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Abstract. Hazard ratios can be approximated by data extracted from published
Kaplan–Meier curves. Recently, this curve approach has been extended beyond
hazard-ratio approximation with the capability of constructing time-to-event data
at the individual level. In this article, we introduce a command, ipdfc, to imple-
ment the reconstruction method to convert Kaplan–Meier curves to time-to-event
data. We give examples to illustrate how to use the command.

Keywords: st0498, ipdfc, time-to-event data, Kaplan–Meier curves, hazard ratios

1 Introduction

The hazard ratio is often recommended as an appropriate effect measure in the anal-
ysis of randomized controlled trials with time-to-event outcomes (Parmar, Torri, and
Stewart 1989; Deeks, Higgins, and Altman 2008) and has become the de facto standard
approach to analysis. In meta-analysis of aggregated time-to-event data across trials,
an essential step is to extract the (log) hazard ratio and its variance from published trial
reports. Various extraction methods have been described (Parmar, Torri, and Stewart
1989; Williamson et al. 2002; Tierney et al. 2007), including direct and indirect esti-
mates of hazard ratios based on 95% confidence intervals (CIs), p-values for the log-rank
test or the Mantel–Haenszel test, and regression coefficients in the Cox proportional
hazards model. An approximation to hazard ratios can also be derived by a “curve ap-
proach”, as described by Parmar, Torri, and Stewart (1989) and Tierney et al. (2007).
The curve approach uses the extracted ordinate (y) and abscissa (x) values from the
Kaplan–Meier curve to calculate hazard ratios for each time interval for which the num-
ber of patients at risk was reported. The overall hazard ratio during the follow-up phase
is then derived by a weighted sum of the individual estimates of hazard ratios across
time intervals, with the weights inversely proportional to the variance of each estimate
(Parmar, Torri, and Stewart 1989).

The curve approach has been extended (Guyot et al. 2012) beyond the estimation
of hazard ratios to the reconstruction of time-to-event data at the individual level. The
availability of reconstructed individual-level data allows one to fit alternative models
in secondary analyses if desired. Because nonproportional hazards are increasingly re-
ported in trials, alternative measures (such as restricted mean survival time) that do not

c© 2017 StataCorp LLC st0498
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require the proportional-hazards assumption may have a more intuitive interpretation
under nonproportional hazards (Royston and Parmar 2011). Because the proportional-
hazards assumption may not be satisfied for all trials in a meta-analysis, alternative
effect measures to hazard ratios may be more appropriate in such settings (Wei et al.
2015). However, by definition, newly developed effect measures are not reported in ear-
lier trial publications. The use of these measures therefore relies either on collaborative
sharing of individual-level data or on methods that enable reconstruction of such data
from trial reports.

The reconstruction algorithm was written as an R function (Guyot et al. 2012).
In this article, we present an implementation of this algorithm with improvements by
introducing a command, ipdfc, that has the following features:

• Uses the curve approach to reconstructing individual-level time-to-event data
based on the published Kaplan–Meier curves.

• Uses the number of patients at risk, as reported in the trial publication.

• Can identify which extracted time points correspond to the lower and upper end-
point of each time interval in the risk table.

• Can use survival probabilities, survival percentages, failure probabilities, or failure
percentages as data input.

• Incorporates correction of monotonicity violators in the extracted data for survival
probabilities, survival percentages, failure probabilities, or failure percentages.

In the following section, we briefly overview the methods underpinning the ipdfc

command introduced in this article. We then give detailed descriptions of syntax and
options. We then demonstrate its application in two examples from trial publications
and assess the approximation accuracy by comparing summary statistics between the
reconstructed data and the original publications. We close with a discussion.

2 Methods

2.1 Extracting data from published Kaplan–Meier curves

The reconstruction of time-to-event observations is based on data extracted from pub-
lished Kaplan–Meier curves. In such curves, the x values usually represent the follow-up
time since randomization; the y values may represent the survival probabilities, sur-
vival percentages, failure probabilities, or failure percentages at the corresponding time
points, as specified in the trial publication. These measures can be transformed arith-
metically into survival probabilities. In addition to data from curves, the number of
patients randomized into each arm of a trial should be extracted from publications.

