vaginal environment were studied using a Texture analyser, 

TA-XT2 (Food Technology Corporation, Virginia, USA). Mucosa membrane from 

lamb oesophageal tissue in dimensions of 40 X 30 mm was firmly attached onto the 

stage of the texture analyser with the help of adhesive tapes. Lamb oesophageal 

mucosa is non-keratinised and closely resemble those of humans and hence selected 

for this study (Prasanna, 2011). 100mg samples of nanofibres whose mucoadhesive 

potential are being assessed were securely attached to a cylindrical probe (Chen-

Hoseney dough stickiness rig) with cross-sectional area of 0.785 cm2 using a double 

sided adhesive disc and mounted on the movable part of the analyser. The analyser 

was set to measure force required to completely detach the nanofibre from the 

mucosa membrane after bringing the two materials together for a contact time of 5 

minutes with a pre-test force of 20gF (0.2N). This routine was conducted in triplicates 
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for all samples and the means and standard deviations calculated and used in further 

analyses. 

Table 3-1: Experimental condition selected for measuring forces required to detach fibres from mucosa. 

 

Velocity 
 

 Pre-test 

 Test 

 Post-test 

 Tracking 

 
 
50 mm/s 
50 mm/s 
10 mm/s 
5 mm/s 

Force 
 

 Test force 

 Trigger force 

 
 
40 gF 
10 gF 

 Distance 
 

 Return distance 

 
 
4 mm 

Time 
 

 Contact time 

 
 
5 s 

 

 

3.3.5.4 Assessing adhesion between fibres and artificial membrane 

The same procedure was repeated using 0.2µm pore sized cellulose acetate 

membrane treated with SVF (with mucin) to confer some mucosa properties. 

Cellulose acetate with this pore dimension was selected for comparison with actual 

mucosa membrane as they were confirmed to correlate well with each other when 

utilised in some permeation studies  (Khdair et al., 2013). 

 

3.3.5.5 Atomic force microscopy (AFM) 

Mucoadhesive properties of nanofibres were studied by AFM using two different 

methods developed based on theories (Carvalho et al., 2010) confirmed relevant to 

interactions resulting in mucoadhesion. 

In the first approach, relative solubilities of nanofibre samples in the simulated mucus 

environment were determined by measuring the surface roughness of residual films 

from nanofibre and mucin mixtures using Bruker Multimode 3 atomic force 

microscope (Coventry, UK). A film area of 225µm2 was scanned at a rate of 1 Hz 
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using a TESPA-V2 probe (Bruker, Coventry, UK) with cantilever having a spring 

constant of 42N/m. Height images were obtained using the tapping mode. 

Measurements from images were obtained using ImageJ software (National Institute 

of Health, USA).   

In the second method, 100mg of nanofibre was mounted on the membrane of mucosa 

tissue sufficiently irrigated with SVF. This allowed sufficient time of interaction for 

mucoadhesion to occur, and then samples were kept in a desiccator to remove 

excess moisture. Transverse sections of the nanofibre on the mucosa were prepared 

by cutting extremely thin slices with razor blades such that they were thin and smooth 

enough for the AFM probes to be brought close to their interface to measure the level 

of roughness. An illustration of this procedure is shown in Figure 3-12. Dimension 

icon AFM (Bruker, Coventry - UK) using PointProbe® Plus Nanosensor probes in 

tapping mode was employed in measuring the roughness of the interface. Samples 

prepared in transverse sections as described above were carefully mounted such that 

the probe was nearly in contact with the interface area to obtain best the possible 

signal for quality imaging. Height images of interacting surfaces were taken and used 

in calculating level of roughness as a function of mucoadhesion. 

 

 
 

Figure 3-12: Steps taken in preparing mucosa-fibre samples for AFM: 1) Lamb oesophagus mucosa irrigated with 
simulated vaginal fluid 2) 100mg of nanofibre mounted onto irrigated mucosa surface and allowed to interact 3, 
4) Sample kept in desiccator to remove excess moisture and 5) Thin transverse sections across both layers 
removed and portion indicated by arrow was examined by AFM  
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Chapter 4  

Generating nanofibres from blends of mucoadhesive polymers  

 

4.1 Introduction 

The value of nanofibers in diverse applications, due to their unique physical attributes 

have been discussed extensively in previous chapters. Nanofibres are emerging 

strongly as material of choice for drug delivery through mucosa, as their exceptional 

surface properties could be adapted for superior adherence onto the mucosa and 

hence improving resident times significantly (Sharma et al., 2016, Zong et al., 2015). 

Notwithstanding these prospects, the availability of adequate quantities of nanofibre 

structures have been a drawback, in that there remains a considerable gap between 

demand and supply. Furthermore, in order to produce sufficiently mucoadhesive 

nanofibres for design of delivery systems with superior adhering features, polymers 

inherently mucoadhesive may be utilised.  However, a significant proportion of 

mucoadhesive polymers such as polysaccharides, due to their chain structure, cannot 

be easily spun into fibres on their own (Lee et al., 2009). In this chapter, the possibility 

of using polymer blends for the preparation of nanofibres that offer substantial 

mucoadhesive capabilities is reported.  

Fibres from four different polymers in various combinations were obtained by 

pressurised gyration at different working pressures and a rotation speed of 24,000 

rpm. Electron microscopy indicates that structurally well-defined fibres with diameters 

from less than 100 nm upwards were successfully produced. A preliminary 

investigation looking into the effect of solution properties and production conditions 

such as working pressure on outcome of fibre was conducted to determine 

quantitative relationships that exist among these properties. In addition, the chemical 

composition of fibre from each batch was elucidated to confirm if all of the starting 

polymers were present as expected.  Finally, a combination of texture analysis and 
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atomic force microscopy was used to verify the benefit of transforming polymer 

powders into nanofibre structures, as far as mucoadhesive potential is concerned. 

 

4.2 Fundamental principles of nanofibre generation 

Nanofibres in varying sizes were produced using procedures discussed in section 

3.3.3. The differences observed in fibre size and morphology are very much 

dependent on material properties such as constituents and concentration of solution 

yielding the fibres as well as the experimental conditions such as rotation speed and 

working pressure. The relationships occurring between fibre properties and material 

or production conditions are discussed in sections further on. 

The processes of converting polymer solutions or melts to nanofibres have been 

explained with theories from the Raleigh-Taylor instability and the Marangoni stress 

concepts (Mahalingam and Edirisinghe, 2013).  

The Raleigh-Taylor (RT) instability in the simplest of terms is the instability at the 

interface of two fluids of different densities which occurs due to the light fluid pushing 

into the heavy one (Davies and Taylor, 1950). The behaviour of water suspended on 

top of oil in Earth’s gravity is a classical everyday example often used to illustrate this 

instability. Lord Raleigh studied this instability using two immiscible fluids subjected 

to Earth’s gravity with the denser fluid on top of the lighter one (Stone and Williams, 

2015). Any disturbance at the interface of the two fluids makes their equilibrium 

unstable. The instability is characterised by continuous dissipation of potential energy 

as the heavier fluid moves downwards while the lighter fluid is displaced upwards 

under gravity, such that the potential energy configuration of the setup diminishes 

with time, compared to the initial state. Taylor discovered that this instability was 

dependent on the lighter fluid accelerating into the denser one (Strutt and Rayleigh, 

1883) and hence this phenomenon referred to as the Raleigh-Taylor instability.    
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In pressurised gyration, the high rotational forces on system of fluids with different 

densities (basically polymer solution and air) creates the necessary fluid acceleration 

and instability at the interface that eventually cause a breakaway in the form of jets. 

These jets are further stretched due to sustained stress from the forces, primarily 

centrifugal and gravitational acting on the system.  Evaporation of solvent during flight 

of jet from vessel through the nozzle ensures thinning and completes the fibre 

formation process. 

It is also known that fibre formation is initiated when sufficiently high centrifugal force 

overcome surface tension in certain areas within the polymer liquid (Padron et al., 

2013). This brings about surface tension gradient, which according to the Marangoni 

effect, results in mass transfer along the interface between the polymer solution and 

air and ultimately forming polymer jets. The Marangoni effect describes how a pocket 

of fluid can break free from the bulk due to difference in surface tension. This effect 

brought about due to variation in conditions such as solute or surfactant concentration 

and temperature at the interface is also exhibited as sheer stress, similar to wind 

effect at the fluid surface. The turbulence at the interface (Sharp, 1984), most likely 

due to the forces applied to the system also facilitate the fibre formation  process. The 

underlying principles described give rise to jets, ultimately resulting in fibres or 

droplets preceding bubble or bead formation depending on conditions such as 

solution properties, particularly its viscoelasticity and surface tension as well as 

amount of centrifugal force being applied (Mahalingam and Edirisinghe, 2013, Padron 

et al., 2013)  

 

4.3 Fibre generation 

The strategy adopted for producing sufficiently mucoadhesive nanofibres is to utilise 

polymers with inherent mucoadhesive properties. As mentioned earlier, these 

polymers which are usually polysaccharides lack the necessary chain arrangement 
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to allow them to be drawn into fibres on their own. So PEO, a very good spinning 

agent with some inherent mucoadhesive properties was blended in to allow fibre 

formation. 

Mucoadhesive polymers used in this study are polyacrylic acid, sodium alginate and 

carboxymethyl cellulose. These are anionic polymers proven to demonstrate their 

strongest mucoadhesion properties under acidic condition (Khutoryanskiy, 2011).  

 

Table 4-1: Polymer quantities in blends used for generating nanofibers 

 

Polymer PEO CMC 

Concentration (%) 15 4 

Proportions in blend of 

100ml 

75 25 

Absolute ratios 75

100
× 15 = 11.25 

25

100
× 4 = 1 

*Absolute quantities in 

solution with 15% polymer 

and 85% solvent 

 

13.8 

 

1.2 

 

 

Nanofibres generated in this project are intended as materials for developing delivery 

systems for vaginal application. Since the vaginal environment is usually acidic, it is 

anticipated that systems developed from these anionic polymers will exhibit 

substantial mucoadhesive properties when applied as such. Before these polymers 

were used for generating fibres, a preliminary investigation into optimal conditions 

required for production of fibres from polymer blends was carried out using mixtures 

with PEO and CMC in various ratios. Blends containing 15%wt PEO and 4%wt CMC 

in various proportions were used in this preliminary study. Specifically, polymer 

blends in PEO: CMC ratios of 90:10, 86:14 and 75:25 were utilised. In absolute terms, 

these translate to 0.49, 0.69 and 1.225% wt. of CMC (Calculations shown below 
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4.3.1 Relationships between solution properties and fibre outcome 

4.3.1.1 Effect of CMC content on polymer blends properties 

Generally, increasing amounts of CMC in the polymer blends increased both viscosity 

and surface tension of the mixtures. This is worth noting as the effect of these solution 

properties on outcome of nanofibres are well established (Mahalingam and 

Edirisinghe, 2013, Padron et al., 2013). 

 

 

 

Figure 4-1: Effect of CMC content on blends' viscosities and surface tension 
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degree of substitution (DS) occurring on the cellulosic backbone and the intrinsic 

viscosity of plant pulp from which the polymer is derived (Barba et al., 2002). 

The impact of varying viscosity and surface tension which depends on the overall 

concentration of polymer solution, and in this case, the amount of CMC was examined 

with respect to fibre outcome.  

 

4.3.1.2 Effect of concentration of fibre outcome 

Fibre morphology, particularly their sizes was observed to be dependent on solution 

properties. CMC content was the variable in solution samples whose influence on 

fibres outcomes were investigated. So, fibre characteristics observed have been 

defined in terms of amount of CMC in solutions from which fibres were generated. 

