
Running Head: PyFolding: open-source graphing software

PyFolding: An open-source software package for graphing, simulation and analysis of the
biophysical properties of proteins

Alan R. Lowe1,2,3*, Albert Perez-Riba4, Laura S. Itzhaki4 & Ewan R.G. Main5*

1 London Centre for Nanotechnology
17-19 Gordon Street, London
WC1H 0AH, UK

2 Structural & Molecular Biology, University College London,
Gower Street, London,
WC1E 6BT, UK

3 Department of Biological Sciences, Birkbeck College, University of London
Malet Street, London
WC1E 7HX, UK

4 Department of Pharmacology, University of Cambridge
Tennis Court Road, Cambridge
CB2 1PD, UK

5 School of Biological and Chemical Sciences, Queen Mary University of London
Mile End Road, London
E1 4NS, UK

*corresponding authors (ARL: a.lowe@ucl.ac.uk, ERGM: e.main@qmul.ac.uk)

[Abstract]

For many years, curve fitting software has been heavily utilized to fit simple models to various

types of biophysical data. Although such software packages are easy to use for simple functions,

they are often expensive and present substantial impediments to applying more complex models

or for the analysis of large datasets. One field that is relient on such data analysis is the

thermodynamics and kinetics of protein folding. Over the past decade, increasingly sophisticated

analytical models have been generated, but without simple tools to enable routine analysis.

Consequently, users have needed to generate their own tools or otherwise find willing

collaborators. Here we present PyFolding, a free, open source, and extensible Python framework

for graphing, analysis and simulation of the biophysical properties of proteins. To demonstrate the

utility of PyFolding, we have used it to analyze and model experimental protein folding and

thermodynamic data. Examples include: (i) multi-phase kinetic folding fitted to linked equations,

(ii) global fitting of multiple datasets and (iii) analysis of repeat protein thermodynamics with Ising

model variants. Moreover, we demonstrate how Pyfolding is easily extensible to novel

functionality beyond applications in protein folding via the addition of new models. Example

scripts to perform these and other operations are supplied with the software, and we encourage

users to contribute notebooks and models to create a community resource. Finally, we show that

PyFolding can be used in conjunction with Jupyter notebooks as an easy way to share methods

and analysis for publication and amongst research teams.

[Introduction]

The last decade has seen a shift in the analysis of experimental protein folding and

thermodynamic stability data from the fitting of individual datasets using simple models to

increasingly complex models using global optimization over multiple large datasets [examples

include Refs: (3-21)]. This shift in focus has required moving from user-friendly, but expensive

software packages to bespoke solutions developed in computing environments such as MATLAB

and Mathematica or by using in-house solutions [examples include: (3, 6, 12, 21, 22)]. However, as

these methods of analysis have become more essential, simple curve fitting software no longer

provides sufficient flexibility to implement the models. Thus, there is increasingly a need for

substantially more computational expertise than previously required. In this respect the protein

folding field contrasts with other fields, for example x-ray crystallography, where free or

inexpensive and user-friendly interfaces and analysis packages have been developed (23).

Here we present PyFolding, a free, open-source and extensible framework for graphing, analysis

and simulation. At present, it is customised for the analysis and modelling of protein folding

kinetics and thermodynamic stability. To demonstrate these and other functions we present a

number of examples as Jupyter notebooks. The software, coupled with the supplied models /

Jupyter (iPython) notebooks, can be used by researchers with less programming expertise to

access more complex models/analyses and share their work with others. Moreover, PyFolding

also enables researchers to automate the time-consuming process of combinatorial calculations,

fitting data to multiple models or multiple models to specific data. This enables novice users to

simply replace the filenames of the datasets with their own and execute the same calculations for

their systems. For more advanced users, new models and functionality can be added with ease by

utilising the template models. The Jupyter notebooks provided also show how PyFolding provides

an easy way to share analysis for publication and amongst research teams.

[Materials & Methods]

PyFolding was developed using Python 2.7 and additional libraries NumPy, SciPy and Matplotlib.