The DigitizeIt (http://www.digitizeit.de/) software application is a suitable tool for
extracting data from a graphical image. Data extraction using this software is far
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more rapid, detailed, accurate, and reliable than manually applying pencil and ruler
methods to a reduced image of the graph. If a curve is displayed as a clearly defined,
unbroken line, DigitizeIt can automatically read off the x and y values at a large number
of time points. This helps ensure the good quality of data required as input in the
reconstruction of time-to-event observations. However, if the curve is presented as a
broken (for example, dashed) line, the operator must extract data semi-manually by
clicking on individual points on the curve using a mouse. Because each click returns
only one data point, many clicks must be made to obtain sufficient data when there
are many jumps in the curve. In contrast, within a specific time interval where there
are few events or where the survival curves are flat, little information is available and
correspondingly few clicks are required.

In addition, it is important to extract the number of patients at risk for each arm
at regular time intervals during the follow-up. This information, usually known as the
risk table, is often presented beneath the published Kaplan–Meier curves. The accuracy
of the approximated time-to-event data can be improved by incorporating information
provided in the risk table (Tierney et al. 2007).

2.2 Adjusting monotonicity violators

Because a survival function is by definition monotone decreasing with time, the y values
extracted from a survival curve should also be monotone when ordered by the corre-
sponding x values. However, there may be violators among the extracted data such that
the monotonicity constraint is not satisfied. This is due to publication quality of the
curves or errors in controlling the mouse clicks (Guyot et al. 2012). The reconstruction
algorithm involves estimating survival functions. Monotonicity violators can lead to
incorrect estimates for the number of events, and subsequently incorrect estimates of
the survival function, which prevents the reconstruction from working. It is therefore
crucial to correct the values for violators to ensure monotonicity. Because violators are
often multiple, a systematic method is required.

With the ipdfc command, we incorporate alternative methods for the correction of
violators. The first method, isotonic regression (Barlow et al. 1972), may help to detect
violators and correct their values by using a pool-adjacent-violators algorithm. Adjacent
violators occur where a pair of adjacent times and corresponding survival probabilities is
inappropriately ordered, for example, time = (1.0, 1.1), survival = (0.91, 0.92). Briefly,
the pool-adjacent-violators algorithm replaces the adjacent violators with their mean
so that the data satisfy the monotonicity constraint. The technique has been recently
coded in a command called irax (van Putten and Royston 2017), which can be called in
our command. We also consider an alternative. We replace the value of a violator with
the value of its adjacent violator such that the corrected data satisfy the monotonicity.
We expect that using either method will lead to similar results because the absolute
difference between the values of adjacent violators is often too small to have a material
influence on the resulting data.
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2.3 Algorithm to reconstruct survival data

We now briefly describe the algorithm underpinning the ipdfc command. We start
with introducing notations. Let Sk denote survival probabilities at time tk, where
k = 1, 2, . . . ,K and K is the total number of data points extracted. The survival
probabilities Sk and the corresponding time tk may be extracted from the respective y
and x coordinates of a Kaplan–Meier curve. Let nriski denote the number of patients
at risk at time triski, where i = 1, . . . , T, with T as the number of intervals where the
number of patients at risk is reported. The number of extracted data points, K, is often
much greater than T , the total number of intervals at the risk table. If the risk table is
not reported, we have T = 1.

The four quantities Sk, tk, nriski, and triski are the required input in the algorithm.
As mentioned above, the number of patients at risk, if available, should be included in
the algorithm. Otherwise, if T = 1, the number of patients randomized to each arm
should be included in the algorithm. The total number of events, D, can also be used
in the reconstruction.

In the algorithm, we will estimate the following quantities: the number of censoring,

ĉk; the number of events, d̂k; the censoring time, ĉtimek; and the event time, d̂timek. To
estimate these quantities, we implement the algorithm described in Guyot et al. (2012)
by adding three new components for improvements. First, we calculate loweri and
upperi by using the input data tk, triski. Here, loweri and upperi are respectively the in-
dices for the first and last time points extracted from the time interval [triski, triski+1].
For each of these time intervals, loweri is equal to min{k : tk ≥ triski}, and upperi is
equal to max{k : tk ≤ triski+1}. Thus, loweri and upperi are not required as data input
like the R code of Guyot et al. (2012). Second, we adjust the values of monotonicity
violators by using isotonic regression or its alternative as just described. Third, we
extend the algorithm to the situation where the number at risk is reported at the last
time interval, at which we allow the calculation of the number of censoring following
the same methods as those for the other intervals. The full algorithm is given in the
appendix of this article.

