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Supplementary Figure 1. The action of the cycle Sm,n on a qutrit passive state. (a) The action of the cycle Sm,n on the
spectrum of a passive state, when work is extracted and the Hamiltonian HP is such that m∆E10 > n∆E21. The probability
of occupation of |1〉P is reduced by (m + n) ∆P (orange), where ∆P > 0, while the probabilities of occupation of |0〉 and |1〉
increase, respectively, by m∆P and n∆P (dark blue). (b) The action of the same cycle on the spectrum of a passive state,
when work is extracted and the Hamiltonian HP is such that m∆E10 < n∆E21. The map acts on the system in the opposite
way compared to the previous scenario.

Supplementary Note 1. GENERAL CYCLE FOR WORK EXTRACTION FROM PASSIVE STATES

We present in full details the general cycle needed to extract work from a qutrit system described by a passive
state. Work extraction is achieved through the interaction between a qudit ancilla (the thermal machine) and the
main qutrit system. This qutrit system has Hamiltonian

HP = E0 |0〉 〈0|P + E1 |1〉 〈1|P + E2 |2〉 〈2|P , (1)

and we define the energy gap as ∆E10 = E1 − E0 > 0 and ∆E21 = E2 − E1 > 0. The state of the system is passive,
meaning that no energy can be extracted with unitary operations, and we can write it as a classical state

ρP = p0 |0〉 〈0|P + p1 |1〉 〈1|P + p2 |2〉 〈2|P , (2)

where p0 ≥ p1 ≥ p2 (which is a direct consequence of the no-energy-extraction condition).
The machine we introduce is a d-level system with a trivial Hamiltonian, described by the state

ρM =

d−1∑
j=0

qj |j〉 〈j|M . (3)

We operate over system and machine with a unitary operation composed by multiple swaps. In particular, we first
perform m− 1 swaps between the pair of states (|0〉P , |1〉P) and the pairs {(|j〉M , |j + 1〉M)}m−2

j=0
, followed by a swap

between the same pair of states of the system and the pair (|m− 1〉M , |m+ n− 1〉M) of the machine. Then, we

perform n−1 swaps between the pair (|1〉P , |2〉P) and the pairs {(|j〉M , |j + 1〉M)}m+n−2
j=m

, followed by a swap between

the same system’s states and the pair (|0〉M , |m〉M). In order to perform this cycle, the dimension of the catalyst has
to be at least equal to m+ n, and indeed in the following we fix d = m+ n. The unitary we want to apply is

Sm,n = S
(0,m)
(1,2) ◦S

(m,m+1)
(1,2) ◦S(m+1,m+2)

(1,2) ◦. . .◦S(m+n−2,m+n−1)
(1,2) ◦S(m−1,m+n−1)

(0,1) ◦S(m−2,m−1)
(0,1) ◦S(m−3,m−2)

(0,1) ◦. . .◦S(0,1)
(0,1) , (4)

where the operation S
(c,d)
(a,b) is a swap between system and machine, performing the permutation |a〉P |d〉M ↔ |b〉P |c〉M.

For the given unitary evolution we can easily evaluate the final state of the global system. This final state presents
classical correlations between system and machine, but in the following we only consider the marginal states for system
and machine, which are the sole information we need. In fact, the energy of the global system solely depends on the
Hamiltonian HP of the system (and therefore only on the local state of the system), as the machine has a trivial
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Hamiltonian, and we do not have an interaction term Hint. Moreover, in order for the machine to be re-usable on a
new system, we only need its local initial and final states to be equal, and the correlations with the old systems do
not affect the engine. The final state of the system is

ρ̃P = TrM

[
Sm,n (ρP ⊗ ρM)S†m,n

]
=

p0 +

m−1∑
j=1

(p1qj−1 − p0qj) + (p1qm−1 − p0qm+n−1)

 |0〉 〈0|P
+

p1 −
m−1∑
j=1

(p1qj−1 − p0qj)− (p1qm−1 − p0qm+n−1)−
m+n−1∑
j=m+1

(p1qj − p2qj−1)− (p1qm − p2q0)

 |1〉 〈1|P
+

p2 +

m+n−1∑
j=m+1

(p1qj − p2qj−1) + (p1qm − p2q0)

 |2〉 〈2|P , (5)

while the final state of the machine is

ρ̃M = TrP

[
Sm,n (ρP ⊗ ρM)S†m,n

]
= (p0q0 + p0q1 + p1qm) |0〉 〈0|M +

m−2∑
j=1

(p1qj−1 + p0qj+1 + p2qj) |j〉 〈j|M

+ (p1qm−2 + p0qm+n−1 + p2qm−1) |m− 1〉 〈m− 1|M + (p0qm + p2q0 + p1qm+1) |m〉 〈m|M

+

m+n−2∑
j=m+1

(p0qj + p2qj−1 + p1qj+1) |j〉 〈j|M + (p1qm−1 + p2qm+n−2 + p2qm+n−1) |m+ n− 1〉 〈m+ n− 1|M . (6)

As we stated above, in order for the machine to be re-usable we need its final local state ρ̃M to be equal to the
initial one ρM. Correlations with the system do not invalidate the re-usability, as we always discard the system after
the cycle, and we take a new copy to repeat the process. In this way, we can extract work from a reservoir of passive
states by acting on them individually. The constraint of an equal initial and final state of the machine provides the
following set of equalities,

q0 = p0q0 + p0q1 + p1qm (7)

qj = p1qj−1 + p0qj+1 + p2qj ; j = 1, . . . ,m− 2 (8)

qm−1 = p1qm−2 + p0qm+n−1 + p2qm−1 (9)

qm = p0qm + p2q0 + p1qm+1 (10)

qj = p0qj + p2qj−1 + p1qj+1 ; j = m+ 1, . . . ,m+ n− 2 (11)

qm+n−1 = p1qm−1 + p2qm+n−2 + p2qm+n−1, (12)

which, if solved, allow for the probability distribution of the state of the machine to be expressed in terms of the
passive state ρP.

