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Do administrative boundaries correspond to the observable ways in which peo-
ple interact in urban space? As cities grow in complexity, and people interact
over long distances with greater ease, so partitioning of cities needs to depart
from conventional gravity models. The current state-of-the-art for uncovering
interactional regions, i.e. regions reflective of observable human mobility and
interaction patterns, is to apply community detection to networks constructed
from vast amounts of human interactions, such as phone calls or flights. This
approach is well suited for origin-destination activities, but not for activities
involving multiple locations, such as police patrols, and is blind to spatial
anomalies. As a result of the latter, community detection generates geograph-
ically coherent regions, which may appear plausible but give no insights into
forces other than gravity that shape our interaction patterns.
This paper proposes novel approaches to regional delineation that address

the aforementioned shortcomings. Firstly, it introduces topic modelling as an
alternative tool for extracting interactional regions from tracking data. Sec-
ondly, it presents refinements of the topic modelling and community detection
approaches that can uncover interaction patterns driven by forces other than
spatial proximity. When applied to police patrol data, our methodology parti-
tions the street network into non-overlapping patrol zones and detects popular
long-distance routes between police stations. These findings could be used in
the design of e↵ective police districts, especially in light of recent funding cuts
that promise to impact upon the ways in which policing and specifically patrols
are carried out.

Keywords: Interactional Regions; Topic Modelling; Community Detection; Network

Analysis; Police Districts

1. Introduction

Cities are ”not simply places in space but systems of networks and flows” (Batty 2013).
As such, they represent highly structured and dynamic environments that provide the
loci of human mobility and interaction. The structure of cities both shapes and is shaped
by patterns of human interactions, and hence urban analytics should be founded upon
areal units that reflect such patterning.
To this end we propose the concept of interactional regions which reflect the ways

in which people are observed to move and interact. Interactional regions are spatial
envelopes that commonly bound human activities and interactions, such as consumer
transactions, taxi routes or police patrols. They respect the natural ways in which people
interact across space and, as such, their definition is essential for e↵ective business and
service planning, including the assignment of administrative responsibilities in public
resource allocation.
Administrative geographies are inevitably an uneasy compromise between existing and

past patterns of spatial interaction, with the latter encapsulated in so-called ’place ef-
fects’ (Fotheringham 1997). From this perspective, places can themselves be construed
as the accretion of past interactions, making places unique, but nonetheless compara-
ble with others that have interactional histories that may be similar in di↵erent ways.
Boundaries may have been created many decades ago, when human interactions and
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mobility were predominantly local and the conceptual separation of human populations
into fixed and geographically coherent regions was plausible and useful. However, the
accelerating scale and pace of societal evolution combined with observable changes in
the frictions of distance result in new, multifaceted and increasingly complex patterns
of human connectivity (Singleton and Longley 2009). It is these that nevertheless define
contemporary interactions between established places (Thiemann et al. 2010). Spatial
interaction patterns are no longer a simple manifestation of the distance attenuation
functions of traditional gravity models (if they ever were) or of opportunity functions
of radiation models (Simini et al. 2012), but of a far more complex range of interacting
factors that can only be uncovered by analysing vast amounts of human-generated flow
data, such as phone calls (Blondel et al. 2010, Ratti et al. 2010), monetary transactions
(Brockmann 2010, Vanhove 1999) or vehicle flows (Karlsson and Olsson 2006, Manley
2014).
In practice, the current state-of-the-art for identifying interactional regions is to ap-

ply community detection techniques to the flow networks created by aggregating human
flows between locations (Blondel et al. 2010, Manley 2014, Ratti et al. 2010). This ap-
proach enables analysis of interactions without the geographical presupposition inherent
to gravitational models. However, it has two important limitations. Firstly, it is designed
for datasets with clearly defined origins and destinations for each interaction. Examples
of such datasets include phone calls (with caveats), taxi journeys or retail transaction
data. Counterexamples include continuously generated data, such as tracking data from
police vehicles or mail delivery vans, where journey origins and destinations are not
functionally defined or known.
Secondly, and most importantly, community detection is shaped by the pre-existing

spatial structure of settlements (Besussi et al. 2010, Expert et al. 2011). In most cases, it
uncovers regions that are strongly determined by geographical proximity at the expense of
other underlying forces shaping the interactions. For instance, tra�c flows are typically
dominated by low-cost short-ranged interactions. As a result, community detection is
blind to spatial anomalies and only identifies regions which are compact in physical space.
This leads us to the central question of our work: can we detect interaction patterns that
build upon more than distance attenuation? In other words, if we control for gravity-
like forces, what other forces shape our interaction and mobility patterns? And can we
develop a standard network methodology to uncover them?
In this paper, we propose novel approaches to regional delineation that address the

above limitations. Firstly, we propose a method of topic modelling for extracting inter-
actional regions from new forms of data, i.e. tracking data with no origin and destination
specified. Secondly, we extend community detection and topic modelling to uncover in-
teraction regions driven by forces other than spatial proximity. We factor out the e↵ect
of space in order to reveal more clearly hidden interaction patterns between places.
We validate our methodology using GPS traces from police patrol vehicles in the

London Borough of Camden. Our data are derived from a wider investigation into the
local geography of criminal activity and proactive initiatives by police and citizens to
reduce crime. The data are particularly relevant to introducing the concepts described
in the paper because of the requirement to patrol the all street segments in the study
area.
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Figure 1.: Illustration of street segments and street intersections.