Analyses were performed on either an i5 Macbook Pro with 8Gb RAM running macOS Sierra, a Dell

Precision T3600 Workstation running Ubuntu 16.04LTS with 64Gb RAM and an NVIDIA GTX1080

GPU or a virtual PC running Windows 10 (64 bit) in VirtualBox on an i7 Macbook Air. Example data

for the associated notebooks were taken from existing publications or extracted from original

publications using engauge digitizer (https://github.com/markummitchell/engauge-digitizer). The

PyFolding software, notebooks and example data are distributed through github at

https://github.com/quantumjot/PyFolding.

[Results & Discussion]

PyFolding is implemented in Python and is distributed as a lightweight, open-source library

through github and can be downloaded with instructions for installation from the authors’ site1.

PyFolding has several dependencies, requiring Numpy, Scipy and Matplotlib. These are now

conveniently packaged in several Python frameworks, enabling easy installation of PyFolding even

for those who have never used Python before (described in the “SETUP.md” file of PyFolding and

as a series of instructional videos to demonstrate the installation and use of PyFolding2). As part

of PyFolding, we have provided many commonly used folding models, such as two- and three-

state equilibrium folding and various equivalent kinetic variations, as standard (S.I. Jupyter

notebook 1-4 & 8). Functions and models themselves are open source and are thus available for

inspection or modification by both reviewers and authors. Moreover, due to the open source

nature, users can introduce new functionality by adding new models into the library building upon

the template classes provided. We encourage users to contribute notebooks and models to create

a community resource.

Fitting and evaluation of typical folding models within PyFolding: PyFolding uses a hierarchical

representation of data internally. Proteins exist as objects that can have metadata as well as

multiple sets of kinetic and thermodynamic data associated with them. Input data such as chevron

plots or equilibrium denaturation curves can be supplied as comma separated value files (.CSV).

Once loaded, each dataset is represented in PyFolding as an object, associating the data with

numerous common calculations. Models are represented as functions that can be associated with

the data objects you wish to fit. As such, datasets can have multiple models and vice versa

enabling automated fitting and evaluation (S.I. Jupyter notebooks 1-3). Parameter estimation for

simple (non-Ising) models is performed using the Levenberg–Marquardt non-linear least-mean-

squares optimization algorithm to optimize the appropriate objective function [as implemented in

SciPy (24)]. The output variables (with standard error) and fit of the model to the dataset (with R2

1 https://github.com/quantumjot/PyFolding
2 https://github.com/quantumjot/PyFolding/wiki

coefficient of determination & 95 % confidence levels) can be viewed within PyFolding and/or the

fit function and parameters written out as a CSV file for plotting in your software of choice (S.I

Jupyter notebook 1-3). Importantly, by representing proteins as objects, containing both kinetic

and equilibrium datasets, PyFolding enables users to perform and automate higher-level

calculations such as Phi-value analysis (25, 26), which can be tedious and time-consuming to

perform otherwise (S.I Jupyter notebook 3). Moreover, users can define their own calculations so

that more complex data analysis can be performed. For example, multiple kinetic phases of a

chevron plot (fast and slow rate constants of folding) can be fitted to two linked equations

describing the slow and fast phases of a 3-state folding regime (Figure 1, S.I Jupyter Notebook 4).

We believe that this type of fitting is extremely difficult to achieve with the commercial curve

fitting software commonly employed for analysing these data, owing to the complexity of

parameter sharing amongst different models and datasets.

More “complex” fitting, evaluation and simulations using the Ising Model: Ising models are

statistical thermodynamic nearest-neighbour models that were initially developed for

ferromagnetism (27, 28). Subsequently, they have been used with great success in both biological

and non-biological systems to describe order-disorder transitions (12). Within the field of protein

folding and design they have been used in a number of instances to model phenomena such as

helix to coil transitions, beta-hairpin formation, prediction of protein folding

rates/thermodynamics and with regards to the postulation of downhill folding (6, 12, 20, 29-34).

Most recently two types of one-dimensional (1-D) variants have been used to probe the

equilibrium and kinetic un/folding of repeat proteins (3, 12, 17, 21, 22, 35, 36). The most

commonly used, and mathematically less complex, has been the 1-D homopolymer model (also

called a homozipper). Here, each arrayed element of a protein is treated as an identical,

equivalent independently folding unit, with interactions between units via their interfaces.

