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Abstract 
 
In general, the non-protein-coding dark matter of eukaryotic genomes remains 

poorly understood. Neither diversity studies, comparative genomics, nor the 

biochemical outputs allow fine-scale descriptions of the genomic elements that are 

required for an organism to grow. Transposon mutagenesis offers an alternative 

approach to locate functional regions. In principle, insertion mutants are created in 

large pools, and mutants harbouring harmful insertions are quantitatively removed 

from the population. Subsequent sequencing of mutant libraries should reveal 

functionality in regions with fewer insertions. Transposon mutagenesis works well 

in bacteria. 

 
We applied the Hermes transposon system to locate functional regions in the 

Schizosaccharomyces pombe, or fission yeast genome. We created multiple dense 

insertion libraries, during log phase growth and chronological ageing, achieving a 

saturating (or near-saturating) insertion density of 1 insertion per 13 nucleotides 

of the genome for log phase samples. To account for the complexity and 

stochastic nature of the data, we applied a five-state hidden Markov model 

(HMM) that includes generalised linear models to account for systematic insertion 

biases (e.g. nucleosomes). 

 
The HMM state provides a semi-quantitative estimate of the functional 

significance of the genome at single nucleotide-level resolution. The HMM state 

values are strikingly consistent (but more detailed than) genome annotations. 

Here, we show that transposon insertions have functional consequences in 90% of 

the genome, including 80% of the non-protein-coding regions. Specifically, we 

discover 85 essential ncRNAs during vegetative growth, and 218 during ageing. 

We also find 54 pro-ageing and 136 anti-ageing genes. Overall, this functional 

annotation map distinguishes sub gene-level genomic segments that have 

differential effects on cell survival, and so will have extensive utility to the 

community. 
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Chapter 1 BACKGROUND 
 
1.1 Schizosaccharomyces pombe as a Model Organism 
 
Schizosaccharomyces pombe, or fission yeast, is a unicellular haploid eukaryote 

characterised by rod-shaped cells, first developed as an experimental genetic model 

in the 1950s by Urs Leupold. Since then, it has emerged as a popular model 

organism of great scientific importance. In particular, it is significant in the field of 

cellular and molecular biology, when studying cell cycle control (Nurse 1990), 

centromere structure (Allshire and Karpen 2008), cytokinesis (Goyal et al. 2011), 

DNA repair and recombination (Phadnis et al. 2011), heterochromatin assembly 

mediated by RNA interference (Goto and Nakayama 2012), and mitosis and 

meiosis (Harigaya and Yamamoto 2007). For the most part, this can be attributed 

to the fact that S. pombe is amenable to genetic manipulations, as well as having 

a rapid division cycle with a generation time of two to four hours. Moreover, its 

haploid life cycle facilitates the recovery of what would be recessive alleles in 

diploid organisms, while its compact genome reduces the likelihood that a gene 

knockout will be masked by redundant genes. 

 
Importantly, S. pombe has a fully sequenced (Wood et al. 2002), well-annotated 

(Wood et al. 2012) genome; ∼12.6 Mbp in size, and distributed across three 

chromosomes. In general, several mechanisms and pathways have been found to 

be conserved from fission yeast to higher eukaryotes such as humans. In addition, 

conserved genes that are essential for eukaryotic cell organisation were discovered, 

and these are believed to have originated with the appearance of eukaryotic life. 

Similarly, conserved genes that are important for multicellular organisation were 

identified, suggesting that the transition from prokaryotes to eukaryotes required 

more novel genes than did the transition from unicellular to multicellular 

organisation (Wood et al. 2002). 
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S. pombe can also be seen as an informative predictor of human gene function, 

which means that it could be used to model complex disease processes. Indeed, 

over 20 protein-coding genes have been implicated in cancer, specifically, in the 

cell cycle, checkpoint controls, DNA damage and repair, and in other processes 

known to maintain genomic stability. S. pombe has likewise been exploited to 

understand	 the neurodegenerative lysosomal storage disorder Batten disease 

(Haines et al. 2009). In addition, systematic screens for mutants resistant to 

TORC1 inhibition have revealed genes involved in cellular ageing and growth 

(Rallis et al. 2014). Overall, S. pombe has proven a valuable model organism to 

systematically interrogate the genome in a manner that is not possible, or at least 

more limited in higher eukaryotes. 

 
1.2 Functional Elements in the Fission Yeast Genome 
 
In order to understand the human genome, we must first discover and interpret all 

functional elements within its sequence. For this reason, it is important to 

recognise what constitutes function and what sets the boundaries of an element. 

Since there is no universal definition of function, only an intuitive one, each 

scientific discipline has to rely on different lines of evidence to define function, 

making it a very controversial field to pursue (Germain et al. 2014). In fact, while 

the biochemical approach quantifies evidence of molecular activities, the 

evolutionary method measures selective constraint, and the genetic process 

evaluates phenotypic consequences of mutations. Together, these three different 

approaches can provide information on the biological significance of an element. 

Indeed, groups of functional genomic elements identified through each method can 

be quantitatively enriched for each other (Kellis et al. 2014). Operationally, 

functional elements have been defined as discrete genomic segments that encode a 

defined product (such as protein or non-coding RNA) or display a reproducible 

biochemical signature (such as protein binding or a specific chromatin structure) 

(Dunham et al. 2012). 
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Having said this, it is now established that only ∼1.5% of the human genome 

codes for protein sequence (Lander et al. 2001). However, comparative studies 

with mammalian genomes (Waterston et al. 2002, Gibbs et al. 2004, Lindblad-

Toh et al. 2005) have shown that at least 5% is under selective constraint and 

therefore perhaps functional, of which ∼3.5% consists of non-coding sequences 

with apparent roles (Lindblad-Toh et al. 2011). In general, this created an 

enigmatic aura, leading to the label of ‘dark matter’, similar to the ‘dark matter’ 

of the universe, which we cannot easily detect or understand, but that 

nevertheless exists and is exposed to experimental queries. Overall, existing 

research on these non-coding regions, which form a part of this once proverbial 

genomic ‘dark matter’, suggests that these regions have important biological roles 

in cellular homeostasis, development, differentiation, and metabolism. In fact, their 

aberrant expression or regulation (dysregulation) is being found in numerous 

human diseases, including cancer, cardiovascular, developmental, and neurological 

diseases. In consequence, translational research is examining the potential use of 

these non-coding elements as biomarkers and molecular targets in medical 

theranostics. 

 
However, considering the sheer volume of research investigations carried out to 

date, this ‘dark matter’ remains, for the most part, poorly understood, as are 

most of the other functional elements of the human genome. With this in mind, 

scientists often turn to the genomes of model eukaryotic organisms such as 

insects, worms, and yeasts. One of the benefits of studying functional elements in 

model organisms is the ability to biologically validate the elements discovered using 

methods that cannot always be applied in humans. For instance, Siepel et al. 

(2005) carried out a comprehensive search for conserved elements in four insect 

species (three species of Drosophila melanogaster and Anopheles gambiae), two 

species of Caenorhabditis elegans, and seven species of Saccharomyces cerevisiae. 

Here, Siepel et al. (2005) found that from yeasts to vertebrates, increasing 

fractions of conserved bases lie outside of exons of protein-coding genes, therefore 
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reflecting the importance of non-protein-coding and other regulatory sequences in 

higher eukaryotes. 

 
Studies within the fission yeast community have also helped discover new, 

conserved, functional elements. For example, Wilhelm et al. (2008) interrogated 

the S. pombe transcriptome under multiple conditions and detected widespread 

transcription in over 90% of the genome. In doing so, they provided information 

on novel, mostly non-coding transcripts and untranslated regions (UTRs), thus 

improving the existing genome annotation. Studies by Fawcett et al. (2014) and 

Jeffares et al. (2015) independently showed that in addition to introns and UTRs, 

intergenic regions exhibit lower levels of nucleotide diversity, suggesting that a 

considerable amount of non-coding transcripts are under selective constraint and 

thus likely to be functional. Having said this, it is important to note that such 

population genomics studies (data from within species) do not have the power to 

locate specific functional elements, only classes that are conserved. Similarly, 

comparative genomics studies (data from between species) do not have the power 

to locate functional elements that are not conserved over a long period of time 

(such as genomic elements specific to S. pombe). Overall, this shows that even a 

fully sequenced and well-annotated genome, such as the S. pombe genome, has 

genomic complexities far beyond current annotation. Importantly, it demonstrates 

that the hunt for functional elements within the fission yeast genome is ongoing 

and needs to be further pursued. 

 
1.3 Mutagenising the Fission Yeast Genome 
 
Over the past decade, the advent of high throughput sequencing, or next 

generation sequencing (NGS), has greatly accelerated the rate at which genes are 

discovered. In itself, this has challenged the existing methods for defining the 

functions of genes. In fact, several methods have now been developed to gain 

further insight into gene function. Perhaps one of the most novel approaches, 

especially in haploid cells, is that generating systematic deletions and disruptions 



 

18 

within the genome. Indeed, the first genome-wide deletion library for fission yeast 

is now commercially available by the Bioneer Corporation. Here, Kim et al. (2010) 

determined the essentiality of 4,836 protein-coding genes, and found that 26.1% 

of S. pombe genes are essential and 73.9% are non-essential for viability of 

haploid cells in the growth conditions used. In this deletion library, each mutant 

contains a pair of unique molecular barcodes that can be monitored either by 

microarrays or by NGS techniques, thus making it quicker to identify the genes 

that are responsible for a particular phenotype (Han et al. 2010, Kim et al. 2010). 

While it is still a powerful reverse genetics tool, this deletion library is not without 

its limitations. One of its major drawbacks is that it contains mutants with 

deletions only in the open reading frames (ORFs). Therefore, it does not 

specifically target intergenic and non-coding elements (Guo et al. 2013), and the 

question as to how much genetic information is actually transacted by non-coding 

regions still remains unanswered. 

 
1.3.1 Transposon Saturation Mutagenesis 
 
To this end, other different approaches have to be taken into account, such as 

saturation mutagenesis, which makes it possible to create libraries of mutants 

containing all possible mutations in a gene sequence (Zheng et al. 2004). 

Generally, for transposon mutagenesis libraries, this involves the use of ubiquitous 

transposable elements; specialised sequences that are capable of moving within a 

host genome in a non-replicative manner. In an experimental setting, a transposon 

can be modified to carry almost any sequence cargo, however, in order to do this, 

it needs to be flanked by sequences termed terminal inverted repeats (TIRs). TIRs 

are specific to the transposon, and are recognised by a transposase enzyme that is 

necessary in mediating the movement of the transposon. Since transposons are 

also inherently mutagenic, numerous molecular applications based on transposons 

have been established in multiple model organisms. 
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In fission yeast, three types of transposons have been analysed in a genome-wide 

context: the class I retrotransposon Tf1 and the two class II cut-and-paste DNA 

transposons (a) piggyBac, isolated from the cabbage looper moth Trichoplusia ni, 

and (b) Hermes, isolated from the housefly Musca domestica. First attempts to 

use Tf1 as a mutagen were not very successful because most of the insertions 

occurred in clusters in a window 500 nt upstream of ORFs (Behrens et al. 2000, 

Singleton and Levin 2002, Bowen et al. 2003, Guo and Levin 2010). However, 

because Tf1 was reported to harbour a chromodomain, and since it is known that 

chromodomains interact with heterochromatic regions, Cherry et al. (2014) 

anticipated possible Tf1 targeting to heterochromatic regions of S. pombe. 

Indeed, their results revealed that Tf1 can insert within silent regions of the 

genome. 

 
In regard to the piggyBac transposon, Li et al. (2011) used an S. pombe strain 

with a selectable transposon excision marker and an integrated transposase gene, 

to show that most insertion sites occur within intergenic regions and TTAA sites, 

with limited local hopping effect and little chromosomal bias. In general, the 

preference for intergenic regions was assumed to be due to selective pressure on 

insertions in ORFs that resulted in reduced fitness. One of the main problems of 

the piggyBac transposon is that there are too few potential insertion sites within 

the genome. Nonetheless, using this system, they managed to obtain different 

types of alleles, including null, hypomorphic and hypermorphic alleles, which were 

all broadly distributed among the three yeast chromosomes. 

 
Overall, these studies show how useful transposon mutagenesis could be in the 

exploration of the S. pombe genome, in particular when compared to the Bioneer 

deletion library, which in general created null alleles of non-essential genes. In 

addition, with the deletion library, it is more arduous to perform a screen in a 

genetic background that is different from that of the library, because to do so 

would involve crossing the desired background into each deletion strain within the 
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library. It is indeed much easier to introduce transposable elements into the 

preferred genetic background. One other advantage of transposon mutagenesis is 

that transposons often insert at individual locations as single, unmodified copies, 

creating defined boundaries between genomic and transposon DNA, which 

therefore makes the insertion sites easier to map with high throughput sequencing 

(Dos Santos et al. 2012). 

 
1.3.2 Hermes Transposon Mutagenesis 
 
Hermes was first developed into a transposon mutagenesis tool for fission yeast by 

Evertts et al. (2007). In this work, they describe a system that contains the 

Hermes transposase, driven by a repressible promoter, and the transposon, 

composed of a drug resistance marker flanked by the TIRs of Hermes. Upon 

promoter induction, and subsequent transposase expression, the transposon is 

excised at its TIRs and then integrated into chromosomal DNA. One advantage of 

this approach is that the transposase and the transposon are encoded on separate 

plasmids which means that transformations can be carried out in different genetic 

backgrounds. Moreover, the risk of local hopping is reduced; local hopping, a 

shared feature of cut-and-paste transposons, is the phenomenon in which 

transposons preferentially land into cis-linked sites in the vicinity of the donor 

locus (Ivics and Izsvák 2010). 

 
One other advantage of the Hermes transposon system in S. pombe is that there 

is only a slight preference in the insertion sites. In fact, Guo et al. (2013) observed 

that Hermes efficiently disrupts intergenic regions and ORFs with bias towards 

nucleosome-free sites. Similar studies carried out in other organisms, such as 

Drosophila melanogaster (Guimond et al. 2003) and Saccharomyces cerevisiae 

(Gangadharan et al. 2010), also showed that Hermes insertions are biased towards 

nucleosome-free and TA-rich regions. In addition, Gangadharan et al. (2010), 

show that Hermes can insert in either orientation once it recognises an 8 bp 

nTnnnnAn target site (Figure 1.1). Overall, the Hermes transposon system 
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appears to have a clear advantage over the other transposon systems, which 

makes it better suited in creating transposon mutagenesis libraries, and therefore, 

in potentially discovering functional elements within the S. pombe genome. 

 

 
 
Figure 1.1. Hermes Transposition Mechanism. Hermes inserts in either 

orientation once it recognises an 8 bp nTnnnnAn target site (adapted from 

Gangadharan et al. (2010)). 

 
Indeed, the approach of coupling transposon mutagenesis with NGS technologies 

is quite powerful. It is a method that has been well exemplified in multiple 

organisms, including prokaryotes (van Opijnen and Camilli 2013), yeasts (Oh et al. 

2010, Li et al. 2011, Guo et al. 2013, Michel et al. 2017), and haploid mammalian 

cells (Pettitt et al. 2013). 

 
Here, this technique will be used to examine, at a fine-scale resolution, the fitness 

consequences of transposon insertions during mitotic proliferation as well as 
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chronological ageing. In general, the biological mechanisms at the heart of the 

ageing process remain unsolved. However, research on the role of genes involved in 

ageing and longevity is ongoing. S. pombe has emerged as a model organism to 

unravel chronological ageing. In this field, transposon mutagenesis, together with 

high throughput sequencing, can help to discover genes with changing importance 

as a function of ageing. 

 
1.4 Aims: Rationale and Significance 
 
In spite of extensive efforts, a lot remains to be discovered within the S. pombe 

genome. While the dispensability, or essentiality, of most protein-coding genes 

under the standard growth condition is known, not much is known with regards to 

the non-protein-coding genes. In order to predict genomic function, one option 

would be to knockout genes. However, another approach could also be used in 

parallel: during transposon mutagenesis, transposons are randomly inserted in as 

many positions in the genome as possible, creating mutations that can be easily 

mapped and sequenced. Subsequently, essential elements can be distinguished 

from non-essential ones, in that genomic regions lacking insertion sites will be 

considered as essential whereas those harbouring a lot of insertions will not 

(Figure 1.2). 

 
In brief, if the transposon is inserted in the middle of an essential regulatory 

element, the effects on the cell will be drastic, whereas the opposite is true for 

non-essential elements. Taking all of this into consideration, this study will explore 

the functional landscape of the S. pombe genome through Hermes transposon 

mutagenesis. In particular, this work aims to answer questions such as: How much 

of the non-protein-coding genes are functional during log phase growth and 

chronological ageing? How well does transcriptional activity predict an essential 

region? How much of the non-conserved genes (between species) are functional, 

and are there any conserved genes that do not seem to be functional in S. pombe? 
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Figure 1.2. Essential vs. Non-Essential Genes. Following selection and 

sequencing, essential genes can be distinguished from non-essential genes, since 

essential genes accumulate far fewer insertions than non-essential ones. 
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Chapter 2 MATERIALS AND METHODS 
 
2.1 Strains and Media 
	
EMM (Edinburgh Minimal Medium) and YES Broth (yeast extract, glucose, and 

amino acid supplement), both purchased from Formedium™ (Norfolk, UK), were 

used for the cultivation of fission yeast. EMM is a selective medium. YES is used 

for non-selective, vegetative growth. 2% agar was added for solid-phase growth on 

plates. For liquid growth, cells were grown in an incubator shaker (Infors, Surrey, 

UK) at 32oC and 170 rpm. Cell growth was approximated by a cell density meter 

(Biochrom Ltd., Cambridge, UK), measuring optical density (OD) at a wavelength 

of 600 nm, where an OD of 0.1 was taken to correspond to 2 x 106 cells/ml. 

Strains carrying plasmids were stored at 4oC on selective agar plates to ensure 

plasmid retention. Strains without plasmids were stored at 4oC on YES agar 

plates. For long term storage, strains were frozen at -80oC in YES, or EMM, and 

50% glycerol. 

 
For the Hermes cell libraries, thiamine was added at a final concentration of 5 

µg/ml to repress expression from the no-message-in-thiamine (nmt1) promoter 

(Maundrell 1990). 5-FOA (5-fluoroorotic acid) (Zymo Research Corporation, 

Irvine, California) was used at a final concentration of 2 mg/ml and G418 (G418 

disulfate salt solution) (Formedium™, Norfolk, UK) was used at a final 

concentration of 50 mg/ml. For the Hermes DNA libraries, all oligonucleotides 

were purchased through Invitrogen™ (Paisley, UK). 

 
2.2 Hermes Cell Libraries 
 
2.2.1 Fission Yeast Transformation 
 
A. Preparing The Plasmids 
 
So as to propagate the plasmids, One Shot TOP10® Chemically Competent 

Escherichia coli were used as these allow stable replication of high-copy number 
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plasmids. For each transformation, one vial of One Shot TOP10® Chemically 

Competent E. coli was thawed on ice. 10 pg to 100 ng of the plasmid DNA were 

added to the vial, mixed gently by swirling or tapping, and then the vial was 

incubated on ice for 30 minutes. Cells were heat shocked for 30 seconds at 42oC 

without shaking and then placed on ice for 2 minutes. Subsequently, 250 µl of pre-

warmed S.O.C. Medium (Invitrogen™, Paisley, UK) were aseptically added to each 

vial. This was then capped tightly and shaken horizontally at 225 rpm for 1 hour 

at 37oC in a shaking incubator. From each transformation, 20 to 200 µl were 

spread on a pre-warmed selective plate (lysogeny broth agar plate containing 100 

µg/ml ampicillin) which was then incubated overnight at 37oC. 

 
Using a sterile pipette tip, a single colony was picked from the freshly streaked 

selective plate and then used to inoculate a culture of 1 to 5 ml lysogeny broth 

medium containing 100 µg/ml ampicillin. This bacterial culture was incubated 

overnight (12 to 16 hours) at 32oC in a shaking incubator. Growth was 

characterised by a cloudy haze in the medium. Bacterial cells were then harvested 

by centrifugation at > 4000 rpm (6800 x g) in a conventional, table-top 

microcentrifuge for 6 minutes at room temperature (15 to 25oC). To purify 

plasmid DNA, the ‘Plasmid DNA Purification using the QIAprep Spin Miniprep Kit 

and a Microcentrifuge’ protocol (page 22 on the QIAprep® Miniprep Handbook) 

was employed. To quantify the purified plasmid DNA, the NanoDrop 2000 UV/Vis 

Spectrophotometer was used, where a 260/280 ratio of ∼1.8 assessed the purity 

of the DNA. 

 
For long term storage of the bacteria, a glycerol stock was created by gently 

mixing 500 µl of the overnight culture with 500 µl of 50% glycerol in a 2 ml 

cryovial and then freezing the glycerol stock tube at -80oC. 
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B. Transforming The Plasmids 
 
First, an S. pombe strain was selected taking into account the configuration of 

both the donor and the expression plasmids (Figure 2.1). Owing to its leu– and 

ura– genotype and its suitability for detecting the desired phenotype, the JB980 

(ura4–D18 leu1–32 h–) strain was grown in 50 ml YES until an OD600 of 0.8 to 

1.0. For each transformation, 20 ml of cells were pelleted in a falcon tube by 

centrifuging at 2500 rpm for 5 minutes at room temperature and discarding the 

supernatant. Pelleted cells were washed in 50 ml sterile water, centrifuged again, 

and the supernatant removed. Following that, the cells were transferred to a 

microcentrifuge tube in 1 ml sterile water, centrifuged, and the supernatant 

discarded. Cells were then washed in 1 ml LiAc-TE, centrifuged, and the 

supernatant removed. 100 µl LiAc-TE were added to resuspend the cells and the 

resulting cell suspension was incubated for 10 minutes at 32oC. 