3 The ipdfc command

3.1 Syntax

ipdfc, surv(varname) tstart(varname) trisk(varname) nrisk(varname)

generate(varname1 varname2) saving(filename
[
, replace

]
)
[
probability

failure isotonic totevents(#)
]

This syntax converts data extracted from a Kaplan–Meier curve to time-to-event
data. The syntax does not handle more than one sample at a time. When dealing with
a trial having more than one arm, the syntax converts data extracted from one curve at
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a time to time-to-event data for the respective arm. This should be done for all arms
individually, and further data management is needed to amalgamate the data from all
arms of a trial, if the data are from a trial. We will illustrate this in the examples given
later in this article.

3.2 Options

surv(varname) specifies the data extracted from the ordinate (y axis) of a published
Kaplan–Meier curve. The data may be survival probabilities, survival percentages,
failure probabilities, or failure percentages. By default, varname is assumed to
contain survival percentages. surv() is required.

tstart(varname) specifies the time since randomization as extracted from the abscissa
(x axis) of a published Kaplan–Meier curve. The time could be in any units (for
example, days, months, or years), as specified in the publication. tstart() is re-
quired.

trisk(varname) specifies the times corresponding to the numbers of patients at risk
in nrisk(). Set trisk() as 0 only if the total number of patients in the sample is
known. trisk() is required.

nrisk(varname) supplies the number of patients at risk for each time in trisk(). Both
trisk() and nrisk() are often found in a risk table displayed beneath published
Kaplan–Meier curves. If no risk table is available, specify nrisk() as the number of
patients in the sample, and specify trisk() as 0. nrisk() is required.

generate(varname1 varname2) generates the time-to-event outputs extracted from
the input information. varname1 and varname2 specify two new variables, the time
to an event and an event indicator (1 = event, 0 = censored). For example, speci-
fying generate(time event) would create time as the time to event and event as
the event indicator. generate() is required.

saving(filename
[
, replace

]
) saves the reconstructed survival data to filename.dta.

replace allows the file to be replaced if it already exists. saving() is required.

probability signifies that varname in surv() contains probabilities rather than the
default percentages.

failure signifies that varname in surv() contains failure information rather than the
default survival information.

isotonic uses isotonic regression to adjust values that violate the time-related mono-
tonicity in surv(). By default, an alternative, simpler method is used to correct the
values of violators by replacing the value of a violator with the value of its adjacent
violator.

totevents(#) is the total number of events and is used to adjust the number of ob-
servations censored in the final interval of the risk table.



Y. Wei and P. Royston 791

4 Illustrative examples

4.1 Example 1: Head and neck cancer trial

Our first example is a two-arm randomized controlled trial published in Bonner et al.
(2006). A total of 424 participants with locoregionally advanced head and neck can-
cer were randomized to receive either radiotherapy plus cetuximab or radiotherapy
alone. The primary outcome was the duration of locoregional control. Both Kaplan–
Meier curves and the hazard ratio were reported. This example was first used in
Guyot et al. (2012) to illustrate the application of the reconstruction method. Here
we use ipdfc to reconstruct the survival data and to illustrate how it performs com-
pared with Guyot et al. (2012) and with the results in the original publication. We run
the steps for each arm separately to obtain arm-specific data based on the associated
Kaplan–Meier curve from the trial report.

We read in a text file for the control arm by calling import delimited.

. import delimited using "head_and_neck_arm0.txt"
(4 vars, 102 obs)

The text file contains four variables: ts and s as the data extracted from the x axis
and y axis of a curve, and trisk() and nrisk() from the risk table.

We regenerate data for the control group by calling ipdfc.

. ipdfc, surv(s) tstart(ts) trisk(trisk) nrisk(nrisk) isotonic
> generate(t_ipd event_ipd) saving(temp0)

Because the extracted y values are survival percentages in this example, we need not
use either probability or failure to convert s. However, we use the option isotonic

to evoke isotonic regression to correct monotonicity violators. The regenerated survival
data are stored in the file temp0.dta.