Analytical partition functions describing the statistical properties of this system can be written. By

globally fitting this model to, for example, chemical denaturation curves for a series of proteins

that differ only by their number of identical units, the intrinsic energy of a repeated unit and the

interaction energy between the folded units can be delineated. However, this simplified model

cannot describe the majority of naturally occurring proteins where subunits differ in their

stabilities, and varying topologies and/or non-canonical interfaces exist. In these cases, a more

sophisticated and mathematically more complex heteropolymer Ising model must be used. Here

the partition functions required to fit the data are dependent on the topology of interacting units

and thus are unique for each analysis.

At present, there is no freely available software that can globally fit multiple folding datasets to a

heteropolymer Ising model, and only a few that can adequately implement a homopolymer Ising

model. Therefore, most research groups have had to develop bespoke solutions to enable analysis

of their data (3, 21, 22, 35, 36). Significantly, in PyFolding we have implemented methods to

enable users to easily fit datasets of proteins with different topologies to both the homozipper

and heteropolymer Ising models. To achieve this goal PyFolding presents a flexible framework for

defining any non-degenerate 1-D protein topology using a series of primitive protein folding

“domains/modules” (Figure 2). Users define their proteins’ 1-D topology from these domains (S.I.

Jupyter notebook 5-6). PyFolding will then automatically calculate the correct partition function

for the defined topology, using the matrix formulation of the model [as previously described (12)],

and globally fit the equations to the data as required (S.I. Jupyter notebook 5-6). The same

framework also enables users to simulate the effect of changing the topology, a feature that is of

great interest to those engaged in rational protein design (S.I. Jupyter notebook 7).

To determine a globally optimal set of parameters that minimises the difference between the

experimental datasets and the simulated unfolding curves, PyFolding uses the stochastic

differential evolution optimization algorithm (37) implemented in SciPy (24). In practice,

experimental datasets may not adequately constrain parameters during optimization of the

objective function, despite yielding an adequate curve fit to the data. It is therefore essential to

carefully assess the output of the model to verify the validity of any topologies and the resultant

parameters. A description of how PyFolding provides the error estimates and determines how

constrained parameters are is given in the error analysis section below. As with the simpler

models, PyFolding can be used to visualise the global minimum output variables (with standard

errors) and the fit of the model to the dataset (with R2 coeff. of determination) (S.I. Jupyter

notebook 5-6). The output can also be exported as a CSV file for plotting in your software of

choice. In addition, PyFolding outputs a graphical representation of the topology used to fit the

data and a graph of the denaturant dependence of each subunit used (Figure 2). Thus, PyFolding

enables non-experts to create and analyse protein folding datasets with either a homopolymer or

heteropolymer Ising model for any reasonable 1-D protein topology. Moreover, once the 1-D

topology of your protein has been defined, PyFolding can also be used to simulate and thereby

predict folding behavior of both the whole protein and the sub-units that it has been composed of

(S.I. Jupyter notebook 7). In principle, this type of approach could be extended to higher

dimensional topologies, thus providing a framework to enable rational protein design.

Error Analysis: We calculate various metrics to assess the quality of the output from PyFolding. All

independent non-constant variables are reported with a standard error of each parameter, i:

𝑆𝐸(𝑖) = cov(𝑖, 𝑖) ∙ √
∑(𝑦𝑓𝑖𝑡−𝑦𝑜𝑏𝑠)2

𝐷𝑂𝐹
 (1)

where cov is the covariance matrix (where cov(𝑖, 𝑖) represents the variance of parameter i), 𝑦𝑓𝑖𝑡

are the y-values of the fit at the observed x values, 𝑦𝑜𝑏𝑠 are the observed y values of the data and

𝐷𝑂𝐹 represents the degrees of freedom (the number of data-points minus the number of free

variables). From these values we can also calculate the confidence interval (nominally at 95%)

where, the confidence interval for parameter i is :

𝐶𝐼(𝑖) = 𝑃𝑖 ± 𝑡(95%, 𝐷𝑂𝐹) ∙ 𝑆𝐸(𝑖) (2)

where 𝑃𝑖 is the value of parameter i and 𝑡(95%, 𝐷𝑂𝐹) is the t-distribution at 95% with 𝐷𝑂𝐹

degrees of freedom. Finally, we report the coefficient of determination (𝑅2) as a statistical

measure of the error between the data and the fitted model:

𝑅2 = 1 −
∑(𝑦𝑓𝑖𝑡−𝑦𝑜𝑏𝑠)2

∑(𝑦𝑓𝑖𝑡−𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2 (3)

where 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ represents the mean of the observed data.