Work extracted and activable passive states

In our framework, we do not explicitly account for a battery, that is, an additional system with a specific Hamilto-
nian, able to account for any energy exchange between system and machine. Instead, we implicitly assume the battery
to be present, so that any change in the average energy of the system is thought as some energy flowing from (or to)
the battery. In particular, if the average energy of the system decreases, then the battery is storing this energy, while
when the average energy of the system increases, the battery is providing it. All the energy coming from (or going to)
the battery is accounted as work. Under this assumptions, the amount of work we extract during one cycle is given
by the changing in the average energy of the system, that is

∆W = TrP [HP (ρP − ρ̃P)] , (13)

where ρP is the initial passive state, and ρ̃P is the final state, whose probability distribution is {p′0, p′1, p′2}. We can
express the amount of extracted work in terms of the energy gaps of the Hamiltonian HP, as

∆W = ∆E10 (p′0 − p0)−∆E21 (p′2 − p2) , (14)
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where this expression has been obtained by applying the normalisation constraint to the initial and final state of the
system.

If we replace the probability distribution of the final state of the system, Supplementary Eq. (5), into the expression
of extracted work, Supplementary Eq. (14), we obtain that

∆W = ∆E10

m−1∑
j=1

(p1qj−1 − p0qj) + (p1qm−1 − p0qm+n−1)

−∆E21

m+n−1∑
j=m+1

(p1qj − p2qj−1) + (p1qm − p2q0)

 .

(15)
This expression can be highly simplified if we use the properties of the probability distribution of the machine,
Supplementary Eqs. (7) to (12). In particular, from Supplementary Eq. (8) we find that

p1qj−1 − p0qj = p1qj − p0qj+1 ; ∀ j = 1, . . . ,m− 2, (16)

while from (9) we have that

p1qm−2 − p0qm−1 = p1qm−1 − p0qm+n−1. (17)

Together, these equations reduce the first bracket of Supplementary Eq. (15) into a single term,

m−1∑
j=1

(p1qj−1 − p0qj) + (p1qm−1 − p0qm+n−1) = m (p1qm−1 − p0qm+n−1) . (18)

If we consider Supplementary Eq. (11), instead, we find that

p1qj − p2qj−1 = p1qj+1 − p2qj ; ∀ j = m+ 1, . . . ,m+ n− 2, (19)

while Supplementary Eq. (10) implies that

p1qm+1 − p2qm = p1qm − p2q0. (20)

These two equations simplify the second bracket of Supplementary Eq. (15),

m+n−1∑
j=m+1

(p1qj − p2qj−1) + (p1qm − p2q0) = n (p1qm+n−1 − p2qm+n−2) . (21)

We can now use Supplementary Eq. (12) to show that

p1qm−1 − p0qm+n−1 = p1qm+n−1 − p2qm+n−2, (22)

which allows us to express the work we extract as

∆W = (m∆E10 − n∆E21) (p1qm+n−1 − p2qm+n−2) . (23)

From the above equation we notice that the work extracted is factorised into an Hamiltonian contribution and
another contribution associated with the probability distribution of the passive state. Then, for a given Hamiltonian
HP such that m∆E10 > n∆E21, we will find that certain passive states allow for work extraction (the ones in which
p1qm+n−1 > p2qm+n−2), while others do not. Therefore, for every given Hamiltonian (that is, every ∆E10 and ∆E21)
and for every given cycle (that is, every n and m), we find that the set of passive states is divided into two subsets, the
ones which allow for work extraction (we can call them activable states), and the ones which do not. In the following
we will express the probability distribution of ρM in terms of the probability distribution of the passive state, so as
to define these two subsets for each Hamiltonian and cycle.

As a first step, we want to express the first m− 2 elements of the sequence {qj}m−1
j=0 in terms of last two elements,

qm−2 and qm−1. Moreover, we express the first n − 2 elements of {qj}m+n−1
j=m in terms of qm+n−2 and qm+n−1. This

can be done by utilising the equalities given in Supplementary Eqs. (8) and (11), which we recast in the following
way.

qj =

(
1 +

p0

p1

)
qj+1 −

p0

p1
qj+2 ; ∀ j = 0, . . . ,m− 3, (24)

qj =

(
1 +

p1

p2

)
qj+1 −

p1

p2
qj+2 ; ∀ j = m, . . . ,m+ n− 3. (25)
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It can be proved (see Supplementary Note 6) that the elements of the sequences can be expressed as

qj = T1 (m− (j + 2)) qm−2 −
p0

p1
T1 (m− (j + 3)) qm−1 ; ∀ j = 0, . . . ,m− 3, (26)

qj = T2 (m+ n− (j + 2)) qm+n−2 −
p1

p2
T2 (m+ n− (j + 3)) qm+n−1 ; ∀ j = m, . . . ,m+ n− 3, (27)

where T1(h) =
∑h
l=0

(
p0
p1

)l
and T2(h) =

∑h
l=0

(
p1
p2

)l
.

We can now express, using Supplementary Eqs. (9) and (12), the elements qm−2 and qm−1 in terms of qm+n−2 and
qm+n−2. From Supplementary Eq. (9) we obtain that

qm−2 = T1(2) qm+n−1 −
p2

p1
T1(1) qm+n−2. (28)

From Supplementary Eq. (12), instead, we get that

qm−1 = T1(1) qm+n−1 −
p2

p1
T1(0) qm+n−2. (29)

Then, we can finally express qm+n−2 in terms of qm+n−1 through Supplementary Eq. (10), and we obtain

qm+n−2 = D(m,n) qm+n−1, (30)

where the coefficient D(m,n) is defined as

D(m,n) =
p1

p2

T1(m) + p1
p2

T2(n− 2)

T1(m− 1) + p1
p2

T2(n− 1)
. (31)

Thanks to the above result, we can express the overall probability distribution of ρM in terms of the occupation
probability of the state |m+ n− 1〉M. Thus, we have that

qj =

(
T1(m− j)− p2

p1
D(m,n) T1 (m− (j + 1))

)
qm+n−1 ; j = 0, . . . ,m− 1, (32)

qj =

(
T2 (m+ n− (j + 2)) D(m,n)− p1

p2
T2 (m+ n− (j + 3))