2. Methodology

Our methodology presents a comprehensive toolkit for extracting interactional regions
from large volumes of mobility tracking data in networked environments, such as cities.
The data are given as sequences of observations, each corresponding to an episode of
mobility or a journey. The methodology is motivated by data generated by police patrol
vehicles, but is equally applicable to any tracking data that pertain to separable episodes.
At the base of the methodology is a representation of tracking data as a flow network.

Interactional regions are extracted as patterns on that network using two clustering
approaches: community detection and topic modelling. Community detection assigns lo-
cations to regions given flows between pairs of locations, hence treating tracking data in
an origin-destination fashion, whereas topic modelling mines flow patterns from location
sequences corresponding to complete journeys. The two methods lead to di↵erent defini-
tions of interactional regions, which will be clearly stated in the following subsection.
Finally, we propose novel extensions of community detection and topic modelling that

enable us to uncover spatially anomalous interaction patterns. By accounting for spa-
tial forms of cities, we answer the central question motivating this work: can we detect
interaction patterns that are not due to space? The obtained spatially-independent in-
teractional regions augment the more traditional view on interactional regions obtained
from standard community detection and topic modelling techniques (Blondel et al. 2010,
Manley 2014, Ratti et al. 2010) which do not disentangle spatial e↵ects from other e↵ects
of interest.

2.1. Flow Network

We begin the flow network creation by mapping vehicle traces, in the form of sequences
of GPS observations, to the underlying street network. We perform map-matching using
the technique of ST-Matching proposed by Lou et al. (2009). The technique converts
complete GPS traces of vehicle journeys into sequences of visited street segments (see
an example GPS trace in Figure 1 and its map-matching output in Table 1). Each
street segment is a piece of road, not necessarily straight, between two neighbouring
road intersections and is represented by a unique identifier provided by Ordnance Survey
(2017).
We construct the flow network by representing street intersections as network nodes

(vertices) and vehicle visits to street segments as undirected network edges. This defini-
tion allows multiple edges between a pair of nodes, each corresponding to a single visit
to the underlying street segment. We remove nodes that have no edges as they do not
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No. GPS ping (easting, northing) Street segment (id)

1 (529830.826879,182824.079602) osgb4000000030239207
2 (529901.218657,182821.928288) osgb4000000031283337
3 (529982.352018,182809.024134) osgb4000000030250373
4 (530037.990277,182811.410456) osgb4000000031283336
5 (530101.259824,182812.320039) osgb4000000031283336
6 (530183.132569,182801.38203) osgb4000000031283326
7 (530176.143972,182778.158761) osgb4000000031283326
8 (530181.99883,182739.597688) osgb4000000031186773
9 (530178.955762,182707.345447) osgb4000000031186773

Table 1.: Exemplary conversion from a GPS sequence to a sequence of visited street
segments.

provide any information on mobility patterns.

2.2. Interactional Regions as Communities

Our first approach to interactional region extraction is community detection. In network
science, community detection refers to the problem of finding the natural divisions of
a network into groups of vertices, called communities, such that there are many edges
within groups and few edges between groups (Newman 2010).
In our context, community detection mines interactional regions from the flow network

as groups of highly interconnected street intersections (nodes). Thus, it leads to the
following network-based definition of interactional regions:

Definition 2.1: (Interactional regions as communities) An interactional region
is a collection of street segments that have high volumes of tra�c flow between them.

2.2.1. Standard Approach

What is meant by ”few edges between groups” and ”many edges within groups” in
community detection is debatable and di↵erent definitions have led to a variety of algo-
rithms for community detection. The most common formulation of the problem, and the
one adopted in this paper, is of modularity optimisation.
Modularity is a measure of the quality of a network partition, which has a high value

when more edges in a network fall within rather than between communities. In practice,
the current state-of-the-art for finding modules in spatial networks is to optimize the
standard Newman-Girvan modularity (Guimerà et al. 2005, Onnela et al. 2011), which
assigns vertices to the same community if there are more edges between them than one
would expect were edges simply placed at random in the network. In the next section,
we will argue that this approach overlooks the spatial nature of the system, or the city
as it is in this case.
Modularity is formally defined as:

Q = (fraction of edges within communities)� (expected fraction of such edges) (1)