In all models other than the heteropolymer Ising model we utilise a gradient optimiser such as the

Levenberg-Marquardt algorithm that yields a covariance matrix of the fitted parameters.

However, since we must utilise a different optimization method (the differential evolution

optimiser) for the global fitting of heteropolymer Ising models, we calculate the errors in a slightly

different way. The optimiser does not yield a covariance matrix as default, so we calculate a

numerical approximation based on the Jacobian matrix (here, a matrix of numerical

approximations of all the partial differentials of all variables) as follows:

cov = (JT ∙ J)−1 ∙ 𝑀𝑆𝐸 (4)

where J is the Jacobian matrix, and 𝑀𝑆𝐸 is the mean squared error of the fit.

In PyFolding we have provided estimates of the standard error and confidence intervals for each

parameter (calculated as described above) using this numerical approximation of the covariance

matrix. In general, estimating errors for the parameters or the uniqueness of the solution in

heteropolymer models is a complex problem, owing to the method of optimization used.

Interestingly, Barrick and coworkers used Bootstrap analysis to evaluate parameter confidence

intervals (12). However, many of the published studies either do not describe how error margins

were determined or simply list the error between the data and curve fit. Here, when confronted

with ill-posed datasets or poorly chosen topologies, which can produce an adequate curve fit to

the data (as measured by 𝑅2), PyFolding’s numerical error approximation becomes unstable

leading to large errors. Thus, in evaluating the determinant of the Jacobian as well as the

estimated errors it is possible to assess the quality of the model and the validity of the solution -

large errors show that the model parameters are not properly constrained. In such cases,

PyFolding raises the appropriate warnings to enable the user to quickly interpret the results and

adjust the topologies and members of a dataset appropriately.

[Conclusion]

Here we have shown that PyFolding, in conjunction with Jupyter notebooks, enables researchers

with minimal programming expertise the ability to fit both “typical” and complex models to their

thermodynamic and kinetic protein folding data. The software is free and can be used to both

analyse and simulate data with models and analyses that expensive commercial user-friendly

options cannot. In particular, we have incorporated the ability to fit and simulate equilibrium

unfolding experiments with user defined protein topologies, using a matrix formulation of the 1-D

heteropolymer Ising model. This aspect of PyFolding will be of particular interest to groups

working on protein folds composed of repetitive motifs such as Ankyrin repeats and TPRs, given

that these proteins are increasingly being used as novel antibody therapeutics (38-41) and

biomaterials (42-47). Further, as analysis can be performed in Jupyter notebooks, it enables novice

researchers to easily use the software and for groups to share data and methods. We have

provided a number of example notebooks and accompanying video tutorials as a resource

accompanying this manuscript, enabling other users to recreate our data analysis and modify

parameters. Finally, due to PyFolding’s extensible framework, it is straightforward to extend, thus

enabling fitting and modelling of other systems or phenomena such as protein-protein and other

protein-binding interactions. Such extensions can be rapidly and seamlessly deployed as a

community resource thus broadening the functionality of the software.

[Author Contributions]

ARL wrote the software. ARL and ERGM developed the models. ARL, ERGM, LSI and APR tested the

software and performed data analysis and simulations. ARL and ERGM created the supplementary

Jupyter Notebooks. ERGM created the online tutorials. ERGM and ARL wrote the manuscript, and

all authors edited and approved the manuscript.

[Acknowledgements]

We would like to thank Dr. Jonathan Phillips for insightful discussion, helpful comments and

suggestions. LSI acknowledges the support of a Senior Fellowship from the UK Medical Research

Foundation. AP was supported by a BBSRC Doctoral Training Programme scholarship and an Oliver

Gatty Studentship. ERGM and LSI labs acknowledge support from a Leverhulme Trust project

grant.

[References]

1. Main, E. R., K. F. Fulton, and S. E. Jackson. 1999. Folding pathway of FKBP12 and
characterisation of the transition state. J Mol Biol 291:429-444.