)
qm+n−1 ; j = m, . . . ,m+ n− 3, (33)

qm+n−2 = D(m,n) qm+n−1, (34)

where it is possible to show that each qj , with j = 0, . . . ,m+n− 2, is positive if qm+n−1 is positive (see the technical

result 3). From the normalisation condition it then follows that the sequence {qj}m+n−1
j=0 is a proper probability

distribution. Moreover, the normalisation condition allows us to evaluate qm+n−1 as a function of the probability
distribution of the passive state ρP,

qm+n−1 =
T1(m− 1) + p1

p2
T2(n− 1)(

T1(m) + p1
p2

T2(n− 2)
)2

+
((

p1
p2

)n
−
(
p0
p1

)m)(∑m
j=0 T1(j)− p1

p2

∑n−3
j=0 T2(j)

) . (35)

From Supplementary Eq. (35) we can express all the other elements of {qj}m+n−1
j=0 in terms of the probability distri-

bution of ρP.
We can now further characterise the amount of work extracted during our cycle. In fact, if we apply Supplementary

Eq. (34) into Supplementary Eq. (23), we obtain

∆W = (m∆E10 − n∆E21)
p1

((
p1
p2

)n
−
(
p0
p1

)m)
T1(m− 1) + p1

p2
T2(n− 1)

qm+n−1, (36)

where the sign of ∆W depends on the sole terms (m∆E10 − n∆E21) and
((

p1
p2

)n
−
(
p0
p1

)m)
, since the other factors

are always positive. Thus, for each cycle, we can characterise which passive states can be activated by that cycle,
that is, which states allow for work extraction during the cycle. The subset of activable states is

R+
m,n =

{
ρP passive

∣∣∣∣ (p1

p2

)n
>

(
p0

p1

)m
when m∆E10 − n∆E21 > 0

∨
(
p1

p2

)n
<

(
p0

p1

)m
when m∆E10 − n∆E21 < 0

}
, (37)
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where this region clearly depends on the Hamiltonian of the system HP, and on the number of swaps performed
during the cycle, m and n.

The final state of the system

Let us consider the final state of the passive system after we have applied the cycle Sm,n. In Supplementary Eq. (5)

we have shown the probability distribution of ρ̃P as a function of {qi}m+n−1
i=0 . Thanks to the constraints introduced

in Supplementary Eqs. (7) to (12), we can simplify the form of ρ̃P, so that we obtain

p′0 = p0 +m∆P, (38)

p′1 = p1 − (m+ n) ∆P, (39)

p′2 = p2 + n∆P. (40)

We can easily notice that the cycle acts on the passive state by modifying the original probabilities by multiples of

∆P =
p1 qm+n−1

T1(m− 1) + p1
p2

T2(n− 1)

((
p1

p2

)n
−
(
p0

p1

)m)
. (41)

The expression of the final state ρ̃P allows us to understand how the cycle operates over the system when work is
extracted. In particular, we can consider the evolution of the system in two different situations, linked to the two
possible scenarios of Supplementary Eq. (37).

Suppose that HP is such that m∆E10 > n∆E21. Then, from the conditions in R+
m,n, we can verify that ∆P > 0,

so that the map is depleting the population of the state |1〉P, while increasing the populations of both |0〉P and |2〉P
(see Supplementary Figure 1). Work is extracted from the cycle since the energy gained while moving m∆P from p1

to p0 is bigger than the energy paid to move n∆P from p1 to p2. In Supplementary Note 5, we show that the entropy
of the system has to increase during the transformation. This is achieved since p1 gets closer to p2 after the cycle.

Let us consider the case in which HP is such that m∆E10 < n∆E21. Then, from the conditions in R+
m,n, we can

verify that ∆P < 0, so that the map is depleting the populations of the states |0〉P and |2〉P, while increasing the
populations of |1〉P (see Supplementary Figure 1). Work is extracted from the cycle since the energy gained while
moving n∆P from p2 to p1 is bigger than the energy paid to move m∆P from p0 to p1. Moreover, the entropy of
the system increases since p0 gets closer to p1 after the cycle.

It is worth noting that the final state ρ̃P can be active. This happen, in the case of m∆E10 > n∆E21, when
p′1 < p′2. In the other case, we obtain a final active state if p′0 < p′1. In these situations, not only are we able to extract
work from the passive state ρP during the cycle, but we can also perform a local unitary operation (permuting |1〉P
and |2〉P in the first case, and |0〉P and |1〉P in the second) which allows for additional work extraction. It is also
possible for the final state of the system to be passive, and to still lie inside the activable region R+

m,n. Due to the
correlation created between system and machine, however, this state cannot be used again, at least not with the same
machine.

Supplementary Note 2. WORK EXTRACTION FROM A GENERIC QUDIT PASSIVE STATE

Work extraction from a generic qudit passive state ρ
(d)
P (for any Hamiltonian H

(d)
P ) can be achieved with the cycle

introduced in Supplementary Note 1, even if this work extraction is not optimal (as it might be when we deal with
qutrit state, as we see in Supplementary Note 4). Indeed, even if the system has d levels, we only need to focus our

analysis on three of them, and perform the cycle on these levels only. Thus, given the state ρ
(d)
P =

∑d−1
i=0 pi |i〉 〈i|P

and the Hamiltonian H
(d)
P =

∑d−1
i=0 Ei |i〉 〈i|P, we can consider the subspace Ak = span {|k〉P , |k + 1〉P , |k + 2〉P}, for

a given k ∈ [0, d−3]. Thus, we can divide the qudit state and the Hamiltonian in two contributions, one with support
over Ak, the other with support over its complement,

ρ
(d)
P =

(∑
i∈Ak

pi

)
ρ

(A)
P +

(
1−

∑
i∈Ak

pi

)
ρ

(Ac)
P , (42)

H
(d)
P = H

(A)
P +H

(Ac)
P , (43)
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where the normalised quantum states are

ρ
(A)
P =

∑
i∈Ak

pi∑
j∈Ak

pj
|i〉 〈i|P , (44)

ρ
(Ac)
P =

∑
i/∈Ak

pi
1−

∑
j∈Ak

pj
|i〉 〈i|P , (45)

while the Hamiltonian contributions are, respectively, H
(A)
P =

∑
i∈Ak

Ei |i〉 〈i|P and H
(Ac)
P =

∑
i/∈Ak

Ei |i〉 〈i|P. In the

following, we define λ =
∑
i∈Ak

pi, so that ρ
(d)
P = λ ρ

(A)
P + (1− λ) ρ

(Ac)
P .