It considers fractions of edges rather than absolute counts hence it is una↵ected by the
total number of edges in the network. In mathematical terms, modularity score reads:
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Q =
1

2m

X

C2P

X

i,j2C
[Aij � Pij ] (2)

where i, j 2 C is a summation over pairs of nodes i and j belonging to the same
community C of a network partition into communities P and therefore counts edges
within communities. A is the adjacency matrix storing the observed number of edges Aij

between nodes i and j and P is a matrix storing the expected number of edges between
any two nodes. Our estimate of the expected number of edges depends on our null model.
The most popular null model, proposed by Newman and Girvan (2004), is:

Pij = kikj/2m (3)

where ki =
P

j Aij is the degree of node i. Finally, modularity Q is normalized by the
total number of edges in the network m =

P
i,j Aij/2.

Equation 3 defines that, under the Newman-Girvan (NG) null model, the expected
number of edges between any two nodes is proportional to the product of the degrees
of the nodes. That is, the more edges a node has, the more likely it is to connect to a
di↵erent node in the network. Although this definition makes intuitive sense, it overlooks
any underlying constraints that might impact on edge formation in spatially-embedded
networks, such as spatial distance. We will address this limitation in the following section.
Modularity optimization is a computationally hard problem (Newman 2010). Algo-

rithms that guarantee to find network partitioning with maximum modularity take ex-
ponentially long to run and hence are only useful for synthetically small networks (Bran-
des et al. 2007). Instead, therefore, we turn to a heuristic algorithm, an algorithm that
approximates the optimal modularity in an e�cient way. We use a popular heuristic
algorithm known as the Louvain Method of community detection (Blondel et al. 2008).
Louvain Method scales well to large networks and is capable of clustering networks

with weighted edges. It is advantageous in that users can easily modify the definition of
modularity that it aims to maximise. This characteristic will be particularly useful when
we introduce a spatial adaptation of the NG modularity in the next section.
Louvain Method approaches an optimal partition of a network into communities by first

assigning each node to a di↵erent community and then iteratively merging communities
into partitions that increase the overall modularity score Q. The algorithm converges
when no further aggregation is found to increase the score.

2.2.2. Spatial Communities

The standard approach to community detection presented in Section 2.2.1 assumes
that there are no underlying constraints that could impact on the formation of edges
in our network. In other words, any clustering patterns that we observe are of interest
to us. Unfortunately, this does not often hold true in practice, where we might want to
exclude obvious patterns from those of interest in our analysis.
In our case, these obvious patterns are due to spatial proximity or, more precisely, the

configuration of the underlying street network. We are bound to observe movement in our
flow network between nodes that in reality are endpoints of the same street segment. On
the other hand, we can be quite certain that there will be no direct tra�c between nodes
that have no connecting road segment. In this section, we propose a way of disentangling
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these e↵ects from our clustering results in order to discover interaction relations between
places that arise not merely because of spatial adjacency.
We propose the following modification of the NG null model presented in (3):

Pij / kikj ·f(i, j) where f(i, j) =

(
1, if nodes i and j are endpoints of the same street.

0, otherwise.

(4)
The 0/1 function f(i, j) incorporates our knowledge of the underlying street network.

If two nodes are endpoints of the same street segment, then we retain the standard
expectation proposed in (3) to reflect the fact that the more tra�c passes through each
node, the higher the chance that some of the tra�c will occur between them. By contrast,
if they are not directly connected, we reduce the expected flow between them to zero.
Notice the proportionality sign in (4): once entries of P are calculated, P has to be
renormalised to ensure that the total weight is conserved, i.e.

P
ij Aij =

P
ij Pij = 2m.

Intuitively, our proposal works by incorporating our knowledge of the street network
into the calculation of the expected number of edges between nodes in the flow network.
If nodes are endpoints of the same street segment, we expect some tra�c between them
and our expectation is uniform across all pairs of such nodes. The more tra�c we observe,
the more likely we are to put the nodes into the same community, i.e. a group of nodes
with higher than expected tra�c between them.
This approach to spatial community detection is inspired by Expert et al. (2011), who

use a linear function akin to f(i, j) to capture distances in Cartesian space between nodes
on a flow network. Here we adapt this approach from Cartesian space to urban space,
where interactions are influenced by the connectivity of the underlying street network.
Our spatial modification impacts on the expected number of edges calculated in (2),

thus changing the value of modularity Q for any given network partitioning. Despite the
change to Q, the same iterative approach as in Section 2.2.1, the Louvain Method, can
be used to find a partitioning of the flow network into interactional regions that max-
imises the modified Q. We implement our spatial community detection with a generalized
Louvain Method proposed by Jeub et al. (2016).