2. Low, C., U. Weininger, P. Neumann, M. Klepsch, H. Lilie, M. T. Stubbs, and J. Balbach. 2008.
Structural insights into an equilibrium folding intermediate of an archaeal ankyrin repeat
protein. Proc Natl Acad Sci U S A 105:3779-3784.

3. Millership, C., J. J. Phillips, and E. R. G. Main. 2016. Ising Model Reprogramming of a Repeat
Protein's Equilibrium Unfolding Pathway. J Mol Biol 428:1804-1817.

4. Jackson, S. E., and A. R. Fersht. 1991. Folding of chymotrypsin inhibitor 2. 1. Evidence for a
two-state transition. Biochemistry 30:10428-10435.

5. Schatzle, M., and T. Kiefhaber. 2006. Shape of the free energy barriers for protein folding
probed by multiple perturbation analysis. J Mol Biol 357:655-664.

6. Naganathan, A. N., and V. Munoz. 2014. Thermodynamics of downhill folding: multi-probe
analysis of PDD, a protein that folds over a marginal free energy barrier. Journal of Physical
Chemistry. B 118:8982-8994.

7. Ferreiro, D. U., and P. G. Wolynes. 2008. The capillarity picture and the kinetics of one-
dimensional protein folding. Proc Natl Acad Sci U S A 105:9853-9854.

8. Barrick, D., D. U. Ferreiro, and E. A. Komives. 2008. Folding landscapes of ankyrin repeat
proteins: experiments meet theory. Curr Opin Struct Biol 18:27-34.

9. DeVries, I., D. U. Ferreiro, I. E. Sanchez, and E. A. Komives. 2011. Folding kinetics of the
cooperatively folded subdomain of the IkappaBalpha ankyrin repeat domain. J Mol Biol
408:163-176.

10. Maxwell, K. L., D. Wildes, A. Zarrine-Afsar, M. A. De Los Rios, A. G. Brown, C. T. Friel, L.
Hedberg, J. C. Horng, D. Bona, E. J. Miller, A. Vallee-Belisle, E. R. Main, F. Bemporad, L. Qiu,
K. Teilum, N. D. Vu, A. M. Edwards, I. Ruczinski, F. M. Poulsen, B. B. Kragelund, S. W.
Michnick, F. Chiti, Y. Bai, S. J. Hagen, L. Serrano, M. Oliveberg, D. P. Raleigh, P. Wittung-
Stafshede, S. E. Radford, S. E. Jackson, T. R. Sosnick, S. Marqusee, A. R. Davidson, and K. W.
Plaxco. 2005. Protein folding: defining a "standard" set of experimental conditions and a
preliminary kinetic data set of two-state proteins. Protein Science 14:602-616.

11. Wensley, B. G., S. Batey, F. A. Bone, Z. M. Chan, N. R. Tumelty, A. Steward, L. G. Kwa, A.
Borgia, and J. Clarke. 2010. Experimental evidence for a frustrated energy landscape in a
three-helix-bundle protein family. Nature 463:685-688.

12. Aksel, T., and D. Barrick. 2009. Analysis of repeat-protein folding using nearest-neighbor
statistical mechanical models. Methods in Enzymology 455:95-125.

13. Mallam, A. L., and S. E. Jackson. 2007. A comparison of the folding of two knotted proteins:
YbeA and YibK. J Mol Biol 366:650-665.

14. Scott, K. A., L. G. Randles, and J. Clarke. 2004. The folding of spectrin domains II: phi-value
analysis of R16. J Mol Biol 344:207-221.

15. Hutton, R. D., J. Wilkinson, M. Faccin, E. M. Sivertsson, A. Pelizzola, A. R. Lowe, P.
Bruscolini, and L. S. Itzhaki. 2015. Mapping the Topography of a Protein Energy Landscape.
J Am Chem Soc 137:14610-14625.

16. Tsytlonok, M., P. O. Craig, E. Sivertsson, D. Serquera, S. Perrett, R. B. Best, P. G. Wolynes,
and L. S. Itzhaki. 2013. Complex energy landscape of a giant repeat protein. Structure
21:1954-1965.