 
Subsequently, 100 µl of cells were gently mixed with 2 µl of carrier DNA (at 10 

mg/ml) and up to 5 µl of donor plasmid DNA, and incubated for 10 minutes at 

room temperature. For the negative control, sterile water was used instead of the 

donor plasmid DNA. 260 µl of fresh and sterile 40% PEG/LiAc-TE were gently 

mixed to the cell suspension followed by 30 to 60 minutes incubation at 29°C to 

30°C. 43 µl of pre-warmed DMSO were also gently mixed in. Cells were heat 

shocked for 5 minutes at 42°C, put on ice for 2 minutes, and then centrifuged. 

Following the removal of the supernatant, 100 µl of sterile water were added and 

plated on EMM + N + leucine plates to select for the donor plasmid. To confirm 

the positive colonies, single colonies were re-streaked on EMM + N + leucine 

plates. 

 
So as to help avoid recombination between plasmids, the donor plasmid 

(pHL2577) was transformed first followed by a second transformation to 

introduce the expression plasmid (pHL2578). During the second transformation, 

to select for both the donor and the expression plasmids, cells were plated on 
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EMM + N + thiamine plates. For the negative control, an empty expression vector 

(Rep81X) was transformed in place of the expression plasmid. 

 

 
 
Figure 2.1. Donor and Expression Plasmids for Hermes Transposition in 

Fission Yeast. pHL2577 donor plasmid provides the source of transposon DNA 

flanked by the left and right terminal inverted repeats (TIRs). Here, the kanMX6 

cassette between the TIRs gives cells with insertions resistance to the drug G418 

(Geneticin). With regards to the pHL2578 expression plasmid, this contains the 

transposase gene which is under the control of the Rep81X nmt1 promoter; 

removal of thiamine allows the expression of the transposase (adapted from 

Evertts et al. (2007)). 

 
2.2.2 Cell Library Construction 
 
Following the sequential introduction of the donor and the expression plasmids 

into the JB980 strain, one colony was picked to inoculate 50 ml EMM – Leu – 

Ura + 15 µM Thiamine. When this starter culture reached stationary phase, at an 

OD600 ≈ 2 to 5, 5 ml of cells were pelleted at 2000 rpm for 5 minutes and then 

washed for four times in 25 ml EMM – Leu – Ura – Thiamine to remove thiamine. 

Removal of thiamine allowed the expression of the transposase from the nmt1 

promoter. Following that, an aliquot was taken to inoculate 50 ml EMM – Leu – 
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Ura – Thiamine to an OD600 ≈ 0.05 (i.e. 1 x 106 cells/ml), with the actual OD600 

value recorded as ODinitial(1) and dubbed as the cell number at generation zero. This 

culture was grown to a final OD600 ≈ 2 to 5, with the actual OD600 value recorded 

as ODfinal(1). Using these two values and the equation below, the number of cell 

generations was calculated. Subsequently, when the ODfinal was reached, cells were 

plated to monitor the transposition frequency. 

 

n =
!!

!"!"#$%
!"!"!#!$%
!.!"#

 where n is the number of cell generations and ln is the natural log. 
 
Next, after the first serial passage, an aliquot was taken to inoculate 50 ml EMM 

– Leu – Ura – Thiamine to an OD600 ≈ 0.05, with the actual OD600 value recorded 

as ODinitial(2). Again, this culture was grown to a final OD600 ≈ 2 to 5, with the 

actual OD600 value recorded as ODfinal(2). In accordance with Park et al. (2009), 

this was repeated for about 25 generations, that is approximately 6 serial 

passages. Importantly, after each serial passage, at each ODfinal, cells were plated 

to monitor the transposition frequency, as explained below. 

 
Once each serial passage reached an ODfinal ≈ 2 to 5, five ten-fold serial dilutions 

(e.g. undiluted, 1:10, 1:100 and 1:1000) were prepared. The three least dilute 

cultures were plated onto FOA and G418 and YES plates. Colonies growing on 

these plates represented the cells that had lost the donor plasmid but retained the 

transposon. On the other hand, the three most dilute cultures were plated onto 

YES plates. Colonies growing on these plates represented all of the cells. After 

approximately 3 days of growth, the number of colonies on each plate was 

counted, and, using the dilution factor, the number of resistant cells in the original 

culture was determined. To calculate the transposition frequency, the number of 

colonies on the FOA and G418 plates was divided by the number of colonies on 

the YES plates. The transposition frequency was then expressed relative to the 

generation number. 
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So as to select against cells carrying the donor plasmid, cells from the final 50 ml 

cultures were used to inoculate a 500 ml culture of EMM + Leu + Ura + FOA + 

Thiamine. Finally, after approximately 24 hours of growth, a 500 ml culture of 

YES + FOA + G418 was inoculated to an initial OD600 of 0.5 and grown to an 

approximate final OD600 of 5. Overall, this selected for insertional mutations. Ten 

50 ml aliquots were pelleted by centrifugation, resuspended in 50% glycerol in 

YES, and stored at -80oC. 

 
2.3 Hermes DNA Libraries 
 
2.3.1 DNA Library Construction 
 
In order to create the Hermes DNA libraries, frozen aliquots of the cell libraries 

were first streaked. Genomic DNA was then extracted using the 

phenol/chloroform extraction method as described by Sambrook et al. (1989) and 

quantified using the Qubit dsDNA Broad Range Assay Kit (Invitrogen™, Paisley, 

UK). 

 
Once extracted, DNA was sheared to an average size of 200 bp using a Covaris 

S2 ultrasonicator (Covaris, Woburn, Massachusetts) in a final volume of 120 µl 

TE (Quail et al. 2008). For each cycle, the parameters were:- Intensity: 5%, Duty 

Cycle: 10%, Cycles Per Burst: 200, Treatment Time: 60 seconds, and Power 

Mode: Frequency Sweeping. This was repeated for a total of 6 cycles. 1 µg of the 

sheared DNA was end repaired using the NEB End Repair Module (NEB, Hitchin, 

UK) according to manufacturer’s instructions. End repaired DNA was purified with 

1.8x Agencourt AMPure XP beads (Beckman Coulter, Danvers, Massachusetts) 

and resuspended in 50 µl sterile water. 

 
Subsequently, forked linkers were annealed to a final concentration of 10 µM in an 

annealing buffer made up of 1 mM EDTA, 10 mM Tris pH 7.5, and 50 mM NaCl. 

This was done by heating to 90oC then cooling slowly to room temperature over 1 

hour. Using the NEBNext Quick Ligation Module (NEB, Hitchin, UK), according 
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to manufacturer’s instructions, 10 µl of annealed linkers were ligated to 25 µl of 

purified DNA in a 50 µl reaction for 15 minutes at 20oC. One of the linkers 

contained a random 10 bp sequence which acted as a unique molecular identifier 

(UMI) in that it was able to distinguish biologically unique insertions over PCR- 

derived amplifications (Kivioja et al. 2012). Linker ligated DNA was purified with 

1.8x Agencourt AMPure XP beads and resuspended in 25 µl sterile water. 

 
Following that, linker ligated DNA was digested with 20 units of KpnI-HF (NEB, 

Hitchin, UK) in a final volume of 50 µl for 2 hours. This was carried out so as to 

remove any of the pHL2577 donor plasmid, containing the Hermes transposon, 

which could have still been present during genomic preparations. This is because 

KpnI-HF cuts 21 bp away from the transposon sequence thus making it impossible 

for the plasmid to be amplified during the first PCR. Besides, it is a rare cutter of 

the fission yeast genome, and therefore it does not introduce any significant biases 

when detecting the insertions in the later stages of the procedure. DNA was then 

purified with 1.8x Agencourt AMPure XP beads and resuspended in 25 µl sterile 

water. 

 
So as to enrich for fragments containing the Hermes transposon, DNA was then 

amplified with the BIOTAQ™ DNA polymerase (Bioline, Essex, UK) and pre-

designed primers. Specifically, the forward primer was designed to bind to the 

ligated linker, whereas the reverse primer was designed to bind within the right 

TIR sequence. Cycle parameters for amplification were as follows: 5 cycles of 94oC 

for 2 minutes, 58oC for 30 seconds, 72oC for 30 seconds, 15 cycles of 94oC for 30 

seconds, 58oC for 30 seconds and 72oC for 30 seconds, followed by a final 

extension at 72oC for 10 minutes. 

 
Following this first round of PCR, DNA was purified with 1.8x Agencourt AMPure 

XP beads and resuspended into 25 µl sterile water. 2 µl were then used in a 

second round of PCR to attach the multiplex oligonucleotides for Illumina MiSeq 

sequencing (NEB, Hitchin, UK). Cycle parameters for amplification were as 
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follows: 15 cycles of 94oC for 4 minutes, 94oC for 20 seconds, 56oC for 20 

seconds, and 72oC for 20 seconds. PCR products were first purified with 1.8x 

Agencourt AMPure XP beads, then size selected with 0.9x Agencourt AMPure XP 

beads. DNA was eluted from the beads in 25 µl sterile water. Finally, the molarity 

and size of the libraries were determined using an Agilent High Sensitivity DNA 

Chip on the 2100 Bioanalyser platform (Agilent Technologies, Santa Clara, 

California). Based on the size of the DNA amplicons, the DNA concentration was 

calculated using: 

 

concentration nM =
concentration (ng/µl)

660 g/mol × average library size×10
! 

 
Step Method Summary 

1. DNA Extraction phenol/chloroform extraction 
2. DNA Shearing Covaris ultrasonicator, ≈ 200 bp 
3. End Repair fragmented DNA to blunt ended DNA 
4. Linker Ligation random 10 bp as a unique molecular identifier 
5. KpnI-HF Digestion removes any residual pHL2577 donor plasmid 
6. PCR 1 enriches for fragments containing the Hermes insert 
7. PCR 2 attaches adapters for Illumina MiSeq sequencing 
8. Bioanalyser determines the molarity and size of the libraries 
 
Table 2.1. Hermes DNA Libraries Method Summary. It is important to note 

that purification was carried out after steps 3 to 7 using 1.8x Agencourt AMPure 

XP beads. 

 
Finally, 2 nM libraries were pooled together for paired-end sequencing. The MS-

102-2022 MiSeq reagent kit v2 (300 cycles) (Illumina, Cambridge, UK) was used 

to sequence the libraries. 
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2.3.2 Linkers and Primers Design 
 
 

Key: 
 
• Linkers 
• Hermes Sequence 
• Universal Primer and Complements 

• BIOTAQ Extending <--- 
 

 
A. Linker Ligation 
 
i) DNA Fragments with Hermes Insertions 
 
In essence, the reason why these mutation libraries are able to be sequenced is based on the fact that the Hermes transposon sequence is 

known, and therefore it is feasible to select for fragments containing the sequence. Consequently, it is possible to identify where the sequence 

was inserted and which regions of the genome were disrupted. Simply put, the Hermes insertions look like this, with the baseline dots 

representing the S. pombe genome: 

 
5-.....AGAGAACTTCAACAAGCCACAGGC-[more Hermes sequence].....-3 
3-.....TCTCTTGAAGTTGTTCGGTGTCCG-[more Hermes sequence].....-5 
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ii) Linker Sequences 
 
Then, the linkers are attached at both ends: 
 
Linker1-Random10mer: 5-TTCAGACGTGTGCTCTTCCGATCT-[NNNNNNNNNN]-CTCCGCTTAAGGGAC-3 
Linker2:                                          3-NH2-3AmM-GAGGCGAATTCCCTG-5 

 
Or, shown the other way around: 
 
Linker1-Random10mer: 3-CAGGGAATTCGCCTC-[NNNNNNNNNN]-TCTAGCCTTCTCGTGTGCAGACTT-5 
Linker2:             5-GTCCCTTAAGCGGAG-NH2-3AmM-3 

 
In Linker 1, the underlined unpaired 24 nt sequence provides the priming site for the forward primer in the first PCR. In Linker 2, the 5’ end 

has a phosphate group and the 3’ end has an amino group which acts as a blocking group thus preventing linker-linker amplification. 

 
With the Hermes insertions, the sequences look like this: 
 
5-TTCAGACGTGTGCTCTTCCGATCT-[NNNNNNNNNN]-CTCCGCTTAAGGGAC...AGAGAACTTCAACAAGCCACAGG-[Hermes]...GTCCCTTAAGCGGAG-NH2-3AmM-3 
                             3-NH2-3AmM-GAGGCGAATTCCCTG...TCTCTTGAAGTTGTTCGGTGTCC-[Hermes]...CAGGGAATTCGCCTC-[NNNNNNNNNN]-TCTAGCCTTCTCGTGTGCAGACTT-5 

 
It is important to note that at this point each DNA fragment has a covalently bound random 10mer (from the Linker1-Random10mer). 

Indeed, it has two, one at each end, but only the top strand is sequenced. 
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B. PCR 1 
 
PCR 1 uses two primers: 
 
i) 1-Transposon-4NNNN 
 
3-CTCTTGAAGTTGTTCGGTGTCC-[NNNN]-TCTAGCCTTCTCGCAGCAC-5 

 
Or, shown the other way around: 
 
5-CACGACGCTCTTCCGATCT-[NNNN]-CCTGTGGCTTGTTGAAGTTCTC-3 

 
where: 
o complementary to the Hermes right end 
o same as a part of the universal primer in PCR 2 
 
ii) Linker1-Amp 
 
5-TTCAGACGTGTGCTCTTCCGATCT-3 

 
In Linker1-Amp, the 24 nt sequence is the same as the underlined unpaired sequence of the Linker1-Random10mer. It is important to note 

that complementary sequences are only present after the first PCR 1 cycle (see next page). 

 
 
 



 

35 

PCR 1: First Cycle 
 
5-TTCAGACGTGTGCTCTTCCGATCT-[NNNNNNNNNN]-CTCCGCTTAAGGGAC...AGAGAACTTCAACAAGCCACAGG-[Hermes]...GTCCCTTAAGCGGAG-NH2-3AmM-3 
                                                    <--- 3-CTCTTGAAGTTGTTCGGTGTCC-[NNNN]-TCTAGCCTTCTCGCAGCAC-5 

 
1-Transposon-4NNNN anneals to and extends the top strand. During the first cycle, there are no sequences that Linker1-Amp can anneal to, 

and therefore, only fragments containing Hermes are extended. 

 
PCR 1: Second Cycle (and all other cycles) 
 
Subsequent to the first cycle and extension by the 1-Transposon-4NNNN primer, the dsDNA looks like this: 
 
5-TTCAGACGTGTGCTCTTCCGATCT-[NNNNNNNNNN]-CTCCGCTTAAGGGAC...AGAGAACTTCAACAAGCCACAGG-[Hermes]...GTCCCTTAAGCGGAG-NH2-3AmM-3 
3-AAGTCTGCACACGAGAAGGCTAGA-[NNNNNNNNNN]-GAGGCGAATTCCCTG...TCTCTTGAAGTTGTTCGGTGTCC-[NNNN]-TCTAGCCTTCTCGCAGCAC-5 

 
Therefore, the top and bottom strands can now be amplified by the 1-Transposon-4NNNN and Linker1-Amp primers respectively. 
 
1-Transposon-4NNNN extends like so (as above): 
 
5-TTCAGACGTGTGCTCTTCCGATCT-[NNNNNNNNNN]-CTCCGCTTAAGGGAC...AGAGAACTTCAACAAGCCACAGG-[Hermes]...GTCCCTTAAGCGGAG-NH2-3AmM-3 
                                                    <--- 3-CTCTTGAAGTTGTTCGGTGTCC-[NNNN]-TCTAGCCTTCTCGCAGCAC-5 

 
Linker1-Amp extends like so: 
 
5-TTCAGACGTGTGCTCTTCCGATCT-3 ---> 
3-AAGTCTGCACACGAGAAGGCTAGA-[NNNNNNNNNN]-GAGGCGAATTCCCTG...TCTCTTGAAGTTGTTCGGTGTCC-[NNNN]-TCTAGCCTTCTCGCAGCAC-5 
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C. PCR 2 
 
PCR 2 uses two multiplexing primers: 
 
i) Universal Primer 
 
3-TCTAGCCTTCTCGCAGCACATCCCTTTCTCACATCTAGAGCCACCAGCGGCATAGTAA-5 

 
where: 
o same as a part of the 1-Transposon-4NNNN primer in PCR 1 
 
ii) Primer Index N (e.g. Index 1) 
 
5-CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC-3 

 
where: 
o same as a part of Linker1-Amp 
 
PCR 2: Cycles 
 
So, the dsDNA looks like this: 
 
5-TTCAGACGTGTGCTCTTCCGATCT-[NNNNNNNNNN]-CTCCGCTTAAGGGAC...AGAGAACTTCAACAAGCCACAGG-[NNNN]-AGATCGGAAGAGCGTCGTG-3 
3-AAGTCTGCACACGAGAAGGCTAGA-[NNNNNNNNNN]-GAGGCGAATTCCCTG...TCTCTTGAAGTTGTTCGGTGTCC-[NNNN]-TCTAGCCTTCTCGCAGCAC-5 
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Universal Primer extends like so: 
 
5-TTCAGACGTGTGCTCTTCCGATCT-[NNNNNNNNNN]-CTCCGCTTAAGGGAC...AGAGAACTTCAACAAGCCACAGG-[NNNN]-AGATCGGAAGAGCGTCGTG-3 
                                                                                  <--- 3-TCTAGCCTTCTCGCAGCACATCCCTTTCTCACATCTAGAGCCACCAGCGGCATAGTAA-5 

 
Primer Index N extends like so: 
 
5-CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC-3 ---> 
                                        3-AAGTCTGCACACGAGAAGGCTAGA-[NNNNNNNNNN]-GAGGCGAATTCCCTG...TCTCTTGAAGTTGTTCGGTGTCC-[NNNN]-TCTAGCCTTCTCGCAGCAC-5 
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2.4 Bioinformatics Pipeline 
 
When the MiSeq run was complete, FASTQ files were generated by the MiSeq 

Reporter, which is a pre-installed software on MiSeq sequencers. FASTQ files 

contained sequence reads and their quality scores, excluding clusters that did not 

pass filter. So as to analyse the raw FASTQ files, a custom bioinformatics pipeline 

was created. For each library, the pipeline encompassed the following main steps: 

 
A. Processing Read 1 

B. Processing Read 2 

C. Mapping 

D. Processing SAM Files 

E. Determining Hermes Insertion Counts 

 
A. Processing Read 1 
 
Read 1 Architecture: [4mer][Hermes][Genome] 
 
The FASTQ file for Read 1 was first scanned for the read architecture above. 

Then, the [4mer] was trimmed off by the fastx_trimmer, a command line tool 

available within the FASTX-Toolkit (Hannon Lab, Cold Spring Harbor Laboratory, 

New York, USA). 

 
Command: fastx_trimmer [-h] [-f N] [-l N] [-z] [-v] [-i INFILE] [-o OUTFILE] 
 
So as to identify and keep reads with the [Hermes] insertions, excluding those 

within the pHL2577 donor plasmid, the Reaper program was used. Reaper is one 

of the three standalone tools available within the Kraken suite, with the other two 

being Tally and Sequence Imp. Reaper is used for demultiplexing, trimming and 

filtering short read sequencing data. It can handle barcodes, strip low quality 

bases, and trim adapter sequences. It is fast because it is written in C and it uses 

very little memory (Davis et al. 2013). 
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Command: reaper -i sample.fastq -meta sample.txt -geom no-bc -5p-sinsert 
l/e[/g[/o]] --fastqx-out 
 
In Reaper, geometry-dependent read processing is possible, with the three 

supported geometries being no-bc, 3p-bc, and 5p-bc. Such read processing 

depends on the absence or presence of barcodes and on the geometry of the read. 

In this context, the geometry refers to the read design, that is a description of 

what a read looks like. For this data, the most suitable geometry was deemed to 

be no-bc (no barcode). Now, if the reads are not barcoded, it is possible to run 

the program with or without a metadata file. If the metadata file is used, however, 

as it was in this case, it requires the 3-prime adapter sequence (3p-ad) and the 

tabu sequence (tabu). For this data, the tabu sequence was set to the first 200 nt 

of the pHL2577 donor plasmid sequence, and reads contaminated with it were 

consequently discarded. Finally, the command line was given the --fastqx-out 

option which resulted in the inclusion of a new field on the identifier line, 

specifically, the record offset number. 

 
Using the --fastqx-in option, Tally then identifies this number and utilises it to pair 

up the processed reads. Tally, one of the other standalone tools available within 

the Kraken suite, removes redundancy from sequence files by collapsing identical 

reads to a single entry while recording the number of instances of each. However, 

it can also re-pair reaper-processed files without tallying, as was done in this case. 

 
Command: tally -i out1.gz -j out2.gz -o out1.unique.gz -p out2.unique.gz --fastqx-
in --no-tally --with-quality 
 
B. Processing Read 2 
 
Read 2 Architecture: [10mer][Linker][Genome] 
 
To process Read 2, a Perl script was written by Dr Daniel Jeffares to detect and 

exclude duplicate reads based on the [10mer] and the first 5 nt of the [Genome]. 