The relationship between fibre size and solution properties was also found to be 

significantly influenced by the working pressure. Therefore, looking at the influence 

of solution properties and working pressure simultaneously appears to give a better 

view of the effects of processing conditions on fibre formation. Table 4-2 summarises 

the average fibre sizes from their respective solution for each working pressure 

employed in their processing 

 

Table 4-2: Solution and pressure working conditions for fibres generated from blends of PEO and CMC 

 

% Content of CMC 
(In blend of 15% PEO and 
4% CMC) 

Average fibre diameter (nm) ±SD at pressures shown 
below 

0.1MPa 0.15MPa 0.2MPa 

 
10 

 
266 ± 49 

 
280 ± 48 

 
234 ± 47 

    

 
14 

 
189 ± 23 

 
270 ± 54 

 
192 ± 29 

    

 
25 

 
202 ± 54 

 
194 ± 34 

 
161 ± 37 
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Generally, solutions containing higher proportions of CMC and characterised by 

higher viscosity and surface tension yielded smaller sized fibres. A closer examination 

indicates that the influence of solution properties on fibre outcome is better defined at 

higher working pressures. At 0.1MPa, there seemed to be no particular trend in fibre 

sizes with respect to solution properties. However, at higher pressure i.e. 0.15 and 

0.2MPa, there was a clear trend among fibre size in relation to solution properties. 

Specifically, increasing amounts of CMC typified by higher viscosity and surface 

tension, resulted in smaller nanofibres. This observation highlights the benefit of 

spinning fibre from a pressurised system; the amount of pressure applied is an 

additional parameter that can be regulated in order to predict and actually yield a 

more specific outcome. Generally, spinning at higher working pressure results in 

fibres with smaller diameter. A more detailed analysis on the effect of pressure on 

fibre generation from various blends of polymers are in section 4.4.1. 

 

 

Figure 4-2: Effect of blend composition on mean fibre diameter. 
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content yielded fibres with smaller mean diameter demonstrating the effect of 

mucoadhesive CMC in fibre formation 

 

4.3.1.3 Summary of preliminary investigations 

Three parameters most influential on the outcome of fibre generated by pressurised 

gyration are solution properties (essentially expressed in terms of viscosity and 

surface tension), working pressure and rotation speed. Studies relating these 

parameters to fibre outcomes (Xu et al., 2015, Hong et al., 2016, Mahalingam et al., 

2014, Raimi-Abraham et al., 2014, Mahalingam and Edirisinghe, 2013) have 

established the possibility of producing fibres with desired characteristics when a set 

of parameters are selected.  

 

 

Figure 4-3: Summary of production conditions 

 

 

Production 
conditions

Solution 
properties, 

Viscosity, 2-7 
(x103 mPas)

Working 
pressure, 
0.15MPa

Centrifugal 
speed, 

24000 rpm

Room 
conditions, 

25⁰C; ~45% 
humidity
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In the study by Mahalingam and Edirisinghe (2013) which first reported use of 

pressurised gyration for nanofibre production, ideal rotation speeds (10-36,000 rpm) 

most likely to yield fibres from various polymer concentrations were shown. The 

volatility of solvents used in polymer liquid preparation prior to spinning is also 

important in determining an ideal speed for spinning. Based on data from this study, 

an average rotation speed of 24,000 rpm was selected for fibre spinning throughout 

this study unless indicated otherwise. At this speed, polymers capable of forming 

nanofibres will have a better yield, relative to those spun at lower rotational speeds. 

Furthermore, this rotation speed is a good balance between the upper limit of 36,000 

rpm where solvent systems selected for this work may not cope due to rapid 

evaporation and a lower speed typically producing larger, often low-quality fibres 

In terms of pressure, it was observed earlier that working pressure of 0.15MPa or 

above yielded smaller nanofibres and more importantly, fibres traceable to their 

solution properties i.e. a clear trend relating fibre size to solution composition. On this 

account, a working pressure of 0.15MPa was used throughout the study unless 

otherwise indicated. Results from this preliminary investigation indicate better 

outcome of fibres from solution with higher CMC content, both in terms of 

characteristics such as size and reaction to elevated working pressure. Therefore, 

polymer blends in proportions similar in viscosity to the 75:25 mixture of 15% PEO 

and 4% CMC respectively was used for subsequent production of plain and drug-

loaded fibres from PEO/CMC as well as from blends incorporating sodium alginate 

and polyacrylic acid. 

 

4.4 Nanofibres from PEO and other mucoadhesive polymers 

The outcome from preliminary investigations informed the choice of parameters for 

producing nanofibres from PEO blended with alginate or polyacrylic acid in addition 

to those containing CMC. Each 100ml of polymer blend contained 75 ml of 15% PEO 
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and 25 ml of 4-5% mucoadhesive polymer, depending on the viscosity. This was 

based on the blend composition for PEO and CMC which was responsive to 

increasing working pressure and yielding high quality nanofibers in the preliminary 

study. Also, a pressure of 0.15MPa was chosen as the effect of the lower pressure of 

0.1MPa offered no desirable effect on fibre outcome on the blends. Centrifugal 

spinning at 24000rpm, a suitable balance between high speed and an environment 

to maintain material integrity, as explained earlier, was selected. Table 4-3 presents 

an overview of fibres and relationships between their physical characteristics and 

solutions from which they were produced. 

 

4.4.1 Morphology of fibres 

Generally, fibres from the three blends came out well-structured and of high quality. 

The production conditions adapted from the preliminary investigations with PEO and 

CMC were indeed helpful for ensuring good quality fibres were obtained. Various 

extents of entanglement among collected fibres were observed and these appeared 

to correlate to their corresponding solution properties, especially viscosity. For 

instance, among the fibres obtained from the three polymer blends, those from 

PEO/PAA (least viscosity and surface tension) were the least entangled. These were 

completely separated and well-aligned, unlike the other batches. Fibres from 

PEO/Alginate on the other hand exhibited the most entanglement and branching 

(Table 4-3). PEO/Alginate solution had the highest viscosity and surface tension 

among all blends. Relationships between fibre size and solution properties are 

discussed in detail in subsequent section but it is worth noting that different trends in 

terms of size i.e. absolute measurements and distribution (or dispersity) were seen in 

fibres from blend of polymers and fibres from PEO only. The role of polymer-polymer 

interaction at solution stage prior to spinning on the outcome of nanofibres are 

discussed subsequently. 
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A strong correlation with R2 above 0.9 was seen between solution properties and fibre 

size. As seen in Figures 4-4 and 4-5, viscosity and surface tension increased in the 

order PEO/PAA > PEO/CMC > PEO/Alginate. The exact reverse is seen in the size 

distribution of fibres produced, thus establishing the order PEO/PAA < PEO/CMC < 

PEO/Alginate. The inverse relationship observed in the preliminary blends with PEO 

and CMC also holds true for these blends. The conventional observation in force 

spinning has been lower viscosities and surface tension usually resulting in fibres with 

smaller diameters and vice versa (Mahalingam and Edirisinghe, 2013, Padron et al., 

2013).  
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Table 4-3: Overview of nanofibers and relationships between production conditions and outcome.

 
 
 
 
 
 

SEM image 

    

Material composition PEO only PEO/Alginate PEO/PAA PEO/CMC 

Solution properties  
Viscosity x103 (mPa s) 

Surface tension 

(mN/m) 

 
2.2 
55 
 

 
6.8 
81 

 
4.5 
56 

 
5.2 
69 

Size distribution (nm)  
(Mean ± SD) 

 
172 

 
176 

 
217 

 
194 

Polydispersity (%) 12 5 2 12 

Appearance Fairly aligned but few 
attached to each other. 
Fibres appear thinnest 
among all batches   

Slightly entangled and 
somewhat attached to each 
other, most likely due to the 
high PEO/alginate viscosity  

Well aligned and separated 
from each other. Most fibres 
sampled closely related in 
size, hence the low 
polydispersity 

Aligned and appearing mostly 
as individual fibres. Some 
minimal entanglement but 
generally well-structured 
fibres. 
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Figure 4-4: Correlation (R2 = 0.91) between blends viscosities and size distribution of fibres by their mean 
diameters. Fibres are produced from blends incorporating 75ml of 15 wt.% w/w of PEO and 25ml of b) 5%w/w 
Alginate c) 5%w/w polyacrylic acid and d) 4%w/w carboxymethyl cellulose for any given 100ml solution 

 

 

 

 

 
 
Figure 4-5: Correlation (R2 = 0.99) between blends surface tension and size distribution of fibres by their mean 
diameters. Fibres are produced from blends incorporating 75ml of 15 wt. % w/w of PEO and 25ml of b) 5%w/w 
Alginate c) 5%w/w polyacrylic acid and d) 4%w/w carboxymethyl cellulose for any given 100 ml of solution 
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This was confirmed in the batch containing only PEO which had the lowest viscosity 

and surface tension and the least average fibre diameter among the batches. 

However, batches from solutions containing different polymers have consistently 

shown an inverse relationship between viscosity and surface tension on one side and 

fibre size on the other. The role of molecular interactions between various polymers 

making up the blends and their cascading effects explain these inverse relationships. 

Rheology of blends have establish, based on molecular interaction that systems 

containing different polymer constituents might show a positive or negative deviation 

from expected ideal behaviour of those containing a single polymer  (Sionkowska et 

al., 2004)      

 

4.4.2 Composition of fibres 

A combination of DSC, FTIR and variable temperature FTIR were employed to verify 

the content of batches of nanofibres produced from the blends. Though steps were 

taken to ensure adequate mixing of various constituents for blend homogeneity, it 

was important to confirm constituents of a nanofibre produced. Firstly, the extremely 

high forces from the rotation and pressure applied during fibre formation could result 

in a phase separation, especially in the absence of appreciable molecular interaction 

between the separate polymers in solution. Experimental and mathematical models 

have been used to describe the fate of polymers blends, including possible separation 

under certain stress conditions (Zhang et al., 2001) 

 

4.4.2.1 Differential scanning calorimetry  

DSC investigations were conducted to identify differences in energy changes and 

melting points. Theoretically, different compositions making up the various blends 

would be expected to give different profiles in response to heat. However, the 

complexity of polysaccharides structures with associated molecular dynamics 
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presented a limitation to the extent of analysis by DSC. Besides the complexity, the 

issue of wide disparities in degradation temperatures of some constituents in blend 

meant that the degraded residual from a part of the blend possibly contaminated 

other constituents yet to undergo state transitions.                                                                                                                                           

Notwithstanding these challenges, DSC was used, in addition to other analytical 

procedures to confirm the crystallinity state of progesterone, following their loading 

into fibers. This is reported in section 5.5.3.2.    

 

4.4.2.2 FTIR 

Variable temperature FTIR and conventional FTIR were also used to confirm the 

presence or otherwise of different polymers in fibres produced. The rationale for FTIR 

was to compare spectra for any peak shift usually associated with molecular 

interactions among polymers. Hydrogen bonding and complexation, for instance may 

occur when polymer blends are formed, resulting in changes in bond energies and 

frequencies of valence and deformation vibrations (Caykara, Demirci et al. 2005). 

These changes detectable on the FTIR spectra are also helpful in confirming the 

presence of polymers expected in the nanofibres. 

FTIR spectra of PEO only and blends containing PEO, as expected gave profiles 

similar to those of pure PEO. This is because significant proportions of all blends are 

PEO. A peak at 843 cm-1 indicating a C-O-O bending is typical for PEO. 

Furthermore, spectra of the various blends showed peaks typical of constituent 

materials other than the PEO. For instance the blend containing alginate showed 

additional peak around 1613 cm-1 indicative of asymmetrical –COO. This is found 

in pure alginate spectra but clearly absent from that of PEO and this gives a hint of 

the presence of alginate in the fibre. 
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Figure 4-6: FTIR spectra of PEO and Alginate polymers and how they compare with PEO+Alginate nanofibres 

 

 

Fibres from PEO-PAA blends also gave spectra indicating the presence of both 

polymers and the interactions that occurred during the formation of the blends. A 

carbonyl peak occurring approximately around 1702 cm-1 is typical for pure PAA 

compounds. This is confirmed in the spectra shown in Figure 4-7. The spectrum for 

the PEO-PAA blend also shows this carbonyl peak, though with diminished intensity.  

 

 

Figure 4-7: FTIR spectra of PEO and PAA polymers and how they compare with PEO+PAA nanofibres 
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The intensity of the peak reflects the relatively small proportion of PAA in the blend. 