2.3. Interactional Regions as Topics

Our second approach to the extraction of interactional regions is topic modelling. Sim-
ilar to community detection, this is an approach to finding clusters in data. However,
instead of extracting them from pairwise similarities between items, it detects clusters
as repetitive themes in unstructured collections of items.
Topic modelling was originally developed to discover main themes that pervade a large

collection of documents (Blei 2012). Loosely speaking, it defines a topic as a collection
of words concerning a common subject. It assumes that documents can exhibit multiple
topics and mines these topics from large collections of documents by detecting groups of
words that repeatedly occur together (co-occur) in documents.
Since its conception, topic modelling has been adopted to handle many kinds of data,

including audio and music, computer code and social networks. Here, we adopt topic
modelling to deal with vehicle journey data in order to uncover interactional regions.
We assume that vehicle journeys can traverse one or more interactional regions (topics).
We mine interactional regions from a large collection of vehicle journeys (documents),
as groups of street segments (words) that often occur together in vehicle journeys. This
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underpins a second, alternative, definition of interactional regions proposed in this paper:

Definition 2.2: (Interactional regions as topics) An interactional region is a
collection of street segments that often co-occur in journeys.

Notice that the above definition of interactional regions di↵ers slightly from Defini-
tion 2.1 in Section 2.2. It uses an extra level of information on interactions through the
inclusion of complete vehicle journeys. This ensures that even spatially distant street
segments in the same interactional region are related, since they often co-occur in ve-
hicle journeys. This does not always hold true for community detection results, where
interactional regions are formed based on pairwise relations between nodes. As a result,
a community region might contain a pair of street segments because of high interactions
between their neighbours, neighbours of their neighbours, etc., without any guarantee
that a car has ever driven from one node to the other.

2.3.1. Latent Dirichlet Allocation

The most widely used topic model, and the one used here, is Latent Dirichlet Allocation
(LDA) proposed by Blei et al. (2003). LDA is a probabilistic model that belongs to a
family of generative probabilistic models. In generative probabilistic modelling, we treat
our data as arising from a generative process that includes unobserved (hidden) variables.
This generative process defines a joint probability distribution over the observed and the
hidden random variables. We perform data analysis by using that joint distribution to
compute the conditional distribution of the hidden variables given the observed variables.
This conditional distribution is also called the posterior distribution.
LDA attempts to capture the notion that documents exhibit multiple topics. It de-

fines a generative process from which documents could have arisen. It states that the
observed variables are the words of the documents; the hidden variables are the topics;
and the generative process is as described here. The computational problem of inferring
the hidden topic structure from the documents is addressed by the collapsed Gibbs sam-
pler developed by Gri�ths and Steyvers (2004). It is a sampling-based algorithm that
approximates the posterior distribution by a finite number of samples from it.
LDA is described more formally with the following notation. There are K pre-defined

topics, each taking a probabilistic distribution over a fixed vocabulary. When documents
D = {d

1

, d
2

, ..., dM} are generated, a topic mixture ✓ for each document is sampled,
with ✓d,k indicating the topic proportion of topic k in document d, from a Dirichlet
distribution with prior ↵. Subsequently, topics ZD = {z

1

, z
2

, ..., zNd} for each word in
the document are sampled from that mixture. Finally, based on the sampled topics, words
WD = {w

1

, w
2

, ..., wNd} are chosen from the topics’ distributions � over the vocabulary,
where �k is the distribution of topic k over the vocabulary, sampled from a Dirichlet
distribution with prior �. The graphical model for LDA is illustrated in Figure 2(a).
Our core contribution is to adapt LDA to regional delineation problems by interpreting

topics as interactional regions. The topics are inferred from large collections of vehicle
traces (documents), where each trace is a sequence of visited street segments (words).

2.3.2. Spatial Topics

Conventional topic modelling is not well designed for spatial data. This is because the
basic technique is not attuned to the nature of spatial data and hence cannot disentangle
spatial patterns from other patterns that might be of more interest to the user. What is
more, one of the assumptions of the core technique is that consecutive words within a
document are independently sampled under the ’bag-of-words’ assumption. These char-
acteristics limit the usefulness of topic modelling for geographic problems in general and
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(a) LDA (b) Token-Bigram LDA

Figure 2.: Graphical illustration of topic models for interactional region extraction, as-
suming (a) independence and (b) dependence between consecutive street segments wi

and wi+1

in observed journeys. Each node is a random variable and each edge indicates
statistical dependence between the variables. The rounded rectangles denote replication
for all M vehicle traces.

interactional region extraction in particular. Our documents, vehicle traces, are inher-
ently spatial and sequential. We thus need to incorporate these qualities in the model in
order to identify any significant patterns in the data.
Our contribution is to accommodate the properties of spatial data by introducing

the notion of dependence between consecutive words in the generative process captured
by LDA (see Figure 2(b)). Such dependence has previously been proposed by Barbieri
et al. (2013) as a token-bigram topic model, in which the dependence is interpreted as a
transition probability p(wi+1

|wi), i.e. given an occurrence of word wi, how likely is it that
word wi+1

will occur next in the document sequence? In our case study, the transition
probability is derived directly from the branching of the underlying street network. That
is, given that a vehicle is on street segment wi, how likely it is to move to street wi+1

?
The probability is zero for non-adjacent street segments and inversely proportional to
the number of street segments adjacent to wi, kwi , otherwise:

p(wi+1

|wi) =

(
1/kwi , if wi and wi+1

are adjacent.

