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[Abstract] 
 

For many years, curve fitting software has been heavily utilized to fit simple models to various 

types of biophysical data.  Although such software packages are easy to use for simple functions, 

they are often expensive and present substantial impediments to applying more complex models 

or for the analysis of large datasets.  One field that is relient on such data analysis is the 

thermodynamics and kinetics of protein folding. Over the past decade, increasingly sophisticated 

analytical models have been generated, but without simple tools to enable routine analysis.  

Consequently, users have needed to generate their own tools or otherwise find willing 

collaborators. Here we present PyFolding, a free, open source, and extensible Python framework 

for graphing, analysis and simulation of the biophysical properties of proteins. To demonstrate the 

utility of PyFolding, we have used it to analyze and model experimental protein folding and 

thermodynamic data. Examples include: (i) multi-phase kinetic folding fitted to linked equations, 

(ii) global fitting of multiple datasets and (iii) analysis of repeat protein thermodynamics with Ising 

model variants. Moreover, we demonstrate how Pyfolding is easily extensible to novel 

functionality beyond applications in protein folding via the addition of new models. Example 

scripts to perform these and other operations are supplied with the software, and we encourage 

users to contribute notebooks and models to create a community resource. Finally, we show that 

PyFolding can be used in conjunction with Jupyter notebooks as an easy way to share methods 

and analysis for publication and amongst research teams. 

  



[Introduction] 

The last decade has seen a shift in the analysis of experimental protein folding and 

thermodynamic stability data from the fitting of individual datasets using simple models to 

increasingly complex models using global optimization over multiple large datasets [examples 

include Refs: (3-21)]. This shift in focus has required moving from user-friendly, but expensive 

software packages to bespoke solutions developed in computing environments such as MATLAB 

and Mathematica or by using in-house solutions [examples include: (3, 6, 12, 21, 22)]. However, as 

these methods of analysis have become more essential, simple curve fitting software no longer 

provides sufficient flexibility to implement the models. Thus, there is increasingly a need for 

substantially more computational expertise than previously required. In this respect the protein 

folding field contrasts with other fields, for example x-ray crystallography, where free or 

inexpensive and user-friendly interfaces and analysis packages have been developed (23). 

 

Here we present PyFolding, a free, open-source and extensible framework for graphing, analysis 

and simulation. At present, it is customised for the analysis and modelling of protein folding 

kinetics and thermodynamic stability. To demonstrate these and other functions we present a 

number of examples as Jupyter notebooks.  The software, coupled with the supplied models / 

Jupyter (iPython) notebooks, can be used by researchers with less programming expertise to 

access more complex models/analyses and share their work with others.  Moreover, PyFolding 

also enables researchers to automate the time-consuming process of combinatorial calculations, 

fitting data to multiple models or multiple models to specific data. This enables novice users to 

simply replace the filenames of the datasets with their own and execute the same calculations for 

their systems. For more advanced users, new models and functionality can be added with ease by 

utilising the template models. The Jupyter notebooks provided also show how PyFolding provides 

an easy way to share analysis for publication and amongst research teams. 

 

[Materials & Methods] 

PyFolding was developed using Python 2.7 and additional libraries NumPy, SciPy and Matplotlib. 

Analyses were performed on either an i5 Macbook Pro with 8Gb RAM running macOS Sierra, a Dell 

Precision T3600 Workstation running Ubuntu 16.04LTS with 64Gb RAM and an NVIDIA GTX1080 

GPU or a virtual PC running Windows 10 (64 bit) in VirtualBox on an i7 Macbook Air. Example data 

for the associated notebooks were taken from existing publications or extracted from original 



publications using engauge digitizer (https://github.com/markummitchell/engauge-digitizer). The 

PyFolding software, notebooks and example data are distributed through github at 

https://github.com/quantumjot/PyFolding. 

 

[Results & Discussion] 

PyFolding is implemented in Python and is distributed as a lightweight, open-source library 

through github and can be downloaded with instructions for installation from the authors’ site1. 

PyFolding has several dependencies, requiring Numpy, Scipy and Matplotlib. These are now 

conveniently packaged in several Python frameworks, enabling easy installation of PyFolding even 

for those who have never used Python before (described in the “SETUP.md” file of PyFolding and 

as a series of instructional videos to demonstrate the installation and use of PyFolding2).  As part 

of PyFolding, we have provided many commonly used folding models, such as two- and three-

state equilibrium folding and various equivalent kinetic variations, as standard (S.I. Jupyter 

notebook 1-4 & 8). Functions and models themselves are open source and are thus available for 

inspection or modification by both reviewers and authors. Moreover, due to the open source 

nature, users can introduce new functionality by adding new models into the library building upon 

the template classes provided. We encourage users to contribute notebooks and models to create 

a community resource. 