There is a slight shift in peak, specifically at 1735 cm-1 confirming a complex 

formation. This shift has been explained by disruption of intramolecular hydrogen 

bonding in PAA that must occur to make way for interaction with the PEO, thus a 

confirmation of some self-associated PAA-PAA hydrogen bonds being replaced by 

PAA-PEO hydrogen bonds (Alkan et al., 2012). 

Finally, determining the presence or otherwise of CMC in the PEO-CMC blends 

begun by assessing the spectrum of pure CMC compound. A strong peak around 

1600 cm-1 indicative of a carboxylate ion, -COO is usually characteristic of 

carboxymethyl cellulose. In the PEO-CMC blend, all characteristic peaks of PEO are 

seen and in addition, a significant, though diminished peak representative of the 

carboxylate in CMC.  

 

Figure 4-8: FTIR spectra from PEO, CMC and PEO+CMC nanofibres 

 

 

This confirms the presence of CMC in the blend, with the reduction in peak intensity 

likely to be due to some interaction with the carboxylate and ether groups from the 

PEO to ensure miscibility during the blend formation. 
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4.4.2.3 FTIR at elevated temperature 

A variable temperature FTIR was carried out to examine if the batches of fibres 

reacted differently to exposure heat. The spectra are shown in Figure 4-9. The blends 

largely containing PEO were scanned at 80°C, well above the melting point of PEO. 

It was observed that the characteristic peak at 843 cm-1 indicating a C-O-O bending 

for PEO was gradually diminishing with increasing temperature. A more interesting 

observation was the emergence of new peaks around 663 cm-1 for all fibres made up 

of the polymer blends. There was no significant peak in this region for the fibres made 

up of PEO alone. This observation also confirms the presence of additional material 

in the fibres from polymer blends. 

 

 

 

Figure 4-9: Elevated temperature (80⁰C) FTIR spectra of fibres from PEO and blends containing Alginate, CMC 
and PEO. 

 

A peak in this region could signify the presence of several functional groups, notably 

alkyl-halides, specifically C-Br groups, thioether C-S stretch and alkyne C-H groups 
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(Coates 2000). Further analysis may be required to identify these new peaks seen 

upon exposure to heat beyond the melting point of PEO but the objective of a variable 

temperature of FTIR was basically to find out if the fibres from the blends reacted 

differently compared to those from only PEO in the presence of heat. 

 

4.4.3 Mucoadhesive study 

Measuring the force required to detach preparations of polymer from mucosa 

surfaces or environments mimicking mucosa has often been considered useful in 

predicting the extent of mucoadhesion capabilities of the materials (Lehr et al., 

1992, Eouani et al., 2001). A relationship between viscosities or gel strengths of 

polymer-mucin systems have also been found to correlate strongly with 

mucoadhesion properties of polymers involved (Marschütz and Bernkop-Schnürch, 

2002, Caramella et al., 1994, Tamburic and Craig, 1997). All these are useful for 

measuring such quantitative values for predicting the mucoadhesive potential of 

polymeric systems. Mucoadhesive studies till date, however remains an area with 

widely differing reports on the same materials by different research groups. The 

need for assessing each case within a context of methodology, experimental 

conditions and individual interpretation of results is worth noting (Grabovac et al., 

2005, Hägerström and Edsman, 2003).  

An approach based on measuring the force corresponding to the gel strength of 

polymer/mucin system in a simulated vaginal fluid condition was used to investigate 

adhesion capabilities of nanofiber samples. This force, according to theories cited, 

is a quantitative function of the extent and strength of interaction between the 

polymeric structures and mucosa surface. Baseline studies analysing the 

interactions between mucin and polymer powders in similar proportions as those 

used in blends for producing fibres were carried out.  
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Figure 4-10: The effect of transformation from polymer powders to fibres on potential mucoadhesive properties. 
Higher adhesion capabilities were measured in fibre systems from all batches. Fibres were produced from blends 
incorporating 75 ml of 15 wt. % w/w of PEO and 25 ml of 5% w/w alginate, 5% wt. polyacrylic acid and 4% wt. 
carboxymethyl cellulose for any given 100 ml of solution. 

 

The forces measured were compared to another set where the powdered mixtures 

were replaced with fibres. The aim was to see if transforming materials into fibre 

structures improved their mucoadhesive prospects. 

As seen in Figure 4-10, an increase in mucoadhesive potential was observed in all 

fibre/mucin systems confirming better adhesive properties after transforming the 

powders into fibres. Furthermore, a paired sample t-test returned a p-value of 0.001 

confirming a statistically significant difference in mucoadhesion averages of the 

powders are their respective fibres at 0.05 (95% confidence) level. A significant 

increase in surface area of the fibres, providing more sites for interaction with the 

mucin must have contributed to the increase in forces behind the gel strength. 

Specifically, the mucoadhesive potential for the polymer powders occurred in the 

order             PEO/Alginate > PEO/CMC > PEO> PEO/PAA implying that Alginate 

and CMC in blends with PEO in the powder forms are more likely to offer strong 

contact by adhesion on mucosa surfaces. Unlike the trend seen with the powder 

mixtures, fibres with PEO alone showed the weakest interaction with mucin while 
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the remaining batches made of blends demonstrated higher mucoadhesive 

potential thus confirming the value of producing fibres from blends of different 

polymers. 

 

 

Figure 4-11: (a–d) Atomic force micrographs (height images) from residual films resulting from fibres/mucin 
mixtures in simulated vaginal fluid. Fibres produced are from blends incorporating 75 ml of 15 wt. % w/w of PEO 
and 25 ml of (b) 5% w/w alginate (c) 5% w/w polyacrylic acid and d (d) 4% w/w carboxymethyl cellulose for any 
given 100 ml of solution. 

 

 

A number of characteristics, including polymer chain entanglement often relating to 

molecular weight (Thirawong et al., 2007) and net charge distribution, whether 

cationic, neutral or anionic (Khutoryanskiy, 2011) have often been used to explain 
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the mucoadhesive behaviour of polymers. However, none of these characteristics 

appear in certain terms to explain the trend seen considering the fact that all three 

polymers mixed with PEO to form blends are anionic with average molecular weight 

in the order PAA > CMC > Alginate, quite different from the trend CMC > PAA > 

Alginate seen in Figure 4-10. A possible intervention of a carboxylic group in 

mucoadhesion through hydrogen bonding may be helpful for explaining the trend 

seen from the mucoadhesive studies (Park and Robinson, 1987) since all three 

polymers in question yield different amounts of carboxylic acid groups. The blend 

containing carboxymethyl cellulose appear to offer the best mucoadhesive 

prospects throughout the study.  

Several theories have been used to explain how mucoadhesion occurs. Two of 

these theories, the wetting theory including hydration also largely considered a 

prerequisite for facilitating hydrogen bonding for molecular interaction and the 

diffusion theory where interpenetration of polymer chains across an adhesive 

interface (Smart, 2005, Leung and Robinson, 1990) must have occurred prior to gel 

formation between the fibres and mucin. Dried residues resulting from fibre/mucin 

mixtures were analysed for surface roughness to determine the extent of dissolution 

of the fibres within the simulated vaginal environment to determine if any correlation 

exist between this and mucoadhesion. Extent of dissolution of fibres should offer 

some helpful insights of the level of hydration occurring prior to mucoadhesion.  

Typically, if complete dissolution of fibres occurred, then the residual film upon 

drying should be smooth, hence an analysis of the surface roughness.  The sum of 

all areas on the height images in Figure 4-11 above 300nm were calculated with 

the help of ImageJ software (National Institute of Health, USA) and taken to be a 

function of roughness of the film surfaces. Out of a total image area 225µm2, 

PEO/Alginate, PEO, PEO/CMC, PEO/PAA had 133 µm2, 114 µm2, 104 µm2 and 83 

µm2 respectively being above 300nm. This observation correlates with the 

mucoadhesion measurements carried out earlier where PEO and PEO/Alginate 
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shown to have left a rougher residual film recorded lower forces of adhesion while 

blends containing CMC and PAA which yielded a smoother residual film 

demonstrated higher adhesive forces. It’s likely the extent of dissolution of the fibres 

in the mucin - simulated vaginal fluid mixture may actually have played a role in 

hydration prior to mucoadhesion and hence the trend seen. 
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Chapter 5  

Producing progesterone-loaded mucoadhesive nanofibres  

 

5.1 Introduction 
 
The strategy adopted for the design of a vaginal delivery system from nanofibres is 

to first incorporate the model drug, progesterone in the polymeric fibres before using 

these drug-loaded nanofibres as the starting material for developing appropriate 

dosage forms. The first challenge in the drug loading process was getting a uniform 

solution from the active drug and polymer. Progesterone is insoluble in water but 

soluble in ethanol while the polymers used are soluble in water but only sparingly 

soluble in ethanol. Therefore, a suitable solvent system and methods capable of 

keeping all these materials in a uniform solution to allow generation of good quality 

drug-loaded nanofibres were investigated. Solutions of progesterone and the 

polymers containing different proportions of water and alcohols were prepared and 

spun into fibres. The solvent system whose solution yielded fibres with highest drug 

loading was selected and subsequently used throughout the study. Based on results 

from study reported in the previous chapter, PEO and CMC were chosen to be loaded 

with progesterone.  

In optimising the drug loading process, various parameters such as solvent systems 

composition, progesterone particle size and solution preparation methods were 

varied and investigated to determine their influence on outcome of fibres generated. 

The physical attributes of fibres produced, mainly their morphology and size were 

investigated. Relationships between fibre outcomes and their respective processing 

conditions were also established.   

Progesterone is known to exist in two forms, α and β crystal types (Payne et al., 1999). 

It has been established that the α crystal type, with a higher melting point at 129°C is 

thermodynamically more stable than the β type with melting point at 121°C though 
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very little conformational and no pharmacological differences exist between the two 

molecules (Muramatsu et al., 1979) .The ease with which inter-conversion occur 

between the crystal types of progesterone (Payne et al., 1999) means that an 

understanding of the effect of processing on the crystal behaviour of progesterone in 

the encapsulating material could be helpful in predicting such properties as stability  

and release profile of the drug in its delivery system. On this account, a combination 

of spectroscopic techniques such as X-ray diffraction and thermal analyses including 

DSC were employed to investigate the fate of the loaded model drug, in addition to 

the routine characterisation of the physical properties of the fibres produced. 

 

5.2 Optimising drug loading 
 
5.2.1 Solvent system 

To generate nanofibres by pressurised gyration, materials will usually have to be in 

the liquid state. Progesterone is soluble in ethanol (up to 100 mg/mL) and insoluble 

in water (< 1mg/mL at 19 ºC) while PEO and CMC are insoluble in ethanol but soluble 

in water. To obtain a suitable liquid mixture of materials to allow for fibre generation, 

a series of ethanol and water mixtures were trialled to determine the ratio that allowed 

the highest possible drug loading. Specifically, solvent systems of ethanol and water 

containing 10, 20, 30, 40, and 50% of ethanol were used to prepare drug-polymer 

mixtures (15% wt. PEO and 1% wt. Progesterone) from which nanofibres were 

generated and assessed for drug content. As seen in Table 5-1, amount of drug 

loaded in fibre was directly proportional to that of ethanol. The solvent system 

containing highest amount of ethanol possibly allowed more of the progesterone to 

be reduced to size small enough to be incorporated into the fibres while being formed. 

The solvent system containing 50% ethanol resulted in fibres with considerably higher 

drug loading than the rest. While a correlation between drug loading and ethanol 

content in solvent system was established, mixtures containing more than 50% of 

ethanol could not adequately dissolve the polymer. A mixture of alcohol and water in 
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equal parts was therefore considered to make an ideal solvent system for efficient 

drug loading when generating nanofibres from PEO and progesterone. 

 

 Table 5-1: Percentage drug loading in fibres produced from different solvent systems 

Sample Solvent system Drug content 

in fibre  

 Ethanol (%) Water (%) (%) 

1 10 90 0.1 

2 20 80 0.4 

3 30 70 0.6 

4 40 60 1.0 

5 50 50 1.5 

 

 

Following the observation made from a 1:1 ethanol-water mixture, a series of simple 

primary alcohols, up to butanol were used in a similar manner to determine if any 

offered a better drug loading in the fibres.  