We can now introduce an ancillary system (the machine M) of dimension m+n, described by the state ρM, together
with the global unitary operator U ,

U = PAc ⊗ IM + PA ⊗ IM ◦ Sm,n ◦ PA ⊗ IM, (46)

where the operator Sm,n, described in Supplementary Eq. (4), has support on Ak ⊗HM, and therefore commute with
PA ⊗ IM. If we consider the evolution of the system under this operator, we obtain

ρ̃
(d)
P = TrM

[
U
(
ρ

(d)
P ⊗ ρM

)
U†
]

= λTrM

[
Sm,n

(
ρ

(A)
P ⊗ ρM

)
S†m,n

]
+ (1− λ) ρ

(Ac)
P = λ ρ̃

(A)
P + (1− λ) ρ

(Ac)
P , (47)

and we can easily verify, due to the properties of Sm,n, that the local state of the machine is left unchanged. The
amount of work extracted during this cycle is

∆W = TrP

[
H

(d)
P

(
ρ

(d)
P − ρ̃(d)

P

)]
= λTrP

[
H

(A)
P

(
ρ

(A)
P − ρ̃(A)

P

)]
, (48)

and the problem reduces to the one analysed at the beginning of this section (that is, to the extraction of work from a

qutrit system described by the passive state ρ
(A)
P , with Hamiltonian H

(A)
P ), with the only difference of a multiplicative

factor λ ∈ (0, 1) in ∆W .

Supplementary Note 3. WORK EXTRACTION AND k-ACTIVABLE STATES

The set of passive states can be divided into a hierarchy of classes, which divides the states according to the number
of copies needed to activate them. Here, we say that a state is active if it is not passive, and therefore if we can extract
work from it with unitary operations. Any passive but not completely passive state can be activated if we tensor
together enough copies of it. In particular, when k copies of a passive state are active, we call the state k-activable.
We now show that, if work is extracted from a qutrit passive state ρP, with Hamiltonian HP, through the cycle Sm,n,
then the state realised by m+n copies of ρP is active. It worth noting that, while our cycle only requires an additional
system of dimension m + n to extract work from ρP, in order to activate the same state we would need m + n − 1
copies of it, that is, an ancilla whose size is exponential in n+m.

In the following, we consider a qutrit system, although the same argument applies to qudit systems, for the reasons
presented in the previous section. If the passive state ρP is activated by the cycle Sm,n, then one of the two conditions
in Supplementary Eq. (37) has to be satisfied. Let us assume that the conditions satisfied by state and Hamiltonian
are

m∆E10 > n∆E21, (49)(
p1

p2

)n
>

(
p0

p1

)m
, (50)

where the other case follows straightforwardly.
Consider now a system composed by n + m copies of the qutrit system under examination, with Hamiltonian

Htot =
∑m+n
i=1 H

(i)
P , where the term H

(i)
P acts over the i-th copy. The state of this global system is ρ⊗m+n

P . Then, let

us focus our attention on two eigenstates of Htot, namely, |1〉⊗m+n
and |0〉⊗m ⊗ |2〉⊗n. The first eigenstate has an

energy of (m+ n)E1, and its occupation probability is pm+n
1 . The second eigenstate, instead, has energy mE0 +nE2,

and its occupation probability is pm0 p
n
2 . It is easy to verify that, if the constraints of Supplementary Eqs. (49) and

(50) hold, then the inequalities (m+ n)E1 > mE0 + nE2 and pm+n
1 > pm0 p

n
2 are satisfied, implying that the state

ρ⊗m+n
P is active. Thus, we have shown that if a passive state ρP can be activated with the cycle Sm,n, then the state

ρ⊗m+n
P is active. However, this result does not tell us whether it is possible to activate the state ρP by tensoring it

with less copies. In the same way, we do not know whether the fact that the state ρ⊗m+n
P is active implies that we

can extract work from ρP with the cycle Sm,n.
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Supplementary Note 4. ASYMPTOTIC BEHAVIOUR OF THE MACHINE

We are now interested in the study of the cycle Sm,n when the size of the machine (as well as the number of hot
and cold swaps) tends to infinity. In particular, we are interested in the form of the probability distribution of the
machine, the work extracted, and the final state of the passive system. Let us consider the Hamiltonian HP of the
main (qutrit) system. We know that, for any Hamiltonian HP, there exists two integer numbers N and M such that
M ∆E10 = N ∆E21. We now consider a passive state ρP describing this system whose probability distribution satisfies

(p1/p2)
N
> (p0/p1)

M
. Notice that this condition implies that the state is in the subset of passive states denoted by

R1 (see the main text, Fig. 5), or equivalently it implies that the hot virtual temperature is associated with the pair of
states |0〉P and |1〉P. One could analyse the opposite situation as well, but the results we obtain would be analogous,
due to the symmetry of the problem with respect to the hot and cold interactions.

In order to perform the asymptotic expansion of the probability distribution of the machine, Supplementary
Eqs. (32), (33), and (34), we first want to define how the ratio n

m behaves as the number of hot and cold swaps
goes to infinity. We set this fraction equal to α, so that n = αm, and we define a range for this parameter, due to
the constraints we set on the passive state. Indeed, if we want to extract work, we need m and n to satisfy one of the
two conditions in Supplementary Eq. (37), and in particular, since we assume the passive state to be in the region
R1, we need m∆E10 > n∆E21 and (p1/p2)

n
> (p0/p1)

m
. The two inequalities implies that

log p0
p1

log p1
p2

< α <
∆E10

∆E21
, (51)

where it is easy to verify that the lower bound is smaller than the upper one, due to the fact that ρP ∈ R1.