We run the following steps for the treatment group:

. import delimited using "head_and_neck_arm1.txt", clear
(4 vars, 87 obs)

. ipdfc, surv(s) tstart(ts) trisk(trisk) nrisk(nrisk) isotonic
> generate(t_ipd event_ipd) saving(temp1)

The regenerated survival data are stored in the file temp1.dta.

The data simulated from both arms are then combined and specified with an arm
indicator.

. use temp0, clear

. gen byte arm = 0

. append using temp1

. replace arm = 1 if missing(arm)
(213 real changes made)
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In the amalgamated data, there are three variables—t ipd, event ipd, and arm—
which are time to event, event indicator, and arm indicator, respectively. We label the
arm indicator as Radiotherapy and Radiotherapy plus cetuximab, as specified in
the trial publication.

. label define ARM 0 "Radiotherapy" 1 "Radiotherapy plus cetuximab"

. label values arm ARM

We set time as the time to failure.

. stset t_ipd, failure(event_ipd)

(output omitted )

By calling sts graph, we reconstruct the survival curves (see figure 1).

. sts graph, by(arm) title("") xlabel(0(10)70) ylabel(0(0.2)1)
> risktable(0(10)50, order(2 "Radiotherapy" 1 "Radiotherapy plus"))
> xtitle("Months") l2title("Locoregional control")
> scheme(sj) graphregion(fcolor(white))
> plot1opts(lpattern(solid) lcolor(gs12))
> plot2opts(lpattern(solid) lcolor(black))
> text(-0.38 -9.4 "cetuximab")
> legend(off)
> text (0.52 53 "Radiotherapy plus cetuximab") text(0.20 60 "Radiotherapy")

failure _d: event_ipd
analysis time _t: t_ipd
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Figure 1. Reconstructed Kaplan–Meier curves for locoregional control among patients
with head and neck cancer (Bonner et al. 2006). Patients are randomized to receive
radiotherapy plus cetuximab or radiotherapy alone.

The survival analysis is carried out by calling stcox arm.

. stcox arm

failure _d: event_ipd
analysis time _t: t_ipd

Iteration 0: log likelihood = -1323.3427
Iteration 1: log likelihood = -1320.1905
Iteration 2: log likelihood = -1320.1899
Refining estimates:
Iteration 0: log likelihood = -1320.1899

Cox regression -- Breslow method for ties

No. of subjects = 424 Number of obs = 424
No. of failures = 241
Time at risk = 8412.821523

LR chi2(1) = 6.31
Log likelihood = -1320.1899 Prob > chi2 = 0.0120

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

arm .7208993 .0947487 -2.49 0.013 .5571859 .9327152

The reconstructed Kaplan–Meier curves (see figure 1) look similar to the published
curves (Bonner et al. 2006). There is only a small discrepancy in the numbers of patients
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at risk in the radiotherapy plus cetuximab arm. For this arm, based on the reconstructed
data, the numbers of patients at risk are 211, 130, 93, 67, 35, and 10, which are similar
though not identical to 211, 143, 101, 66, 35, and 9 in the original publication. The
discrepancy in the risk table between the approximation (figure 1) and the original
publication is very small for the radiotherapy arm.

In table 1, we report percentages of patients surviving one, two, and three years;
median duration of locoregional control; and hazard-ratio estimates. The estimates of
percentage of surviving and median time to event are close to those in the original
publication. The hazard ratio (0.72, 95% CI: [0.56, 0.93]) estimated by our command is
close to the hazard ratio (0.73, 95% CI: [0.57, 0.94]) estimated by Guyot et al. (2012).
Because we digitize the data independently of Guyot et al. (2012), we do not expect to
obtain identical data nor identical results. Though not identical, both approximated
hazard ratios are similar to the published hazard ratio (0.68, 95% CI: [0.52, 0.89]).