17. Javadi, Y., and E. R. Main. 2009. Exploring the folding energy landscape of a series of
designed consensus tetratricopeptide repeat proteins. Proc Natl Acad Sci U S A 106:17383-
17388.

18. Lowe, A. R., and L. S. Itzhaki. 2007. Biophysical characterisation of the small ankyrin repeat
protein myotrophin. J Mol Biol 365:1245-1255.

19. Xu, M., O. Beresneva, R. Rosario, and H. Roder. 2012. Microsecond folding dynamics of
apomyoglobin at acidic pH. Journal of Physical Chemistry. B 116:7014-7025.

20. Garcia-Mira, M. M., M. Sadqi, N. Fischer, J. M. Sanchez-Ruiz, and V. Munoz. 2002.
Experimental identification of downhill protein folding. Science 298:2191-2195.

21. Aksel, T., A. Majumdar, and D. Barrick. 2011. The contribution of entropy, enthalpy, and
hydrophobic desolvation to cooperativity in repeat-protein folding. Structure 19:349-360.

22. Kajander, T., A. L. Cortajarena, E. R. Main, S. G. Mochrie, and L. Regan. 2005. A new folding
paradigm for repeat proteins. Journal of the American Chemical Society 127:10188-10190.

23. Winn, M. D., C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan,
E. B. Krissinel, A. G. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A.
Potterton, H. R. Powell, R. J. Read, A. Vagin, and K. S. Wilson. 2011. Overview of the CCP4
suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235-242.

24. Jones, E., T. Oliphant, P. Peterson, and others. 2001. SciPy: Open source scientific tools for
Python.

25. Serrano, L., A. Matouschek, and A. R. Fersht. 1992. The folding of an enzyme. III. Structure
of the transition state for unfolding of barnase analysed by a protein engineering
procedure. J Mol Biol 224:805-818.

26. Fersht, A. R., A. Matouschek, and L. Serrano. 1992. The folding of an enzyme. I. Theory of
protein engineering analysis of stability and pathway of protein folding. J Mol Biol 224:771-
782.

27. Brush, S. G. 1967. History of the Lenz-Ising Model. Reviews of Modern Physics 39:883-893.
28. Niss, M. 2005. History of the Lenz-Ising model 1920-1950: From ferromagnetic to

cooperative phenomena. Arch Hist Exact Sci 59:267-318.
29. Zimm, B. H., and J. K. Bragg. 1959. Theory of the Phase Transition between Helix and

Random Coil in Polypeptide Chains. The Journal of Chemical Physics 31:526-535.
30. Munoz, V., P. A. Thompson, J. Hofrichter, and W. A. Eaton. 1997. Folding dynamics and

mechanism of beta-hairpin formation. Nature 390:196-199.
31. Munoz, V., and W. A. Eaton. 1999. A simple model for calculating the kinetics of protein

folding from three-dimensional structures. Proc Natl Acad Sci U S A 96:11311-11316.
32. Kubelka, J., E. R. Henry, T. Cellmer, J. Hofrichter, and W. A. Eaton. 2008. Chemical, physical,

and theoretical kinetics of an ultrafast folding protein. Proc Natl Acad Sci U S A 105:18655-
18662.

33. Kubelka, G. S., and J. Kubelka. 2014. Site-specific thermodynamic stability and unfolding of
a de novo designed protein structural motif mapped by 13C isotopically edited IR
spectroscopy. J Am Chem Soc 136:6037-6048.

34. Lai, J. K., G. S. Kubelka, and J. Kubelka. 2015. Sequence, structure, and cooperativity in
folding of elementary protein structural motifs. Proc Natl Acad Sci U S A 112:9890-9895.

35. Wetzel, S. K., G. Settanni, M. Kenig, H. K. Binz, and A. Pluckthun. 2008. Folding and
unfolding mechanism of highly stable full-consensus ankyrin repeat proteins. J Mol Biol
376:241-257.

36. Aksel, T., and D. Barrick. 2014. Direct observation of parallel folding pathways revealed
using a symmetric repeat protein system. Biophys J 107:220-232.

37. Storn, R., and K. Price. 1997. Differential evolution - A simple and efficient heuristic for
global optimization over continuous spaces. J Global Optim 11:341-359.