Then, the output was tallied with Read 1 and the [10mer][Linker] was trimmed 

using fastx_trimmer. 
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C. Mapping 
 
Following Tally processing, the collated files were processed with the Burrows 

Wheeler Alignment (BWA) software package, used for mapping low-divergent 

sequences against a large reference genome. BWA consists of three algorithms 

but the one used in this pipeline was the BWA-MEM algorithm. This is because 

BWA-MEM is fast, more accurate, and can handle longer sequences ranging from 

70 bp to 1 Mbp (Li and Durbin 2009). Using the BWA-MEM algorithm, the 

paired-end reads were aligned to the S. pombe reference genome and to the 

pHL2577 donor plasmid, with the final alignment being outputted in the SAM 

(Sequence Alignment/Map) format. 

 
D. Processing SAM Files 
 
SAM files were then converted to BAM files which are the binary version of SAM 

files. BAM files were analysed with SAMtools; an open source suite of utilities 

used to manipulate alignments, including sorting, merging, indexing and generating 

alignments in a per-position format (Li et al. 2009). Indeed, upon further analysis, 

the reads were flagged with a number, either 99, 147, 83, or 163, which meant 

that the reads were mapped in the correct orientation and within the insert size. 

Based on the flag information, reads with flag 99 and flag 83 were considered to 

be the only ones relevant to the read architecture. 

 
Flag 99 Flag 83 

  
Read 1 *----> 
Genome ---------------- 
Read 2           <----- 

Read 2 -----> 
Genome ---------------- 
Read 1           <----* 

 

Next, the BAM files were sorted based on genomic position. SAMtools were used, 

for flag 99 and flag 83 reads with a mapping score of at least 30, to separate both 

the chromosome number and the insertion positions. For flag 83 reads, however, a 

specific Perl script had to be written because a BAM file only states the position 

at the start of the read and flag 83 reads have the insertion at the rightmost end. 



 

41 

With this in mind, the Perl script was written so as to output the rightmost 

position of the flag 83 reads. Subsequently, the files for flag 99 and flag 83 reads 

were modified to include the + and – signs to indicate respectively which insertions 

came from the forward strand and which insertions came from the reverse strand. 

In addition, these +/– signs were important in estimating unique insertions, since 

insertions found on the same chromosome but on different strands were 

considered to be unique events. Finally, the files for flag 99 and flag 83 reads, 

containing the chromosome number and the insertion positions, were merged. 

 
E. Determining Hermes Insertion Counts 
 
Using a Perl script, merged BAM files were finally processed to determine the 

total number of unique insertions within the genome. Outputted plain text files 

were then loaded into the R statistical package to look for any biologically 

meaningful patterns (see Chapters 4 and 5). 

 
2.5 Chronological Lifespan Assay 
 
In Chapter 2.2.2, detailing the construction of Hermes cell libraries, the last step 

was to select for insertional mutations in a 500 ml culture of YES + FOA + G418. 

In effect, that was the end of the log phase libraries and the beginning of the 

chronological lifespan (CLS) assays, as illustrated in Figure 2.2. In CLS assays, the 

aim is to monitor the loss of cell viability in a culture over time. In this case, the 

start of the assay (time point 0, or t0) was established when the culture reached 

stationary phase, specifically, when the optical density remained constant following 

two cell cycles. Here, time points were taken at 24-hour intervals. 

 
First, at each time point, the number of cells per µl in the culture was measured 

using a haemocytometer. In individual microcentrifuge tubes, a serial dilution was 

then carried out to achieve a concentration of 2 cells per µl. 3x 100 µl of this 

dilution were plated in three separate YES plates. Consistently, 5 sterile glass 

beads were used to evenly spread the 100 µl (≈ 200 cells) over the entire surface 
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of each plate. Following two days incubation, CFUs, or colony forming units, were 

counted using a manual colony counter. Ultimately, taking into account the 

dilution factor, the average number of colonies per ml was calculated and used as 

a measure of survival. 

 
Overall, this procedure was repeated for each time point, each time adjusting the 

dilution to attain a concentration of 20 to 300 colonies per plate. In addition, at 

each time point, normalisation was performed with respect to time point 0 until 

the culture reached 0.1% of the initial survival. So as to illustrate this pattern of 

decline over time, a survival curve was plotted. Importantly, at each time point, 

aliquots were taken, of which a selected few were processed for Illumina MiSeq 

sequencing. 

 

 
 
Figure 2.2. Distinguishing Log Phase and Ageing Libraries. For the log phase 

Hermes libraries, cells were harvested before time point 0. t0 for the ageing 

libraries was established when the cell culture reached stationary phase, that is, 

when the OD600 remained unchanged. (Design: Dr Graeme C. Smith.) 
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2.6 Fluorescence Microscopy 
 
On a microscope slide, 2 µl of cells with chromosomal insertions were stained with 

2 µl of calcofluor, 2 µl of DAPI, and 2 µl of anti-fading mounting media. In 

fluorescence microscopy, calcofluor stains the cell wall, DAPI stains the nucleus, 

and the mounting media prevents the fluorophores from dying. Carefully, one drop 

of immersion oil was then placed onto the coverslip. 
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Chapter 3 CREATING HERMES LIBRARIES 
 
3.1 Method Overview 
 
In this chapter, the focus will be on the creation of the Hermes libraries and the 

design and optimisation processes behind it. Overall, the construction of the 

libraries can be divided into two stages, namely, cell and DNA libraries. Briefly, the 

approach for creating Hermes libraries starts with sequential lithium acetate 

transformations to introduce the donor and the expression plasmids into a strain 

of fission yeast. CFUs, or colony forming units, containing both plasmids are 

grown in liquid selective medium lacking leucine and uracil to select for the 

plasmids. So as to produce the cell libraries, cultures are first grown in a series of 

flasks for a total of approximately 25 cell generations, and then ultimately, cells 

with chromosomal insertions are selected for. For the cellular ageing screen, a 

chronological lifespan (CLS) assay ensues. In the second stage of construction, 

DNA extracted from the cell libraries is sheared with a Covaris high performance 

ultrasonicator, then end repaired, linker ligated, digested with KpnI-HF to remove 

any residual pHL2577 donor plasmid, enriched for a region of Hermes right TIR 

and its flanking genomic DNA by a first PCR, and then a second PCR to attach 

multiplex oligonucleotides for Illumina sequencing (Figure 3.1). 
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Figure 3.1. Method Summary. Hermes libraries construction can be divided into 

two stages, namely, cell mutant and DNA libraries (see main text for details). 

 
3.2 Hermes Cell Libraries Optimisation 
 
In the earlier stages of this research investigation, the aim was to create complex 

Hermes libraries on a large scale and in an efficient manner. To this end, several 

of the steps in the procedure were attempted multiple times using either a 

different approach or different techniques. For example, in addition to the 

standard lithium acetate (LiAc) method used to transform the donor and the 

expression plasmids (Forsburg and Rhind 2006), two other techniques were tested. 

Specifically, these involved generating either cryopreserved LiAc competent cells 

(Suga and Hatakeyama 2005) or protoplasts, which are cells lacking cell walls 

(Flor-Parra et al. 2014). In terms of efficiency, using competent cells proved to be 

more cost and time effective when compared to both the LiAc and the protoplast 
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techniques. However, overall, more positive colonies resulted from the standard 

LiAc method, therefore explaining its use here in this investigation. 

 
S. pombe cells transformed with both the donor and the expression plasmids were 

then grown for an average of 25 generations, that is about 6 serial passages. 

Figure 3.2 shows that for the ten cell libraries created within this research, the 

generation number ranges from 19.3 (for Libraries 1 and 2, or	 LG1 + LG2) to 

28.7 (for Libraries 7 and 8, or	 LG7 + LG8). In a comparison of the two pools, it 

appears that the generation number, within these limits, does not have an effect 

on the average proportion of unique insertion sites. Indeed, this is in accordance 

with Evertts et al. (2007), stating that an average of 25 cell generations is ideal 

for generating mutation libraries, because within that time, a considerable number 

of cells with insertions are produced while keeping the occurrence of double 

insertions to a minimum. 

 
In this procedure, the generation of cells with insertions was monitored by a 

transposition assay, where serially diluted cells were plated onto two different 

types of plates, (i) YES + FOA + G418 to determine the number of cells that lost 

the donor plasmid but had a genomic insertion, and (ii) YES to determine the 

total number of cells within the culture. Subsequently, the transposition frequency 

was calculated by dividing the number of CFUs, or colony forming units, on the 

FOA and G418 plates by the number of CFUs on the YES plates. Here, results 

show that for the ten cell libraries, the transposition frequency ranges from 0.02% 

to 0.17%, with an average of 0.06% of cells having a chromosomal insertion. 

Initially, this seems like a low percentage, however, when compared to the 

published research from Park et al. (2009), where the transposition frequency 

ranges from 1.50% to 2.75%, this result is not that dissimilar, especially if the 

approach for the transposition assay is taken into account. Park et al. (2009) used 

EMM + FOA instead of YES plates to calculate the transposition frequency. 

Plating onto EMM + FOA plates determines the number of cells that lost the 
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donor plasmid. Plating onto YES plates, on the other hand, determines the total 

number of cells within the culture. In theory, this number is higher than the 

number of cells that lost the donor plasmid, which would therefore explain the 

somewhat lower values in this investigation. 

 

 
 
Figure 3.2. Quantitative Transposition Assay. For this assay, the transposition 

frequencies were calculated after each serial passage (that is, after about 4 to 6 

cell generations), except for Libraries 10 to 13, where the frequencies were 

calculated after the first and last passages only. For a better graphical 

representation, frequencies > 0.06%, specifically for Libraries 2 (0.160%) and 4 

(0.165%), are not shown. Here, cells that do not express the transposase enzyme 

were used as negative controls. In these controls, no transposition events were 

observed. 

 
In another attempt to improve complexity, the two flasks for Libraries 7 and 8, 

containing cells accumulating insertions, were each split into five flasks. Basically, 

this was done to minimise competition and therefore any bias towards more 

competitive insertion mutants. However, comparing these two libraries with the 
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other libraries, it seems that this approach does not influence the average 

proportion of unique insertion sites at all. In one last effort, fluoroorotic acid, or 

FOA, used in the final steps to select against cells carrying the donor plasmid, was 

altogether eliminated. It is well known that plasmids can be passively lost from 

cells in the absence of continued drug selection. Libraries VT-2 and VT-3 tested 

this, showing, however, that this strategy does not have an effect either. Indeed, 

for Libraries VT-2 and VT-3 respectively, only 73% and 68% of sequence reads 

were mapped to the S. pombe genome, which is less than the average (90%) for 

libraries that utilised FOA. 

 
3.3 Hermes DNA Libraries 
 
3.3.1 Design 
 
In general, developing libraries for Illumina sequencing involves fragmenting the 

DNA (either enzymatically or mechanically), repairing the fragmented DNA, 

ligating linkers, size selecting, and then carrying out a single PCR step to amplify 

the library (Quail et al. 2008). Now, while this is suitable for most libraries, there 

are instances where modification is required. In fact, to adapt this workflow to the 

Hermes libraries, additional steps had to be included, such as the KpnI-HF 

digestion step, which gets rid of any residual donor plasmid containing the 

transposon sequence. Moreover, a preceding PCR step (dubbed PCR 1) had to be 

added, with the aim of enriching for fragments containing the Hermes insert. 

Ultimately, this was followed by a second PCR step (dubbed PCR 2) where the 

Illumina adapters were added to allow multiplex sequencing. 

 
In this study, DNA was first extracted from the genome of the insertion mutants. 

Extracted DNA was sheared with a Covaris ultrasonicator and end repaired to 

blunt the heterogeneous ends. In reference to Figure 3.3, linkers were then ligated 

to the terminal ends of the sheared and end repaired templates. Here, one of the 

linkers incorporated a random 10 bp sequence (dubbed a 10mer) which acts as a 
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unique molecular identifier (UMI), in that it helps to distinguish unique insertions 

from those derived from the subsequent PCR amplifications. 

 
Basically, before the PCR, each DNA molecule is simplistically assumed to have 

arisen from a single cell. It can thus be inferred that the count of an insertion at 

position p is directly proportional to the number of cells harbouring an insertion at 

position p. So as to determine the true number of original DNA molecules, and 

therefore, to interpret the read count in a more accurate and representative 

manner, a molecular barcode was used. In essence, the concept of molecular 

barcoding is that each original DNA molecule is attached to a unique barcode, 

such that reads that have different barcodes represent different original molecules, 

whereas reads that have the same barcode are the result of PCR amplification of 

one original molecule. In fact, when processing the data after sequencing, reads 

with the same UMI were assumed to have arisen from a PCR duplication, while 

reads with different UMIs were assumed to have arisen from single cells and were 

therefore present in the initial, unamplified sample. It is important to note that 

molecular barcoding does not prevent PCR duplication from occurring. Rather, it 

provides a solution to track duplicates and treat them accordingly for downstream 

analysis (Peng et al. 2015). 

 
In reference to Chapter 2.3.2 and Figure 3.3, it is also important to understand 

that one of the linkers was designed in such a way so as to provide the priming 

site for the forward primer in the subsequent PCR step (PCR 1). In addition, for 

PCR 1, the reverse primer was designed to bind to the Hermes right TIR, thus 

allowing the boundary between the transposon and the genomic region disrupted 

by its insertion to be amplified. Following the first PCR, a second PCR (PCR 2) 

was carried out so as to attach the multiplex oligonucleotides. Ultimately, before 

sequencing, the quality, quantity and size of the libraries were checked on the 

Agilent 2100 Bioanalyser system; electropherograms with clean, sharp peaks in the 

200 to 300 bp region indicated that the libraries were suitable for sequencing. 
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Figure 3.3. Schematic Diagram of the Hermes DNA Libraries Workflow. 

Genomic DNA disrupted by Hermes transposon insertions is extracted, sheared, 

end repaired, and linker ligated at both terminal ends; one of the ligated linkers 

incorporates a random 10 bp sequence and provides the priming site for the 

forward primer in PCR 1. In PCR 1, the reverse primer binds to the Hermes right 

terminal inverted repeat (TIR), therefore enriching for fragments containing the 

transposon. In PCR 2, multiplex oligonucleotides are added so as to allow the 

fragments to bind to the flow cell during sequencing. 
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3.3.2 Optimisation 
 
Similar to the Hermes cell libraries, the DNA libraries were optimised in an 

attempt to increase complexity. For DNA extraction, for example, three different 

methods were tested, namely the phenol/chloroform extraction procedure 

(Sambrook et al. 1989), the MasterPure™ Complete DNA Purification Kit, and an 

in-house technique exploiting the QIAGEN 100/G genomic tips and glucanex, a 

yeast lytic enzyme from Trichoderma harzianum (Petit et al. 1994). Overall, the 

phenol/chloroform extraction method proved to be the most effective in terms of 

yield. Next, for Illumina sequencing,	 mechanical shearing remains the method of 

choice for achieving high sensitivity and unbiased results. In this investigation, a 

Covaris S2 ultrasonicator was used to shear the DNA, owing to the fact that it is 

accurate, quick, reproducible,	 and the results are without GC or temperature bias. 

Optimisation was not performed for the end repair and linker ligation steps. 

 
In any scientific study, experimental optimisation also means having reliable 

negative and positive controls which ensure the validity of the results. In this 

study,	 a good negative control was hypothesised to be genomic DNA from the 

JB980 strain lacking the Hermes insertion.	 In contrast, a suitable positive control 

was hypothesised to be DNA of expected length and known to contain the Hermes 

insertion. In total, three positive controls were used in this investigation: (a) the 

pHL2577 donor plasmid cut with the BseYI restriction enzyme, (b) same as (a) 

but spiked, at different concentrations, into genomic DNA from the JB980 strain, 

and (c) genomic DNA extracted from single transformed colonies then digested 

with two restriction enzymes – MseI which is a common genome cutter, followed 

by KpnI-HF so as to remove the donor plasmid. 

 
In general, these controls were used to validate a number of steps within the 

workflow, specifically that the linkers anneal to the appropriate regions, that 

digestion with KpnI-HF eliminates interference from the donor plasmid, and also, 

that the conditions and primers chosen for PCR 1 amplification are optimal. In 
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regard to the digestion step, it is important to note that, in theory, KpnI-HF cuts 

21 bp away from the transposon sequence thus making it impossible for the 

plasmid to be amplified during the first PCR. So as to test this, the two positive 

controls (a) and (b) described above were either treated with or without KpnI-HF. 

Lanes 7 and 9 in Figure 3.4 show that the untreated controls produced the 

expected 811 bp band (described below), as opposed to the treated controls, 

which did not produce any bands at all, thus confirming the role of the KpnI-HF 

restriction enzyme in removing any residual donor plasmid. 

 

 
 
Figure 3.4. Negative and Positive Controls. 2.0% TBE / agarose gel visualised 

with the nucleic acid stain GelRed™. Lanes 1 and 13: HyperLadder™ 1 kb. Lane 2: 

HyperLadder™ 100 bp. Lane 3: Two Single Transformants from Libraries 1 and 2. 

Lanes 4 and 5: JB980. Lane 6: JB980 + spike. Lane 7: JB980 + spike – KpnI. 

Lane 8: BseYI cut pHL2577. Lane 9: BseYI cut pHL2577 – KpnI. Lane 11: 

pHL2577. Lanes 10 and 12: Water. 

 
In regard to PCR 1, all four controls proved to be useful. In fact, when the 

negative control was treated in the same way as the libraries, no band was visible 

after PCR 1, as can be seen in lanes 5 and 10 in Figure 3.4. In contrast, for the 

two positive controls (a) and (b) described above, when these were untreated with 
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KpnI-HF, the expected 811 bp band was observed. In both of these controls, the 

8300 bp donor plasmid was cut with the BseYI restriction enzyme. BseYI cuts the 

plasmid in two positions, between 2776 bp and 2781 bp, and between 7116 bp 

and 7121 bp (Figure 3.5). During PCR 1, the reverse primer binds to the Hermes 

right TIR, found between 3498 bp and 3514 bp in the plasmid. It was therefore 

expected for the amplified fragment to be 717 bp (2781 bp to 3498 bp) in size. 

However, when this is added to the 49 bp linker sequence and the 45 bp sequence 

derived from the reverse primer, it adds up to 811 bp, which is equal to the bands 

seen in lanes 7 and 9 in Figure 3.4. Figure 3.6 illustrates the results from control 

(b) therefore providing an additional layer of confidence. In regard to control (c), 

this was hypothesised to be the better positive control. In theory, and as shown in 

lane 3 in Figure 3.4, this control should contain only one insertion, that is only one 

sequence, and thus, the PCR 1 product should be observed as a single band 

representing that one transposon sequence. Incidentally, this is in contrast to the 

DNA extracted from the libraries, which are represented by different length 

products owing to the random shearing and the random distribution of insertions 

across the genome. 

 

 
 
Figure 3.5. Features and Unique Sites of the Linearised pHL2577 Donor 

Plasmid. BseYI cuts between 2776 bp and 2781 bp and between 7116 bp and 

7121 bp. 
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Figure 3.6. Spike Control. 2.0% TBE / agarose gel visualised with the nucleic 

acid stain GelRed™. Lane 1: HyperLadder™ 1 kb. Lane 2: HyperLadder™ 100 bp. 

Lane 3: 100 pg pHL2577 per 100 ng genome. Lane 4: 10 pg pHL2577 per 100 ng 

genome. Lane 5: 1 pg pHL2577 per 100 ng genome. Lane 6: Water. 

 
In a last effort to improve complexity, a multiplexing scheme using 96-well plates 

was introduced, where every µg of DNA extracted from the cell libraries was 

sheared, end repaired, linker ligated, digested with KpnI-HF, amplified through a 

first and second PCR, and then sequenced. In this way, the majority of insertions 

present in the cell libraries were represented in the sequence reads. Overall, this 

was the approach that most significantly increased the complexities of the Hermes 

libraries. 

 
3.4 Bioinformatics Pipeline 
 
It has been a decade since the introduction of next generation sequencing (NGS) 

technology. So as to cater for the rapid growth of demand, there are now over 

thirty companies offering NGS products and services, however, Illumina is the 

dominant supplier (Baker 2010). In fact, the Illumina MiSeq was the platform used 

in this research investigation; the MiSeq desktop sequencer allows multiplexing of 

different samples and targets small genomes such as the genome of fission yeast. 
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In brief, Illumina’s sequencing by synthesis (SBS) technology uses four 

fluorescently-labelled nucleotides to sequence DNA templates that are immobilised 

on the surface of a so-called flow cell; a flow cell is a thick glass slide with 

channels or lanes on which cluster generation occurs (Quail et al. 2012). 

Ultimately, SBS results in highly accurate base-by-base sequencing that eliminates 

sequence-context specific errors, enabling robust base calling across the genome. 

Overall, this offers an attractive approach for localising transposon insertion sites. 

 
With Illumina, and most NGS platforms, it is possible to specify the length of the 

reads and whether they are single-end or paired-end. Here, read length refers to 

the number of base pairs that are read at a time, for example, one read might 

consist of 50 bp, 100 bp, or more. However, longer reads provide more reliable 

information about the location of specific base pairs. In fact, having longer reads 

addresses a common challenge that arises during sequencing, that is that the same 

read sequences can appear in multiple places within the genome. In this study, 2x 

75 bp reads (using a 300-cycle MiSeq Reagent Kit) were generated for each of 

the Hermes libraries that were sequenced. 

 
In regard to whether the reads are single-end or paired-end, it is known that 

paired-end reading is more effective than single-end sequencing in resolving 

structural rearrangements such as gene insertions. In addition, paired-end reads 

are more likely to align to a reference genome, therefore improving the quality of 

the entire dataset. In single-end reading, the sequencer reads a fragment from only 

one end to the other, whereas in paired-end reading it starts at one read, finishes 

this direction at the specified read length (75 bp), and then starts another round 

of reading from the opposite end. In doing so, it	 improves the ability to ascertain 

the location of various reads in the genome. In this study, paired-end reading was 

used for all sequenced libraries. 