Table 1. Example 1. Comparison of summary measures estimated from publication and
their corresponding reconstructed data

Original Guyot et al. ipdfc

publication (2012)

Radiotherapy arm Percent [95% CI] Percent [95% CI]

Percent surviving one year 55 56.1 [49.6, 63.3] 56.9 [49.9, 63.2]
Percent surviving two years 41 41.1 [34.7, 48.6] 40.9 [34.2, 47.5]
Percent surviving three years 34 34.7 [28.4, 42.5] 33.5 [27.1, 40.1]
Median duration 14.9 14.9 [11.9, 23.0] 16.1 [11.9, 20.4]

Radiotherapy plus cetuximab arm Percent [95% CI] Percent [95% CI]

Survival rate at one year 63 64.0 [57.8, 70.9] 65.4 [58.2, 71.6]
Survival rate at two years 50 50.4 [43.9, 57.8] 51.0 [43.3, 58.6]
Survival rate at three years 47 46.7 [40.1, 54.4] 49.6 [40.4, 55.7]
Median duration 24.4 24.3 [15.7, 45.7] 23.7 [15.6, 46.8]

Hazard ratio with 95% CI

0.68 [0.52, 0.89] 0.73 [0.57, 0.94] 0.72 [0.56, 0.93]

4.2 Example 2: ICON7 trial

Our second example is ICON7, a two-arm randomized controlled trial in advanced ovarian
cancer (Perren et al. 2011). A total of 1,528 women were randomized to receive either
standard chemotherapy plus bevacizumab or standard chemotherapy alone. From the
analysis based on data with 30 months follow-up, Perren et al. (2011) concluded that
bevacizumab improved progression-free survival in this population, with hazard ratio
0.81 (95% CI: [0.70, 0.94]; P = 0.004 from a log-rank test). Perren et al. (2011) found
significant nonproportional hazards (P < 0.001) of the treatment effect. Kaplan–Meier
curves and the associated risk table for progression-free survival were reported in their
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figure 2a, on which we base our reconstruction of the survival data using ipdfc. Also,
we use the total number of events, tot, because it is available.

. local tot0 = 464

. local tot1 = 470

. import delimited using "icon7_data_arm0.txt", clear
(4 vars, 86 obs)

. ipdfc, surv(s) tstart(ts) trisk(trisk) nrisk(nrisk) probability isotonic
> tot(`tot0´) generate(t_ipd event_ipd) saving(temp0)

. import delimited using "icon7_data_arm1.txt", clear
(4 vars, 473 obs)

. ipdfc, surv(s) tstart(ts) trisk(trisk) nrisk(nrisk) probability isotonic
> tot(`tot1´) generate(t_ipd event_ipd) saving(temp1)

In this example, the extracted y values are survival probabilities. According to the
above codes, we use the probability option to specify that surv(s) represents survival
probabilities rather than survival percentages.

therapy
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Figure 2. Reconstructed Kaplan–Meier curves for progression-free survival according
to treatment group in ICON7 (Perren et al. 2011). Patients are randomized to receive
standard chemotherapy plus bevacizumab or standard chemotherapy alone.
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The reconstructed Kaplan–Meier curves in figure 2 look similar to those in the
original publication (Perren et al. 2011). The number of patients at risk is also well
approximated, with most numbers identical to those in the original publication. The
little discrepancies lie in 6 months and 12 months. The numbers of patients at risk
are 694 at 6 months and 465 at 12 months based on the approximated data, which
compared similarly though not identically to the original publication numbers of 693 at
6 months and 464 at 12 months. The estimated hazard ratios, median survival time,
and p-values from the log-rank test are also similar to those in the original publication.
See table 2 for a comparison of summary measures.

Table 2. Example 2. Comparison of summary measures estimated from publication and
their corresponding reconstructed data

Original Reconstructed
publication data

Log-rank test P = 0.004 P = 0.009
Nonproportional

hazard test P < 0.001 P < 0.001
Hazard ratio 0.81 (95% CI: [0.70, 0.94]) 0.83 (95% CI: [0.72, 0.96])
Median survival time

Chemotherapy arm 17.3 17.5 (95% CI: [16.1, 18.7])
Bevacizumab arm 19.0 19.1 (95% CI: [18.3, 19.9])

4.3 Example 3: EUROPA trial

Our third example, EUROPA, is a two-arm randomized placebo-controlled trial evaluat-
ing the efficacy of perindopril in reduction of cardiovascular events among patients with
stable coronary artery disease (Fox 2003). In this trial, 12,218 patients were randomly
assigned perindopril 8 mg once daily (n = 6110) or placebo (n = 6108). Kaplan–Meier
curves and the associated risk table were presented in figure 2 of the trial report. In Fox
(2003), the Cox proportional hazards model was used, but the hazard-ratio estimate was
not reported. It was reported in Fox (2003) that perindopril treatment was associated
with a significant reduction in the composite events (cardiovascular mortality, nonfatal
myocardial infarction, and resuscitated cardiac arrest), with p-value = 0.0003 from a
log-rank test and absolute risk reduction of 1.9%.