38. Rasool, M., A. Malik, M. Hussain, K. A. Haq, K. Butt, M. A. B. Ashraf, M. I. Naseer, M. Asif, R.
Shaikh, M. Z. Mustafa, Q. Alam, G. Rasool, W. Ahmad, A. Haque, and M. A. Kamal. 2017.
DARPins Bioengineering and its Theranostic Approaches: Emerging Trends in Protein
Engineering. Curr Pharm Design 23:1610-1615.

39. Jost, C., and A. Pluckthun. 2014. Engineered proteins with desired specificity: DARPins,
other alternative scaffolds and bispecific IgGs. Curr Op Struct Biol 27:102-112.

40. Ernst, P., and A. Pluckthun. 2017. Advances in the design and engineering of peptide-
binding repeat proteins. Biol Chem 398:23-29.

41. Cortajarena, A. L., F. Yi, and L. Regan. 2008. Designed TPR modules as novel anticancer
agents. ACS Chem Biol 3:161-166.

42. Sawyer, N., E. B. Speltz, and L. Regan. 2013. NextGen protein design. Biochem Soc Trans
41:1131-1136.

43. Main, E. R., J. J. Phillips, and C. Millership. 2013. Repeat protein engineering: creating
functional nanostructures/biomaterials from modular building blocks. Biochem Soc Trans
41:1152-1158.

44. Grove, T. Z., L. Regan, and A. L. Cortajarena. 2013. Nanostructured functional films from
engineered repeat proteins. Journal of the Royal Society, Interface 10:20130051.

45. Phillips, J. J., C. Millership, and E. R. G. Main. 2012. Fibrous Nanostructures from the Self-
Assembly of Designed Repeat Protein Modules. Angew Chem Int Edit 51:13132-13135.

46. Grove, T. Z., and L. Regan. 2012. New materials from proteins and peptides. Curr Opin
Struct Biol 22:451-456.

47. Grove, T. Z., J. Forster, G. Pimienta, E. Dufresne, and L. Regan. 2012. A modular approach
to the design of protein-based smart gels. Biopolymers 97:508-517.

[Figure Legends]

Figure 1: Work flow example of the fitting linked equations in PyFolding. (A) Unfolding and
folding kinetics (chevron plots) showing the distinct fast and slow phases for the 3-state folding
thermophilic AR protein (tANK) identified in the archaeon Thermoplasma (2) are loaded into
PyFolding as Chevron objects. (B) Two linked models (functions) are associated with the chevron
data. These describe the fast (Model #1) and slow phases (Model #2) of the chevrons. Certain rate
constants and their associated m-values, are shared between the two models. The other
parameters are “free” and associated and fitted only in the slow phase model. (C) Global
optimization within PyFolding enables simultaneous fitting of the two models with shared
parameters to the two respective phases. The resultant fits for the fast (blue dotted line) and slow
phases (red solid line) are shown overlaid on the observed data. The residuals show the difference
between the slow phase observations and fit. These calculations can be found in SI Jupyter
Notebook 4.

Figure 2: Work flow example of global optimization of a Heteropolymer Ising model in
PyFolding. (A) GdmHCl-induced equilibrium denaturations of a series of single-helix deletion
CTPRn proteins are loaded into PyFolding as EquilibriumDenaturation objects. In the figure
we schematically represent these as individual protein structures corresponding to the smallest in
the series (CTPR2-A) upto (dots) the largest (CTPR3) (3). The figures were made with Pymol and
individual helices are coloured by the user defined topology used by the ising model - Helix (blue),
Repeat (black), a mutant Repeat (green) or a Cap (red). (B) Using PyFolding’s built-in primitive
protein folding “domains/modules”, one can define topologies for each protein in the series. Each
primitive is a container for several thermodynamic parameters to describe the intrinsic and
interfacial stability terms. (C) Using the topologies defined in (B), PyFolding will automatically
generate the appropriate partition functions (q) for each protein in the series using a matrix
formulation, and share parameters between other proteins in the series. (D) A final global fitting
step finds the optimal set of parameters to describe the series. (E) The optimal parameters (and
their estimated errors/confidence intervals) for each domain primitive are recovered and output
for the user. These calculations can be found in SI Jupyter Notebook 6.