We can now use the assumptions made on the cycle (that is, on the parameters m and n) and on the initial passive
state in order to expand the probability distribution of ρM for m,n→∞. As a first step, let us consider the coefficient
D(m,n) presented in Supplementary Eq. (31). When m and n tends to infinity, we find that

D(m,n) ≈ 1 +

(
p0

p1

)m(
p2

p1

)n
(p0 − p2) (p1 − p2)

(p0 − p1)
+O

((
p2

p1

)n
;

(
p0

p1

)2m(
p2

p1

)2n
)
, (52)

where it is easy to verify that the term (p0/p1)
m

(p2/p1)
n → 0 as m,n → ∞, and that both (p2/p1)

n
and

(p0/p1)
2m

(p2/p1)
2n

tends to 0 faster that this first term. However, we cannot say which one is the fastest without
further assumptions, and that is the reason we keep both in the O.

Once the expansion of D(m,n) is known, we can focus on the probability distribution of the machine. For simplicity,
we consider the distribution in Supplementary Eqs. (32), (33), and (34), where qm+n−1 is not defined yet; we will
define it through the normalisation condition once the asymptotic expansion has been performed. We find that

qj ≈ qm+n−1

(
p0 − p2

p0 − p1
+O

((
p0

p1

)m(
p2

p1

)n))(
p0

p1

)m−j
; j = 0, . . . ,m− 1, (53)

qj ≈ qm+n−1

(
p2

p1

p0 − p2

p0 − p1
+O

((
p0

p1

)m(
p2

p1

)n))(
p0

p1

)m(
p1

p2

)m−j
; j = m, . . . ,m+ n− 3, (54)

qm+n−2 ≈ qm+n−1

(
1 +O

((
p0

p1

)m(
p2

p1

)n))
. (55)

We are now able to obtain the value of qm+n−1 by imposing the normalisation condition over the asymptotic probability
distribution of the machine. We find that

qm+n−1 ≈

(
(p1 − p2) (p0 − p1)

2

p1 (p0 − p2)
2 +O

((
p0

p1

)m(
p2

p1

)n))(
p1

p0

)m
, (56)

that is, qm+n−1 tends to 0 as (p1/p0)
m

for m → ∞. Notice that the same result can be obtained by expanding
Supplementary Eq. (35). If we send m and n to infinity, we find that the asymptotic probability distribution of the
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machine is

qj ≈
(p1 − p2) (p0 − p1)

p1 (p0 − p2)

(
p0

p1

)−j
; j = 0, . . . ,m− 1, (57)

qj ≈
p2 (p1 − p2) (p0 − p1)

p2
1 (p0 − p2)

(
p1

p2

)m−j
; j = m, . . . ,m+ n− 3, (58)

qm+n−2 ≈ qm+n−1 ≈
(p1 − p2) (p0 − p1)

2

p1 (p0 − p2)
2

(
p1

p0

)m
. (59)

We can now investigate how the probability distribution of the main system changes, and evaluate the asymptotic
work extracted ∆W during on cycle. Let us consider the probability unit ∆P , introduced in Supplementary Eq. (41).
If we set m and n to infinity, we have that

∆P ≈ (p1 − p2)
2

(p0 − p1)
2

p1 (p0 − p2)
2

(
p1

p0

)m
, (60)

that tends to 0 with an exponential scaling. Therefore, the heat engine with infinite-dimensional thermal machine only
modifies the passive states by an infinitesimal amount. As a consequence, the work extracted has to be infinitesimal
as well. Indeed, by considering Supplementary Eq. (36) it is easy to show that ∆W tends to 0 as m,n → ∞, since
∆W is proportional to ∆P (modulo a multiplying factor proportional to m, which tends to infinity more slowly than
(p1/p0)

m
tends to 0).

Final state and work extraction over multiple cycles

In the previous section we have seen that, when the machine is infinitely large, we only modify the passive state
infinitesimally. We can then consider the situation in which we are given an infinite number of these machines, and we
want to evolve the passive state (and extract work) by sequentially applying our cycle with the help of these machines.
In order to study the evolution of the passive state, we can consider its probability distribution after one cycle, see
Supplementary Eqs. (38), (39), and (40). These equations can be recast as differential equations, since ∆P → 0 in
this scenario. It is easy to verify that the differential equations which govern the evolution of the passive state are

dp0

dt
=

(p1 − p2)
2

(p0 − p1)
2

p1 (p0 − p2)
2 , (61)

dp1

dt
= − (1 + α)

(p1 − p2)
2

(p0 − p1)
2

p1 (p0 − p2)
2 , (62)

where α = n
m takes values in the range given by Supplementary Eq. (51), and we define

dpi
dt

= lim
m→∞

p′i − pi
∆p(m)

, ∆p(m) = m

(
p1

p0

)m
for i = 0, 1, (63)

with {p0, p1, 1− p0 − p1} the probability distribution of the state before the cycle, and {p′0, p′1, 1− p′0 − p′1} the
distribution of the state after the cycle. The continuous parameter t is here related to the number of cycles we
perform on the system. It is worth noting that Supplementary Eqs. (61) and (62) share a common (positive) factor.
Therefore we have that, as time goes on, the probability of occupation of |0〉P increases, while the one of |1〉P decreases
(as expected from the discussion in Supplementary Note 1). Moreover, since α > 0, the increase in the former is
slower than the decreasing of the latter.

The two differential equations can be reshaped in a single, more helpful one,

dp1

dt
= − (1 + α)

dp0

dt
, (64)

and we can investigate the solution of this equation for α close to its limiting values. As a first step, let us consider
the case in which α = ∆E10

∆E12
− 1

m ≈
∆E10

∆E12
. Then, the solution of Supplementary Eq. (64) is

p1(t) = −
(

1 +
∆E10

∆E12

)(
p0(t)− p0(t = 0)

)
+ p1(t = 0), (65)
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where {p0(t), p1(t), 1− p0(t)− p1(t)} is the probability distribution of the state of the system at time t, and t = 0 is
the initial time (when the system is in ρP). If we rearrange Supplementary Eq. (65), we see that it is equivalent to
the following constraint for the evolved state

Tr [HP ρP(t)] = Tr [HP ρP] ∀ t ≥ 0, (66)

that is, the evolution conserves the energy of the system (equivalently, no work is extracted during the evolution).
It is easy to see, for instance by representing the solution of Supplementary Eq. (65) in a two-dimensional plot of
p1 versus p0, that the passive state is moving toward the set of thermal states, that are the steady states of this
evolution. In fact, when a thermal state is considered, we find that (p1/p2)

α
= (p0/p1), which implies ∆P = 0. Thus,

after enough time t is passed, we find that the initial passive state ρP has been mapped into the thermal state with
inverse temperature βmin, where

βmin : Tr [HP τβmin
] = Tr [HP ρP] , τβmin

=
e−βminHP

Zmin
, (67)

and Zmin is the partition function of the system at temperature β−1
min.