We extracted the failure percentages and the associated time points, respectively,
from the y axis and the x axis of the Kaplan–Meier curves in Fox’s (2003) figure 2. In
the following codes, we use the option failure to specify that the input data are failure
percentages instead of the default survival percentages.
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. import delimited using "europa_data_arm0.txt", clear
(4 vars, 743 obs)

. ipdfc, surv(s) failure isotonic tstart(ts) trisk(trisk) nrisk(nrisk)
> generate(t_ipd event_ipd) saving(temp0)

. import delimited using "europa_data_arm1.txt", clear
(4 vars, 650 obs)

. ipdfc, surv(s) failure isotonic tstart(ts) trisk(trisk) nrisk(nrisk)
> generate(t_ipd event_ipd) saving(temp1)

The Kaplan–Meier curves from the reconstructed data are presented in figure 3. The
reconstructed curves appear nearly identical to the original. The reconstructed curves
correctly reflect that the benefit of perindopril treatment began to appear at one year
and gradually increased throughout the follow-up of the trial. The numbers of patients
at risk are also very similar to the reported values, with only a small discrepancy in the
placebo arm in two years of follow-up (5,781 in the original report versus 5,783 in the
reconstructed data).
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Figure 3. Reconstructed Kaplan–Meier curves for time to first occurrence of event.
Patients are randomly assigned to perindopril treatment or placebo in the EUROPA trial
(Fox 2003).
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Using the reconstructed data, we obtain p-value = 0.0006 from a log-rank test (see
table 3). Similar to the original report, this result also suggests that perindopril treat-
ment was associated with a significant reduction in the composite events. We estimate
the absolute risk reduction as 1.82%, similar to the 1.9% in the original publication.
We are able to obtain the 95% CI [0.80, 2.84] for this based on the reconstructed data.
Using the Cox proportional hazards model, we obtain the hazard-ratio estimate 0.81
(95% CI: [0.72, 0.91]). Table 3 shows that the correction of monotonicity violators by
isotonic regression and by the default method lead to very similar results.

Table 3. Example 3. Comparison of summary measures estimated from publication and
their corresponding reconstructed data

Publication ipdfc ipdfc

with isotonic without isotonic

Log-rank test P = 0.0003 P = 0.0006 P = 0.0006

Absolute risk reduction 1.9% 1.82% 1.80%
(95% CI) [0.80, 2.84] [0.80, 2.82]

Hazard ratio not 0.81 0.81
(95% CI) applicable [0.72, 0.91] [0.72, 0.92]

The availability of Kaplan–Meier curves has enabled us to reconstruct the time-to-
event data and calculate the hazard ratio, which was not reported for this trial. This
would be particularly helpful if this trial was included in a meta-analysis where the
hazard ratio is used as an effect measure.

5 Discussion

In this article, we provide a command, ipdfc, to implement the algorithm of reconstruct-
ing time-to-event data based on the information extracted from published Kaplan–Meier
curves. Our command has greater flexibility, incorporating several additional features.
It requires fewer inputs, automatically corrects data inconsistency that violates mono-
tonicity, and allows one to use the number of patients at risk at the final interval, if
reported.

Example 1 shows that the estimates of summary statistics (table 1) based on ipdfc

are similar to those by Guyot et al. (2012). Some estimates are better approximations
than others. The approximations to median times to event are very close to those in the
original publication (Perren et al. 2011). The approximated hazard ratio is also close,
but not identical, to that reported in the original publication. This small discrepancy
is possibly due to the numbers and positioning of events not being entirely accurately
estimated by the algorithm.