 

Fitting and evaluation of typical folding models within PyFolding: PyFolding uses a hierarchical 

representation of data internally. Proteins exist as objects that can have metadata as well as 

multiple sets of kinetic and thermodynamic data associated with them. Input data such as chevron 

plots or equilibrium denaturation curves can be supplied as comma separated value files (.CSV). 

Once loaded, each dataset is represented in PyFolding as an object, associating the data with 

numerous common calculations. Models are represented as functions that can be associated with 

the data objects you wish to fit. As such, datasets can have multiple models and vice versa 

enabling automated fitting and evaluation (S.I. Jupyter notebooks 1-3). Parameter estimation for 

simple (non-Ising) models is performed using the Levenberg–Marquardt non-linear least-mean-

squares optimization algorithm to optimize the appropriate objective function [as implemented in 

SciPy (24)].  The output variables (with standard error) and fit of the model to the dataset (with R2 

                                                        
1 https://github.com/quantumjot/PyFolding 
2 https://github.com/quantumjot/PyFolding/wiki 



coefficient of determination & 95 % confidence levels) can be viewed within PyFolding and/or the 

fit function and parameters written out as a CSV file for plotting in your software of choice (S.I 

Jupyter notebook 1-3). Importantly, by representing proteins as objects, containing both kinetic 

and equilibrium datasets, PyFolding enables users to perform and automate higher-level 

calculations such as Phi-value analysis (25, 26), which can be tedious and time-consuming to 

perform otherwise (S.I Jupyter notebook 3). Moreover, users can define their own calculations so 

that more complex data analysis can be performed.  For example, multiple kinetic phases of a 

chevron plot (fast and slow rate constants of folding) can be fitted to two linked equations 

describing the slow and fast phases of a 3-state folding regime (Figure 1, S.I Jupyter Notebook 4).  

We believe that this type of fitting is extremely difficult to achieve with the commercial curve 

fitting software commonly employed for analysing these data, owing to the complexity of 

parameter sharing amongst different models and datasets. 

 

 

More “complex” fitting, evaluation and simulations using the Ising Model: Ising models are 

statistical thermodynamic nearest-neighbour models that were initially developed for 

ferromagnetism (27, 28). Subsequently, they have been used with great success in both biological 

and non-biological systems to describe order-disorder transitions (12). Within the field of protein 

folding and design they have been used in a number of instances to model phenomena such as 

helix to coil transitions, beta-hairpin formation, prediction of protein folding 

rates/thermodynamics and with regards to the postulation of downhill folding (6, 12, 20, 29-34). 

Most recently two types of one-dimensional (1-D) variants have been used to probe the 

equilibrium and kinetic un/folding of repeat proteins (3, 12, 17, 21, 22, 35, 36). The most 

commonly used, and mathematically less complex, has been the 1-D homopolymer model (also 

called a homozipper). Here, each arrayed element of a protein is treated as an identical, 

equivalent independently folding unit, with interactions between units via their interfaces.  

Analytical partition functions describing the statistical properties of this system can be written. By 

globally fitting this model to, for example, chemical denaturation curves for a series of proteins 

that differ only by their number of identical units, the intrinsic energy of a repeated unit and the 

interaction energy between the folded units can be delineated. However, this simplified model 

cannot describe the majority of naturally occurring proteins where subunits differ in their 

stabilities, and varying topologies and/or non-canonical interfaces exist.  In these cases, a more 



sophisticated and mathematically more complex heteropolymer Ising model must be used. Here 

the partition functions required to fit the data are dependent on the topology of interacting units 

and thus are unique for each analysis.  

 

At present, there is no freely available software that can globally fit multiple folding datasets to a 

heteropolymer Ising model, and only a few that can adequately implement a homopolymer Ising 

model.  Therefore, most research groups have had to develop bespoke solutions to enable analysis 

of their data (3, 21, 22, 35, 36). Significantly, in PyFolding we have implemented methods to 

enable users to easily fit datasets of proteins with different topologies to both the homozipper 

and heteropolymer Ising models. To achieve this goal PyFolding presents a flexible framework for 

defining any non-degenerate 1-D protein topology using a series of primitive protein folding 

“domains/modules” (Figure 2). Users define their proteins’ 1-D topology from these domains (S.I. 