Methanol was excluded due to its toxicity (Tephly, 1991). Solution made from the 

various water-alcohol solvent systems yielded fibres containing appreciable amounts 

of progesterone, though not as much as those previously recorded in the water-

ethanol batches. Therefore a 1:1 mixture of ethanol and water was chosen 

subsequently as solvent system for producing drug-loaded nanofibres used 

throughout the study. 
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Figure 5-1: Progesterone content in fibres produced using different alcohols in liquid preparation 

 

In investigating an ideal solvent system for solutions from which progesterone loaded 

nanofibres could be made, it was found that ethanol and water in equal parts offered 

the best prospects for loading the active drug into these structures.  

 

5.2.2 Drug particle size 

Progesterone of average particle size 100µm (A) was initially considered for 

producing drug-loaded fibres used in this work.  During solution preparation, it was 

observed that any amount of progesterone beyond 1% wt. did not increase amount 

of drug loaded into fibres, possibly because the particle sizes averaging 100µm could 

not be reduced appreciably to a level where they could be incorporated into 

nanofibres forming. An inspection of the inner wall of the gyration vessel after each 

round of spinning revealed separated progesterone that could not be incorporated 

into the fibres during formation. Following this observation (a schematic illustration in 

Figure 5-4), it was hypothesised that a higher drug loading could be achieved with a 

batch of progesterone with smaller particle size as this could be reduced easier to a 

level which allows for their inclusion into fibres as they are being formed. 
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Figure 5-2: Size distribution curves from laser diffraction spectroscopy showing difference in particle sizes of 
Progesterone A and B 
 

Therefore, another batch of progesterone with average particle size of 10µm (B) was 

used and compared with the former to determine which batch yielded fibre with higher 

drug content.  

Drug-polymer mixtures from this batch of progesterone (B, with average particle size 

of 10), shown in Table 5-2 exhibited better prospects of drug loading, according to 

results from UV spec analysis. 

 

Table 5-2: Viscosity and surface tension of drug-polymer mixtures used in generating fibres 

Fibre composition (wt. %)  

Viscosity 

(mPa s) ± SD 

 

Surface tension 

(mNm − 1)   ± SD 

Polymer Drug 

PEO CMC Progesterone 

13.5 1.25 1 5284 ± 9 53.5 ± 0.5 

15 0 1 4065 ± 3 47.8 ± 0.2 

13.5 1.25 5 8220 ± 30 55.7 ± 0.4 

15 0 5 7593 ± 13 54.0 ± 0.2 

 

 

An inspection of the inner wall of the gyration vessel after spinning fibre with this batch 

of progesterone also indicated some amount of progesterone particles remaining, 

though much less than those of the former batch. Conclusion drawn from examining 
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the vessels after fibre formation is that the progesterone in the drug-polymer mixture 

remained suspended rather than completely dissolved. 

As stated earlier, solution with more than 1% wt. Progesterone batch A could not yield 

fibres with higher drug content. Therefore, no data was available for 5% wt. 

Progesterone A as fibre formation was impossible at this concentration.  Solutions 

with up to 5% wt. Progesterone B however yielded fibres with commensurate amount 

of drug within. Amounts of drug loaded in fibres generated from solutions with different 

amounts of Progesterone batches A and B are summarised in Table 5-2.    

 

Table 5-3: Extent of drug loading in nanofibres produced using either PEO or PEO/CMC blend as polymer carrier 
and Progesterone A or B as the active drug. 

 
 

Progesterone content in nanofibre (%) ± SD 

 

Polymer 

constituent 

1% Progesterone A 

solution 

1% Progesterone B 

solution 

5% Progesterone B 

solution 

 

PEO Only 

 

1.67 ± 0.02 

 

7.67 ± 0.23 

 

25.67 ± 0.21 

 

PEO/CMC 

 

1.42 ± 0.07 

 

7.14 ± 0.01 

 

25.20 ± 0.12 

 

 

The effects of both initial drug loading and polymer composition on loading efficiency 

were examined.  The solvent system chosen for this study allowed initial drug loading 

up to 5 wt. % of Progesterone B (average particle size, 10µm), beyond which fibres 

could not be formed. Figure 5-3 indicates that a 5% and 1% initial drug loading 

resulted in fibres with 25.7% and 7.7% by weight progesterone in PEO batches. A 

similar trend was observed in batches from PEO/CMC blends.  

Entrapment efficiencies occurring in drug-loaded systems shown in Table 5-4 were 

calculated based on dry weight ratios of drug contents in fibres (final) to drug content 

in mixtures (initial) from which fibres were generated. For example, initial drug content 
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in a mixture containing 15% wt. PEO and 1% wt. Progesterone, based on dry weights, 

was calculated to be 6.3% (1 ÷ 16 × 100)  The results are shown in Table 5-3.   

 

Table 5-4: Progesterone loading in fibres, calculated based on dry weights of final and initial drug loadings 

Polymer Progesterone content (%) Loaded progesterone 
in fibre relative to dry 

powder 
(final/initial) 

% 

Initial drug loading Final (in fibre) 

PEO only 
6.3 7.7 122 

PEO/CMC 
6.3 7.1 113 

PEO only 
25.0 25.7 102 

PEO/CMC 
25.0 25.2 100 

 

 

As seen in Table 5-3, more efficient drug loading occurred in batches with 1% initial 

drug loading (6.3% based on dry weights). The effect of drug concentration on 

encapsulation efficiency (Wang et al., 2004; Yang et al., 2013) is often associated 

with solubility of drug prior to encapsulation; here we see a greater efficiency with 

those polymer systems in which initial solubility is higher i.e. batches containing 1% 

initial drug loading. 

Another observation was that polymer composition did not appear to affect drug 

loading even when the amount of drug in the starting mixture was varied. As seen in 

Figure 5-3, PEO only or PEO/CMC blends recorded similar drug loading efficiencies 

irrespective of the initial drug loading. This is a positive outcome as one can expect 

to vary polymer composition within reasonable limits in order to achieve some 

desirable properties such as mucoadhesion without compromising drug loading 

significantly.  
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Figure 5-3: Drug-loading in fibres produced from progesterone and PEO or PEO/CMC mixtures 

 

5.2.2.1 Theoretical basis for influence of drug particle size   

As seen in Table 5-3, solutions containing 1% of Progesterone batch A yielded fibres 

with drug content about five times less than those generated with similar 

concentration of Progesterone batch B. Furthermore, drug-polymer mixtures 

containing as much as 5% of the progesterone with smaller particle size was stable 

and uniform enough to allow fibre generation yielding nanofibres with up to 25% drug 

content. It is therefore clear that drug particle size affects outcome of fibre generation 

and hence a suitable drug particle size will be required for generating fibres with 

appreciable amount of drug loading. 

Progesterone embedded in nanofibres were found to be of much smaller particle size 

than those used to constitute the drug-polymer mixture (This is discussed further in 

section 5.5.1). Some level of solvation of drug particle that caused further size 

reduction possibly must have occurred prior to fibre formation. The difference in drug 

loading seen between the two batches with different particle size could be explained 

with the help of the Gibbs-Kelvin equation relating solubility, interfacial energies and 

particle size (Freundlich and Hatfield, 1926, Buckton and Beezer, 1992) which is: 
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𝑙𝑜𝑔
𝑆𝑟

𝑆∞
  =

2𝛾𝑉

2.303𝑅𝑇𝑟
 

 

Where Sr is solubility of particle with radius r and S∞ is the solubility of a particle with 

infinite radius compared to r.  γ is the interfacial energy and V, R, T are the molar 

volume of the solid, gas constant and absolute temperature respectively.  

 

 

Figure 5-4: A scheme illustrating drug loading during fibre formation. System utilising progesterone A (Drug 
particle A) has more of its larger particles not incorporated in fibre resulting in less efficient loading while system 
forming fibres from progesterone B (Drug particle B) allows more drug to be loaded into fibres.  
 

 

As can be inferred from equation above, the level of solvation occurring is always 

proportional to a ratio of the interfacial energy and particle size of the solute in 

question, implying that larger solid particles required higher energy for a particular 

level of dissolution to occur. As mentioned earlier, complete dissolution of 

progesterone was not possible in the polymer/drug systems. However, drug particles 

size reduction must have occurred prior to progesterone being included in fibres 

before ejection under forces of the pressurised gyration.  
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A much lower interfacial energy was required to bring appreciable level of solvation 

to already smaller progesterone batch A particles to a size capable of being 

embedded in the fibres readily occurred and hence a higher drug loading seen in that 

batch. On the other hand, much work had to be done to reduce the size of the larger 

drug particles in batch B to levels capable of being embedded in fibres and therefore 

a much lower drug loading occurred in fibres generated from mixtures containing 

large particle size progesterone. 

 

5.2.3 Varying method of solution preparation 

Having determined a suitable solvent system and drug particle size to be used in 

generating the progesterone loaded nanofibres, a different approach to preparing 

polymer-drug mixture from which fibres would be spun was attempted to investigate 

the possibility of further increasing the drug content in fibres.  

 

 

Figure 5-5: Drug loading seen in fibres from 1% Progesterone solution with or without a surfactant 

 

The use of surfactants in improving the aqueous solubility of some drugs is a well-

known approach(Liu, 2008). Furosemide (loop diuretic) for instance, is reported to 

have had its water solubility improved by utilising surfactants including Polysobate-80 

(Tween 80) during formulation (Shihab et al., 1979). With both Furosemide and 
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Progesterone being practically insoluble in water, Tween 80 was selected as 

surfactant to improve the stability of progesterone in a mixture with PEO or PEO/CMC 

blend. The solvent this time was water only. Fibres obtained from polymer/drug 

system utilising a surfactant were compared to those obtained previously using the 

water-ethanol solvent system. 

As seen in Figure 5-5, the solution utilising Tween 80 as a surfactant meant to keep 

more of the active drug in the aqueous polymer solution and subsequently offer a 

higher drug loading was not significantly different from other fibres generated from 

solutions without a surfactant. The drug-loaded fibres being produced are meant to 

be used in delivery systems deigned to perform by mucoadhesion. Surfactants are 

known to adversely affect mucoadhesion capabilities of systems in which they occur. 

(Mortazavi and Moghimi, 2010, Tobyn et al., 1997). On this account, and considering 

their minimal intervention in drug loading, surfactants were not utilised in drug-loaded 

fibres produced subsequently. 

 

5.2.4 Summary of drug loading optimisation 

Based on outcome from production variables investigated, the set of conditions likely 

to yield high quality progesterone-loaded nanofibres efficiently are a solvent system 

made up of equal parts of water and ethanol and use of progesterone presented in 

smaller particle sizes. The use of surfactants in improving the solubility of 

progesterone, considering its potential to reduce the systems mucoadhesive 

capabilities, was not selected. Using these sets of conditions, in addition to keeping 

all other parameters from previous experiments constant, two sets of drug loaded 

nanofibres were produced and analysed mainly for their morphology, molecular 

characteristics and performance as drug delivery constructs i.e. release profiles and 

mucoadhesion capabilities. 
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 5.3 Fibre morphology and relationship to solution properties 

The properties of polymer-drug mixtures used to generate nanofibres appeared to be 

influenced by such factors as drug particle size, amount of suspended drug and 

polymer constituent of the mixture. As seen in Table 5-1, different drug loadings in 

these mixtures resulted in different solution properties i.e. viscosity and surface 

tension. Mixtures containing 5% progesterone (from which fibres used throughout the 

study were generated) also had slightly higher viscosities and surface tension than 

solutions with similar polymer constituent but lower progesterone. In addition, those 

with CMC were more viscous than those made of only PEO.  