Although nonproportional hazards are evident in ICON7, the reconstructed Kaplan–
Meier curves and hazard-ratio estimate are in reasonable agreement with those from
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the trial publication (see table 2). This suggests that nonproportional hazards may
not much affect the approximation accuracy. However, further empirical evaluation of
ipdfc in a larger number of trials, with or without obvious nonproportional hazards, is
desirable; this is a topic for further research.

Where hazard ratios are not reported but Kaplan–Meier curves are available, ipdfc
is particularly helpful because it enables the reconstruction of time-to-event data and
hence allows for reanalysis of the data. For the EUROPA trial, we are able to obtain
the estimate of the hazard ratio and obtain the 95% CI for the absolute risk reduction,
both of which were not reported in the trial publication. It is shown that the recovered
Kaplan–Meier curves and the associated risk table are both very similar to the originals.
This is perhaps due to the large sample size in this trial, and the accuracy of the
reconstructed data increases accordingly.

We conclude that ipdfc appears to perform quite well in regenerating survival data,
sufficient to produce reasonable approximations to summary statistics in time-to-event
analysis.
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Appendix

Algorithm 1 Reconstructing survival data (adapted from Guyot et al. [2012])

Require: The data extracted from published survival curves.

Sk: survival percentages as extracted from y axis, k = 1, . . . ,K, where K
is the total number of extracted data points

tk: time from randomization as extracted from x axis

nriski: number of patients at risk at time triski, i = 1, . . . , T , where T is the
number of intervals where the number of patients at risk is reported

triski: time reported at the risk table

Ensure: Sk+1 ≤ Sk for all k to meet the monotonicity constraint.

Set loweri = min{k : tk ≥ triski} and upperi = max{k : tk ≤
triski+1}.

if i < T − 1 and T > 1 then

Step 1. Calculate n̂ci, the number of censored at time [triski, triski+1], by

n̂ci = Sloweri+1
/Sloweri × nriski − nriski+1

Step 2. Distribute n̂ci evenly within [triski, triski+1]. The censored time is
then

ĉtimec = tloweri + c× (tloweri+1
− tloweri)/(n̂ci + 1)

where c = 1, . . . , n̂ci. We can then calculate the number of censored
events, n̂ck, in extracted intervals [tk, tk+1], which is within
[triski, triski+1].

Step 3. Calculate the number of events at tk as

n̂dk = n̂k ×
(
1− Sk/Ŝ

KM
last(k)

)

n̂k is the estimated number at risk at time tk. Ŝ
KM
last(k) is the estimated

survival probability at time tlast(k) with

last(k) =

{
1 if k = 1

k′ otherwise

Note that tk′ ≤ tk, k
′ is such that the latest event occurs at tk′ , and

there are no events in (tk′ , tk). The estimated number of patients

at risk at time tk+1 is then n̂k+1 = n̂k − n̂dk − n̂ck, where k ∈
[loweri, upperi]. Thus, n̂riski+1 = n̂upperi+1.
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Step 4. Set ∆t = n̂riski+1 − nriski+1.

if ∆t 6= 0 then

Adjust the estimated number of censored in time interval
[triski, triski+1] by setting

n̂ci = n̂ci +
(
n̂riski+1 − nriski+1

)

We then repeat steps 1–4 until n̂riski+1 = nriski+1.

end if

Step 5. Repeat steps 1–4 until i+ 1 = T .

end if

if i = T or i = 1 and T = 1 then

Step 6. Approximate n̂cT within interval [triskT−1, triskT ] by setting

n̂cT = min

(
tupperT − tlowerT

tupperT−1
− tlower1

×
T−1∑

i=1

n̂ci; nriskT

)

We then run steps 2–3 for the last interval [triskT−1, triskT ].

end if

if the total number of events, D, is not given then

Stop the algorithm.

end if

if the total number of events, D, is given then

Step 7. Compute
∑upperT−1

k=1 n̂dk.

if
∑upperT−1

k=1 n̂dk ≥ D then

Stop the algorithm.

end if

if
∑upperT−1

k=1 n̂dk < D then

Step 8. Adjust the number of censored, n̂cT , by setting

n̂cT = n̂cT +

(
upperT∑

k=1

n̂dk −D

)

Repeat steps 2–3 and steps 7–8 for the last interval.

end if

end if