 
Once the MiSeq runs were complete,	 Illumina’s BaseSpace Sequence Hub was 

used to assess and manage the sequencing data. Specifically, it was utilised to 
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determine the total number of reads, the	quality score distribution (% ≥ Q30), and 

the percentage of clusters passing filter (%PF). In BaseSpace, %PF is an 

indication of signal purity from each cluster, whereas a quality score is a prediction 

of the probability of an error in base calling. For example, for base calls with a 

quality score of Q30, one base call in 1,000 is predicted to be incorrect. 

BaseSpace was also used to download the raw FASTQ files which were then 

double checked with the FastQC tool (Babraham Institute, Cambridge, UK). 

FastQC is a quality control application for high throughput sequence data, which 

assesses the overall quality of the runs, and spots any potential biases or problems. 

It calculates, amongst others, the per base sequence quality and the per base and 

per sequence GC content. 

 
Raw FASTQ files were then processed. So as to identify and keep reads with 

chromosomal Hermes insertions, while excluding those within the donor plasmid, 

the Reaper program was used on Read 1. For Read 2, a Perl script was written to 

detect and exclude duplicate reads based on the random 10mer and the first 5 nt 

of the genome (Figure 3.7). Together, these eliminated a large proportion of 

reads. Incidentally, in a pilot MiSeq run not included in this work, a comparison 

was made between two libraries differing only in their KpnI-HF treatment. Here, 

libraries that were not digested with the restriction enzyme had a higher 

proportion of reads within the donor plasmid, thus validating the controls in 

Chapter 3.3.2 and the use of KpnI-HF. 
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Figure 3.7. Filtering Duplicate Reads. For Read 2, duplicate reads were 

discarded based on the 10mer introduced during linker ligation and the first 5 nt of 

the S. pombe genome. Here, this frequency histogram illustrates the proportion of 

reads, for one of the libraries, that were filtered out. 

 
Following read filtering (with Reaper) and re-pairing (with Tally), the BWA-MEM 

algorithm was used to align the reads to both the reference genome and the 

plasmid, with the final alignment being outputted in the SAM format. SAM files 

were converted into the more storage efficient BAM files. SAMtools then allowed 

the reads to be flagged and those reads with 99 and/or 83 flags were selected for. 

It is important to note that for a read, the flag is representative of its orientation, 

that is, it shows whether the read is on the forward or positive strand (Read 1) or 

whether it is on the reverse or negative strand (Read 2). In addition, flags provide 

information about the uniqueness of the read, and in fact, at this stage in the 

pipeline, it was possible to count the number of unique insertion sites. 

 
3.5 Sequenced Hermes Libraries 
 
Overall, the approach of coupling transposon mutagenesis with NGS technologies 

is quite powerful. In fact, in this research investigation, this technique was used to 

describe all the functional elements in the fission yeast genome, with a special 
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focus on unknown and/or non-protein-coding regions, such as long non-coding 

RNAs (more detail in Chapters 4 and 5). Using Hermes transposon mutagenesis, 

the principle was to saturate the genome with insertions. Intuitively, since 

insertions in functional regions will kill cells or slow their growth, selection for fit 

cells will result in a lack of insertions in functional regions. In bacteria, but using 

the Himar1 mariner transposon (Chao et al. 2013), this approach proved to be 

effective. However, in eukaryotes, it has not been exploited as well yet. Indeed, 

while there are genome-wide analyses of Hermes transposon insertions in budding 

(Gangadharan et al. 2010) and in fission yeast (Guo et al. 2013), neither one 

describes non-protein-coding regions in detail. 

 
So as to address this, fourteen, independent, log phase Hermes cell libraries were 

generated. However, since five of these were pooled, nine log phase libraries were 

sequenced in total, with some sequenced twice (Table 3.1). Together, these add 

up to 923,235 unique insertions, that is, 1 insertion per 13 nt of the genome 

(Table 3.2). Moreover, two of the log phase libraries were aged via a 

chronological lifespan assay, and so, ageing Hermes libraries were also generated 

and sequenced. For an exploration of both the log phase and the ageing datasets, 

refer to Chapters 4 and 5 respectively. 
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 Libraries Index Total Reads Total Counts Total Sites Proportion Unique 

Lo
g 

P
ha

se
 L

ib
ra

rie
s 

LG1 + LG2 † LG.1.log 1,507,513 966,275 113,152 0.117 
LG.6.log 5,375,975 3,302,294 193,795 0.059 

LG3 + LG4 † 
LG.2.log 1,770,789 1,126,182 110,363 0.098 
LG.7.log 6,718,097 4,098,752 197,754 0.048 

LG7 + LG8 † 
LG.3.log 897,124 668,780 71,681 0.107 
LG.8.log 3,342,831 2,360,090 130,796 0.055 

LG10 + LG11 
LG.11.log 2,074,327 1,322,780 134,930 0.102 
LG.23.log 4,842,477 2,861,102 172,390 0.060 

LG12 + LG13 
LG.12.log 1,983,459 1,120,068 154,887 0.138 
LG.24.log 5,233,867 2,640,987 214,128 0.081 

HL-B † HL.4.log 1,249,659 1,024,078 241,870 0.236 
HL.9.log 4,984,174 3,858,776 470,980 0.122 

HL-D † 
HL.5.log 1,275,625 984,723 175,482 0.178 
HL.10.log 5,411,286 3,884,519 348,480 0.090 

VT-2 VT.21.log 2,489,588 494,817 15,754 0.032 
VT-3 VT.22.log 3,210,462 455,007 17,399 0.038 

A
ge

in
g 

Li
br

ar
ie

s 

LG1 + LG2 (t0) 
LG.13.age0 2,126,418 1,388,330 158,538 0.114 
LG.25.age0 4,769,942 2,915,756 215,197 0.074 

LG1 + LG2 (t2) 
LG.14.age2 2,799,595 1,684,623 185,734 0.110 
LG.26.age2 6,551,428 3,399,150 253,426 0.075 

LG1 + LG2 (t4) LG.15.age4 2,437,930 1,278,106 156,548 0.123 
LG.27.age4 5,931,849 2,363,412 205,611 0.087 

LG1 + LG2 (t6) LG.16.age6 2,090,620 712,865 126,623 0.178 
LG.28.age6 5,528,095 1,191,659 161,731 0.136 

LG3 + LG4 (t0) LG.17.age0 1,876,680 1,252,614 143,209 0.114 
LG3 + LG4 (t2) LG.18.age2 1,854,546 1,148,851 142,657 0.124 
LG3 + LG4 (t4) LG.19.age4 1,378,278 659,771 103,936 0.158 
LG3 + LG4 (t6) LG.20.age6 2,033,675 536,334 78,617 0.147 
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Table 3.1. Summary of the Log Phase and Ageing Hermes Libraries. From left to right, the libraries are labelled according to the initials 

of the researcher who created them, LG for Ms Leanne Grech (University College London, UK), HL for Dr Henry L. Levin (NICHD, NIH, 

Bethesda, USA), and VT for Dr Victor Álvarez Tallada (Universidad Pablo de Olavide, Sevilla, Spain). † marks the libraries that were not 

multiplexed. In the second column, the index provides a guideline for the text files stored on the large.cs.ucl.ac.uk server path 

/SAN/bahlerlab/hermes/insertion-data. Total Reads presents the total number of paired-end sequence reads in the FASTQ files. Next, the 

Total Counts and Total Sites calculate the total number of insertion counts and sites, where a site refers to a single insertion, and the count 

refers to the number of times that insertion is present within the libraries. Proportion Unique is the total sites divided by the total counts. 
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Libraries Total Insertion Counts Mean Insertion Counts 
Unique Insertion Sites 

(UIS) 
Genome Saturation 

(UIS/nt) 
all log phase 25,798,137 27.94 923,235 13.60 

ageing t0 5,495,541 16.67 329,681 38.02 
ageing t2 6,159,442 16.95 363,483 34.48 
ageing t4 4,251,766 14.91 285,197 43.91 
ageing t6 2,417,815 11.16 216,659 57.77 
all libraries 44,122,701 40.17 1,098,430 11.44 

 
Table 3.2. Summary of the Hermes Insertion Counts and Sites. Here, a site refers to a single insertion, and the count refers to the 

number of times that insertion is present within the libraries. In the far right column, genome saturation is calculated as the total number of 

unique insertion sites (UIS) per nucleotide of the genome. In other words, it is calculated as 12,600,000 bp divided by the UIS. 12.6 Mbp is 

the size of the S. pombe genome. For all log phase Hermes libraries, for example, this works out as 12,600,000 / 923,235 = 13.6 nt, that is, 

1 insertion per 13 nt of the genome. 
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3.6 The Hermes Genome Browser 
 
Hermes Genome Browser: http://bahlerweb.cs.ucl.ac.uk/bioda/. 
 
In order to extend the usefulness of the Hermes insertion data, all log phase and 

ageing datasets, Hidden Markov Model (HMM) states, conservation measures, 

and nucleosome densities (see Chapter 4) have been visualised in an interactive 

genome browser powered through Biodalliance 0.13.7 (Down et al. 2011). The 

Hermes Genome Browser is a powerful tool in functional genomics, as exemplified 

in Figure 3.8 illustrating a gene with lots of Hermes insertions during log phase 

but not during ageing. In this browser, users can search using either a genomic 

location or a gene name. It is recommended to view the Hermes Genome Browser 

on a Firefox or a Safari web browser. 
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Figure 3.8. Searching for a Gene on the Hermes Genome Browser. Highlighted, the pan2 protein-coding gene, which appears to be 

essential during ageing (few insertions) but non-essential during log phase (many insertions). 
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3.7 Summary of the Main Results 
 
Hermes insertion libraries were constructed as described (Park et al. 2009), with 

the exception that the transposition frequency was calculated by dividing the 

number of colonies on YES 5-FOA+G418 plates by the number of colonies on 

YES plates. Hermes insertion libraries were created in an S. pombe strain with the 

genotype ura4–D18 leu1–32 h– (JB980 in our collection). In general, < 0.2% of 

cells in libraries contained genomic Hermes insertions, so the expectation is that 

the majority of insertion mutants contain a single insertion. 

 
For each of the libraries, all DNA extracted was processed to enrich for capture of 

rare insertions. For the same purpose, ligation and PCR reactions were performed 

in 96-well plates, using a maximum of 1 µg of DNA per well, and then re-pooling 

before sequencing. So as to distinguish between unique chromosomal insertions 

and those derived from PCR amplifications, a unique molecular identifier was 

designed, specifically, a random 10 bp in the adapter sequence. In total, nine log 

phase Hermes libraries were sequenced. For two libraries, ageing was induced 

through glucose starvation as described (Roux et al. 2009). For these two 

libraries, cells were collected and processed when the culture reached stationary 

phase (age 0) and 2, 4, and 6 days later. 

 
Overall, 1,098,430 unique insertion sites were sequenced, that is, 1 insertion per 

11 bp of the fission yeast genome. In order to extend the usefulness of the Hermes 

insertion data, all log phase and ageing datasets have been visualised in an 

interactive genome browser (http://bahlerweb.cs.ucl.ac.uk/bioda/). 
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Chapter 4 DISSECTING THE LOG PHASE DATASET 
 
In this chapter, the aim is to exhaustively explore the log phase dataset, starting 

with a brief overview and a comparative analysis to existing data, both published 

and unpublished. Using a Hidden Markov Model (HMM), Chapter 4 next focuses 

on the clustering of insertion sites into distinct regions of essentiality across the 

entire genome, similar to the approach taken by DeJesus and Ioerger (2013) for 

the Mycobacterium tuberculosis genome. Figures 4.2 to 4.4, 4.10, 4.12 to 4.21, 

4.23, and 6.2 to 6.3 are the work of Dr Daniel Jeffares; I generated all other 

graphs using the R programming language on a Linux operating system. 

 
4.1 Overview 
 
In analogy to the structure of the Earth, this dataset can be viewed as having 

both an inner core and an outer crust; getting to the core requires sifting through 

multiple layers of data. Within the outermost, superficial layer lie three crucially 

important questions. First, how frequent, and where does the Hermes transposon 

integrate? Second, is there any difference between log phase and ageing libraries? 

Third, is the insertion data a good predictor of gene essentiality? 

 
4.1.1 How Frequent, and Where Does The Hermes Transposon Integrate? 
 
In order to answer the first question, Hermes insertion sites were plotted on the 

log10 scale for both the nuclear and the mitochondrial genome (Figure 4.1). In 

agreement with previous studies (Evertts et al. 2007, Guo et al. 2013), the plot 

shows that Hermes integrates across all three chromosomes with minimal bias. 

Interestingly, insertions also occur in the mitochondria. 923,235 unique insertions 

were sequenced in total, which means that the log phase dataset is saturated with 

Hermes insertions once every 13 nucleotides of the genome. 
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Figure 4.1. Sites of Hermes Integration. Hermes insertion sites were plotted on 

the log10 scale for both the nuclear and the mitochondrial genome. Plot shows 

that Hermes integrates across all chromosomes (I, II, and III) of the fission yeast 

genome. Insertions also occur in the mitochondria (MT). 

 
4.1.2 Is there any Difference between Log Phase and Ageing Libraries? 
 
In order to advance to the next part of the analysis, and to the HMM, it was 

imperative to evaluate the similarity, if any, between all of the log phase, and their 

analogous ageing libraries. For this, the IPKM of each library and transcript was 

calculated as insertion counts per kilobase per million insertions. Figure 4.2 is a 

heat map showing the Pearson correlation between the IPKM of all libraries. 

Overall, there are two assumptions for this clustering. First, since insertions are 

normalised for gene length, gene counts should be similar between libraries. 
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Second, log phase and ageing libraries should cluster distinctly since both 

represent two different biological conditions. Interestingly, Figure 4.2 shows that 

ten of the log phase libraries form three clusters (a, b, and c), and four form two 

clusters with their corresponding ageing libraries (d and e). Therefore, what this 

means is that for gene-based analyses (refer to Chapter 5), ageing libraries can 

still be considered separate from log phase ones, but, for an analysis such as the 

HMM, both sets of libraries can be pooled together so as to increase the 

statistical power of the data. 

 

 
 
Figure 4.2. Clustering of Log Phase and Ageing Libraries. a = LG10+LG11, 

LG12+LG13, b = Dr Henry L. Levin’s libraries, c = LG7+LG8, d = LG1+LG2, and 

e = LG3+LG4. Here, a clustered heat map visualising the Pearson’s rank 

correlation coefficients (r) from the correlation analyses between the IPKM of all 

libraries. 
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4.1.3 Is the Insertion Data a Good Predictor of Gene Essentiality? A 
Comparative Analysis. 

 
In search of a pattern, and to determine whether the Hermes insertion data is a 

suitable predictor of gene essentiality, a comparison to (a) genome annotation was 

made. Hermes insertion data was also compared to relevant, published and 

unpublished data, such as (b) gene expression levels, (c) colony sizes and growth 

scores, and (d) constraint and genetic diversity. 

 
(a) Genome Annotation 
 
In the beginning, both insert counts and inserts per site (that is, the proportion of 

insertions per genome length) were correlated to genome annotation (Figure 4.3, 

Table 4.1). Encouragingly, protein-coding regions of essential genes, which are 

considered important regions, have fewer insertions. In contrast, long terminal 

repeats (LTRs), untranslated regions (UTRs), and regions without any annotation 

(which make up 18% of the genome) have more insertions. Overall, intergenic 

long ncRNAs (ig/lncRNAs) have the highest proportion of insertions. On a closer 

look, the most informative measure appears to be the	 average insert count using 

all sites, which also includes sites with zero insertions; this measure includes 

information from counts of sites with one or more insertions, and inserts per site, 

both of which contain information. 
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Figure 4.3. Biological Signals of the Log Phase Data. Left, shows the average 

insertion count using only sites with an insertion. Middle, shows the average 

insertion count using all sites including those with zero insertions. Right, shows 

the number of insertions (of any count) per site in the fission yeast genome. From 

left to right, annotations are coding sequences of essential genes, pseudogenes, 

coding sequences of non-essential genes, introns, canonical RNAs (rRNAs, 

sno/snRNAs, and tRNAs), Tf retrotransposons and solo long terminal repeats 

(LTRs), 5’ and 3’ untranslated regions (UTRs), regions without any annotation, 

and intergenic long ncRNAs (ig/lncRNAs). Here, plots use the total of all log 

phase datasets. 
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site 
average 

insert count 
(insertion sites only) 

average 
insert count 

(all sites) 
inserts per site 

CDS essential 18.59 0.34 0.02 
pseudogenes 17.73 0.82 0.05 
other CDS 16.52 0.89 0.05 

introns 23.98 1.10 0.05 
canonical ncRNAs 18.02 1.88 0.10 

LTRs 23.81 1.90 0.08 
UTRs 24.51 2.35 0.10 

no annotation 28.60 3.71 0.13 
ig/ncRNAs 91.80 16.25 0.18 

 
Table 4.1. Biological Signals of the Log Phase Data. Figure 4.3 in table form. 

In reference to Chapter 4.2, individual values are useful as initial parameters for 

the Hidden Markov Model (HMM), where coding sequences of essential genes 

(CDS essential) are used as an expectation for regions where insertions are 

deleterious, long terminal repeats (LTRs) are used for intermediate regions, and 

intergenic ncRNAs (ig/ncRNAs) for regions where insertions are advantageous. 

 
In order to provide further supporting evidence for the quality and validity of the 

data, the genome was fragmented into 20 kb windows and the insertion count was 

plotted for each position. PomBase annotation for essential and non-essential 

genes was overlaid on top of the plots. Figure 4.4 shows two examples from 

chromosome I, but on looking at all the generated plots, the common observation 

is that the insertion count agrees with genome annotation. However, on a few 

occasions, there are discrepancies between the two. 
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Figure 4.4. Hermes Integration vs. PomBase Annotation. Overall, Hermes 

insertion count data agrees with genome annotation (see annotated essential gene 

at position 1,295,500 to 1,300,000 (left) with few insertions). Occasionally, there 

are inconsistencies between the two (see annotated non-essential gene at position 

40,225,000 to 40,275,000 (right) with no insertions). It is important to note that 

even between dense regions, there are positions with no insertions; chromosome I 

(shown here), for example, has an average of 17 zero insertion sites between each 

insertion. Colour Key: red = essential genes, black = non-essential genes. 

 
So as to delve deeper, a script (“hermes-counts-per-gene.pl”) that calculates 

insertion counts for each gene was written by Dr Daniel Jeffares. It outputs gene 

i.d. (gene), gene length (len), number of unique insertion sites in the gene (sites), 

number of unique forward and reverse insertion sites in the gene (fwd, rev), 

minimum (min), maximum (max), mean and median insertion count number, and 

finally, a count of unique insertion sites per gene length (sitespernt). For the 

minimum insertion count number, sites with no insertions were assigned a zero 

value, whereas for the maximum, mean and median, zero values were not counted 

and only sites that have insertions were included. 

 
The Perl script was used to further test the hypothesis that essential genes 

accumulate fewer insertions than non-essential genes whether in the log phase or 

during ageing. Reassuringly, plotting unique insertion sites per gene length for 

both gene sets, during log phase, early (t0, t2) and late ageing (t4, t6), shows 
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that non-essential genes do indeed gather more insertions than essential genes 

(Figure 4.5). 

 

 
 
Figure 4.5. Hermes Integration as a Marker of Gene Essentiality. Plotting 

unique insertion sites per gene length (sitespernt) for log phase, early ageing and 

late ageing libraries shows that essential genes accumulate less insertions than 

non-essential genes. Here, using sitespernt instead of sites (that is, unique 

insertion sites in the gene) corrects for gene length bias. PomBase Fission Yeast 

Phenotype Ontologies (FYPO) 0002061 and 0002060 were respectively used for 

lists of essential and non-essential genes. 

 
Replotting Figure 4.5, to include the list of long intergenic non-coding RNAs 

(lincRNAs) being deleted with the CRISPR/Cas9 genome editing system 

(Rodríguez-López et al. 2016), results in Figure 4.6. In brief, the criteria for these 

ncRNA knockouts include, amongst others, the distance from neighbouring 

protein-coding genes and relevant RNA-seq information (as published in Marguerat 

et al. (2012)). Plotting the insertion count data for all 122 lincRNAs, as well as 

the essential and non-essential genes, shows that the lincRNAs have considerably 
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more insertions; whether this has any bearing on the function of ncRNAs in 

general is yet to be established. 

 

 
 
Figure 4.6. Hermes Integration and CRISPR/Cas9-Deleted LincRNAs. In the 

Bähler Lab (University College London), 122 long intergenic non-coding RNAs are 

being knocked out with the CRISPR/Cas9 genome editing tool. Plotting the 

Hermes insertion count data for these lincRNAs, in addition to the essential and 

non-essential genes from Figure 4.5, shows that the lincRNAs have substantially 

more insertions. 