Some physical characteristics of progesterone loaded fibres and their respective 

solution properties are summarised in Table 5-5. Fibres generated from 15% w/w 

PEO only (lower viscosity and surface tension) had mean diameter of 349nm with 

polydispersity of 22%. The higher viscosity and surface tension in the PEO/CMC 

polymer-drug mixture influenced outcome of fibres as expected, resulting in slightly 

larger nanofibres with mean diameter of 404nm and polydispersity of 15% (Table 5-

5). 

Polymer liquid preparations with higher viscosity and surface tension yielding 

nanofibres with larger diameters has been the conventional outcome of fibre 

formation from centrifugal spinning (Mahalingam and Edirisinghe, 2013, Padron et 

al., 2013). The improved uniformity seen in the size distribution of fibres generated 

from PEO/CMC blends may be due to molecular interactions (Sionkowska et al., 

2004) between polymers in the blend, prior to fibre formation.   The influence of inter-

polymer activities on fibres generated from a blend, which has been observed 

throughout the study points to a possibility of utilising molecular interactions among 

polymers for specific outcome 
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Table 5-5: Overview of progesterone-loaded nanofibers and relationships between production conditions and fibre outcome

Polymer composition 15% wt. PEO 13.75% wt. PEO/ 1.25% wt. CMC 

Solution properties 

Viscosity (mPa s) 

Surface tension (mNm – 1) 

 

7593 ± 13 

54.0 ± 0.2 

 

8220 ± 30 

55.7 ± 0.4 

 

 

 

SEM 

Image 

  
 

 

 

 

 

Size Distribution 

 

 

 

 

 

Mean fibre diameter (nm) 349 404 

Polydispersity index (%) 22 15 

Comment Average fibre size slightly smaller than that of 

PEO/CMC blends. The sizes observed are 

proportional to viscosity, indicating a relationship 

between fibre outcome and solution viscoelastic 

properties. 

Fibres slightly larger than those produced from 

PEO only. The inclusion of CMC, as seen in the 

size distribution and dispersity offered some 

uniformity, an observation similar to the trend 

seen in section 4.4.1. 
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5.5 The loaded drug  

5.5.1 Size  

Drug particle size has long been established as crucial for their transport across 

physiological membranes (Lai et al., 2007, Win and Feng, 2005). The loaded drug 

particles were isolated by completely dissolving the fibre in water while the active drug 

remained undissolved, followed by air drying, leaving the undissolved progesterone 

crystals on the surface of the resulting dry film. Figure 5-6A is an image of 

progesterone crystals isolated from PEO/CMC fibre.  

 

Figure 5-6: Scanning electron micrograph images of A) agglomerated progesterone crystals isolated from 
PEO/CMC fibre formulated from a mixture containing 5% wt. progesterone and B) Progesterone powder used in 
liquid mixtures for generating fibres 

 

These were compared to the progesterone powder used in the polymer-drug mixture 

from which fibres were generated. Whereas the progesterone powder had particles 

with size up to 10µm, the loaded drug had drug particles typically less than a micron. 

Presenting the progesterone encapsulated in fibres therefore enables particle size 

reduction of the active drug, an opportunity that may be utilized for better drug delivery 

across membranes. 

 

5.5.2 Physical properties  

Getting progesterone encapsulated in polymeric fibres mean the drug had to be 

solvated to an extent within the continuous polymer phase before spinning into fibres. 
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The solvation process followed by solvent evaporating off after generating the fibres 

comes with the possibility of the drug crystallinity being altered or remaining in a 

similar form as they occur in the powder form (Benoit et al., 1986). This study looked 

into the possible changes in the physical characteristics of progesterone after its 

incorporation into nanofibres. Before the loaded drug was analysed, it was important 

to first confirm whether fibre formation using pressurised gyration allowed the drug’s 

inclusion in the nanofibres. Therefore some spectroscopic and thermal analyses were 

carried out, first to confirm the presence of progesterone in the fibres and then to 

establish the physical state of the drug as encapsulated in the fibres. 

 

5.5.2.1 Visual confirmation 

Hot stage microscopy was used to visually track melting of the nanofibres in order to 

confirm the presence of active drug within the fibres, and the state in which they 

occur.  

 

Figure 5-7: Melting of PEO fibre without progesterone (stages 1-4) visualised by hot-stage microscopy. By 67°C 
(stage 4) the fibre is completely melted but because no progesterone is contained within fibres, no particles are 
left behind. 
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Figure 5-8: Melting of PEO fibres encapsulating progesterone (stages 1-4) visualised by hot-stage microscopy. 
Towards the melting point of PEO (stage 2), fibre begins to melt and by 95°C, (stage 4) fibre is completely melted 
leaving behind progesterone which has a higher melting point 
 

 

The significant difference between the melting points of the polymer and drug (61 

and 121°C) offered an opportunity for confirming the presence of progesterone in 

nanofibres by subjecting samples to temperature beyond the melting point of the 

PEO but below that of progesterone.   

Plain PEO fibres were heated from 50 to 95°C as seen in Figure 5-7 (stages 1-4). 

From 61°C, the fibre begins to melt and by 95°C, the fibre had melted completely 

leaving only a trace along the position the fibre laid. This procedure was repeated 

using nanofibres generated from a liquid mixture containing progesterone. In 

contrast, Figure 5-8 stage 4 (i.e. 95 °C) shows the presence of birefringent particles 

most likely to be progesterone crystals as they are visible above the melting point of 

PEO. Further molecular characterisations were carried out to confirm the residual 

particles that remained after subjecting the drug-loaded fibre to temperature beyond 

the melting point of PEO. 
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5.5.3 Molecular properties 

5.5.3.1 FTIR spectra 

As PG nanofabrication involves a degree of material hydration, it was necessary to 

investigate the possibility of progesterone-PEO or progesterone-PEO-CMC 

complexation. The ATR-FTIR spectra of PEO and progesterone is shown in Figure 

5-9. For the progesterone, peaks indicating carbonyl stretching bands at C3 and C20  

within the molecule can be seen at 1661 and 1693 cm1 respectively (Benoit et al., 

1986).  

 

 

Figure 5-9: ATR-FTIR spectra of PEO and progesterone in the 600-2600 cm-1 region showing characteristic peaks 
and that of progesterone loaded PEO fibre confirming the presence of progesterone contained in the PEO fibre. 
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The characteristic peak at 843 cm1 resulting from –CH2–CO rocking/stretching in 

PEO is also shown (Frech and Huang, 1995, Li and Hsu, 1984). All characteristic 

peaks for both compounds can be seen in ATR-FTIR spectra of progesterone loaded 

PEO fibres (Figure 5-9).  ATR-FTIR studies did not provide evidence of significant 

progesterone structural changes occurring during PG nanofabrication. 

 

5.5.3.2 Differential scanning calorimetry trace 

After identifying functional groups confirming presence of progesterone in the 

nanofibre samples by FTIR, DSC was carried out in an attempt to elucidate the 

structural characteristics i.e. crystallinity or otherwise of the loaded drug.  

The melting points of progesterone and PEO used in generating nanofibres were 

confirmed by DSC. Results obtained, seen in Figure 5-10, were in agreement with 

observations from previous studies (Beech and Booth, 1970, Payne et al., 1999) 

 

 

Figure 5-10: Melting point of a) PEO and b) progesterone 
 

Fibres encapsulating progesterone were also analysed under the same experimental 

conditions. As shown in Figure 5-11, a slight elevation in melting point for PEO and a 

small melting point depression (approximately 5⁰C) for progesterone were observed. 

The lower temperature is likely to be as a result of the smaller particle size 

progesterone in the  fibres as reduction in particle size, especially towards or within 
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the nanoscale has been established to lower the melting point of materials, organic 

compounds included (Jackson and McKenna, 1990). In addition, the presence of 

polymer compounds acting as impurities must have contributed to the lower than 

expected melting point for progesterone in the fibres, what is usually considered as 

melting point depression by impurities (Hock et al., 2008). This peak identified at 

114.5°C points to the likelihood of the loaded drug existing in the crystalline form. 

 

 

Figure 5-11: A representative DSC trace showing the Total Heat Flow signal of PEO fibre containing 25%w/w 
progesterone 
 

 

Further analysis by hot-stage microscopy and XRD were carried out to rule out other 

possibilities as the melting point temperature discrepancies between the pure 

progesterone drug in powder form and the loaded drug were significant. Progesterone 

remained largely crystalline but a possibility of the processing condition converting 

some to the amorphous state was seen in the X-ray analysis.  
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5.5.3.3 X-rays powder diffraction patterns 

DSC, possibly due to the reduced proportion of progesterone in the fibres yielded 

minimal information on the physical state of the loaded drug.  

 

 

Figure 5-12: X-ray diffractograms of PEO and progesterone showing prominent and characteristic reflection 
peaks confirming their crystalline nature and progesterone loaded PEO fibre with characteristic peak indicating 
some of the loaded drug occurring in crystalline form. 
 

 

Further investigations were conducted utilising the more sensitive X-ray diffraction 

approach for further and clearer insight into the physicochemical nature of the 

progesterone following its inclusion in a polymer carrier.  
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X-ray Powder Diffraction studies (XRPD) were conducted on PEO and progesterone 

raw materials and progesterone-PEO fibres to confirm the solid state of encapsulated 

progesterone in the PEO fibres. Several diffraction peaks are seen in both the PEO 

and progesterone XRPD patterns (Figure 5-12).  

However, the most prominent among these confirming their crystallinity are in the 

region of 22° and 19° (Peaks A and B) for PEO and around 17° and  13° (Peaks C 

and D) for progesterone, the latter mainly in the α crystal form (Oliveira et al., 2013; 

Sangawar and Bhagat, 2013).  

The progesterone loaded PEO fibre (Figure 5-12) shows all the characteristic peaks 

(A, B, C, and D) seen in each of the pure samples indicating that the progesterone 

was indeed encapsulated in the PEO in the predominantly α crystalline form. The halo 

diffraction pattern seen between 10 and 40 2Ѳ degrees in the drug loaded fibres is 

characteristic of amorphous material (Jain et al., 2008; Young, 2012). Therefore, the 

progesterone containing fibre, unlike the pure drug or polymer which appeared to be 

predominantly crystalline materials, occurs as a mix of amorphous and crystalline 

systems. The processing conditions, including conversion of the powders into liquid 

state by solvation and reconverting back into solid through solvent evaporation are 

likely to have disturbed the lattice arrangements of both materials, thereby resulting 

in some level of amorphicity in the fibres.   

 

5.6 Performance assessment of progesterone-loaded nanofibres  
 

5.6.1 In-vitro drug release studies  

In vitro drug release studies were conducted on progesterone loaded PEO and 

PEO/CMC fibres and compared (under the same experimental conditions) to that of 

Cyclogest, a pessary containing progesterone. The experimental approach was to 

observe progesterone release from nanofibres across an artificial membrane 

mimicking the mucosa environment of the vagina. This analysis is helpful for 
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predicting the expected release profile from a drug loaded nanofiber based dosage 

form. The correlation coefficients from release profiles of nanofibre systems and 

Cyclogest® when fitted in a zero-order model were 0.95, 0.97 and 0.89 for PEO, 

PEO/CMC and Cyclogest formulations respectively.  

 

 

Figure 5-13: Release profiles of progesterone loaded PEO and PEO/CMC fibres and Cyclogest 
 

The possibility of membrane deterioration and pore plugging after an extended period 

of use (Gekas and Hallström, 1990) was anticipated and hence measurements were 

performed over a period less than 4 hours.  As seen in the release profiles (Figure 5-

13), the rapidly dissolving drug-loaded nanofibres in simulated vaginal fluid (SVF) 

released higher amounts of drug than the Cyclogest during the period of study. 

Furthermore, it was observed that the inclusion of CMC affected drug release, and 

more importantly increased its tendency for a zero-order release (R2 of 0.98, 

compared to that of Cyclogest which was 0.89 in a zero-order model plot) which is 

often desirable for delivery systems, as in principle, it provides the best control of 

plasma concentration levels and hence desirable therapeutic outcomes (Gokhale, 

2014). CMC possibly interacting with PEO to modulate drug release has long been 

established as a useful strategy for achieving desirable release, particularly from 
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matrices (Palmer et al., 2011). Therefore in addition to improving the mucoadhesive 

prospects of the nanofibres, as demonstrated in our previous study (Brako et al., 

2015), CMC demonstrated its usefulness for modulating release from these 

nanostructures.  The possibility of fine-tuning the characteristics of these 

progesterone-loaded nanofibres during processing present opportunities for 

enhancing the functionality of the delivery system to be developed from them. 