0, otherwise.
(5)

This modification requires a more universally-applicable inference algorithm than the
collapsed Gibbs sampler used for standard LDA, as introduced in the previous section.
We instead use the ’universal inference engine’ implemented in the STAN probabilistic
programming language (Stan Development Team 2016). The engine is based on a Gibbs
sampler with a ’no-u-turn’ extension (Homan and Gelman 2014) that uses adaptive
parametrisation to eliminate the need of manual parameter tuning.
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(a) Interactional regions as communities (b) Interactional regions as topics

Figure 3.: Interactional regions in a synthetic case in which northward and southward
vehicle journeys always follow distinct routes (arrowed). White lines represent street
segments, their thickness is proportional to the number of visits to a segment, i.e. the
number of edges in the flow network. Since community detection (a) does not consider
journeys holistically, it groups northward and southward routes into a single interactional
region. On the contrary, topic modelling (b) makes a distinction between the two routes
and hence discovers an additional interactional region.

The proposed dependence term serves a similar purpose to the function f(i, j) in the
spatial community approach in (4). It enables spatial knowledge of the underlying street
network to be accommodated while also removing the ’bag-of-words’ assumption from
the LDA model. The modified LDA can thus be used to detect interactional regions as
collections of street segments that co-occur in vehicle journeys more often than expected
based on their proximity in the underlying street network.

2.4. Summary

Our methodology employs two popular clustering approaches, community detection and
topic modelling, to extract interactional regions from large amounts of digital vehicle
traces. At its core, both methods are designed for episodic mobility and interaction data.
However, they di↵er in their measure of interaction between locations (Definitions 2.1
and 2.2) which leads to di↵erences in regional delineation. Definition 2.1 focuses on
interactions between pairs of locations and hence is better suited for origin-destination
data, whereas Definition 2.2 looks at interactions over sequences of locations and hence
is better attuned to episodic mobility data with no functionally defined origins and
destinations. When applied to mobility tracking data, the di↵erences between the two
methods are exemplified in Figure 3.
We attune both techniques to spatial data analysis by changing their expected measure

of interaction between locations, i.e. before observing any vehicle traces. By default, in
both methods the expected level of interaction is uniform for all pairs of street nodes.
We customise it to reflect the structure of the underlying street network instead, e.g.
non-adjacent street nodes are expected to have zero tra�c directly between them (see
Equations 4 and 5). The adaptations enable capturing interaction patterns that are not
merely a result of the spatial arrangements of streets.
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Figure 4.: GPS signals transmitted by police vehicles inside (red) and outside (black) the
London Borough of Camden in March 2011.

3. Numerical Validation

We validate the proposed methodology on police patrol tracking data. Unlike other
episodic activities, such as mail delivery or shopping, police patrolling is expected to
take place in every part of the neighbourhood. The granularity of spatial coverage makes
them particularly suitable for validation of a regional delineation methodology such as
ours.

3.1. Police Patrol Data

The police patrol data are a complete set of GPS signals transmitted by police patrol
vehicles during March 2011 in the London Borough of Camden, a borough in Central
London with the total area of 21.8 km2. The dataset comprises a total of 1,188,953
GPS signals from 5,513 journeys (see Figure 4). It was acquired for research purposes as
part of the ”Crime, Policing and Citizenship” project in collaboration with the Camden
Metropolitan Police⇤. The flow network generated from the dataset is shown in Figure 5.

3.2. Interactional Regions as Communities

First, we extract interactional regions from police tracking data using community de-
tection (see Definition 2.1). Standard community detection uncovers seventy-six interac-
tional regions shown in Figure 6. The regions are small relative to the study area and are

⇤
UCL Crime Policing and Citizenship: http://www.ucl.ac.uk/cpc/.
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Figure 5.: Police flow network of Camden. Colour intensity of each street segment is
proportional to the number of police vehicle journeys in March 2011.

strongly clustered in space, which indicates that police patrol activities might be domi-
nated by short-distance journeys. When we account for spatial factors according to (4),
the resulting interactional regions (see Figure 7) are no longer spherical but somewhat
elongated and follow stretches of individual roads. They are also relatively small but we
have no influence over region sizes when using community detection, which only outputs
a single partitioning corresponding to maximal modularity in (2).
The di↵erences between standard and spatial communities are intuitively plausible.