 
(b) Gene Expression Levels 
 
Next, the focus shifted to how transcriptomes adjust to the requirements of the 

cell, a topic described in detail by Marguerat et al. (2012). In this study, RNA-seq 

and mass spectrometry were combined to analyse how changes in both the cell 

physiology and volume are reflected in the cellular concentrations of all coding and 

non-coding RNAs. Marguerat et al. analysed both proliferating cells that 

constantly replenish their RNAs and proteins, and postmitotic cells that do not 

divide or grow due to a reversible arrest in a quiescent state. It was reported that 
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the transcriptome is larger in proliferating than in quiescent cells, thus reflecting 

the higher need for transcription during division and growth. Taking this into 

account, we compared the expression levels during proliferation to the log phase 

insertion data, expecting to observe an inverse correlation between count of 

unique insertion sites and copies per cell, that is, the lower the count, the higher 

the mRNA copy numbers, and vice versa. Overall, the premise is that essential 

genes are more highly expressed than non-essential ones, as observed by Mata and 

Bähler (2003). Figure 4.7 shows a weak correlation therefore implying that 

expression levels are not particularly suitable for teasing out gene essentiality. 

 

 
 
Figure 4.7. Comparison of Hermes Integration to Gene Expression Levels. 

Data for gene expression levels was obtained from Marguerat et al. (2012). 
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(c) Colony Sizes and Growth Scores 
 
Sideri et al. (2014) analysed the Bioneer fission yeast deletion library for mutants 

with differences in proliferation under standard conditions. In detail, parallel 

phenotyping and quantitative bar-seq were used to compare the proliferation of 

deletion mutants grown competitively in the same culture. Sideri et al. performed 

two independent biological repeats of the mutant pool grown exponentially in 

EMM for 9 hours. In the supplementary data (Table S8), growth scores are 

provided for each mutant, which we use as a measure of fitness and as a 

comparison to the log phase insertion data. Unfortunately, Figure 4.8 (top) shows 

that there is no significant correlation between count of unique insertion sites and 

growth scores. It is speculative, but this could be due to the fact that YES, not 

EMM, was used as growth medium for the proliferation of the Hermes mutants. In 

a somewhat similar approach, Malecki and Bähler (2016) used colony size as a 

proxy to calculate the fitness of each of the mutants in the deletion library. In this 

analysis, the expectation is to observe fewer insertions in smaller, slower, less fit 

mutants, and more in larger, faster, fitter mutants. Figure 4.8 (bottom) shows a 

weak correlation therefore suggesting that colony sizes are also not particularly 

suited to tease out gene essentiality. 
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Figure 4.8. Comparison of Hermes Integration to Growth Scores (top) and 

Colony Sizes (bottom). Exploited as a measure of fitness, data for growth scores 

and normalised median colony sizes were obtained from Sideri et al. (2014) and 

Malecki and Bähler (2016) respectively. 
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In an attempt to establish whether the growth scores from Sideri et al. and the 

expression level data from Marguerat et al. can also predict gene essentiality, a 

box plot comparing the respective values for essential and non-essential genes was 

made. Figure 4.9 shows that while there is no correlation (p = 0.4485, left) for 

growth scores, there is a significant correlation (p < 2.2e-16, right) between 

expression levels for essential and non-essential genes. Nonetheless, the Hermes 

insertion data is still a better predictor, as it bears a stronger correlation between 

essential and non-essential genes (c.f. Figure 4.5). 

 

 
 
Figure 4.9. Growth Scores (left) and Gene Expression Levels (right) as 

Predictors of Gene Essentiality. Used as a fitness proxy, data for growth scores 

and gene expression levels were obtained from Sideri et al. (2014) and Marguerat 

et al. (2012) respectively. 
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(d) Constraint and Genetic Diversity 
 
Next, we determined whether the Hermes insertion data relates to evolutionary 

data. To this end, an analysis of genetic diversity between coding regions showed 

that protein-coding regions are more conserved (less genetically diverse) than 

introns and 5’/3’ untranslated regions (UTRs), and both of these are more 

conserved than regions of the genome with no annotation (Fawcett et al. 2014, 

Jeffares et al. 2015). In addition, estimates of constraint between 

Schizosaccharomyces species are consistent with genetic diversity. 

 

 
 
Figure 4.10. Hermes Insertion Data relates to Evolutionary Data and 

Genome Annotation. In summary, for the protein-coding regions of essential 
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genes (eCDS), protein-coding regions of non-essential genes (nCDS), 5’/3’ UTRs 

and introns (UTR+int), and regions of the genome without any annotation 

(NOA), we show (A) the genetic diversity from 57 strains of S. pombe (Jeffares 

et al. 2015), measured in 100 nt windows, and (B) an estimate of the constraint 

(conservation) between four Schizosaccharomyces species (mean phyloP 

conservation over 100 nt windows). Similarly, for pooled log phase Hermes data, 

we show (C) the number of unique insertion sites/100 nt, and (D) the mean 

insertion counts/100 nt. 

 
Overall, this comparative analysis shows that the genome scale patterns of 

Hermes insertions relate well to our broad expectations of the functional elements 

of the genome, to the genome scale trends of divergence between related 

Schizosaccharomyces species, and to diversity within the species. While divergence 

and diversity are able to predict generic aspects of the genome with respect to 

function, they do not have sufficient resolution to pinpoint specific functional 

elements. Primarily, this is because polymorphic sites are present at low density 

and their relationship to constraint is affected by recombination rate (Campos et 

al. 2014) and recent events of selection, which can purge diversity in surrounding 

areas (Cheeseman et al. 2012). Therefore, considering the density of our 

transposon insertion libraries, and the fact that the libraries are generated from 

multiple samples without evolutionary history, we expect to circumvent these 

problems and locate functional elements with high accuracy. 
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4.2 Hidden Markov Model 
 
Tn-seq data can be analysed in different ways, using reads to determine the 

absence or presence of insertions in a gene, or alternatively, using the read count, 

that is the number of reads at each site. Intrinsically, both approaches have 

challenges, depending on the quality of the libraries and the sequencing dataset. 

DeJesus and Ioerger (2013) described a novel method for examining Tn-seq data 

using Hidden Markov Models (HMMs). HMMs explore sequential datasets, in 

which a sequence of observed values is explained by a hidden state sequence, in 

this case, the essentiality of each site, which cannot be directly observed. HMMs 

can use information from read counts to infer the state probability distribution and 

the most likely state sequence. In a simple two-state HMM, for example, the 

genome of an organism can be viewed as an alternating state sequence of 

essential (State 1) and non-essential regions (State 2). 

 
So as to characterise the essentiality of the entire fission yeast genome, an initial 

HMM with three states was assembled by Dr Maarten Speekenbrink at University 

College London. The HMM is based on Visser and Speekenbrink (2010) with the 

theory outlined in Section 4.2.1 below. Dr Daniel Jeffares and Mr Christoph Sadée 

debugged the code, trained the model, altered it to incorporate log2 transformed 

data, and finally, expanded it to a fifth state. 

 
4.2.1 The HMM Model 
 
First, consider a discrete Markov model, before advancing to the more complex 

HMM; consider that each position in the 12.6 Mbp fission yeast genome could be 

in one of several pre-defined states: 

 
qt = Sj (1) 

 
where: 

qt = state of nucleotide t 
t = position of nucleotide with 1 ≤ t ≤ T 
Sj = state j. 
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In this case, this results in a state sequence Q = q1...qt...qT with T = 12.6 Mbp if 

considering the entire genome at once. It is also easy to analyse sub-domains of 

the genome separately such as individual chromosomes. Sj is part of a pre-defined 

set of states such as: 

 
S = {S1, S2, S3} (2) 

 
where: 

S1 = essential 
S2 = intermediate 
S3 = non-essential. 

 
For this model, the states correspond to the essentiality for growth, that is, if a 

nucleotide at one position is essential, intermediate, or non-essential for the 

growth of the cell. It is, however, challenging to infer whether a nucleotide at one 

position is essential, and so, for this reason, the essentiality of genomic regions 

should be taken into account instead. Therefore, consider that the state at 

position qt is predicted by some probability depending on the preceeding states 

P[qt = Sj|qt−1 = Si,qt−2 = Sk,...], or using the first order Markov assumption, the 

most adjacent preceding state: 

 
aij = P[qt = Sj|qt−1 = Si] (3) 

 
where: the transition probabilities, aij, are part of a Markov chain with probabilities 

for each transition, and can be represented as a transition matrix (Figure 4.11). 
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Figure 4.11. Three State, Ergodic Markov Chain (left) and Transition Matrix 

(right). In this Hidden Markov Model, the three hidden states (S1, S2, and S3) 

are defined as “essential”, “intermediate”, and “non-essential”. 

 
For this model, an ergodic process is considered, meaning that one state can be 

reached from another aij > 0. In addition, since the state is not directly observable, 

it has to be inferred by the absence or presence of an insertion site and its count; 

absence means increased likelihood to be essential, whereas presence means 

increased likelihood to be intermediate or non-essential. Overall, this calls for a 

Hidden Markov Model, defined by M, the number of distinct observation symbols 

per hidden state, which correspond to all count values including sites with zero 

insertions. In consequence of the biases described in Chapter 1 (nTnnnnAn motif 

and nucleosome occupancy), a high insertion count can still correspond to an 

essential state, and therefore, all observation symbols are still possible for each 

state. Here, the individual observation symbols, vk, are part of the set V. 

 
V = {v1,v2,...,vM} (4) 

 
Next, the data can be interpreted as an observation sequence O = O1O2...Ot...OT, 

where the position is denoted by t and the observation at Ot is vk. Each state has 

an observation symbol probability distribution, B, associated to it. Equation 6 is 

the probability of being in state Sj when the observation at position t is Ot = vk. It 

is important to note that B is affected by the two biases and is thus not only 

based on the observation sequence. 

 
B = {bj(k)} (5) 

bj(k) = P[vk at t|qt = Sj] (6) 

 
For a complete description of the HMM, the last parameter to be defined is π, the 

initial state distribution. π is required as each state depends on the previous state 

by some probability aij, and since there is no preceding state for the first position, 
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there must be an initial state distribution defining the state of the first element at 

t = 1. In Equation 9, all HMM distributions are grouped together into λ. 

 
π = πj (7) 

πj = P[q1 = Sj] (8) 

λ = {A, B, π} (9) 

 
So now, the problem is defined by (a) how to best adjust the model parameters λ, 

given the two biases, in order to maximise the probability of finding the 

observation sequence of insertion sites and counts, and (b) what is the best state 

sequence (Q = q1...qt...qT) for the given parameters and observation sequence? In 

this HMM, the first problem was resolved using the expectation maximisation 

(EM) algorithm, whereas the second problem was tackled using the Verterbi 

algorithm. The HMM was implemented through the depmixS4.R package, which 

has an EM algorithm that models the observation symbol probability distribution, 

B, as a linear response model (Visser and Speekenbrink 2010); this allows for the 

addition of the 8 nt motif and nucleosome occupancy biases as covariates. 

 
For each position in the genome, given the two biases, there is a likelihood for 

transposition to occur. Dr Chris Illingworth (University of Cambridge) used 

insertion data from Guo et al. (2013) to calculate the probability of transposition 

based on the 8 nt nTnnnnAn motif. In his approach, Dr Illingworth calculated the 

percentage of each nucleotide at each position and compared this to the 

percentage composition across the entire genome. Overall, 20 positions were 

identified for which the composition differed from the genome composition by at 

least 1%. For each position t, the probability of observing one nucleotide is given 

by pt(α): 1 ≤ t ≤ 20, where α denotes any of the four possible nucleotides, AGCT. 

In Equation 10, pgw(α) is the genome-wide probability of observing nucleotide α. 

In his quest, the next step was to fragment the genome into 20 nt windows, and 

for each window, calculate a likelihood measure (L). 
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L = log p! α!
!

!"#"$%&"'( !" !"#$%

− log p!" α!
!

!"#"$%&"'( !" !"#$ !"#$

 
(10) 

 
Finally, the state sequence Q was calculated using post model parameter 

optimisation. The Verterbi algorithm maximises P(Q|O,λ) (same as P(Q,O|λ)), 

the probability of finding a state sequence for the given model parameters λ and 

observation sequence O. In detail, this is done via an iterative process, when 

moving along the observation sequence, by defining δ, the highest probability 

along a single path. 

 
δt(i) = max P[q1,q2,...,qt = i,O1O2...Ot|λ] (11) 

δt+1(j) = [max δt(i)aij] ⋅ bj(Ot+1) (12) 

 
Therefore, the most likely state sequence is then the sequence of arguments that 

maximises Equation 12, which can be evaluated sequentially from the first position 

1 to the last position T, resulting in an assigned state for each nucleotide position. 

In a similar approach, a measure for the nucleosome bias was established based on 

the average nucleosome density (Atkinson et al. 2017). Ultimately, following the 

inclusion of the two biases, the HMM was applied separately to each of the three 

chromosomes. In a brief overview, 

(a) the first runs were carried out on the raw read count data, then 

(b) a correlation between read count data and cell growth was uncovered and 

implemented into a three-state HMM and (c) a four-state HMM, and finally, 

(d) a five-state HMM was constructed, assigning an additional state to extremely 

high read counts. 

 
4.2.2 HMM Optimisation 
 
(a) First Run 
 
In this HMM, the states were classified as “S1 = essential”, “S2 = intermediate” 

and “S3 = non-essential”. Unlike DeJesus and Ioerger (2013), who specified 

appropriate likelihood functions for read counts, the states for this model were 
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defined based on annotation and the associated insertion counts and frequencies. 

In reference to Figure 4.3 and Table 4.1, coding sequences of essential genes were 

used to define State 1, long terminal repeats and untranslated regions to describe 

State 2, and intergenic non-coding RNAs and non-annotated regions to designate 

State 3. For this model, an ergodic symmetric initial transition matrix was chosen, 

with the larger values on the diagonal assuring data smoothing and continuous 

states (Equation 13). π, the initial distribution, was selected as in Equation 14, 

with an increased likelihood for State 1 at the first position (π1 = 0.5) due to a 

long insertion sequence at the start. 

 

A!,! =
0.998 0.001 0.001
0.001 0.998 0.001
0.001 0.001 0.998

 (13) 

 
π = {π1 = 0.5, π2 = 0.25, π3 = 0.25} (14) 

 
Initially, running the HMM with these parameters results in fast alternating, and 

few continuous states, with S1 being the most abundant (Figure 4.12). So as to 

put this into perspective, Kim et al. (2010) found that in fission yeast, only 26.1% 

of genes are essential. It is thus apparent that the issue here is that the HMM is 

too sensitive, rapidly changing to S3 when there is an insertion with a high count, 

and to S1 when there is a short sequence with no insertions. Overall, the 

indication is that the transition matrix in Equation 13 does not effectively smooth 

out the data, hence resulting in few and short continuous states. Figure 4.12 does, 

however, show predicted regions correlating with annotation and both insertion 

counts and frequencies. 
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Figure 4.12. HMM, First Run. Illustrated, a 20 kb region within chromosome II 

with PomBase annotation on top and predicted states at the bottom. Here, the 

states are classified as “State 1 = essential” (blue), “State 2 = intermediate” (red) 

and “State 3 = non-essential” (green). Qualitatively, S3 appears to be more 

abundant than the indicated 327 nt, but this is due to plotting a large number of 

insertions in a rather small window. Quantitatively, S1 is the most frequent state 

for this region (14,501 nt) and in general. HMM’s predicted regions correspond to 

annotation and both insertion counts and frequencies, as exemplified by the region 

to the right of the 190,000 nt position, predicted as essential. However, with the 

initial parameters, the overall result is unsatisfactory, with fast alternating, and 

few continuous states. 

 
(b) Read Count Data and Cell Growth 
 
In an effort to construct a fully functioning model, the non-zero insertion count 

data was analysed further and used to plot log2 read count histograms for each 

chromosome. Figure 4.13 (top) is the histogram for chromosome I, characterised 

by an exponential decay, with smaller read counts being the most frequent. 
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Interestingly, a closer look at the histogram (Figure 4.13, bottom) reveals a 

pattern consistent with the geometric series 1, 2, 4, 8, 16, 32. Specifically, at log2 

read counts of 3, 4 and 5 (inverse log2 read counts of 8, 16, and 32), the 

frequency increases, an observation reflected in the other chromosomes as well. 

 

 
 
Figure 4.13. Log2 Non-Zero Read Count Histograms. Top, the histogram for 

chromosome I, characterised by two exponential decay functions, y = Ae–λx (black) 

and y = A(2–λx) (blue), fitted to the data with A = maximum frequency and λ = 1. 

Bottom, a zoomed histogram exposing peaks at log2 read counts of 3, 4 and 5 

(marked with red asterisks). 
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In order to rationalise this result, a correlation was made to the mitotic cell cycle: 
 

x(t) = A ⋅ 2t/τ (15) 
 
where: 

x = cells at time t 
t/τ = growth, or mitotic cell cycle 
τ = time required for one growth, or mitotic cell cycle 
A = x(0) = initial population. 

 
It was previously assumed that the read count for one insertion position p reflects 

transposition occuring at site p in different cells within the population. However, a 

different interpretation, in view of this result, is that transposition occurs at 

position p in one cell, and as that cell undergoes mitosis, it produces two identical 

daughter cells both with an insertion at position p. In turn, those 2 produce 4, 

then 8, then 16, then 32 cells, all with an insertion at position p; this is consistent 

with the geometric series described above. Therefore, using Equation 16 below, 

the read count can then be converted to a mitotic, or growth cycle value. It is 

important to note that the growth cycle is specific to each individual insertion 

since the exact start of transposition cannot be determined for each individual cell. 

 
log2(x) = t/τ = growth cycle (16) 

 
So, with this in mind, for the second run of the HMM, all non-zero read counts 

were log2 transformed, resulting in a growth cycle value for each insertion site; 

the same initial state probability, training set, and transition matrix as the first run 

were used. Figure 4.14 illustrates the outcome, that is, more continuous states. 
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(a) Chromosome I. 

 

 
(b) Chromosome II. 
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(c) Chromosome III. 

 
Figure 4.14. HMM, Second Run. Illustrated, 20 kb regions within each of the 

three chromosomes with annotation on top and predicted states at the bottom. 

PomBase annotations are canonical RNAs (canon.rna.trans), coding sequences 

(cds), essential genes (essent.gene), introns (intron), solo long terminal repeats 

(ltr), protein-coding transcripts (protcod.trans), Tf retrotransposons (tf2.trans), 

and 3’ and 5’ untranslated regions (utr3, utr5). HMM states are classified as 

“State 1 = essential” (blue), “State 2 = intermediate” (red) and “State 3 = non-

essential” (green). In this run, even more so than the first run (c.f. Figure 4.12), 

the HMM’s predicted regions correspond to annotation and both insertion counts 

and frequencies. In addition, this run generated more continuous states and only a 

few short states, but the latter could be due to undersampling. 

 
In this HMM, it is encouraging that all states have an average continuous length 

greater than 150 nt (Table 4.2), which is the average length of DNA wrapped 

around a nucleosome core, because this implies that the nucleosome bias is 

eliminated. It also suggests that state prediction is based solely on the fitness of 

the cells. 
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Average Continuous State Lengths (nt) 

State 1 
“essential” 

State 2 
“intermediate” 

State 3 
“non-essential” 

Chromosome I 1337 2144 895 
Chromosome II 1293 1850 841 
Chromosome III 1518 3033 1333 

 
Table 4.2. Average Continuous State Lengths. It is reassuring that all states 

have an average continuous length greater than 150 nt; the average length of 

DNA wrapped around a nucleosome core. States < 150 nt imply more accessible, 

nucleosome-free regions and therefore higher insertion probabilities. In contrast, 

states > 150 nt suggest less accessible, nucleosome-occupied regions with the 

absence or presence of insertions based solely on the fitness of the cells. 

 
In addition to the average lengths, the maximum continuous state lengths were 

also looked at. Indeed, for chromosomes I, II and II, the maximum lengths for S1 

for example, were 49,630, 53,300 and 43,530 respectively. Figure 4.15 illustrates 

the 43,530 nt long region within chromosome III, providing a perfect example of 

how powerful the Hermes insertion data can be to the S. pombe community. 

 

 
 



 

92 

Figure 4.15. HMM vs. PomBase Annotation. Illustrated, a 40 kb region within 

chromosome III with PomBase annotation on top and predicted states at the 

bottom. Interestingly, this region is classified as essential by the HMM, but it is 

not annotated accordingly in the PomBase database. 

 
Ultimately, so as to quantitatively validate the quality of the model, growth cycle 

values were reversed to read counts. In turn, as in Table 4.3, the total percentage, 

insertion frequencies and mean read counts of a state within each chromosome, 

were calculated. Overall, the results indicate that essential regions (S1) are much 

more conserved than intermediate (S2) and non-essential (S3) regions due to the 

lower insertion frequencies and mean read counts. 

 

HMM States 
Chromosome 

Number 
Total 

Chromosome % 
Insertion 

Frequencies 
Mean Read 

Counts 

State 1 
“essential” 

I 47 0.020 305.94 
II 51 0.022 314.12 
III 45 0.019 364.08 

State 2 
“intermediate” 

I 23 0.063 1897.85 
II 17 0.071 1852.73 
III 17 0.058 2289.88 

State 3 
“non-essential” 

I 30 0.156 4087.38 
II 32 0.176 5583.15 
III 38 0.126 6820.37 

 
Table 4.3. HMM Quantitative Validation. Total Chromosome %: the ratio of 

nucleotides classified as one state compared to the total amount of nucleotides. 

Insertion Frequencies: the ratio of all insertions within one state compared to the 

total amount of nucleotides within the same state across the entire chromosome. 

Mean Read Counts: the total of non-zero read counts within one state divided by 

the non-zero insertions within the same state across the entire chromosome. 

Overall, S1 regions are more conserved owing to the lower insertion frequencies 

and mean read counts. In addition, S1 regions account for a larger percentage of 

each chromosome, however this could be due to undersampling. 
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(c) Four-State HMM 
 
In order to represent extremely high growth cycles, a fourth state was introduced. 