 

5.6.2 Mathematical fitting of release data 

Data obtained from in vitro release studies may be fitted into mathematical models to 

help generate further information on systems being analysed. These models, when 

applied to release data enable clearer insights into underlying release mechanisms, 

help predict effects of design parameters such as geometry and size of dosage form 

and performance levels that may be expected from delivery systems (Siepmann and 

Peppas, 2012). 

 
Table 5-6: Correlations (R2), release constants (K) and release mechanism (n) returned from fitting release data 
into various mathematical models. 

 

 

 

 

 

 

 

 

 

 

In this study, progesterone release from nanofibre systems produced and a 

formulation presently available on market, Cyclogest were fitted into selected models 

 Korsemeyer-

Peppas 

Higuchi Hixson-

Crowell 

Zero-order 

 R2 K n R2 KH R2 K R2 K 

PEO + 

CMC 

 

0.98 

 

0.92 

 

0.53 

 

0.95 

 

1.27 

 

0.98 

 

0.010 

 

0.97 

 

0.09 

 

PEO Only 

 

0.99 

 

0.88 

 

0.53 

 

0.98 

 

1.26 

 

0.96 

 

0.010 

 

0.95 

 

0.08 

 

Cyclogest 

 

0.78 

 

0.14 

 

0.40 

 

0.78 

 

0.72 

 

0.89 

 

0.009 

 

0.89 

 

0.05 
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to gain further insights. In addition to zero order kinetics the models and rationale for 

selecting them are described briefly below. 

 

5.6.2.1 Korsmeyer-Peppas  

This is a simple but effective semi-empirical model relating amount of drug released 

exponentially to elapsed time (Costa and Sousa Lobo, 2001). A logarithmic plot of 

release data gives an equation with parts that may be analysed further for additional 

information. One of such, n indicates the drug release mechanism depending on the 

geometry of system. For instance in a cylindrical matrix, n closer to 0.45 indicates 

release predominantly driven by Fickian diffusion whereas 0.89 points to release 

controlled by swelling of the system (Costa and Sousa Lobo, 2001). Values ranging 

between 0.45 and 0.89 point to release mechanism controlled by diffusion and 

swelling concurrently. This model works well with polymeric matrices with well-defined 

solid geometry and such systems will usually return a high correlation following the 

logarithmic plot. A high correlation (>0.9) between release and time for the 

progesterone-loaded fibres following this modelling confirms their well-defined 

geometry (cylindrical) and polymeric character. In addition, an n value of 0.53 in both 

formulations indicate progesterone release driven by swelling and diffusion; a release 

mechanism expected in mucoadhesive polymeric systems. On the contrary, an n 

value of 0.4 seen in Cyclogest, a fat-based formulation implies a release mechanism 

not typically defined by the Korsemeyer-Peppas model. A relatively low correlation of 

0.78 confirms this deduction.  

 

5.6.2.2 Higuchi 

The Higuchi model was developed from several mathematical formulae to describe 

release of both high and low water soluble drugs from units uniformly dispersed in a 

matrix (Higuchi, 1963, Higuchi, 1961, Siepmann and Peppas, 2012). In its simplest 
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form, the Higuchi model relates amount of drug release to the square root of time 

elapsed with a constant of proportionality known as the Higuchi dissolution constant, 

KH. A system showing a high correlation in this model may imply a more uniform 

dispersion of active drug as this feature is a main assumption upon which the model 

was developed. A higher correlation seen in the progesterone-loaded fibres implies a 

more uniform dispersion of progesterone in these systems relative to the Cyclogest. 

Furthermore, the KH values in the progesterone-loaded fibres (PEO fibre, 1.26 and 

PEO/CMC, 1.27) and Cyclogest (0.72) indicates remarkable differences in release 

between the fibre systems and fat-based Cyclogest suppository. The possibility of a 

different release kinetic and potential for a more uniform dispersion of progesterone 

in polymeric systems indicate a potential for developing an alternative vaginal dosage 

forms from these drug-loaded fibres.  

 

5.6.2.3 Hixson – Crowell 

This model, originally developed by observing the relationships among 

heterogeneous reactions, surface erosion and agitation in a solid-liquid dissolution 

system (Hixson and Crowell, 1931) is now useful for describing how surfaces erode 

gradually to bring about drug release. It relates drug release from matrix surface to 

the cube root of time (Costa and Sousa Lobo, 2001). The Hixson – Crowell model, a 

mathematical model specific for describing the influence of surface behaviour on drug 

release is particularly useful as a better understanding of surface activity may as well 

inform strategies for developing better adhering surfaces optimal mucoadhesion. As 

seen in Table 5-3, the progesterone-loaded nanofibres returned higher correlation 

when fitted in this model meaning the amount of drug released over a period is better 

defined in terms of their surface activity. 
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5.6.2.4 Summary of release modelling 

For all models fitted, a higher correlation between respective functions of drug release 

and time was observed among the progesterone-lobed fibre systems. These 

mathematical models describe how material properties, geometry and release 

mechanism and phases influence release patterns from delivery systems (Peppas 

and Narasimhan, 2014).  The polymeric composition of these fibre systems, better 

defined geometry and the enhanced surface area which may facilitate drug release 

Specifically, Korsemeyer-Peppas confirmed a release mechanism driven by 

simultaneous swelling and diffusion in the fibre systems while the Higuchi model 

indicated a more uniform dispersion of progesterone therein.  
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Chapter 6  

Assessing mucoadhesion of progesterone-loaded nanofibres 

 

6.1 Introduction 

Progesterone-loaded nanofibre systems have so far proved to be suitable material 

candidates for design of systems delivering progesterone vaginally to support 

pregnancies to term, particularly in women at risk of going into early labour (Dodd et 

al., 2008). These nanofibres, essentially mucoadhesive systems can be expected to 

adhere firmly onto mucosa of vagina to facilitate transport of the active drug for 

improved bioavailability at a more convenient dose frequency.   

Mucoadhesive delivery systems have good prospects for drug delivery, especially for 

their extraordinary potential in prolonging dosage form resident times at sites of 

application such as in vagina or nasal cavity thereby improving convenience and 

compliance as a result of less frequent dosage (Andrews et al., 2009, Mansuri et al., 

2016). For a comprehensive assessment of the performance of these delivery 

systems, mucoadhesive capabilities ought to be quantified by accurate and reliable 

method. This is however presently difficult and often impedes the development of 

these systems. Moreover, obtaining and preparing mucosa membrane to test these 

system is logistically challenging and often fraught with inconsistent results (Khdair et 

al., 2013). Utilising artificial membranes as suitable alternative for quicker and easier 

analyses of mucoadhesion of these systems is currently being explored. In this work, 

the mucoadhesive interactions of various batches of nanofibres with either artificial or 

mucosa membranes are investigated and the results compared to determine how well 

they correlate. Furthermore, a novel approach dependent on diffusion and 

mechanical theories of mucoadhesion, which uses roughness and void spaces at the 

interface of interacting surfaces in quantifying extent of mucoadhesion is reported. A 

nanoscale examination of the point of interaction between the fibre and mucosa 



155 
 

membrane using AFM to identify evidence of depth of interpenetration and unfilled 

voids, which are crucial to mucoadhesion, was carried out. Trends obtained from 

analysing the interfacial roughness and voids were compared to those obtained by 

measuring forces required to detach fibres from mucosa membranes to determine the 

viability of this method as a reliable means of mucoadhesion quantification.  

 

6.2 Fibre morphology – Surface properties 

It is been established earlier on that CMC improved the mucoadhesive properties of 

nanofibres. Therefore in quantifying mucoadhesion additional batch of fibres 

containing 2.5% wt. of CMC was produced with the aim of identifying significant 

differences driven by CMC. Composition of nanofibres compared in the 

mucoadhesive quantification work are shown in Table 6-1  

 

Table 6-1: Polymer and drug quantities used for liquid preparations before spinning into fibres 

 

Sample Progesterone 

(wt. %) 

PEO (wt. %) CMC (wt. %) 

 

A 

 

5 

 

15.00 

 

0 

 

B 

 

5 

 

13.75 

 

1.25 

 

C 

 

5 

 

12.5 

 

2.5 

 

 

Crystalline materials including some drugs such as Vitamin B6, carbon nanotubes 

and metals, when embedded in nanofibres can cause extensive protrusion from within 

resulting in an uneven nanofibre surface. Several studies investigating nanofibres 

containing crystallites have reported this observation (Salalha et al., 2004, Nam et al., 

2010, Llorens et al., 2013). The effect of crystalline material content on nanofibre 



156 
 

surface is particularly relevant in this work as several of the mucoadhesion theories 

emphasise the relationships between surface properties and their ability to adhere.  

 

 
Figure 6-1: a) Progesterone-loaded nanofibre and b) nanofibre without any drug showing differences in surface 
morphology brought about by the crystalline nature of embedded drug              

 

The effects of protrusion by crystalline material in fibres on surface morphology is 

clearly seen in Figures 6-1a, drug-loaded nanofibre (approx. 25 wt. % of 

progesterone), especially when compared to nanofibres without any drug (Figure 6-

1b). Following this observation, necessary adjustments to manage fibre surface 

disruptions due to crystalline content (both qualitative and quantitative) during 

formation will be required in order to produce structures with best possible surface 

properties that support mucoadhesion. Furthermore, the chemistry of materials to be 

loaded into nanofibres can alter fibre dimensions while being formed. In a study 

exploring bioactive platforms for tissue engineering, Llorens et al. (2013) found that 

embedding crystalline pyridoxine (Vitamin B6) eventually increased fibre size while 

antioxidants such as p-hydroxycinnamic acid influenced generation of thinner fibres. 

The thinning of fibres by materials such as p-hydroxycinnamic acid was attributed to 

their chemistry, where dissociated ions possibly affected charge difference and 

thereby influencing elongation of fibres during formation by electrospinning. Indeed, 

a different method of producing nanofibres not dependent on charge difference, PG 

was employed and the latter observation may not be relevant as far as altering fibre 
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outcomes. However, the inclusion of crystalline progesterone was identified to affect 

fibre outcome in terms of surface appearance. In addition, when progesterone loaded 

fibres are compared with plain ones, e.g. from polymer blend with approximately 1.2% 

wt. CMC, the former was nearly twice the size of the latter. An increase in fibre size 

following embedding of crystalline progesterone is similar to electrospun fibres 

containing crystalline pyridoxine (Llorens et al., 2013). It can be therefore inferred that 

crystalline material, when incorporated into nanofibres, irrespective of fabrication 

method can affect their size and surface properties. 

In terms of dimensions among drug loaded fibres, it is clear from the plot in Figure 6-

3 that average diameter of nanofibres were significantly affected by variations in 

polymer constituents. Specifically, mixtures containing higher proportions of CMC 

yielded fibres with a larger diameter and increasing CMC quantities from 1.25 to 2.50 

wt. % resulted in over a 40% increase in fibre diameter. In assessing solution 

properties before fibre production, it was observed that solution viscosity increased 

with increasing CMC content.  Mixtures with high viscosity generally produced fibres 

with larger diameters. The trend seen here confirms viscosity as an effective variable 

for the control of fibre size and morphology, and in line with fundamental observation 

in generating nanofibres from polymer solution (Mahalingam and Edirisinghe, 2013, 

Deitzel et al., 2001, Zong et al., 2002). CMC, functioning as a viscosity modulator 

here is well known for its high viscosity in low concentrations (Yang and Zhu, 2007), 

a property also largely dependent on degree of substitution (DS) occurring on the 

cellulosic backbone and the intrinsic viscosity of plant pulp from which the polymer is 

derived (Barba et al., 2002).  
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Figure 6-2: Cellulose backbone and groups substituted for -OH to yield carboxymethyl cellulose. Degree of 
substitution (DS) influence behaviour e.g. viscosity of resulting product 

 

Mucoadhesive effect in fibres also derived from inclusion of CMC is discussed later 

in this paper. Controlling viscosity and mucoadhesive properties for better outcome 

and performance of nanofibres is possible because of our strategy to use blends of 

polymers in generating these fibres as this adds to existing variables that can be fine-

tuned for desirable outcome. 