Roads that are in close proximity to each other are likely to distribute high amounts
of local, within region, tra�c. These short-ranged interactions dominate interactional
regions uncovered by standard community detection (as shown in Figure 6), indicating
that spatial proximity plays a major role in their formation. When we incorporate spatial
e↵ects according to (4), we can focus on long-ranged interaction patterns instead. These
rather follow long stretches of major roads (e.g. yellow community in Figure 7(b)) as
high category roads attract more tra�c than one would expect just based on spatial
proximity.
The standard and spatial communities seem to reflect di↵erent modes of police pa-

trolling. According to the wider literature (Chen et al. 2017) and our knowledge gathered
through working closely with the Camden Police, police patrols can be roughly divided
into routine and emergency patrols. The former is a form of preventive policing that
require police to regularly visit crime hotspots, i.e. small geographical units with high
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crime intensity, such as street segments or small groups of street blocks (Braga et al.
2014). This mode of behaviour is spatially clustered and hence well suited for standard
community detection, as shown in Figure 6. The latter is a reactive policing e↵ort that re-
quires police vehicles to reach crime scenes as quickly as possible. Emergency patrolling
relies heavily on major roads as they enable reaching distant crime scenes in a short
amount of time. The most popular long-distance police routes are well depicted by spa-
tial community detection in Figure 7. Note that these observations remain speculative,
however, since there is no ground truth on what police o�cers actually did during their
patrol journeys.

3.3. Interactional Regions as Topics

Second, we analyse interactional regions discovered using topic modelling. Similar to
standard community detection, standard topic modelling produces interactional regions
which are strongly determined by geographical factors. In contrast to community detec-
tion, however, topic modelling does not only show the optimal partitioning, but instead
enables viewing interactional regions at multiple scales by varying the number of topics
K that we fit to the data.
We show interactional regions at di↵erent scales in Figure 8. The larger they are, the

more spatially constrained they become. This again reflects the fact that police jour-
neys are predominantly local and thus short-scale interactions dominate any large-scale
analysis. When very small interaction regions are chosen, topic modelling is capable of
uncovering non-trivial interaction patterns such as long road stretches in Figure 8(b).
The ability to uncover both gravity-like and other less-trivial interaction patterns by
varying the parameter K puts topic modelling at a significant advantage to community
detection. In contrast to community detection, topic modelling considers complete jour-
neys when detecting functional relations. Since journeys tend to be longitudinal, so are
shapes of the extracted interactional regions. The smaller the interactional regions, the
subtler the routing choices they reflect.
Topic modelling sometimes leads to disconnected parts of the street network being

identified as members of the same interactional region. This rather undesirable charac-
teristic, visible as multiple subgraphs with the same colour in Figures 8 and 9, could be
addressed by a similar probabilistic model for clustering, called a block model (Parkkinen
et al. 2009). Block model replaces the ’bag-of-words’ assumption of topic modelling with
a ’bag-of-pairs-of-words’ assumption that places more emphasis on clustering connected
parts of the network together. This could be investigated in future work.
When we modify topic modelling to account for the underlying street network connec-

tivity according to (5), we detect interactional regions with almost no spatial compact-
ness. Even at very low resolution in Figure 9, they are rather stretches of roads than local
neighbourhoods. The stretches often reappear in police journeys as they connect locations
of mutual functional importance. In this case, they seem to be the roads connecting police
stations (see Figure 9(b)). In contrast to spatial community detection, where most inter-
actional regions contain as few as ⇠10 street segments (see Figure 10(b)), spatial topic
modelling can uncover interactional relations at much larger distances and of generally
larger sizes (Figure 10(e)). These characteristics suggest superiority of topic modelling
over community detection as a method for extracting interactional regions from episodic
tracking data, such as police patrol data.
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(a) all communities

(b) largest communities

Figure 6.: Interactional regions as communities.
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(a) all communities

(b) largest communities

Figure 7.: Interactional regions as spatial communities.
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(a) 10 topics

(b) 150 topics

Figure 8.: Interactional regions as topics at di↵erent scales.
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(a) all topics

(b) selected topics (with locations of police stations marked)

Figure 9.: Interactional regions as spatial topics.
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(a) communities (b) spatial communities (c) topics (K = 10)

(d) topics (K = 150) (e) spatial topics (K = 15)

Figure 10.: Size distribution of international regions as (a) communities, (b) spatial com-
munities, (c) 10 topics, (d) 150 topics, (e) spatial topics. Region size is equal to the
number of street segments it contains. Note that region size is given in logarithmic scale
on x-axis.