In this HMM, the initial state probability was as in Equation 17, the training set 

for the fourth state included growth cycles above the 99th percentile, and the 

transition matrix was as in Equation 18. 

 
π = {π1 = 0.5, π2 = 0.2, π3 = 0.2, π4 = 0.1} (17) 

 

A!,! =

0.998 0.0006 0.0006 0.0006
0.0006 0.998 0.0006 0.0006
0.0006 0.0006 0.998 0.0006
0.0006 0.0006 0.0006 0.998

 (18) 

 

 
 
Figure 4.16. Four-State HMM. Illustrated, a 20 kb region within chromosome III 

with PomBase annotation on top and predicted states at the bottom. Here, the 

states are classified as “State 1 = essential” (blue), “State 2 = very important” 

(red), “State 3 = somewhat important” (green), and “State 4 = not important“ 

(purple). S2 is on average the longest continuous state within all chromosomes. 
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(d) Five-State HMM 
 
Overall, in these HMMs, the initial state distributions (π) were 1/n where n is the 

number of states, and the transition probabilities (aij) were 0.95 for positions 

remaining in the same state and 0.05/(n-1) for all other transitions. So, for the 

five-state HMM, the initial state distribution was 1/5 for all states, and the 

probabilities were 0.95 if remaining in the same state, and 0.01 for all other 

transitions. 

 
In order to determine the best-fitting model, both a selection and a stopping 

criterion were applied. For the former, the Bayesian Information Criterion (BIC) 

was implemented. The BIC, a popular criterion for model selection, provides a 

measure of the weight of evidence favouring one model over another. Generally, 

the model with the lowest BIC is considered the better fit (Weakliem 1999). 

Figure 4.17 shows that, for three datasets, adding more states to the HMM 

enhances its robustness. Indeed, this was true for all datasets on which the BIC 

was implemented. Ultimately, a five-state HMM was selected, with states 

classified as “State 1 = essential”, “State 2 = very important”, “State 3 = 

important”, “State 4 = somewhat important”, and “State 5 = not important”. 

Here, classification was based on coding sequences of essential genes (S1), coding 

sequences of non-essential genes (S2), auxiliary UTRs and introns (S3), 

unannotated regions (S4), and the top 10% of insertion sites (S5). 
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Figure 4.17. Selection of a Five-State HMM based on the Bayesian 

Information Criterion (BIC). BIC values for three datasets showing that adding 

more states to the HMM improves its robustness. In general, the model with the 

lowest BIC is preferred, in this case, the five-state HMM. 

 
In addition to the selection criterion, a stopping criterion was applied. In an 

iterative algorithm, such as the five-state HMM algorithm, a stopping criterion is 

needed to determine when to stop the iteration. In this case, the stopping criterion 

was set as the log-likelihood (loglik) of the data. In statistics, the likelihood of a 

parameter value, θ, given outcomes x, is equal to the probability assumed for 

those observed outcomes given those parameter values. Generally, the higher the 

log-likelihood, the better the fit to the data. For all datasets tested, the log-

likelihood plateaued at 150 iterations (Figure 4.18). Overall, the run time was 20 

hours. 

 

 
 
Figure 4.18. The Five-State HMM Iterative Algorithm. Plotted, a graph of 

log-likelihood (loglik) against iterations for chromosome III. In this algorithm, the 

total number of iterations was set to 150. 

 
Ultimately, so as to ascertain that the model is robust to downsampling, the five-

state HMM was run on a subset of both the log phase and the ageing data 

(Figure 4.19). 
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Figure 4.19. The Five-State HMM and its Robustness to Downsampling. 

Running the five-state HMM on a subset of both the log phase (top) and the 

ageing (bottom) data confirmed that the established five-state HMM is robust to 

downsampling. On the x-axis, IL and IR refer to the left and right arms of 

chromosome I respectively; IIL and IIR to the left and right arms of chromosome II 

respectively; and III to chromosome III. 

 
4.2.3 HMM Results 
 
Once the five-state HMM was established and proofed, it was critical to determine 

whether the five states have any biological importance. Specifically, what can be 

inferred from the HMM about the functional elements in the genome? Figure 4.20 

shows that the HMM has clear biological relevance since 99% of essential coding 

sequences (eCDS) were assigned to either S1 or S2; eCDS are the most highly 

conserved regions and contain the lowest within-species diversity. Overall, 91% of 

the genome was defined as S1 or S2, indicating that insertion mutations of this 

kind have detectable functional consequences over the majority of the genome. 

40% of the fission yeast genome that is not protein-coding also contains function, 

since 81% of the non-protein-coding regions are S1 or S2. Based on this analysis, 

UTRs, unannotated regions and non-coding RNAs all contain similar proportions 

of functional DNA. 
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Figure 4.20. Inferring Functional Elements from the Five-State HMM. For 

the genome, protein-coding regions of non-essential genes (nCDS), untranslated 

regions (UTRs), protein-coding regions of essential genes (eCDS), regions with no 

annotation (no−anno), non-coding RNAs (ncRNAs), and canonical RNAs 

(canonRNAs), we show the percentage of sites that are in states S1 to S5. 

 
(a) Protein-Coding Regions 
 
Consequently, we examined whether the HMM contained additional information 

about the functional significance of protein-coding genes. To this end, we 

calculated the mean HMM state for each protein-coding gene, speculating that 

this is a good measure of the fitness effect of deleting that gene. Figure 4.21 

shows that essential protein-coding genes (whose deletions are inviable) have a 

greater proportion of sites assigned to S1 than non-essential genes, as expected. 

Also, mean states for essential and non-essential genes form overlapping 

distributions, showing that the binary classification of essential/non-essential genes 

could be improved using this mean HMM state. 
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Figure 4.21. Mean HMM States for Essential (eCDS) and Non-Essential 

(nCDS) Coding Sequences. eCDS have a greater proportion of sites assigned to 

S1 than nCDS. 

 
So as to address this principle further, the next aim was to determine whether the 

mean HMM state relates to other measures of fitness, such as growth rates of 

knockout mutants (Malecki and Bähler 2016). 3419 genes whose deletions are 

viable were explored, and information about their functional consequences was 

obtained. Here, the mean HMM state positively correlated with colony size of the 

deletion mutants (Pearson r = 0.29, p < 10-16), indicating that this measure is 

related to the fitness cost of gene deletion. From these viable knockout mutants, 

620 have a mean HMM state of 1, showing that transposon insertion mutations 

have strong effects, even though the deletions are viable. Using the AnGeLi tool 

(Bitton et al. 2015), we discovered that these 620 genes are strongly enriched 

(Fisher tests p < 10-10) for gene ontology terms that are consistent with functional 

roles during mitotic growth, such as mitotic cell cycle, and with deletion 

phenotypes, such as abnormal subcellular components and decreased vegetative 

cell population growth. In addition, this gene set is enriched for 1:1 human 

orthologs. Collectively, these results indicate that mean HMM states are able to 
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define functionally important genes beyond the binary classification of 

essential/non-essential. 

 
(b) Non-Protein-Coding Regions 
 
In general, the Hermes insertion data can be used to predict which ncRNAs are 

required for growth. In view of the HMM, these are projected to be regions with 

mean HMM state < 1.5, coverage > 50%, and not overlapping coding genes. 

Overall, 85 transcripts met these criteria (Figure 4.22), with over 75% having 

100% coverage. It is assumed that knocking out these ncRNAs will result in 

growth-arrested or slow-growing cells. Rodríguez-López et al. (2016), who deleted 

ncRNAs using the CRISPR/Cas9 gene editing approach, show the opposite for 

SPNCRNA.37, SPNCRNA.137, and SPNCRNA.284. It is possible that the fitness 

cost of a deletion is different to that of a Hermes insertion, meaning that while 

the deletion of certain ncRNAs (with mean HMM state < 1.5) does not inhibit cell 

growth, Hermes insertions within the same ncRNAs are deleterious. 

 

 
 
Figure 4.22. Log Phase Non-Coding Transcripts with a Mean HMM State < 

1.5. Overall, we find 85 ncRNAs with mean HMM state < 1.5, coverage > 50%, 

and not overlapping coding genes (Supplementary List A). 
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4.3 Mitochondrial Insertions 
 
In this work, an interesting aspect of the data that also required a more 

comprehensive evaluation is the mitochondrial insertions. Using both datasets, we 

discovered that over 100 nt windows, the mitochondrial genome has far more 

Hermes insertions per site than the nuclear genome. Indeed, the mitochondrial 

genome has a median of 1 insertion per 4.5 nt whereas the nuclear genome has a 

median of 1 insertion per 20 nt. In principle, the occurrence of mitochondrial 

insertions can be attributed to NUMTs, or nuclear mitochondrial DNA segments. 

Lopez et al. (1994) coined NUMTs to describe transposition of mitochondrial 

DNA into eukaryotic nuclear genomes. In both the lab and in nature, NUMTs 

have been shown to enter nuclear DNA via non-homologous end joining (NHEJ) 

at double-strand breaks (Hazkani-Covo et al. 2010). NUMT sequences of different 

length and size have been detected across a range of organisms, from yeasts 

(Sacerdot et al. 2008) to humans (Mourier et al. 2001). 

 
NUMTs have also been elucidated in S. pombe (Lenglez et al. 2010), and 

therefore, the theoretical likelihood that the observed mtDNA insertions 

correspond to insertions in NUMT sequences is high. In addition, this is 

compounded by the fact that NUMTs are located in non-protein-coding regions 

(Lenglez et al. 2010), and we find that the mitochondrial genome has more unique 

insertions per site than the nuclear genome. However, while the case for NUMTs 

is strong, it is also possible that what we see are actual insertions in the 

mitochondria.	Regardless, we also discovered that there is little biological signal in 

the mitochondria (Figure 4.23), perhaps because Hermes insertions in one of 

multiple copies had negligible consequences for the cell. Therefore, we excluded 

mitochondrial sites from further examination. 
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Figure 4.23. Mitochondrial Insertions. Here, we calculated unique insertions per 

site for coding sequences (CDS), canonical RNAs, and all other regions in the 

mitochondria (MT), and also chromosome III as a comparison. Overall, results 

show that there is little biological signal in the mitochondria. 
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4.4 Summary of the Main Results 
 
Overall, results show that Hermes integrates across all three chromosomes of the 

genome with minimal bias, an observation that is consistent with previous studies. 

Hermes insertion data is a strong predictor of gene essentiality, as determined by 

comparative analysis to genome annotation, gene expression levels, colony sizes 

and growth scores, and constraint and genetic diversity. 

 
In order to characterise the essentiality of the entire fission yeast genome, a five-

state Hidden Markov Model (HMM) was developed, with states classified as in 

Table 4.4. For State 5, insertion densities (insertions/100 nt) were used instead of 

insertion counts. 

 
State No. Classification Training Data 

1 essential coding sequences of essential genes 
2 very important coding sequences of non-essential genes 
3 important auxiliary UTRs and introns 
4 somewhat important unannotated regions 
5 not important top 10% of insertion sites 

 
Table 4.4. HMM State Categorisation. In tabular form, a classification of the 

five HMM states used in this research investigation. 

 
HMM results show that the five-state model has clear biological relevance since 

99% of essential coding sequences (eCDS) were assigned to either S1 or S2; 

eCDS are the most highly conserved regions and contain the lowest within-species 

diversity. Overall, 91% of the genome was defined as S1 or S2, indicating that 

Hermes insertion mutations have detectable functional consequences over the 

majority of the genome. 40% of the genome that is not protein-coding also 

contains function, since 81% of the non-protein-coding regions are S1 or S2. 

Specifically, we find 85 ncRNAs with mean HMM state < 1.5, coverage > 50%, 

and not overlapping coding genes. 
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Chapter 5 EVALUATING THE AGEING DATASET 
 
5.1 Introduction 
 
In both budding and fission yeast, two different types of ageing have been studied: 

replicative and chronological. In replicative lifespan, the viability of yeast cells 

decreases with the number of cell generations, whereas in chronological lifespan 

(CLS), it decreases with the time the cells spend in stationary phase. In other 

words, in CLS, cells show a decline in viability after entering stationary phase, 

until, ultimately, all cells in the culture are dead. It has been established that 

starvation is not the only cause of cell death (Fabrizio and Longo 2003). In fact, it 

has been proposed that the loss of viability in chronologically ageing cells is mainly 

due to ethanol production (Fabrizio et al. 2005), toxicity induced by reactive 

oxygen species, and loss of mitochondrial function (Longo and Fabrizio 2002). It is 

the result of a cocktail of pathways, molecular mechanisms, and genes, only some 

of which have been identified so far. 

 
In most of the studies that have attempted to understand how CLS works, the 

model organism used was the budding yeast Saccharomyces cerevisiae. However, 

an assay for the fission yeast Schizosaccharomyces pombe has also been described 

(Roux et al. (2006, 2009)). In this screen, in addition to log phase libraries, aged 

Hermes libraries were generated via two, independent CLS assays. In total, seven, 

twenty-four-hour-apart time points were taken (Figure 5.1) although only the even 

time points (t0, t2, t4, t6) were processed and analysed. For these time points, 

fluorescence microscopy images were also captured (Figure 5.2). Consistently, for 

both repeats, the beginning of the CLS curve (time point 0, or t0) was taken 

following two cell cycles when the optical density remained unchanged. 

Progressing from t0 to t6, the aim is to determine which genes change during 

ageing. 
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Figure 5.1. Chronological Lifespan (CLS) of the Hermes Mutants. CLS assays 

monitor the decline in viability without detectable regrowth in a cell culture over 

time. Illustrated, CLS survival curves of two, independent Hermes mutant pools, 

with error bars at each time point representing the range of three technical 

replicates. Data for wild type control was obtained from Rallis et al. (2013). 
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Figure 5.2. Fluorescence Microscopy Images of the Hermes Mutants. Overall, 

Hermes mutant cells exhibit an altered morphology when compared to wild type 

cells. Progressing from t0 to t6, cell death is characterised by a decrease in the 

number of cells undergoing cell division, a reduction in the cellular volume, and 

rounding-up of the cells (viewed at 63x magnification). 

 
5.2 In Search of Genes that Change during Ageing 
 
Similar to any other genomic dataset, the aged Hermes libraries can be analysed 

and dissected in a number of different ways. Each approach on its own has its 

caveats, but the aim ultimately is to uncover a biologically meaningful pattern 

when all analyses are taken together into consideration. Pivotal in the collective 

analysis is the difference between unique insertion sites and unique insertion 

counts, where a site refers to a single insertion, and the count refers to the 

number of times that insertion is present within the sequenced libraries. For each 

statistical test conducted, either one of these measures is used. Overall, the main 

focus of each approach is to discover genes that change during ageing. 

 
5.2.1 Using Unique Insertion Sites 
 
So as to uncover genes that change with time, a few Cochran–Mantel–Haenszel 

(CMH) tests were performed. CMH tests, similar to chi-square tests but with one 

degree of freedom, are used to test for conditional independence between repeats. 

Here, a CMH test was used to compare the number of unique insertion sites at 

each time point between the two aged libraries. Over 5000 genomic features, 

comprising 122 long intergenic non-coding RNAs, essential and non-essential 

genes, were screened. For this test, the hypothesis was that with time, the 

number of unique insertion sites changes (decreases or increases) in a gene but 

remains constant in the region surrounding it. Therefore, two 5 kb regions, one on 

each side of the genomic feature (Figure 5.4, top), were also included in the test. 

Each gene’s p-value was then corrected by the Benjamini-Hochberg method for 
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multiple testing, with a false discovery rate of < 0.05 as the significance threshold 

for the adjusted p-values. In total, seven genes that change significantly in both 

aged libraries were found (Table 5.1). 

 
systematic i.d. name p-value adjusted p-value 
SPAC56F8.04c ppt1 1.37E-08 6.86E-05 
SPAC9G1.02 wis4 1.67E-06 2.79E-03 

SPBC25H2.13c cdc20 1.08E-05 1.35E-02 
SPBPB7E8.02 - 1.22E-06 2.79E-03 
SPCC1281.06c ole1 5.86E-05 4.19E-02 
SPCC1753.04 tol1 1.80E-05 1.81E-02 
SPCC417.08 tef3 3.30E-05 2.75E-02 

 
Table 5.1. First Cochran–Mantel–Haenszel (CMH) Test Results. Overall, 

seven genes with significant, Benjamini-Hochberg adjusted p-values < 0.05 were 

uncovered. 

 
For each of the seven genes, a ratio between unique insertion sites in the gene (G) 

and the gene region (R) was calculated at all four time points. In general, only 

SPCC417.08 (or tef3) shows an increase in G/R ratio with time (Figure 5.3). 

Indeed, compared to the gene region, unique insertion sites in this gene seem to 

be doubling with time. Kim et al. (2010) established that deleting tef3 results in 

an inviable cell population. Therefore, according to both current annotation and 

our data, tef3 is essential during vegetative growth. Here, we also show that tef3 

is a pro-ageing gene, meaning that it is advantageous to have insertions in this 

gene during ageing. 

 



 

107 

 
 
Figure 5.3. Gene / Gene Region Ratios for the tef3 gene. SPCC417.08, or 

tef3, is an essential gene that shows a marked increase in G/R ratio with time. 

 
While informative, this gene-based analysis has at least two limitations. First, the 

overall 10 kb gene region for any one gene could be overlapping with neighbouring 

genes and their gene regions, therefore biasing the G/R ratios. Second, this 

approach favours long genes with their relatively high number of unique insertions, 

thus making it more difficult to find true significant p-values. In fact, a quick and 

simple chi-square test shows that for two genes of different length, if the fold 

change in the number of unique insertions from t0 to t6 is the same in both genes, 

the p-value is almost always lower for the longer gene. One way of correcting this 

artefact is to use a standard length for every gene. 

 
To this end, a modified version (v2.0) of this analysis employs a similar pipeline as 

above, but instead of gene and 10 kb gene regions, it uses mean and median 

unique insertion sites of 1, 2 or 3 kb gene windows. Each gene window is centred 

around the gene midpoint and extends equally in both directions. For example, for 

a 3 kb gene window, there is 1.5 kb either side of the gene midpoint (Figure 5.4, 

bottom). Similar to the original approach, a CMH test was carried out separately 
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on each of the three gene windows followed by Benjamini-Hochberg corrections 

for multiple testing. 

 

 
 
Figure 5.4. Gene-Based Ageing Analyses. Top, analysis v1.0 uses the number of 

unique insertion sites within a gene and the overall 10 kb region surrounding it. 

Bottom, analysis v2.0 uses the mean and median unique insertion sites of 2n kb 

gene windows where n = 500 nt, 1 kb and 1.5 kb for 1, 2 and 3 kb gene windows 

respectively. For both analyses, a gene was defined as a whole, therefore, it was 

set to include untranslated regions, introns, and exons, rather than just the coding 

sequences. 

 
In reference to Table 5.2, a cross-comparison of the top 10 genes with the lowest 

significant p-values within each of the four analyses (i.e. G and 10 kb R (v1.0) and 

three gene windows (v2.0: 1/2/3 kb)) was performed. Interestingly, out of the 9 

resulting genes, 8 overlap in two of the analyses whereas SPBC21.06c (or cdc7) is 

the only gene uncovered in three. Since this cross-comparison only includes genes 

that overlap in two or more analyses, Table 5.3 also lists the top 10 genes with 

Benjamini-Hochberg adjusted p-values < 0.05 for at least one of the four analyses. 

Intersecting the two lists through a Venn diagram results in 5 overlapping genes 

(Figure 5.5). 
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Figure 5.5. Venn Diagram Intersecting Gene Lists in Table 5.2 and Table 

5.3. (see main text for details) 

 
For all 14 genes, an IPKM value was calculated and plotted at each time point. 

IPKM, analogous to the more commonly known RPKM, stands for insertions per 

kilobase per million insertions. IPKM was computed using: 

IPKM = IPK/(total unique insertion sites in a library/1,000,000) 

where IPK = C/(L/1000) and C is unique insertion sites in a region (say, a gene) 

and L is the length of the region in nt. Identical to the G/R ratio results, 

SPCC417.08 (or tef3) is the only gene that consistently, in both repeats, shows 

an increase in IPKM with time (Figure 5.6). 

 

 
 
Figure 5.6. IPKM for the tef3 gene. IPKM stands for insertions per kilobase per 

million insertions. SPCC417.08, or tef3, is an essential gene that shows a marked 

increase in IPKM with time. 