We can now consider the case in which α = log p0−log p1
log p1−log p2

+ 1
m ≈

log p0−log p1
log p1−log p2

, that is, when its value is close to its

lower bound. We notice that, in this case, α itself depends on the probability distribution of the passive state. Then,
if we replace α with its lower bound in Supplementary Eq. (64) we obtain

log p0
dp0

dt
+ log p1

dp1

dt
+ log p2

dp2

dt
= 0, (68)

which, if integrated between time 0 and time t, gives the following constraint on the entropy of the evolved states

S (ρP(t)) = S (ρP) ∀ t ≥ 0, (69)

where S(ρ) = −Tr [ρ log ρ] is the Von Neumann entropy. Therefore, the evolution of the passive state has to preserve
the entropy of the system, and the state is moving toward the set of thermal states. For t→∞, the system is in the
thermal state with inverse temperature βmax, where

βmax : S (τβmax) = S (ρP) , τβmax =
e−βmaxHP

Zmax
, (70)

and Zmax is the partition function of the system at temperature β−1
max.

Thus, when we set α equal to its limiting values, the evolution of the passive state can either follow a trajectory in
which energy is conserved, or in which entropy is conserved. However, all intermediate trajectories can be achieved
by imposing a different α inside the range specified by Supplementary Eq. (51), and consequently all passive states
with lower or equal energy, and greater or equal entropy that ρP can be reached.

Supplementary Note 5. ACTIVATION MAPS

Consider a specific family of CPT maps which allow for work extraction from a system described by a passive state.
The maps of this family, which we call activation maps, can be represented by unitary operations acting globally
on both the main system and an ancilla, such that the local state of the ancillary system is preserved. The cycle
of Supplementary Note 1 is a particular instance of these activation maps, and in the following we study the main
properties of this family. Let us consider a system S with Hamiltonian HS, described by the state ρS (this state does
not need to be passive). The energy that we extract from the system when we evolve it with the unitary operator US

is given by the difference in average energy between the initial and final state,

∆WS = TrS

[
HS

(
ρS − US ρS U

†
S

)]
. (71)

We assume this energy to be stored in an implicit battery, and we refer to it as work. If the state is passive, then
∆WS ≤ 0, that is, we cannot extract work. If the state is active, we can find some unitary operations that allow for
a positive work extraction. In particular, the maximum work we can extract is

∆Wmax
S = TrS [HS (ρS − ρpass

S )] , (72)
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where the state ρpass
S is the passive state obtained from the initial state ρS. In the literature, ∆Wmax

S is known as
ergotropy, see Supplementary Ref. [1]. This quantity is 0 if the initial state is passive, and positive otherwise.

We now add an ancillary system A with a trivial Hamiltonian, described by the state σA, and we consider the
family of maps

Λ (ρS) = TrA

[
USA (ρS ⊗ σA)U†SA

]
, (73)

where the unitary operator USA acts globally over system and ancilla, and we require that the final local state of the
ancilla is equal to the initial one, that is,

σA = TrS

[
USA (ρS ⊗ σA)U†SA

]
. (74)

Notice that the global evolution can create correlations between system and ancilla, and our sole constraint regards
the local state of the ancilla. The work extracted during the evolution is given by

∆WSA = TrS [HS (ρS − Λ(ρS))] , (75)

where the only contribution is given by the energy difference in the system, due to the absence of any interaction
term between system and ancilla, and to the fact that the final state of the ancilla is equal to its initial one.

We can now introduce the notion of activation of a quantum state,

Definition 1. Let us consider a system S with Hamiltonian HS, described by the state ρS. Then, we say that ρS

can be activated iff there exists an ancillary system A with trivial Hamiltonian, described by the state σA, and an
activation map Λ as in Supplementary Eq. (73), satisfying the condition of Supplementary Eq. (74), such that

∆WSA > ∆Wmax
S (76)

that is, if we can extract more work from ρS by acting with Λ than we can do by acting with any unitary operation.

As we noticed before, an example of activation map is the one used in our passive engine, Supplementary Eq. (5),
where the ancillary system is the machine, and the global unitary operation is Sm,n.

General properties of the final state of an activation map

Although the family of maps introduced in the previous section is extremely general, we can still use their definition
to derive some properties of the final state Λ (ρS). The first, trivial property consists in the fact that the final state
of an activation map has to have a lower energy than the one possessed by a the passified version of the initial state,

TrS [HS ρ
pass
S ] > TrS [HS Λ (ρS)] , (77)

where this condition is obtained by replacing Supplementary Eqs. (72) and (75) into Def. 1.
A second property regards the entropy of the final state. Due to the invariance of Von Neumann entropy under

unitary operations, its sub-additivity, and the constraint on the local state of the machine, Supplementary Eq. (74),
we can show that

S(ρS) ≤ S(Λ (ρS)), (78)

that is, the entropy of the system cannot decrease during the evolution through Λ, and it increases if correlations
create between system and machine.

If we use the two constraints on Λ (ρS) together, we can show that any completely passive state cannot be activated.
In this case, in fact, we have that ρS = ρpass

S = τβ , that is, the state under examination is the thermal state of
Hamiltonian HS for a certain β ∈ [0,∞]. But we know that this state is the one with minimum energy for a given
entropy, or, vice versa, the one with maximum entropy for given energy. Then, we cannot find another state Λ (ρS)
such that the two conditions of Supplementary Eqs. (77) and (78) are satisfied at the same time. This implies that
any completely passive state cannot be activated, pure ground state and maximally-mixed state included.