Jupyter notebook 5-6). PyFolding will then automatically calculate the correct partition function 

for the defined topology, using the matrix formulation of the model [as previously described (12)], 

and globally fit the equations to the data as required (S.I. Jupyter notebook 5-6).  The same 

framework also enables users to simulate the effect of changing the topology, a feature that is of 

great interest to those engaged in rational protein design (S.I. Jupyter notebook 7).  

 

To determine a globally optimal set of parameters that minimises the difference between the 

experimental datasets and the simulated unfolding curves, PyFolding uses the stochastic 

differential evolution optimization algorithm (37) implemented in SciPy (24). In practice, 

experimental datasets may not adequately constrain parameters during optimization of the 

objective function, despite yielding an adequate curve fit to the data.  It is therefore essential to 

carefully assess the output of the model to verify the validity of any topologies and the resultant 

parameters. A description of how PyFolding provides the error estimates and determines how 

constrained parameters are is given in the error analysis section below. As with the simpler 

models, PyFolding can be used to visualise the global minimum output variables (with standard 

errors) and the fit of the model to the dataset (with R2 coeff. of determination) (S.I. Jupyter 

notebook 5-6). The output can also be exported as a CSV file for plotting in your software of 

choice. In addition, PyFolding outputs a graphical representation of the topology used to fit the 

data and a graph of the denaturant dependence of each subunit used (Figure 2). Thus, PyFolding 

enables non-experts to create and analyse protein folding datasets with either a homopolymer or 



heteropolymer Ising model for any reasonable 1-D protein topology. Moreover, once the 1-D 

topology of your protein has been defined, PyFolding can also be used to simulate and thereby 

predict folding behavior of both the whole protein and the sub-units that it has been composed of 

(S.I. Jupyter notebook 7). In principle, this type of approach could be extended to higher 

dimensional topologies, thus providing a framework to enable rational protein design. 

 

 

Error Analysis: We calculate various metrics to assess the quality of the output from PyFolding. All 

independent non-constant variables are reported with a standard error of each parameter, i: 

𝑆𝐸(𝑖) =  cov(𝑖, 𝑖) ∙ √
∑(𝑦𝑓𝑖𝑡−𝑦𝑜𝑏𝑠)2

𝐷𝑂𝐹
   (1) 

 

where cov is the covariance matrix (where cov(𝑖, 𝑖) represents the variance of parameter i), 𝑦𝑓𝑖𝑡 

are the y-values of the fit at the observed x values, 𝑦𝑜𝑏𝑠 are the observed y values of the data and 

𝐷𝑂𝐹 represents the degrees of freedom (the number of data-points minus the number of free 

variables). From these values we can also calculate the confidence interval (nominally at 95%) 

where, the confidence interval for parameter i is : 

𝐶𝐼(𝑖) = 𝑃𝑖 ± 𝑡(95%, 𝐷𝑂𝐹) ∙ 𝑆𝐸(𝑖)    (2) 

 

where 𝑃𝑖 is the value of parameter i and 𝑡(95%, 𝐷𝑂𝐹) is the t-distribution at 95% with 𝐷𝑂𝐹 

degrees of freedom. Finally, we report the coefficient of determination (𝑅2) as a statistical 

measure of the error between the data and the fitted model: 

𝑅2 = 1 −
∑(𝑦𝑓𝑖𝑡−𝑦𝑜𝑏𝑠)2

∑(𝑦𝑓𝑖𝑡−𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2   (3) 

 

where 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅  represents the mean of the observed data.  

 

In all models other than the heteropolymer Ising model we utilise a gradient optimiser such as the 

Levenberg-Marquardt algorithm that yields a covariance matrix of the fitted parameters. 

However, since we must utilise a different optimization method (the differential evolution 

optimiser) for the global fitting of heteropolymer Ising models, we calculate the errors in a slightly 

different way. The optimiser does not yield a covariance matrix as default, so we calculate a 



numerical approximation based on the Jacobian matrix (here, a matrix of numerical 

approximations of all the partial differentials of all variables) as follows: 

cov = (JT ∙ J)−1 ∙ 𝑀𝑆𝐸   (4) 

 

where J is the Jacobian matrix, and 𝑀𝑆𝐸 is the mean squared error of the fit.  