 

110 

 
gene v2.0: 1 kb v2.0: 2 kb v2.0: 3 kb v1.0 

systematic i.d. name ontology term p-value adjusted p-value adjusted p-value adjusted p-value adjusted 
SPAC1687.12c coq4 cofactor metabolic process 8.14E-04 0.50925 1.69E-01 0.99998 2.53E-01 0.99999 5.39E-04 0.26969 

SPAC56F8.04c ppt1 cofactor and lipid 
metabolic process 

4.96E-06 0.02483 1.54E-01 0.99998 3.46E-01 0.99999 1.37E-08 0.00007 

SPBC21.06c cdc7 
mitotic cytokinesis and 

mitotic cell cycle regulation; 
signalling 

1.75E-04 0.29171 1.86E-04 0.26117 4.29E-06 0.02154 2.73E-01 0.99999 

SPBC887.14c pfh1 

DNA recombination, 
repair and replication; 
mitochondrion and 

telomere organisation 

2.94E-04 0.36812 1.35E-02 0.99998 9.53E-02 0.99999 4.40E-04 0.24440 

SPBP4H10.15 aco2 

cellular amino acid 
metabolic process; 

mitochondrion organisation; 
precursor metabolites and 

energy generation 

2.87E-02 0.99998 1.06E-03 0.66484 2.33E-04 0.29307 1.27E-02 0.99999 

SPBPB7E8.02 - - 4.40E-03 0.99998 1.92E-04 0.26117 2.09E-03 0.99999 1.22E-06 0.00279 

SPCC162.09c hmg1 cofactor and lipid 
metabolic process 7.69E-02 0.99998 3.09E-04 0.30992 1.85E-04 0.29307 2.87E-02 0.99999 

SPCC1753.04 tol1 lipid metabolic process 4.27E-04 0.40621 1.15E-01 0.99998 2.69E-01 0.99999 1.80E-05 0.01805 
SPCC417.08 tef3 cytoplasmic translation 1.93E-01 0.99998 1.93E-03 0.80799 1.34E-04 0.29307 3.30E-05 0.02751 
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Table 5.2. CMH Test: Cross-Comparison of the Top Genes with the Lowest Benjamini-Hochberg Adjusted P-Values. Gene-Centric 

Analysis v1.0 (far right column) performs a Cochran–Mantel–Haenszel (CMH) test on the number of unique insertion sites at each time point 

for each gene and the corresponding 10 kb gene region. Gene-Centric Analysis v2.0 also performs a CMH test but using mean and median 

unique insertion sites of 1, 2 or 3 kb gene windows (see main text for details). For both analyses, each p-value was corrected by the 

Benjamini-Hochberg method for multiple testing, with a false discovery rate of < 0.05 as the significance threshold for the adjusted p-values. 

Here, the 9 genes listed are the result of a cross-comparison of the top 10 genes with the lowest Benjamini-Hochberg adjusted p-values 

(highlighted in bold) within each of the four analyses, and therefore, only genes present in two or more analyses are included. 
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gene v2.0: 1 kb v2.0: 2 kb v2.0: 3 kb v1.0 

systematic i.d. name ontology term p-value adjusted p-value adjusted p-value adjusted p-value adjusted 

SPAC4A8.03c ptc4 

autophagy; membrane 
organisation; precursor 
metabolites and energy 
generation; signalling 

1.55E-05 0.03868 6.65E-01 0.99998 8.34E-01 0.99999 3.49E-02 0.99999 

SPAC56F8.04c ppt1 cofactor and lipid 
metabolic process 

4.96E-06 0.02483 1.54E-01 0.99998 3.46E-01 0.99999 1.37E-08 0.00007 

SPAC9G1.02 wis4 signalling 3.78E-01 0.99998 2.11E-03 0.81550 2.64E-03 0.99999 1.67E-06 0.00279 

SPBC21.06c cdc7 
mitotic cytokinesis and 

mitotic cell cycle 
regulation; signalling 

1.75E-04 0.29171 1.86E-04 0.26117 4.29E-06 0.02154 2.73E-01 0.99999 

SPBC25H2.13c cdc20 
chromatin organisation; 

DNA repair and replication; 
transcription regulation 

1.52E-02 0.99998 9.11E-02 0.99998 3.77E-02 0.99999 1.08E-05 0.01345 

SPBPB7E8.02 - - 4.40E-03 0.99998 1.92E-04 0.26117 2.09E-03 0.99999 1.22E-06 0.00279 
SPCC1281.06c ole1 lipid metabolic process 6.48E-03 0.99998 1.27E-02 0.99998 3.55E-01 0.99999 5.86E-05 0.04185 
SPCC1322.01 rpm1 mitochondrion organisation 1.91E-02 0.99998 8.67E-06 0.04354 1.03E-01 0.99999 2.69E-02 0.99999 
SPCC1753.04 tol1 lipid metabolic process 4.27E-04 0.40621 1.15E-01 0.99998 2.69E-01 0.99999 1.80E-05 0.01805 
SPCC417.08 tef3 cytoplasmic translation 1.93E-01 0.99998 1.93E-03 0.80799 1.34E-04 0.29307 3.30E-05 0.02751 
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Table 5.3. CMH Test: Genes with Benjamini-Hochberg Adjusted P < 0.05. Gene-Centric Analysis v1.0 (far right column) performs a 

Cochran–Mantel–Haenszel (CMH) test on the number of unique insertion sites at each time point for each gene and the corresponding 10 kb 

gene region. Gene-Centric Analysis v2.0 also performs a CMH test but using mean and median unique insertion sites of 1, 2 or 3 kb gene 

windows (see main text for details). For both analyses, each p-value was corrected by the Benjamini-Hochberg method for multiple testing, 

with a false discovery rate of < 0.05 as the significance threshold for the adjusted p-values. Here, the 10 genes listed are those with 

Benjamini-Hochberg adjusted p-values < 0.05 (highlighted in bold) for at least one of the four analyses (c.f. Table 5.2). 
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5.2.2 Using Unique Insertion Counts 
 
In the next part of the analysis, the same CMH tests as above were carried out, 

followed by Benjamini and Hochberg’s multiple testing correction method. 

However, in this case, unique insertion counts were used instead of unique 

insertion sites. Over 1200 genes resulted when the three count datasets (for 1, 2, 

and 3 kb gene windows) were merged and the genes with adjusted p-values < 0.05 

in each of the datasets were subsetted. For these genes, a Spearman rank 

correlation coefficient test was then performed between the four time points and a 

ratio of insertion counts and mean insertion counts. In statistics, a Spearman 

correlation test assesses monotonic relationships; a monotonic relationship exists 

when an increase in one variable is accompanied by an increase (or decrease) in 

the other variable. Specifically, the Spearman coefficient determines the direction 

and strength of the relationship between two variables. Provided that there are no 

repeated data values, an ideal Spearman coefficient of +1 or −1 occurs when each 

of the variables is a perfect monotonic function of the other. 

 
In this Spearman correlation test, three output parameters were taken into 

account: the correlation coefficient (r), the correlation p-value (cor.p), and the 

Benjamini-Hochberg adjusted correlation p-value (adj.cor.p). Table 5.4 shows that 

13 out of over 1200 genes have absolute correlation coefficient values r > 0.9, 

with 5 having a positive correlation and 8 having a negative one. For all 13 genes, 

graphs of ratio of count and mean count against time points were plotted, with 

two contrasting examples provided in Figure 5.7. In addition, 4 out of 13 genes 

have adjusted correlation p-values adj.cor.p < 0.05. For each of these 4 genes, 

insertion counts were converted to insertion counts per million insertion counts in 

the library, and then, for each time point, graphs of log2 insertion counts per 

million against chromosome position were plotted, using the same two genes as in 

Figure 5.7 as examples (Figure 5.8). 
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genes with a positive (+ve) 
correlation coefficient 

genes with a negative (-ve) 
correlation coefficient 

systematic i.d. r systematic i.d. r 
SPAC343.18 0.98 SPAC1783.06c −0.98 
SPBC6B1.10 0.98 SPBC17G9.08c −0.98 
SPAC20G8.01 0.93 SPCC550.01c −0.98 
SPAPYUG7.06 0.93 SPAC17H9.10c −0.95 
SPBC119.13c 0.91 SPAC22A12.17c −0.93 

  SPBC1347.01c −0.93 
  SPBC21C3.09c −0.93 
  SPAC637.11 −0.91 

 
Table 5.4. Spearman Correlation Test Results. 13 out of over 1200 genes (see 

main text for details) have absolute correlation coefficient values r > 0.9 between 

count / mean count ratio and time, with 5 having a positive correlation and 8 

having a negative relationship. 

 

     
 
Figure 5.7. Count / Mean Count Ratio Plots. Left, for SPAC343.18, or rfp2, 

there is a high positive correlation coefficient between count / mean count ratio 

and time, indicating that insertions are enriched with time. Right, for 

SPBC17G9.08c, or cnt5, there is a high negative correlation coefficient between 

count / mean count ratio and time, suggesting that insertions are depleted with 

time. 
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Figure 5.8. Log2 Insertion Counts Per Million vs. Chromosome Position Plots. Illustrated, two genes with Benjamini-Hochberg adjusted 

correlation p-values < 0.05. Left, SPAC343.18, or rfp2, is enriched for insertions with time, at least for one of the repeats. Right, 

SPBC17G9.08c, or cnt5, is depleted for insertions with time. For each time point, 3 kb windows were plotted, with the red boxes at the top 

of each plot outlining the coding sequences of the gene. Repeats 1 and 2 are represented by blue (-log2 scale) and red (+log2 scale) lines 

respectively. 
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So as to expand the search, 190 genes with a correlation p-value cor.p < 0.05 

were filtered, with 54 having a positive correlation and 136 having a negative one. 

Independently, both lists were then analysed with AnGeLi, a tool for the 

comprehensive and customised interrogation of gene lists from fission yeast 

(Bitton et al. 2015). In this gene list enrichment analysis, Benjamini and Hochberg 

(false discovery rate (FDR)) was applied as the multiple testing correction method 

with a < 0.01 cutoff, using all genes as background and biological process as 

category. Table 5.5 shows the output for both analyses. Interestingly, 29 out of 

the 54 positively correlated genes were enriched for FYPO:0002061, annotating 

genes whose deletion results in inviable vegetative cell populations, and are 

therefore essential. In contrast, 124 out of the 136 negatively correlated genes 

were enriched for FYPO:0002060, annotating genes whose deletion results in 

viable vegetative cell populations, and are therefore non-essential. 

 
For the SPAC343.18 (or rfp2) gene (Figure 5.7, left), for example, characterised 

by a positive correlation coefficient, this indicates that the gene could be essential 

during log phase growth (at t0) but not at later time points. On the other hand, 

for the SPBC17G9.08c (or cnt5) gene (Figure 5.7, right), characterised by a 

negative correlation coefficient, this suggests that the gene is perhaps not 

essential during growth but is switched on as cells age (at t2, t4, and t6). 
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Genes with a Positive Correlation (Pro-Ageing Genes) 
FYPO FYPO Annotation List Frequency Background Frequency Corrected P-Value 

FYPO:0000001 phenotype 100 (54/54) 70.8 (4959/7005) 1.51E-05 
FYPO:0000002 cell phenotype 100 (54/54) 70.1 (4908/7005) 1.51E-05 
FYPO:0000003 cell population phenotype 100 (54/54) 70.6 (4949/7005) 1.51E-05 

FYPO:0000136 cellular physical 
quality phenotype 

100 (54/54) 69.7 (4881/7005) 1.51E-05 

FYPO:0002057 cell population viability 100 (54/54) 70.5 (4938/7005) 1.51E-05 

FYPO:0004639 
abnormal cellular physical 
quality phenotype during 

vegetative growth 
59.3 (32/54) 24.2 (1696/7005) 4.91E-05 

FYPO:0002061 
inviable vegetative 

cell population 
53.7 (29/54) 20.7 (1452/7005) 8.36E-05 

FYPO:0000004 cell viability 98.1 (53/54) 69.2 (4845/7005) 8.62E-05 
FYPO:0002059 inviable cell population 53.7 (29/54) 20.9 (1466/7005) 8.62E-05 
FYPO:0003037 abnormal cell phenotype 68.5 (37/54) 33.3 (2332/7005) 8.93E-05 

Genes with a Negative Correlation (Anti-Ageing Genes) 
FYPO:0000124 viable cell 90.4 (123/136) 52.1 (3651/7005) 1.53E-18 
FYPO:0001491 viable vegetative cell 90.4 (123/136) 52.1 (3651/7005) 1.53E-18 
FYPO:0000003 cell population phenotype 100 (136/136) 70.6 (4949/7005) 4.26E-18 
FYPO:0002057 cell population viability 100 (136/136) 70.5 (4938/7005) 4.26E-18 
FYPO:0000001 phenotype 100 (136/136) 70.8 (4959/7005) 6.19E-18 

FYPO:0002177 
viable vegetative cell with 
normal cell morphology 83.1 (113/136) 44.3 (3100/7005) 7.13E-18 

FYPO:0002058 viable cell population 91.9 (125/136) 56.1 (3928/7005) 1.46E-17 

FYPO:0002060 
viable vegetative 
cell population 

91.2 (124/136) 54.9 (3844/7005) 1.46E-17 

FYPO:0000004 cell viability 98.5 (134/136) 69.2 (4845/7005) 2.54E-16 

FYPO:0000136 cellular physical 
quality phenotype 

98.5 (134/136) 69.7 (4881/7005) 4.56E-16 
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Table 5.5. AnGeLi (Analysis of Gene Lists) Results. 190 genes, with a Spearman correlation p-value < 0.05 between count / mean count 

ratio and time, were filtered, with 54 having a positive correlation (Supplementary List B) and 136 having a negative correlation 

(Supplementary List C). Included in this table are the top 10 results of both enrichment analyses, sorted in ascending order according to the 

Benjamini-Hochberg corrected p-values. FYPO stands for Fission Yeast Phenotype Ontology. Highlighted in bold, the FYPOs describing the 

viability of a vegetative cell population upon deletion of a gene; inviable for 53.7% of genes with a positive correlation and viable for 91.2% of 

genes with a negative correlation. 
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5.3 Application of the HMM on the Ageing Dataset 
 
In concurrence, we also applied the five-state Hidden Markov Model (HMM) on 

the ageing dataset (Figures 5.9 and 5.10). 

 

 
 
Figure 5.9. The Ageing Landscape. Overall, we demonstrate that progressing 

from age 0 to age 6 results in an increase of the number of essential protein-

coding transcripts (mean HMM state = 1). In regard to the non-protein-coding 

transcripts, we observe that while most are not essential, a few are still important 

(see Figure 5.10). 
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Figure 5.10. The Ageing Landscape of the Non-Protein-Coding Transcripts. 

Here, we show that most non-coding transcripts are not essential during ageing 

(mean HMM state = 2 / 3), however, a few are still required for cell survival 

(mean HMM state = 1). In addition, we observe a bipolar distribution at age 6. 

Overall, we find 218 ncRNAs with mean HMM state < 1.5, coverage > 50%, and 

overlapping all four time points (Supplementary List D). 

 
5.4 Summary of the Main Results 
 
Hermes insertion libraries were aged via chronological lifespan (CLS) assays as 

described (Roux et al. 2009). For these libraries, cells were collected and 

processed when the cultures reached stationary phase (age 0) and 2, 4, and 6 

days later. 

 
So as to examine whether genes changed their functional importance during 

ageing, a gene-based analysis was carried out. Here, the hypothesis was that with 

time, the number of unique insertion counts changes in a gene but remains 

constant in the region surrounding it. To this end, Cochran–Mantel–Haenszel 

tests were independently carried out on the mean (for the observed values) and 
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the median (for the expected values) unique insertion counts of 1, 2 and 3 kb 

gene windows, with each gene window centred around the gene midpoint. Over 

5000 genomic features were screened. P-values were corrected for multiple testing 

using the Benjamini–Hochberg method, with a false discovery rate of < 0.05 as 

the significance threshold for the adjusted p-values. 

 
1200 genes deviated significantly from the expectation after p-value adjustment. 

For these genes, a Spearman rank correlation coefficient test was performed 

between the four time points and a ratio of insertion counts and mean insertion 

counts. 190 out of 1200 genes had a correlation p-value < 0.05, with 54 having a 

positive correlation and 136 having a negative one. Both gene lists were analysed 

with AnGeLi (Bitton et al. 2015). Here, positively correlated genes, whose relative 

insertion densities increased with ageing, were enriched for the essential genes 

phenotype ontology (FYPO:0002061, genes whose deletion results in inviable 

vegetative cell populations). In contrast, negatively correlated genes, whose 

relative insertion densities decreased with time, were enriched for the non-essential 

genes phenotype ontology (FYPO:0002060, genes whose deletion results in viable 

vegetative cell populations). 

 
In this work, we also applied the five-state Hidden Markov Model on the ageing 

dataset. Overall, we demonstrated that progressing from age 0 to age 6 results in 

an increase of the number of state 1 protein-coding transcripts. In addition, we 

show that most non-protein-coding transcripts are not essential during ageing, 

however, a few are still important for survival. 
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Chapter 6 DISCUSSION 
 
6.1 Another Piece of the Puzzle 
 
In this large-scale experiment, we have addressed one of the central aims of 

biological research: to fully describe the coordinated collection of functions and 

processes that combine to create living organisms, such as fission yeast. Gradually, 

a more comprehensive picture of S. pombe is coming to light, as novel datasets 

from both small- and large-scale investigations are merged to refine the current 

annotation of gene structures and assign function to them. Our Hermes insertion 

dataset is another piece of the puzzle. 

 
Specifically, our goal was to identify functional elements in the S. pombe genome 

during growth and chronological ageing. To this end, we combined high-density 

transposon mutagenesis with high throughput DNA sequencing. First, we 

constructed near saturation transposon libraries, which can, in principle, harbour 

mutations disrupting all non-essential loci in the genome. NGS was then used to 

map Hermes insertion sites en masse. In light of the relevant literature and our 

expectations for the data, we next developed a five-state Hidden Markov Model 

(HMM) to quantitatively discriminate between loci that are dispensable or required 

during the two conditions of interest. 

 
In a previous attempt to identify the function of S. pombe genes, Guo et al. 

(2013) showed a lack of Hermes insertion sites in essential genes and an excess in 

non-genic regions. In general, this is consistent with the fact that insertion 

densities are good indicators of the relative functional importance of particular 

annotation types. So as to formally establish whether our Hermes insertion data 

reflects functional constraint, we compared Hermes insertions to both the 

divergence trends between related Schizosaccharomyces species, and the diversity 

within the species. Overall, there were two messages to take home: first, Hermes 
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insertions are indicative of functional regions, and second, our data is able to 

locate functional elements with high precision. 

 
In a consistent manner, the relative levels of genetic constraint and diversity 

between species showed that the coding regions of essential genes (eCDS) were 

subject to higher constraint than coding regions of non-essential genes (nCDS). In 

turn, this was followed by 5’/3’ untranslated regions (UTRs) and introns, with 

unannotated regions (generally intergenic regions) being the least constrained. In 

addition, both Hermes insertion densities (unique insertion positions/100 nt) and 

mean insertion counts were consistent with this ranking, showing that Hermes 

insertions are suitable indicators of functional regions, for both protein-coding and 

non-coding transcripts. 

 
In general, evolutionary studies are valuable for measuring the fitness effects of 

mutational changes in genomes (that is, function), however, it is also important to 

take into account their shortcomings. If sufficient related genomes are available, 

for instance, a selective constraint analysis can locate regions that are conserved 

(Lindblad-Toh et al. 2011). However, such studies will fail to uncover functional 

genomic elements that are not conserved over long periods of evolutionary time, 

because these will not be retained. In addition, there is a paradox here, in that an 

increase in phylogenetic depth is required to detect smaller or weaker areas of 

constraint, but that same increase in phylogenetic depth means that species are 

more diverged, and so have more unshared functional elements (Cooper and 

Brown 2008). Likewise, patterns of diversity are able to predict generic aspects of 

the genome with respect to function (Fawcett et al. 2014, Jeffares et al. 2015), 

but do not have sufficient resolution to pinpoint specific functional elements. 

Overall, this is because polymorphic sites are present at low densities. In addition, 

the relationship of polymorphic sites to constraint is affected by both the 

recombination rate (Campos et al. 2014) and recent events of selection, which 

can purge diversity in surrounding areas (Cheeseman et al. 2012). In contrast to 
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these	 evolutionary studies (and their pitfalls), near saturation insertion libraries, 

generated from independent repeats, are able to define functional operons in 

bacterial genomes in detail (Zhang et al. 2012, DeJesus and Ioerger 2013). 

Similarly, our Hermes insertion data was able to locate functional elements in the 

S. pombe genome with high accuracy. 

 
6.2 The Importance of the HMM 
 
HMMs are at the core of numerous biological applications, including gene finding, 

multiple sequence alignment, profile searches, and regulatory site identification. 

Indeed, HMMs are often considered the Lego’s of computational sequence analysis 

(Eddy 2004). In general, HMMs are more advantageous than the other methods 

used to examine Tn-seq data (Zhang et al. 2012, Zomer et al. 2012, DeJesus et 

al. 2013). One of the advantages of using an HMM is that it is not limited to 

annotated gene boundaries, and can therefore pinpoint independent non-coding 

RNAs, protein domains, and regulatory regions, that are essential under the 

condition of interest. HMMs also allow for the possibility that only a segment of a 

gene might be required. In addition, to veer from the basic essential or non-

essential classification, more states can be introduced to capture distinct genomic 

regions. In this work, in fact, a fifth state was added to capture sites with the 

highest 10% of unique insertions per 100 nt. 

 
Using HMMs, it is also possible to account for insertion biases. In this work, the 

two biases were the nTnnnnAn motif and the nucleosome occupancies. In order to 

understand these biases, we must first understand the complex structure that the 

Hermes transposase forms with the DNA. In this regard, it is important to 

consider how Hermes works at the molecular level. It is known that the Hermes 

approach described in Evertts et al. (2007) is bipartite, in that it contains the 

Hermes transposase, which is driven via a repressible promoter (see Figure 2.1, 

expression plasmid), and the transposon, which is composed of a drug resistance 

marker flanked with terminal inverted repeats (TIRs) of Hermes (see Figure 2.1, 
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donor plasmid). Upon promoter induction, and subsequent transposase expression, 

the transposon is excised at its TIRs and then integrated into chromosomal DNA. 