We can also consider a generic pure state ρS = |ψ〉 〈ψ|. The corresponding passified state is the ground state |0〉.
From Supplementary Eq. (77) it follows that the final state of Λ has to have a lower energy than ρpass

S . But since the
passified state we obtain, |0〉, is by definition the state with minimum energy, we cannot satisfy this condition. Thus,
we cannot activate, in the sense of Def. 1, any pure state |ψ〉.
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Asymptotic work extraction from passive states

It was proved by Alicki et al. (Supplementary Ref. [2]) that, when an infinite number of copies of a passive state
ρS are considered, the optimal extractable work per single copy is given by

∆Wopt = TrS [HS (ρS − τβmax)] , (79)

where τβmax is the thermal state with inverse temperature βmax such that S(τβmax) = S(ρS). We want to compare the
work extracted in the asymptotic limit with the work extracted with a generic activation map Λ. This comparison
can be easily carried out using the main properties of the final state Λ(ρS), see Supplementary Eqs. (77) and (78),
together with the properties of τβmax .

For any given final state of the system Λ(ρS), there always exists an inverse temperature β̂, and a thermal state τβ̂
at that temperature, such that S(τβ̂) = S (Λ(ρS)). Since the state τβ̂ is thermal, we have that its energy is minimum,

that is,

TrS [HS Λ(ρS)] ≥ TrS

[
HSτβ̂

]
. (80)

Moreover, from Supplementary Eq. (78) it follows that the entropy of τβ̂ is greater than the entropy of the state τβmax
,

introduced in the previous paragraph. By considering this entropic condition together with the free energy difference
Fβmax

(τβ̂)− Fβmax
(τβmax

) ≥ 0, we obtain that the state τβ̂ is more energetic than τβmax
, that is,

TrS

[
HSτβ̂

]
≥ TrS [HSτβmax ] . (81)

From the above inequalities we have that

∆Wopt −∆WSA = TrS [HS Λ(ρS)]− TrS [HSτβmax ] ≥ TrS

[
HSτβ̂

]
− TrS [HSτβmax ] ≥ 0, (82)

where the first inequality follows from Supplementary Eq. (80), while the second follows from Supplementary Eq. (81).
Therefore, the energy we extract with the aid of an activation map Λ is always equal or lower than the energy (per
single copy) that we extract by acting over an infinite number of copies of the passive state with a global unitary
operator, ∆Wopt ≥ ∆WSA.

Thus, ∆Wopt is an upper bound for the work extracted by any activation map Λ. In Supplementary Refs. [2, 3]
it was shown that this upper bound can be actually achieved by acting over infinite many copies of the system with
a global unitary operation. In this paper, instead, we have shown that the extraction of an amount of work equal
to ∆Wopt is also achievable by acting on a single copy of the state. However, one needs to utilise infinite many
infinite-dimensional machines to do so, as we showed in Supplementary Note 4.

Ancilla as part of a bigger thermal bath

Consider the case in which the ancilla utilised in Λ is just a subsystem of an infinite thermal reservoir at temperature
β−1. In this situation, we have to explicitly define an Hamiltonian HA (where we have the freedom to rigidly
translate the spectrum of this Hamiltonian), so that the state of the ancilla σA coincides with the thermal state

τ
(A)
β = e−βHA/ZA.

As we have seen, the map Λ lowers the energy of the system and builds correlations between system and ancilla,
while preserving the local state of the ancillary system. If we consider the ancilla as part of the infinite bath, then
we see that Λ extracts work from the passive state while no heat is exchanged with the bath (as the local state of
the ancilla is unchanged). In the following we show that the energy extracted during this transformation is always

lower than the difference in free energy between the initial state ρS and the thermal state τ
(S)
β = e−βHS/ZS. Even

in the case in which Λ maps ρS into τ
(S)
β , the work extracted is not optimal, as part of this work is locked inside

the correlations between system and ancilla. In order to extract the remaining work from the correlations, and thus
to perform optimal work extraction, we have to exploit the infinite thermal reservoir, exchanging an amount of heat

proportional to the difference in entropy between τ
(S)
β and ρS. It is worth noting that, although this second operation

allows us to extract an higher amount of work than the one obtained with the sole Λ, we do not consider it as an
allowed operation in our framework, as it requires an additional ancillary system (the bath) with infinite dimension.

During the first operation we map the initial state ρS into the final one Λ(ρS). This final state might or might not
be a thermal state of HS, and the sole constraints we have are given by Supplementary Eqs. (77) and (78) (energy
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has to decrease while entropy has to increase). The work we extract is the energy difference between the initial and
final state, as we show in Supplementary Eq. (75),

∆W1 = TrS [HS (ρS − Λ(ρS))] , (83)

which is positive by definition, since we assume Λ to be an activation map, see Def. 1. The final state of system and

ancilla is ρ̃SA = USA

(
ρS ⊗ τ (A)

β

)
U†SA, and correlations are present, quantified by the mutual information

I
(

S̃ : Ã
)

= S(Λ(ρS)) + S(τ
(A)
β )− S(ρ̃SA). (84)

The heat Q1 exchanged during this transformation is equal to 0, as the local state of the bath does not change.
We now use the power of the infinite thermal reservoir to extract the last part of work from the state ρ̃SA, by

mapping it into τ
(S)
β ⊗ τ (A)

β . In this case, work is given by the free energy difference between the two states, that is

∆W2 = Fβ (ρ̃SA)− Fβ
(
τ

(S)
β ⊗ τ (A)

β

)
=

1

β

(
D
(

Λ(ρS)||τ (S)
β

)
+ I

(
S̃ : Ã

))
, (85)

where D
(

Λ(ρS)||τ (S)
β

)
= β

(
Fβ (Λ(ρS))− Fβ

(
τ

(S)
β

))
is the relative entropy between Λ(ρS) and τ

(S)
β . Since both the

relative entropy and the mutual information are non-negative quantities, we have that work is indeed extracted during
this second process. The heat exchanged in this second transformation is equal to the entropy difference (modulo the
multiplicative constant β−1) between the final and initial state

Q2 =
1

β

(
S
(
τ

(S)
β ⊗ τ (A)

β

)
− S (ρ̃SA)

)
=

1

β

(
S
(
τ

(S)
β

)
− S (ρS)

)
, (86)

where the last equality follows from the invariance under unitary operations of the Von Neumann entropy.
If we now consider the two transformations as a single one, we see that the total work extracted is

∆Wtot = ∆W1 + ∆W2 = Fβ (ρS)− Fβ
(
τ

(S)
β

)
, (87)

that is, ∆Wtot is optimal, and the heat exchanged is Q2, equal to the entropy difference between τ
(S)
β and ρS.