 

In PyFolding we have provided estimates of the standard error and confidence intervals for each 

parameter (calculated as described above) using this numerical approximation of the covariance 

matrix. In general, estimating errors for the parameters or the uniqueness of the solution in 

heteropolymer models is a complex problem, owing to the method of optimization used.  

Interestingly, Barrick and coworkers used Bootstrap analysis to evaluate parameter confidence 

intervals (12). However, many of the published studies either do not describe how error margins 

were determined or simply list the error between the data and curve fit. Here, when confronted 

with ill-posed datasets or poorly chosen topologies, which can produce an adequate curve fit to 

the data (as measured by 𝑅2), PyFolding’s numerical error approximation becomes unstable 

leading to large errors. Thus, in evaluating the determinant of the Jacobian as well as the 

estimated errors it is possible to assess the quality of the model and the validity of the solution - 

large errors show that the model parameters are not properly constrained. In such cases, 

PyFolding raises the appropriate warnings to enable the user to quickly interpret the results and 

adjust the topologies and members of a dataset appropriately. 

 

 

[Conclusion] 

Here we have shown that PyFolding, in conjunction with Jupyter notebooks, enables researchers 

with minimal programming expertise the ability to fit both “typical” and complex models to their 

thermodynamic and kinetic protein folding data. The software is free and can be used to both 

analyse and simulate data with models and analyses that expensive commercial user-friendly 

options cannot. In particular, we have incorporated the ability to fit and simulate equilibrium 

unfolding experiments with user defined protein topologies, using a matrix formulation of the 1-D 

heteropolymer Ising model. This aspect of PyFolding will be of particular interest to groups 

working on protein folds composed of repetitive motifs such as Ankyrin repeats and TPRs, given 

that these proteins are increasingly being used as novel antibody therapeutics (38-41) and 



biomaterials (42-47). Further, as analysis can be performed in Jupyter notebooks, it enables novice 

researchers to easily use the software and for groups to share data and methods. We have 

provided a number of example notebooks and accompanying video tutorials as a resource 

accompanying this manuscript, enabling other users to recreate our data analysis and modify 

parameters. Finally, due to PyFolding’s extensible framework, it is straightforward to extend, thus 

enabling fitting and modelling of other systems or phenomena such as protein-protein and other 

protein-binding interactions. Such extensions can be rapidly and seamlessly deployed as a 

community resource thus broadening the functionality of the software.  
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[Figure Legends] 

Figure 1: Work flow example of the fitting linked equations in PyFolding. (A) Unfolding and 
folding kinetics (chevron plots) showing the distinct fast and slow phases for the 3-state folding 
thermophilic AR protein (tANK) identified in the archaeon Thermoplasma (2) are loaded into 
PyFolding as Chevron objects. (B) Two linked models (functions) are associated with the chevron 
data. These describe the fast (Model #1) and slow phases (Model #2) of the chevrons.  Certain rate 
constants and their associated m-values, are shared between the two models. The other 
parameters are “free” and associated and fitted only in the slow phase model. (C) Global 
optimization within PyFolding enables simultaneous fitting of the two models with shared 
parameters to the two respective phases. The resultant fits for the fast (blue dotted line) and slow 
phases (red solid line) are shown overlaid on the observed data. The residuals show the difference 
between the slow phase observations and fit. These calculations can be found in SI Jupyter 
Notebook 4. 
 
Figure 2: Work flow example of global optimization of a Heteropolymer Ising model in 
PyFolding. (A) GdmHCl-induced equilibrium denaturations of a series of single-helix deletion 
CTPRn proteins are loaded into PyFolding as EquilibriumDenaturation objects. In the figure 
we schematically represent these as individual protein structures corresponding to the smallest in 
the series (CTPR2-A) upto (dots) the largest (CTPR3) (3). The figures were made with Pymol and 
individual helices are coloured by the user defined topology used by the ising model - Helix (blue), 
Repeat (black), a mutant Repeat (green) or a Cap (red). (B) Using PyFolding’s built-in primitive 
protein folding “domains/modules”, one can define topologies for each protein in the series. Each 
primitive is a container for several thermodynamic parameters to describe the intrinsic and 
interfacial stability terms. (C) Using the topologies defined in (B), PyFolding will automatically 
generate the appropriate partition functions (q) for each protein in the series using a matrix 
formulation, and share parameters between other proteins in the series. (D) A final global fitting 
step finds the optimal set of parameters to describe the series. (E) The optimal parameters (and 
their estimated errors/confidence intervals) for each domain primitive are recovered and output 
for the user. These calculations can be found in SI Jupyter Notebook 6. 
 