 

 
 

Figure 6-3: Graph illustrating the effect of CMC content on mean diameter (n=100) of nanofibres generated in 
this work. Error bars are standard deviations in size distributions. 
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6.3 Mucoadhesivity 
 
 

6.3.1 Mucin-Polymer interactions 

Polymer-mucin interactions is complex and often driven by multiple activities including 

physical chain interlocking, conformational adjustments, electrostatic interactions and 

interfacial chemical reactions through secondary bond formation between functional 

groups in adhering materials (Menchicchi et al., 2014, Madsen et al., 1998, Rossi et 

al., 1995). The interfacial bond formations are known to occur mainly through 

hydrogen bonding and van der Waal forces.  

Various functional groups in materials interacting determine extent of interfacial 

bonding and hence strength of adhesion. Functional groups such as hydroxyl and 

carboxyl groups, typically on the oligosaccharide chains and amino groups in 

cysteine-rich domains in mucin could form bonds with similar functional groups in 

polymers or other materials such as artificial membranes) interacting with mucosa to 

keep both surfaces adhered to each other (Roy et al., 2009, Bansil and Turner, 2006). 

Figure 6-4 illustrates various points on the mucin molecule where interfacial bonding 

may occur for mucoadhesion. 

 

Figure 6-4: Schematic illustration of various active points on mucin molecule that may interact with other groups 
to facilitate mucoadhesion (Yang et al., 2012) 

 

 



160 
 

6.3.2. Artificial versus natural membrane 

When the performance of mucoadhesive delivery systems are assessed, two features 

routinely quantified are the adhesion to and permeation through the mucosa (Boegh 

et al., 2013, Ivarsson and Wahlgren, 2012). Evaluating both features typically require 

the use of mucosa membranes from sacrificed animals. The use of actual mucosa 

tissues, in addition to being costly and logistically challenging, can give rise to 

inconsistent results due to the widely varying approaches to tissue preparation. In this 

regard, artificial membranes such as cellulose acetate have been utilised for both 

adhesive and permeation studies and confirmed to correlate well with those obtained 

from actual mucosa tissues (Khdair et al., 2013, Jain et al., 2002).  

 Mucoadhesive properties of various batches of drug-loaded nanofibres were 

measured using a texture analyser under test conditions shown in Table 3-2. A typical 

trace from stages A-C (Figure 6-5) encountered during testing is shown graphically in 

Figure 6-6. Basically, the nanofibre sample attached to the tip of a probe (cylindrical 

probe (Chen-Hoseney dough stickiness rig) with cross-sectional area of 0.785 cm2) 

is brought in contact with membrane surface for 5 seconds with a test force of 40g.  

And then the force required to detach the fibre from membrane surface, which is a 

function of the extent of adhesion occurring at between the two surfaces, is measured 

and recorded.  

 

 

 
 
Figure 6-5: Stages in measuring strength of fibre adhesion to mucosa: a) analyser probe with fibre attached to 
the tip is brought in contact with mucosa membrane, b) fibre and mucosa are in contact for specified period and 
c) fibre is separated from mucosa while the force required is measured 
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Figure 6-6: Typical trace recorded during attaching and detaching nanofibre samples from mucosa surfaces 

 

 

Firstly, the effect of increasing amounts of CMC in fibres on their mucoadhesive 

properties were studied using both artificial and mucosa membranes. In both 

instances, a clear trend of increasing mucoadhesive interactions with higher amounts 

of CMC was established (Figures 6-7a and b). The stronger mucoadhesion seen with 

increasing amounts of CMC may be explained using some well-established principles 

governing interactions between weakly anionic carboxyl containing polymers with 

oligosaccharides chains in mucins (Khutoryanskiy, 2011). 

The carboxylic groups in these polymers are able to form strong hydrogen bonds with 

functional groups in mucin, thereby strengthening interactions between these two 

materials leading to appreciable levels of mucoadhesion. The formation of these 

bonds has been confirmed with displacement of infra-red absorption bands and 

nuclear magnetic resonance (Patel et al., 2003). Furthermore, these weakly anionic 

polymers demonstrated strongest mucoadhesive interactions in acidic conditions, 

with adhesive properties diminishing drastically at pH > 4 (Park and Robinson, 1987). 

These materials are for systems applied vaginally and hence experiments were 

conducted under simulated vaginal conditions which are acidic. Therefore CMC, 
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which offers stronger mucoadhesion in acidic conditions contributed significantly to 

the overall adhesive properties observed. 

 

 

 

 
a) 

 

 
b) 

 
Figure 6-7: Effect of CMC content on nanofibre mucoadhesive properties as assessed by measuring forces 
required to detach them from a) sheep oesophagus mucosa (R2=0.97) and b) cellulose acetate membrane 
(R2=0.98). 

 

 

Secondly, results from fibre mucoadhesive interactions with artificial membrane were 
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observed between the fibres and the artificial membrane than those seen with the 

sheep mucosa. This observation is expected due to the adhesive behaviour of 

cellulose-based materials mainly driven by formation of hydrogen bonds by hydroxyl 

groups present and partially by free energy interactions driven by apolar and electron 

donor components of cellulose (Gardner et al., 2008). Therefore the higher 

mucoadhesive interactions observed with the cellulose acetate membrane is the 

result of interactions between the fibre and cellulosic components of the membrane, 

as described above as well as with mucins. In contrast, the mucoadhesion occurring 

between the fibres and the sheep mucosa was largely due only to interactions with 

mucin in the mucosa and hence not as strong as those seen in the cellulosic 

membrane. In terms of trends however, a similar correlation between adhesion and 

CMC content in fibres was observed in both the artificial and the natural membrane 

(R2 = 0.97 and 0.98 as seen in Figures 6-7a and b). 

On the basis of these observations, artificial membranes may not be ideal substitutes 

for actual mucosa membrane for mucoadhesive studies, especially when scalar 

quantification of adhesion is relevant to the study as additional adhesive interactions 

not from samples being analysed can mask the actual observations of interest. 

However, they may be suitable for analysing trends such as the effect of varying 

constituents of a system on mucoadhesion, in which case superfluous adhesive 

interactions that may arise from the artificial membrane will be prevalent in all samples 

being studied, thus maintaining a trend that will correlate to the mucoadhesive feature 

being investigated. 

 

6.3.3 AFM analyses of fibre – mucosa interface  

As mentioned earlier, a standardised method for quantifying mucoadhesion remains 

to be adopted for use despite tremendous interest in mucoadhesive drug delivery 

(Woertz et al., 2013). Notwithstanding, some approaches based on one or a 

combination of mucoadhesion theories have been used to assess mucoadhesion, 



164 
 

albeit with different levels of reliability. Most of these approaches are based on the 

fracture method, where the forces required to separate two interacting surfaces are 

quantified and used to express extent of mucoadhesion. A few more depends on the 

investigation of surface properties, typically by AFM (Patel et al., 2000).  

In this section, a novel approach where the interface between fibres and mucosa 

membrane, after mucoadhesive interaction, is visualised at the nanoscale for 

indications of extent of interpenetration between polymer and mucin chains and filling 

up of cavities, two of the most crucial activities leading to mucoadhesion according to 

the diffusion and mechanical theories.  A schematic in Figure 6-8 illustrates how 

interfacial images were interpreted to imply extent of interpenetration between 

surfaces and hence extent of mucoadhesion. Extensive penetration ensures stronger 

binding of surfaces and thus a cross-section reveals a smoother (lower height) 

surface. In the same way, limited interpenetration leaves a rougher surface and that 

can be taken as minimal mucoadhesion. 

 

 
Figure 6-8: A schematic illustration of interaction between polymer and mucin reactive groups. An extensive 
interpenetration of groups from two surfaces, according to diffusion theory results in closer (smoother) and 
stronger adhesion. 

 

In comparing roughness at the interface of various nanofibre samples interactions 

with mucosa, the parameter routinely used to measure surface roughness was Ra 

(arithmetic average of absolute height values). The Rmax values (the height from the 

lowest depth to the highest point) also gave a trend similar to the Ra, implying that 

the roughest of all the interfaces also had most voids that were left unfilled. This 

observation reinforces our hypothesis that using interfacial roughness to track extent 
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of mucoadhesion may reflect the diffusion and mechanical theories which are based 

on interpenetration and surface activity facilitating the filling up of cavities in order to 

bring about mucoadhesion. Furthermore, previous studies looking into these 

interactions have traced the depth of interpenetration between polymer and mucin 

groups to the characteristic of the interfacial layer (Ponchel et al., 1987). 

Therefore a thorough examination of the point of interaction between the polymer and 

mucosa can help us compare extents of mucoadhesion that have occurred among 

batches of delivery systems and that is the basis of using AFM to study these 

interfaces. As shown in Figure 6-9, nanofibres containing CMC, after interaction with 

mucosa membrane come out significantly smoother than those from fibres without 

any CMC.  

 
Figure 6-9: AFM images showing depths (dark regions) and heights (light regions) of sections of interface derived 
from mucosa membrane interactions with nanofibres a) containing 2.5% CMC and b) without CMC. PEO/CMC 
appear smoother. 

 

 

Elevations on the image interpreted from the scale bars, which determines the surface 

roughness, are much lower on the image from samples containing CMC. Smoother 

surfaces imply closer and stronger interaction of surfaces and therefore higher level 

of mucoadhesion having occurred. Furthermore, according to the mechanical theory, 

surface energies and behaviour facilitating the filling up of voids on mucosa 

membrane results in stronger adhesion. From examining depths on these images, it 

is clear that interface sections from fibres without CMC had greater voids after fibre-
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mucin interactions indicating limited surface activities leading to filling up of cavities 

in the membrane and hence giving inadequate mucoadhesion.  

 

6.3.3.1 Phase images from AFM analyses of interfaces 

Phase imaging provides additional information on material surface properties. In tap 

mode operation, these images are derived from the phase lag between the 

excitational signal and cantilever response due to interactions between the probe tip 

system and the material being analysed. Images seen in Figure 6-10 also confirmed 

samples with highest CMC content had most uniform phase image implying higher 

consistency in polymer-mucin residue left after interactions.    

 

 
Figure 6-10: Interfacial phase images from: A) PEO only B) PEO/1.25 wt. % CMC and C) PEO/2.5 wt. % CMC after 
interactions with mucosa membrane. Images resized to represent an area of 900µm2 with angular units 
between -30 and 15°. 

 

 

As different material surfaces will interact uniquely with the tip system, phase imaging 

is found to go beyond simple topographical mapping to detect variations in 

composition, adhesion and viscoelasticity, among other properties (Tamayo and 

Garcia, 1996, Stark et al., 2001). Indeed different AFM procedures have been used 

to directly quantify adhesion in various materials (Yu et al., 2013)   

AFM analysis was used to study trails left behind after mucoadhesion to examine 

degree of interactions. Though not directly detecting adhesion, these phase images 

(Figure 6-10) confirm highest interfacial uniformity between fibres containing 2.5 wt. 
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% CMC and mucosa surface. According to results from both texture analysis and 

AFM, fibres from this composition exhibited the highest mucoadhesive capabilities.   