An interesting scenario occurs when Λ maps the initial state into τ
(S)
β . In this case, we see that the work we obtain in

the second transformation (the one involving the whole thermal bath) is proportional to the sole mutual information,
so that work is exclusively extracted from the correlations between system and catalyst. The amount of work in this
case (see also Supplementary Ref. [4], Sec. VI B) is

∆W corr
2 =

1

β
I
(

S̃ : Ã
)

=
1

β

(
S(τ

(S)
β )− S(ρS)

)
, (88)

where the quantity is still non-negative, since Λ can map ρS into τ
(S)
β only if S(ρS) ≤ S(τ

(S)
β ), see Supplementary Note

5.

Supplementary Note 6. TECHNICAL RESULTS

In this section we show some of the technical results we have used to analyse the generic cycle on passive states.

Technical Result 2. Consider the sequence of real numbers {xj}ba, those elements are linked by the following set of
equations,

xj = (1 + λ)xj+1 − λxj+2 ; j = a, . . . , b− 2,

where λ ∈ R and a, b ∈ N, a ≤ b− 2. Then, the elements of this sequence can be expressed in terms of xb−1 and xb as

xj = T(b− (j + 1), λ)xb−1 − λT(b− (j + 2), λ)xb ; j = a, . . . , b− 2,

where T(h, λ) =
∑h
l=0 λ

l = 1−λh+1

1−λ .
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Proof. If we insert the solution into the set of equations, we find

T(b− (j + 1), λ)xb−1 − λT(b− (j + 2), λ)xb = (1 + λ)T(b− (j + 2), λ)xb−1 − λ(1 + λ) T(b− (j + 3), λ)xb

− λT(b− (j + 3), λ)xb−1 + λ2 T(b− (j + 4), λ)xb

for j taking values from a to b− 2. We can re-organise the above equation, and we find that it is satisfied iff

T(b− (j + 1), λ) = (1 + λ) T(b− (j + 2), λ)− λT(b− (j + 3), λ) ; j = a, . . . , b− 2, (89)

T(0, λ) = (1 + λ) T(−1, λ)− λT(−2, λ). (90)

These two equalities easily follow from the definition of T(h, λ), as it can be check by replacing this coefficient with
its explicit form in both Supplementary Eq. (89) and (90).

Technical Result 3. The probability distribution of the state ρM is positive and normalised.

Proof. Let us consider the probabilities qj for j = 0, . . . ,m − 1, as given in Supplementary Eq. (32). If we replace j
with j′ = m− j, then the main coefficient in the equation becomes

T1(j′)− p2

p1
D(m,n) T1(j′ − 1) =

T1(j′) T1(m− 1)− T1(j′ − 1) T1(m)

T1(m− 1) + p1
p2

T2(n− 1)

+
p1

p2

T1(j′) T2(n− 1)− T1(j′ − 1) T2(n− 2)

T1(m− 1) + p1
p2

T2(n− 1)
.

It is clear that the denominator is positive, as T1(h) and T2(h) are positive for all h ∈ Z. We need to show that the
nominator is positive as well. The nominator of the first term can be reduced to

T1(j′) T1(m− 1)− T1(j′ − 1) T1(m) = T1(m− 1)− T1(j′ − 1) =

m−1∑
l=j′

(
p0

p1

)l
≥ 0,

where the last equality follows from the fact that j′ = 1, . . . ,m. The nominator of the second term can be expressed
as

T1(j′) T2(n− 1)− T1(j′ − 1) T2(n− 2) = T1(j′ − 1)

(
p1

p2

)n−1

+ T2(n− 2)

(
p0

p1

)j′
+

(
p0

p1

)j′ (
p1

p2

)n−1

> 0.

Thus, the probabilities {qj}m−1
j=0 are positive when qm+n−1 is positive.

We can now focus on the probabilities qj for j = m, . . . ,m+n−3, as given in Supplementary Eq. (33). By replacing
j with j′ = m+ n− (j + 2) we obtain that the main coefficient in the equation becomes

T2(j′)D(m,n)− p1

p2
T2(j′ − 1) =

(
p1

p2

)
T2(j′) T1(m)− T2(j′ − 1) T1(m− 1)

T1(m− 1) + p1
p2

T2(n− 1)

+

(
p1

p2

)2
T2(j′) T2(n− 2)− T2(j′ − 1) T2(n− 1)

T1(m− 1) + p1
p2

T2(n− 1)
.

As before, the denominator is positive, as T1(h) and T2(h) are both positive ∀h ∈ Z. The nominator of the first term
can be reduced to

T2(j′) T1(m)− T2(j′ − 1) T1(m− 1) = T2(j′ − 1)

(
p0

p1

)m
+ T1(m− 1)

(
p1

p2

)j′
+

(
p1

p2

)j′ (
p0

p1

)m
> 0.

The nominator of the second term can be expressed as

T2(j′) T2(n− 2)− T2(j′ − 1) T2(n− 1) = T2(n− 2)− T2(j′ − 1) =

n−2∑
l=j′

(
p1

p2

)l
≥ 0,

where the last equality follows from the fact that j′ = 1, . . . , n − 2. Thus, the probabilities {qj}m+n−3
j=m are positive

when qm+n−1 > 0.
In Supplementary Eq. (34), we showed that qm+n−2 is related to qm+n−1 by the multiplicative coefficient D(m,n),

which can be easily shown to be positive for any integer m,n ≥ 1. Finally, the normalisation condition force
qm+n−1 > 0, and implies the probability distribution of ρM to be positive and normalised.
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