3.4. Methods Comparison

So far, our validation has focused on qualitative comparison of interactional regions
uncovered with the proposed methods. Our focus now shifts to quantitative analysis to
answer questions such as: how much di↵erent are the results from the di↵erent proposed
methods? How can we measure their quality? We compare results from both the proposed
methods, community detection and topic modelling, and their variants, standard and
spatial.
We address the question of di↵erentces between regional deineations by using adjusted

mutual information score (MI) (Xuan Vinh et al. 2010), which is a measure of distance
between di↵erent regional partitions. MI is equal to one only when two partitions are
identical and is between 0 and 1 otherwise. Results are summarized in Figure 11 where
we observe that interactional regions obtained from topic modelling and community
detection are genuinely di↵erent (MI <= 0.35). Their largest di↵erence is between spatial
communities and spatial topics (0.06). The dissimilarity is not surprising since the two
methods follow di↵erent definitions of what interactional regions are (Definition 2.1 and
Definition 2.2). On the contrary, interactional regions coming from the same method show
slightly higher similarity, such as topics (K=10) and topics (K=150) (0.37). Another
interesting point is that spatial methods lead to very di↵erent regional delineations to
standard methods (0.35 for spatial communities vs. communities; 0.23 for spatial topics
vs. topics). This di↵erence is already acknowledged in the previous two sections, where
we notice that spatial methods produce regions that are much less spatially clustered
than the corresponding standard methods. By design, the di↵erence should arise from
the fact that spatial methods remove the e↵ects of spatial proximity when looking for
regional delineation.
We confirm whether the di↵erences between spatial and non-spatial methods in fact

arise from their treatment of spatial adjacency by performing a randomisation test. The
test randomly shu✏es the geographical position of the nodes in the flow network while
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Figure 11.: Mutual information score between regional partitions obtained with the pro-
posed methods.

Original-Random

Spatial Topics (K = 15) 0.01613398± 0.02
Spatial Communities 0.35651846± 0.03

Table 2.: Average MI measured between the regional partition found on the original flow
network and 100 randomized networks (Original-Random) for spatial topic modelling
and spatial community detection.

keeping edges between them unchanged. As a result, in the randomised network, we ob-
serve the same volume of tra�c between pairs of nodes but the tra�c can now occur
between nodes that are not connected by a street segment in reality (thus violating our
spatial adjacency assumptions in (4) and (5)). The randomised network is no longer em-
bedded in the underlying street network, but this has no e↵ect on regional partitions
uncovered with standard community detection and topic modelling, since these methods
do not make use of the street arrangement information. On the contrary, spatial commu-
nity detection and topic modelling, which assume the spatial embedding of the network,
uncover partitions that are largely di↵erent from the ones they find in the real, spatially-
embedded, flow network (see Table 2). Interestingly, the largest variation is shown by
spatial topic modelling, where partitions found on the random and the real network show
almost zero resemblance (0.016).
The randomisation test could be further extended to measure significance of the dis-

covered partitions as in the work by Expert et al. (2011). This would bring us close to
answering the second question posed: can we measure quality of the discovered parti-
tions? The extension could constitute future work but it would, nonetheless, not fully
answer the question of partition quality, which is conceptually di�cult to answer in the
lack of ground truth on the correct interactional region delineation. If ground truth was
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available, we could assess the quality of di↵erent partitions by measuring their similarity
to the ground truth using the mutual information score, as shown for di↵erent partitions
in Figure 11. Since ground truth does not exist, we can only approximate partition quality
through significance testing (as suggested above) or through usefulness of the discovered
partition in a specific context, e.g. ”do the discovered regions lead to increased accuracy
in region-based route choice simulations?” as explored in the work by Kowalska et al.
(2015), or ”are the discovered partitions more stable across time?”. Answers to these
questions could create interesting extensions to this paper but are outside the scope of
this work.

4. Conclusions and Directions for Future Research

In this paper, we have presented a comprehensive network-based methodology for ex-
tracting interactional regions from digitised vehicle traces in urban environments. The
methodology used a large dataset of GPS vehicle traces to define a road tra�c net-
work and then uncovered interactional regions as densely connected areas within the
network. It considered two approaches to the discovery of interactional regions: commu-
nity detection and topic modelling. Community detection used aggregated tra�c flows
between pairs of street nodes when assigning them to regions. Topic modelling instead
considered sequences of street nodes corresponding to complete vehicle journeys, hence
potentially giving a more complete picture of how drivers perceive the urban space. The
techniques were adapted to account for the e↵ect of space upon the network topology,
hence uncovering interaction patterns between places that arose not solely from spatial
proximity.
Both community detection and topic modelling could detect short-ranged interaction