3D images of various nanofibre interactions with mucosa, parameters assessed and 

respective observations made are summarised in Table 6-2. In summary, the PEO 

only fibres, which according to the AFM images appeared roughest after being in 

contact with mucosa is the least mucoadhesive among the batches examined. This 

is because in addition to having highest Ra value indicative of it being roughest, it had 

the highest Rmax value which implies the deepest voids in its surface. Both features 

strongly imply limited interactions between polymer and mucosa. Conversely, the 

batch containing highest the amount of CMC (2.5 wt.%) had the least Ra and Rmax 

values implying the smoothest interface with least number of voids, which according 

to the diffusion and mechanical theories of mucoadhesion, indicate deeper 

interpenetration among interacting surfaces and therefore high mucoadhesion.    
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Table 6-2: Relationship between nanofibre content and the surface properties of interface arising from their interaction with mucosa 

 

CMC content 
(wt. %) 

0 1.25 2.50 

 
 
 
 
AFM image 
at dried 
interface 
between 
nanofibre 
and mucosa 

 

   
 
 

Roughness 
data, Rq 
(nm) 

101 29 19 

 
Rmax (nm) 

1716 480 439 

Comment Interactions between this batch of fibres (PEO 
only) and mucosa left the roughest interface. A 
rough residue, according to the diffusion and 
mechanical theories points to less 
interpenetration between polymer functional 
groups and mucin. A conclusion of least 
mucoadhesion from the roughest residue is 
confirmed by results from texture analysis 
which is based on the fracture theory.   

Fibres containing 1.25% CMC showed much 
less rough interface following interactions with 
mucosa. According to the diffusion and 
mechanical theories, this showed more 
interpenetration activity between the two 
interacting surfaces than was observed in the 
batch containing only PEO. A much more even 
height distribution may also be due to more 
widespread interactions between fibres and 
mucins. 

This batch of fibres, containing the highest 
amount of CMC yielded the smoothest 
interface following interactions with mucosa 
and therefore is interpreted as having the best 
interpenetrating activity between the two 
interacting surfaces. A widespread surface 
roughness may also be indicative of better 
interaction of surfaces to bring about 
mucoadhesion. This batch of fibres being most 
mucoadhesive is also confirmed by results 
from texture analyses. 
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Chapter 7  

Conclusions and future recommendations 

 

7.1 Conclusions 

Progesterone, when used in supporting pregnancy is applied at least once daily for 

several weeks. Due to current limitations in formulation, the most practical route of 

administration for this indication is by intramuscular injection. For such long periods, 

parenteral administration is painful, inconvenient and in some cases, will require 

healthcare personnel to administer doses. Clearly, there is a need for alternate 

dosage forms that can suitably address these challenges. The vaginal route can be 

a suitable alternative for delivering progesterone both for local and systemic action. 

Therefore a formulation, based on entirely different design approach but capable of 

optimal trans-mucosal delivery of this drug would be a significant contribution 

towards improving the delivery of progesterone for such indications. The design 

approach reported in this thesis utilises mucoadhesive drug-loaded nanofibres 

which is expected to combine the qualities of a nanofibre and benefits from 

mucoadhesion for better drug delivery. The following conclusions are drawn from 

this study: 

 

7.1.1 Generating well-structured and mucoadhesive fibres 

Mucoadhesive fibres with size distribution from less than 100nm upwards have been 

produced from mucoadhesive polymer blends by a simple but efficient method of 

pressurised gyration. Biodegradable, water soluble and anionic polymers, known to 

exhibit mucoadhesive character in acidic conditions were selected as these were 

safe as well as suitable for use in the vagina, considering its slightly acidic 

environment. Blending these anionic polymers i.e. polyacrylic acid, sodium alginate 
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and carboxymethyl cellulose with PEO allowed successful formation of well-

structured fibres. Fibres produced were subsequently assessed for their physical 

properties, mainly size and morphology as well as molecular compositions.  

        

7.1.2 Outcome of mucoadhesive fibres 

SEM analyses have confirmed that fibres from these blends were well defined, 

uniformly cylindrical throughout their lengths and of appreciably high structural 

integrity. Size distribution analyses confirmed average size for PEO, PEO/Alginate, 

PEO/CMC and PEO/PAA being 172, 176, 194 and 217 nm respectively. FTIR 

confirmed identical functional groups in polymer/blends and their corresponding 

fibres, thus validating PG as a method for the production of fibres from blends of 

polymers. Texture analysis established the trend PEO/CMC > PEO/PAA > 

PEO/Alginate > PEO in terms of adhesion strength.  

 

7.1.3 Generating progesterone-loaded fibres 

CMC/PEO blends, confirmed as having the best mucoadhesive prospects were 

used to produce well-structured progesterone-loaded fibres with diameters from 40 

– 1400 nm. The inclusion of progesterone was found to increase average fibre size 

as well disparities in their size distribution.  Thermal and spectroscopic analyses 

confirmed the loaded drug existed as crystals. Optimising the fibre formation 

process resulted in fibres that contained up to 25% wt. of the active drug, 

progesterone.  

 

7.1.4 The loaded progesterone 

Loaded progesterone isolated from fibres by selective dissolution was found to be 

of smaller particle size (< 1µm), compared to the original powder form of average 
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size 10µm. This is a positive outcome as active drug presented in smaller particle 

size is usually desirable considering their likelihood for easier dissolution and 

subsequent transport across membranes. In summary, encapsulating progesterone 

in polymeric fibre systems results in several benefits including efficient drug loading, 

increased surface area for effective mucosa contact and significant drug particle 

size reduction.   

 

7.1.5 Drug release from progesterone-loaded fibre systems. 

When compared to Cyclogest (a formulation of progesterone presently available on 

the market), progesterone release from all batches of drug-loaded fibres exhibited 

higher potential for zero order release. Specifically, a trend in the order PEO/CMC 

> PEO only > Cyclogest for release mimicking a zero order kinetic was established. 

In addition, both drug-loaded fibre systems released higher amounts of 

progesterone, compared to Cyclogest, a feature that may be further explored for 

solutions in addressing the various bioavailability issues presently limiting the use 

of progesterone.  

 

7.1.6 Assessing mucoadhesion by texture analyser 

Fibre adhesion to artificial and natural mucosa membranes was investigated. It was 

established that while artificial membranes may be a useful substitute for mucosa 

for determining general trends in mucoadhesive potential among a set of samples 

relative to each other, they exhibit different magnitudes of adhesion and hence may 

not be exact representation of mucoadhesion. Secondly, results compared within 

models confirmed that fibres containing higher amounts of CMC required higher 

detaching force for separation in both the natural and artificial membranes. Clearly, 

the inclusion of mucoadhesive polymer influenced mucoadhesion prospects of the 

fibres.  
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7.1.7 Assessing mucoadhesion by atomic force microscopy  

A novel approach which relates interfacial properties such as roughness and void 

spaces to the degree of mucoadhesion was proposed. According to results from 

texture analysis, CMC content positively influenced mucoadhesion. AFM analysis of 

fibre-mucosa interfacial roughness gave a trend similar to that seen in the texture 

analysis. A non-parametric hypothesis test (Kendall’s tau coefficient) confirms this 

correlation to be statistically significant. 

Therefore fibre-mucin interfacial roughness may be a useful parameter for 

quantifying mucoadhesion 

 

7.1.8 Summary of conclusions  

In summary, the work reported in this thesis has demonstrated the possibility of 

using PG to produce well-structured drug-loaded mucoadhesive fibres. Analytical 

investigations used in characterising these systems confirmed their dimensions, 

morphology and molecular properties as suitable materials for further development 

into alternate dosage forms for improved delivery of progesterone. Furthermore, 

performance assessment such as permeation and mucoadhesive study confirmed 

desirable prospects of zero order release kinetics and sufficient mucoadhesion 

properties, all of which make them attractive materials for diverse pharmaceutical 

applications.  

 

7.2 Future recommendations 

Recommendations for addressing some challenges encountered in this study and 

suggestions to improve the utilisation of pressurised gyration for manufacture of 

progesterone-loaded fibres for various pharmaceutical applications are listed below:   
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 Formulation strategy for developing dosage forms 

First and foremost, a formulation strategy to convert the drug-loaded fibres 

into stable, practical and safe vaginal dosage forms will be needed to take 

this project further. A few formulation schemes seeking to convert fibres into 

suitable dosage forms have been attempted and reported (Poller et al., 2017, 

Blakney et al., 2013). The options include compression of fibres into tablets 

for vaginal insertion or winding bundles of the fibre into a miniature tampon. 

The unique but delicate nature of these micro and nano structures will 

certainly require modification of existing pharmaceutical formulation 

procedures for handling and further processing into useful  A cross-

disciplinary collaboration among pharmaceutical formulation and relevant  

materials research groups to investigate and develop options for designing 

an appropriate dosage form from these progesterone-loaded fibres is highly 

recommended. 

 

 Further improvement of the Pressurised Gyration setup 

The pressurised gyration approach to producing fibres of various sizes and 

shapes from a wide range of materials, following reports of several studies, 

is proving to be a suitable alternative to electrospinning. The invention is 

relatively new and as expected, its setup still quite basic. A project dedicated 

to redesigning the setup in a suitable housing complete with tubes, buttons 

and dials to control production parameters would ensure better utility and 

productivity, make the process more efficient by reducing waste while 

tremendously improving its output.  In addition, its operation would be further 

simplified, offer better control of production parameters and encourage 

usage among diverse research groups. Improving the usability of 

pressurised gyration will increase the body of work generated, thus 

stimulating improvements from variety of sources and establishing this 
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method as a mainstream approach to micro and nanofiber production. A 

modification of the present setup is therefore highly recommended. 

 

 Managing information arising from pressurised gyration experiments 

Pressurised gyration has various production parameters such as rotational 

speed, pressure, amount and type of materials, flow-rate of liquid across 

different variations of the process such as pressured, flow-controlled or 

combination of pressure and flow control gyration. This has tendency to 

generate a lot of data. Some computational and statistical analyses of these 

data have begun and it is highly recommended that it continues and outcome 

of analyses applied to further improve the production process. In addition, a 

compilation of production protocols, parameters and expected outcomes, 

suitable material combinations such as polymers and ideal solvent systems 

will be helpful for utilisation of this relatively new method of fibre production. 

 

 Characterising mucoadhesion  

Assessing mucoadhesion is still quite challenging, especially as the various 

methods used remain unstandardised. A new approach to studying 

mucoadhesion was developed in this work. Further quantification and 

interpretation of image data obtained would be very helpful in consolidating 

the use of interfacial scans by AFM and possibly SEM as a means of gaining 

further insight into mucoadhesion mechanism. Furthermore, a consortium of 

stakeholders in fields where mucoadhesion is relevant to their objectives 

could review assessments of mucoadhesion and adopt a set of standard 

operating procedures to help harmonise the process across various 

research themes. Such guidelines, when adopted would improve 

assessment and reproducibility of mucoadhesion measurements. 

Mucoadhesion characterisation is becoming more crucial as trans-mucosal 
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delivery of drugs is increasingly being considered for newer therapeutic 

entities such as structurally delicate macromolecules and biologicals, 

hormonal drugs and a variety of drugs that are practically impossible to be 

presented via the oral route. 

 

 Studying drug release from fibres  

Progesterone-loaded fibres produced in this study are to be used in 

formulating dosage forms for vaginal application. Drug release assessment 

was therefore designed to track release of progesterone from the fibres as 

well as movement across membrane mimicking vaginal mucosa. Due to 

logistics and time constrains, cellulose acetate membranes treated in 

simulated vaginal fluid was used as models for release study reported. This 

approach has limitations. First of all, prolonged exposure of the cellulose 

acetate membrane to micro and nanostructures such as fibres analysed 

causes widespread blockade and render the membranes ineffective 

subsequently. This limited the time for release study to under four hours. 

Secondly, the absence of physiological factors present in actual mucosal 

membranes made this particular model an oversimplified approach to 

studying drug transport across the vaginal epithelia. 

Ideally, actual vaginal mucosa from mammals with non-keratinised 

membranes such as pig or lamb should have been used. These were 

attempted but the immense logistic challenge of obtaining viable vaginal 

mucosa membrane into the laboratory for this study prevented this study 

from being undertaken. Typically, excised mucosal freshly delivered within a 

short period from an abattoir to ensure tissues viability as at time of 

experimenting would have been required. This was difficult due to location 

of laboratories.  It is therefore highly recommended that release studies are 

carried out on these progesterone-loaded membranes to investigate how 
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well drugs encapsulated within are release for onward transport across 

viable mucosal membranes.       
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