patterns in police patrol data, suggesting that spatial proximity is a major force in spa-
tial interactions. By adopting the methods to focus on spatially-anomalous interactions
only, they could also uncover less-trivial long-ranged interaction patterns. Therefore, the
proposed methodology, including both standard and spatial adaptations of the methods,
provides a more detailed insight into interaction patterns than previously proposed us-
ing standard community detection only (Blondel et al. 2010, Manley 2014, Ratti et al.
2010). Our initial analysis suggested two advantages of topic modelling over community
detection for episodic activity data. Firstly, it could detect either aggregate or granular
activity patterns by varying a single parameter K. Secondly, it was capable of detect-
ing longer activity trails, such as paths between police stations. On the negative side,
however, topic modelling could lead to disconnected parts of the street network being
classified as members of the same interactional region.
We validated our methodology using police patrol data due to their availability and

high spatial granularity. We discovered interactional regions which seemed to correspond
to two modes of police patrols: routine and emergency patrols. Spatially clustered in-
teractional regions bounded routine patrol activities, restricted to neighbourhoods and
minor roads, whereas elongated interactional regions corresponded to popular major
road routes leading to police stations or emergency calls. We uncovered distinguishable
patrolling preferences that could potentially be used in the design of e↵ective police dis-
tricts, especially in light of recent funding cuts and multiple London police districts being
merged.
Our comprehensive methodology extends beyond police patrol data. It is applicable

to vehicle flows in general, as well as other episodic flows, e.g. cyclist or pedestrian
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journeys. As such, the methodology opens new avenues of quantitative analysis of urban
dynamics. Depending on the dataset analysed, it can discover regional partitions that
are case study-specific (e.g. regions extracted from police journeys) or more generalizable
to the wider city population (e.g. regions extracted from all vehicle journeys).
Future research could extend the proposed methods to account for subtler spatial

e↵ects, such as di↵erences in flows on major and minor roads. It could also validate the
methods further using other city flow data or by using the discovered regions within a
specific application, such as region-based route choice simulation frameworks (see Manley
et al. (2015) as an example).
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Guimerà, R., et al., 2005. The worldwide air transportation network: Anomalous cen-
trality, community structure, and cities’ global roles.. Proceedings of the National
Academy of Sciences of the United States of America, 102 (22), 7794–9.

Homan, M.D. and Gelman, A., 2014. The No-U-turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. The Journal of Machine Learning Research,
15 (1), 1593–1623.

Jeub, L.G.S., et al., 2016. A generalized Louvain method for community detection im-
plemented in MATLAB. [online] [2017-07-22].

Karlsson, C. and Olsson, M., 2006. The identification of functional regions: theory, meth-
ods, and applications. The Annals of Regional Science, 40 (1), 1–18.

Kowalska, K., Shawe-Taylor, J., and Longley, P., 2015. Data-driven modelling of police
route choice. In: Proceedings of the 23rd GIS Research UK conference (GISRUK
2015), Leeds.

Lou, Y., et al., 2009. Map-matching for low-sampling-rate GPS trajectories. In: Pro-
ceedings of the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems - GIS ’09, nov. New York, New York, USA: ACM
Press, p. 352.

Manley, E., 2014. Identifying functional urban regions within tra�c flow. Regional Stud-
ies, Regional Science, 1 (1), 40–42.

Manley, E., Orr, S., and Cheng, T., 2015. A heuristic model of bounded route choice in
urban areas. Transportation Research Part C: Emerging Technologies, 56, 195–209.

Newman, M. and Girvan, M., 2004. Finding and evaluating community structure in
networks. Physical Review E, 69 (2), 026113.

Newman, M.E.J.M.E.J., 2010. Networks : an introduction. Oxford University Press.
Onnela, J.P., et al., 2011. Geographic Constraints on Social Network Groups. PLoS ONE,

6 (4), e16939.
Ordnance Survey, 2017. OS MasterMap Integrated Transport Network Layer. [online]

[2017-07-22].
Parkkinen, J., Gyenge, A., and Sinkkonen, J., 2009. A block model suitable for sparse

graphs. In Proceedings of the 7th International Workshop on Mining and Learning
with Graphs.

Ratti, C., et al., 2010. Redrawing the Map of Great Britain from a Network of Human
Interactions. PLoS ONE, 5 (12), e14248.

Simini, F., et al., 2012. A universal model for mobility and migration patterns. Nature,
484 (7392), 96–100.

Singleton, A.D. and Longley, P.A., 2009. Geodemographics, visualisation, and social net-
works in applied geography. Applied Geography, 29 (3), 289–298.

Stan Development Team, 2016. Stan Modeling Language Users Guide and Reference
Manual, Version 2.14.0. Technical report.

Thiemann, C., et al., 2010. The Structure of Borders in a Small World. PLoS ONE, 5
(11), e15422.

Vanhove, N., 1999. Regional policy: a European approach. 3 Ashgate: Ashgate Publishing
Limited.

Xuan Vinh, N., Julien Epps, U., and Bailey, J., 2010. Information Theoretic Measures
for Clusterings Comparison: Variants, Properties, Normalization and Correction for
Chance. Journal of Machine Learning Research, 11, 2837–2854.