In the meantime, we are left to ponder how the transposase is able to locate its 

transposon ends amidst a sea of chromosomal DNA. Hickman et al. (2014) 

provided an answer, revealing that Hermes forms an octameric ring organised as a 

tetramer of dimers. In their research, Hickman et al. (2014) discovered that, with 

respect to the chemical steps of transposition, there is a difference between 

isolated dimers and octamers, with the former being active in vitro and the latter 

being active in vivo. It was also shown that the octamer provides multiple specific 

and non-specific DNA binding domains, and it is these multiple sites of interaction 

that allow the transposase to locate its transposon. 

 
So far, research supports the octamer as being the active species. Its size, 560 

kDa, is several orders larger than histones and so this could help to understand the 

preference for Hermes to integrate into nucleosome-free regions (NFRs) 

(Gangadharan et al. 2010, Guo et al. 2013). In addition to the fact that NFRs 

are, at large, more accessible to DNA binding proteins, it would be difficult for 

such a large protein complex structure to interact with DNA that is wrapped 

around histones. Moreover, stretches of T and A are higher in NFRs, which could 

also account for the preference of Hermes to integrate into nucleosome-depleted 

regions. NFRs include transcriptional regulatory regions, such as enhancers, 

promoters, and terminators, which have low nucleosome occupancies and often 

contain nucleosome-depleted regions. In contrast, protein-coding regions have high 

nucleosome occupancies (Yadon et al. 2010). In general, all of this was taken into 

consideration when developing the HMM. 

 
In this experiment, the applied five-state HMM helped to distinguish segments at 

the subgene level that have differential effects on cell survival. From the HMM 

results, we concluded that Hermes insertions have functional consequences in 90% 

of this compact genome, including 80% of the non-protein-coding regions. 
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Specifically, we show that 99% of essential coding sequences (eCDS) were 

assigned to either S1 or S2. eCDS are the most highly conserved regions and 

contain the lowest within-species diversity. 

 
6.3 Ageing: Understanding How and Why 
 
Comedian George Carlin once said that life should be lived in reverse; die first to 

get it out of the way, work for forty years until you are young enough to enjoy 

your retirement, go to school, play, become a little baby, then spend your last nine 

months floating in the womb. What if, however, instead of living life backwards, 

we could just slow down ageing and live longer, healthier lives? What if ageing is 

just a disease that we could cure? 

 
From caloric restriction to telomerase, this is an exciting new era in the field of 

ageing research, particularly, the biology of ageing in mammals. In fact, several 

screens have been carried out in model organisms such as yeast, worms, and flies, 

leading to the identification of genes involved in ageing. Some of these genes were 

also confirmed in mammals (Kennedy 2008). It is possible to extrapolate from one 

eukaryotic species to another because a lot of functions and pathways known to 

control longevity are conserved within the eukaryotic kingdom (Fontana et al. 

2010, Kaeberlein 2010). Moreover, an overlap exists between the genetic 

determinants of longevity across a range of eukaryotic species (Kaeberlein and 

Kennedy 2005). 

 
In this screen, using S. pombe as a eukaryotic model for ageing, we aged Hermes 

insertion libraries via chronological lifespan assays. CLS assays measure the length 

of time non-dividing cells survive. In this case, the cell cultures were first grown to 

stationary phase, and then over time, samples were removed to assess the survival 

of the population. Overall, the strength of the system lies in the ease of 

manipulating genes, and the evolutionarily conserved nature of the longevity 

genes. To this end, we performed a gene-based analysis to examine whether (and 
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if so which) genes changed their functional importance over time. Using such an 

unbiased approach, our expectation was to discover genes with a link to ageing, 

and therefore provide a better assessment of the total number of longevity genes. 

 
In S. pombe, several pro- and anti-longevity genes have been characterised. Sideri 

et al. (2014), for example, discovered long-lived mutants in quiescent cells 

deprived of nitrogen. Rallis et al. (2014), on the other hand, revealed genes 

involved during stationary phase under glucose starvation. Here, the screen was 

carried out for mutants resistant to TORC1 inhibition. TORC1, target of 

rapamycin complex 1, promotes ageing in multiple organisms. Combined, these 

two studies generated a list of 116 anti-longevity (or pro-ageing) genes, which 

increase lifespan when knocked out. In relation to our ageing insertion data, the 

initial expectation was for these genes to be good positive controls, that is, to 

exhibit an increase in the number of insertions as a function of age. However, for 

most (88) of the 116 genes, the opposite was true. Indeed, plotting the count / 

mean count ratio at each time point for both repeats showed there to be a 

negative correlation. It is possible that this is due to a difference in experimental 

conditions; it is known that some mutants are long-lived in one condition but 

short-lived in another. For example, the gsk3 mutant, whose gene encodes 

glycogen-synthase kinase 3, is long-lived during nitrogen starvation (Sideri et al. 

2014). In contrast, the sck2 mutant (S6 protein kinase) is long-lived during 

stationary phase (Roux et al. 2006) but not during nitrogen starvation (Sideri et 

al. 2014). 

 
In order to ensure that the information stored within the ageing insertion dataset 

is mined to its fullest, we pursued a different but similar route. Specifically, we 

performed relevant statistical tests to uncover significant correlations (p < 0.05) 

between the count / mean count ratio and each of the four time points. Here, the 

robustness of the data was validated. Overall, we unveiled two lists, one 

containing 54 positively correlated genes, and another one encompassing 136 
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negatively correlated genes. In this context, the expectation was for the former list 

to denote genes that are essential during log phase but not throughout ageing, 

and for the latter list to represent genes that are required for longevity but not for 

growth. In the case of most genes, the AnGeLi tool suggested this to be true, in 

that deleting the positively correlated genes gives rise to inviable cell populations, 

whereas knocking out the negatively correlated genes, on the other hand, results 

in viable cell populations. In PomBase, according to the FYPO annotation data, 

an inviable cell population designates essential genes, while a viable cell population 

identifies non-essential genes. Overall, this fits well with our results (Figure 6.1), 

given that in PomBase, null mutants are annotated as inviable or viable during 

vegetative growth, also referred to as log phase. 

 

 
 
Figure 6.1. Mining the Ageing Insertion Dataset. Overall, we found 54 

positively correlated, pro-ageing genes and 136 negatively correlated, anti-ageing 

genes that are in accordance with the FYPO annotation data in PomBase. 

 
It is speculative, but this could be attributable to antagonistic pleiotropy; a theory 

of ageing proposed by Williams (1957) as an evolutionary explanation for 

senescence. In general, Williams states that an allele with a negative impact on 

performance in late life could be selected for if it has a positive influence on 

reproduction in early life. In genetics, antagonistic pleiotropy is frequently used to 

describe a gene that controls multiple traits, where at least one trait is beneficial 
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to the organism’s fitness and at least one is detrimental. It is often an evolutionary 

trade-off between early- and late-life performance. In budding yeast, for instance, 

Qian et al. (2012) measured the fitness of over 5000 non-essential genes, and 

found that hundreds of genes harm rather than benefit the organism, citing 

widespread antagonistic pleiotropy. In a more specific example, Li et al. (2014) 

investigated the de novo-originated gene, MDF1, which promotes growth but 

suppresses mating. In fission yeast, Rallis et al. (2014) found that slow-growing 

mutants live longer, whereas fast-growing mutants live shorter. In this context, the 

trade-off is between growth and ageing. It is therefore plausible that what we 

observe in our Hermes insertion data are pleiotropic genes with a positive effect 

during growth and a negative role during ageing, and vice versa. 

 
In light of the five-state HMM, we also demonstrated that progressing from age 0 

to age 6 results in an increase of the number of state 1 protein-coding genes. In a 

comprehensive exploration of the two later time points, we observe that over 60% 

of these protein-coding transcripts are enriched for the cellular metabolic process 

GO term (Bitton et al. 2015). In general, this could be due to the fact that ageing 

is a consequence of rapid metabolic adaptation essential for survival in changing 

environmental situations. In addition, we show that most non-protein-coding genes 

are not essential during ageing. However, a few (14%) are still important across 

all four time points. 

 
6.4 Non-Coding RNAs: Functional or Junk? 
 
Traditionally, coding sequences have received much of the attention of geneticists, 

however, the emerging abundance of ncRNAs, which can outnumber coding 

transcripts, has raised important questions concerning their general significance. 

For example, how much genetic information is transacted by ncRNAs? Does this 

‘dark matter’ form a network of regulatory information to control gene expression, 

or is it merely opportunistic transcriptional noise? 
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In recent years, the ncRNA annotation of the S. pombe genome has escalated.	 In 

addition to the 307 transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), 

small nuclear RNAs (snRNAs), and ribosomal RNAs (rRNAs), there are now other 

annotated ncRNAs, for the most part, from RNA-seq data (Watanabe et al. 2002, 

Wilhelm et al. 2008, Rhind et al. 2011, Eser et al. 2016, Atkinson et al. 2017). 

Intriguingly, a large number of ncRNAs seem to be antisense to protein-coding 

genes, with some displaying meiosis-specific expression (Bitton et al. 2011), and 

others having a regulatory function during sexual differentiation (Watanabe et al. 

2002). Of the remainder, few had been characterised, up until the recent work of 

Atkinson et al. (2017) which uncovered 5775 novel long non-coding RNAs 

(lncRNAs); lncRNAs contribute a substantial portion to non-coding 

transcriptomes. Overall, this hints at a potential for expansion of ncRNA research 

in S. pombe. 

 
In this regard, and due to the nature of both datasets, our aim was to hunt down 

the essential ncRNAs, and challenge the conception that non-protein-coding genes 

are junk. Overall, our data illustrates that 40% of non-protein-coding regions have 

low transposon insertion densities and therefore seem to be functional; a result 

that has not been documented before. On further examination, we also show that 

for the log phase dataset, 85 non-protein-coding genes have a mean state < 1.5, 

coverage > 50%, and not overlapping protein-coding transcripts. In brief, we find 

85 ncRNAs that are considered essential according to the HMM. It is important to 

note that for our five-state HMM, classification for state 1 was trained on coding 

sequences of essential genes. 

 
6.4.1 The Role of ncRNAs in Ageing 
 
Our next aim was to understand whether ncRNAs in particular affect the ageing 

process in S. pombe. It is well acknowledged that the expression of ncRNAs in 

eukaryotic genomes changes with age. It is also known that ncRNAs evolved in 

eukaryotes as epigenetic regulators of gene expression, with small microRNAs 
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(miRNAs, 20–24 nt) and long non-coding RNAs (lncRNAs, > 200 nt) being the 

most abundant regulatory ncRNAs (Sierra et al. 2015). Intriguingly, both of these 

have been implicated in ageing. 

 
In 1993, from C. elegans studies, came the first evidence of an involvement of 

miRNA in ageing and lifespan. MiRNAs are highly conserved non-coding RNAs 

that negatively regulate gene expression by directly targeting cellular mRNAs. In 

the worm C. elegans, the miRNA lin-4 was shown to target the lin-14 mRNA, and 

also the insulin/IGF signalling cascade (Lee et al. 1993). In turn, this pathway is a 

molecular downstream target of regulatory molecules that influence ageing 

(Grillari and Grillari-Voglauer 2010, Jung and Suh 2012). In addition to lin-4, 

other miRNAs, such as miR-1 and miR-145, have been reported to target the 

insulin/IGF-l receptor and related signalling molecules (Jung and Suh 2014). 

Together, these and others have provided support for the role of miRNAs in 

regulating the lifespan of most model organisms. In relation to how these small 

inhibitory RNAs contribute to human ageing, a number of miRNAs expression 

profiles (e.g. Noren Hooten et al. (2010), ElSharawy et al. (2012)) have 

demonstrated that changes in miRNA expression also occur with human ageing. 

Overall, this suggests that miRNAs and their targets have the potential to be used 

as age indicators. However, notwithstanding this wealth of evidence of miRNA 

involvement in the ageing of other organisms, to this date no miRNAs have been 

found in S. pombe. Therefore, with this avenue closed, we must look at the larger 

counterpart of miRNAs, lncRNAs, whose relevance in ageing has just become 

apparent. 

 
It has been demonstrated that lncRNAs affect six major molecular traits of ageing 

(Grammatikakis et al. 2014). Specifically, lncRNAs have been implicated in – 

(a) Cell Proliferation and Senescence: It is known that as organisms age, 

senescent cells accumulate. One of the hallmarks of cellular senescence is a failure 

to progress through the cell cycle. In fact, senescent cells arrest growth with a 
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DNA content characteristic of G1 phase (Campisi and d'Adda di Fagagna 2007). 

MALAT1, a conserved lncRNA amongst mammals, for example, has been shown 

to repress senescence. Indeed, depleting MALAT1 in breast (Zhao et al. 2014) 

and cervical (Guo et al. 2010) cancer cells induced G1 arrest and reduced both 

cell growth and cell proliferation. 

(b) Communication Among Cells: It is also known that ageing involves 

alterations at the level of intercellular communication; one of the changes is 

inflammaging (an inflammatory state that accompanies ageing in mammals), 

which can result from	 senescent cells secreting cytokines (López-Otín et al. 2013). 

Intriguingly, lncRNAs associated with inflammation have also been found. 

Rapicavoli et al. (2013), for instance, discovered 54 mouse lncRNAs induced by 

inflammatory signalling via TNFα, an inflammatory cytokine. 

(c) Controlling Telomere Length: In gerontology, cellular senescence has 

been associated with telomere shortening. Similar to	 the plastic tips at the ends of 

shoelaces, telomeres are structures at the ends of chromosomes that protect 

chromosomal DNA from damage. In the ciliate Tetrahymena, Nobel laureates 

Carol Greider and Elizabeth Blackburn discovered that telomerase counteracts 

telomere shortening (Greider and Blackburn 1989). LncRNA TERC, one of the 

components of the telomerase complex, has been implicated in the maintenance of 

telomere length, and therefore, the prevention of senescence. Indeed, mice 

deficient in TERC exhibited short telomeres, chromosomal damage, and 

premature ageing (Samper et al. 2001). LncRNA TERRA, on the other hand, was 

shown to suppress telomere elongation (Redon et al. 2010). 

(d) Epigenetic Gene Expression: It has been demonstrated that epigenetic 

changes modulate gene expression during cellular senescence and ageing. Overall, 

there is a decline in DNA methylation (Johnson et al. 2012), disruption of 

heterochromatin (Tsurumi and Li 2012), and histone modifications. It was shown, 

for instance, that disruption of histone modifications influences lifespan in model 

organisms such as flies (Siebold et al. 2010) and worms (Greer et al. 2010). 

Several lncRNAs are involved in these epigenetic changes; some are implicated in 
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histone modifications (e.g. ANRIL), while most others contribute to the regulation 

of DNA methylation (e.g. H19 and Xist) (Grammatikakis et al. 2014). 

(e) Proteostasis: It has been shown that the disruption of proteostasis, or 

protein homeostasis, leads to age-associated diseases such as Alzheimer’s, 

Huntington’s, and Parkinson’s diseases (Balch et al. 2008). In general, 

proteostasis includes numerous biological processes; lncRNAs have been linked to 

some of these processes, including autophagy (e.g.	 7SL, HULC, and MEG3), 

protein synthesis and degradation (e.g. AS Uchl1,	 HOTAIR, and lncRNA-p21), 

and protein trafficking (e.g. Gadd7, GAS5, and PANDA)	 (Grammatikakis et al. 

2014). 

(f) Stem Cell Function: It is known that as stem cells age, their renewal 

capacity deteriorates, and their potential to differentiate into different cell types is 

altered (Ahmed et al. 2017).	 So far, a few lncRNAs that affect stem cell 

homeostasis have surfaced. Indeed, some lncRNAs (e.g.	 linc-RoR (Loewer et al. 

2010)) were found to regulate stem cell transcription factors, which in turn 

regulate the expression of these lncRNAs. 

 
In 2002, when the genome sequence of S. pombe was elucidated, Wood et al. 

(2002) suggested that S. pombe makes for a good model organism to understand 

human disease gene function. In this regard, just like ncRNAs have been 

implicated in human ageing, an extrapolation is that age-associated ncRNAs could 

also be present in S. pombe. However, even though genome-wide ageing studies 

have been carried out, nothing is known about the relationship between ncRNAs 

and ageing in this organism. To this end, and due to the nature of the dataset, 

our aim was to hunt down ncRNAs that appear to be essential during ageing. In 

this work, we demonstrate that most non-protein-coding transcripts are not 

required during ageing (mean HMM state = 2 / 3), however, a few are still 

important (mean HMM state = 1). In total, we find 218 age-related ncRNAs that 

are considered essential according to the HMM. 
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6.5 Future Work 
 
6.5.1 HMM State Blocks 
 
It is evident, from the results that have been generated thus far, that the Hermes 

insertion data is a powerful tool. Indeed, there is a vast potential for future 

research. In the current pipeline, for instance, we have state blocks; runs of the 

genome that are the same HMM state, which will further elucidate the functional 

elements in the S. pombe genome. To this end, we identified runs of genome sites 

that are all the same state within the log phase dataset. Since most state blocks 

are short (length = 1 nt), blocks with length < 10 nt were removed. In total, 

15,451 blocks remained, which cover 89% of the genome. Figure 6.2 illustrates 

that all blocks have different distributions, such as the bimodal state 2 blocks. 

Moreover, Figure 6.3 shows that while there are almost equal numbers of state 1, 

2, and 3 blocks, there are much more state 4 and 5 blocks. 
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Figure 6.2. Distribution of HMM State Blocks. Illustrates that all state blocks 

have different distributions. It is intriguing that there are no large regions that are 

altogether unimportant. 
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Figure 6.3. Count of HMM State Blocks. Illustrates that while there are almost 

equal numbers of state 1, 2, and 3 blocks, there are many more state 4 and 5 

blocks. 

 
Subsequent to this, our aim is to look at conservation and RNA expression levels 

within these state blocks, and answer questions such as: How close are state block 

edges to annotation edges? Could there be state 1 blocks that have low or no 

RNA-seq expression, and state 3 or 4 blocks that have high RNA-seq expression? 

So far, we used samples from Atkinson et al. (2017); two 100% stationary phase 

(that is, as soon as stationary phase was reached) and two 50% stationary phase, 

to compute the normalised coverage of RNA-seq data at the nucleotide level, that 

is, read coverage per million reads normalised by sample depth. In this regard, the 

next goal is to interrogate whether an HMM-defined region is transcribed or not. 

 
6.5.2 CRISPR/Cas9 Verification 
 
Rodríguez-López et al. (2016) established an efficient and fast PCR-based method 

for the deletion of DNA sequences in the S. pombe genome, through 

modifications and optimisations of the CRISPR/Cas9 gene editing system. 

CRISPR/Cas9 is the biggest game changer to hit genetics since PCR. In general, 

it relies on the Cas9 nuclease complexed with a guide RNA (gRNA) to target 
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DNA, which then edits the DNA to disrupt genes or insert desired sequences. In 

their open access research, Rodríguez-López et al. (2016) also provide a web tool 

that users can exploit to design the different primers required for deletion of 

genomic regions. So far, using this optimised CRISPR/Cas9 technology, over 80 

non-coding RNA genes have been deleted in S. pombe, most of which have low 

expression levels. So as to understand the function of these ncRNAs, the authors 

are also phenotyping the mutants (personal communication; unpublished). In 

particular, this will include screening under various conditions (including, amongst 

others, DNA damage, heavy metal and oxidative stress), using the RoToR HDA 

robot from Singer Instruments. In addition, growth in different carbon and 

nitrogen sources will also be checked. 

 
Overall, the Hermes insertion data generated in this work has augmented our 

knowledge of functional elements in the S. pombe genome. However, verification 

of function for transcripts assigned as essential by the HMM is required. 

CRISPR/Cas9 could be used to this end. 

 
6.5.3 Time Points and Experimental Conditions 
 
In the future, an aspect of the data that could also be addressed is the ageing 

time points. In total, seven time points were collected during the construction of 

the libraries; however, four (t0, t2, t4, t6) were processed and studied. Overall, in 

contrast to the log phase libraries, the ageing libraries had less unique insertion 

sites per nucleotide of the genome. So as to increase this number, and with it the 

power of the ageing dataset, the remaining time points could be processed as well. 

 
So far, the two experimental conditions tested were ageing and vegetative growth. 

Hermes transposon mutagenesis, when combined with NGS, is a flexible tool that 

can be adapted to test other conditions. Indeed, it is also suitable to screen for 

CLS in quiescent cells deprived of nitrogen. In addition, it can be used to explore 

the functional landscape of the S. pombe genome under heat or oxidative stress. 
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For the heat shock experiment, one approach would be to incubate mid-log phase 

cultures of the insertion mutants at 50oC for up to one hour (conditions estimated 

from Roux et al. (2006)). For the oxidative stress test, cultures can first be 

diluted with YES and then exposed to hydrogen peroxide at a final concentration 

of 0.2 mM, 1.0 mM or 2.0 mM for up to one hour (conditions estimated from 

Pekmez et al. (2008)). So as to measure cell survival after treatment, drop tests 

can then be carried out on solid medium.	DNA libraries can be constructed as per 

Chapter 2.3. 
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6.6 Conclusion 
 
Over the past six decades, S. pombe has emerged as one of the two main yeast 

model organisms. Indeed, publications containing gene-specific data for S. pombe 

have flourished since the Swiss geneticist Urs Leupold	 made its acquaintance 

during the 1940s. Regardless, a lot remains in the dark, with secret messages 

dispersed around the three chromosomes. In light of this, the aim of the PhD was 

to explore the functional landscape of the S. pombe genome. To this end, we 

coupled Hermes transposon mutagenesis with next generation sequencing, a 

combination that proved to be flexible, powerful, and robust. Specifically, we 

created multiple dense insertion libraries, during log phase growth and 

chronological ageing, achieving a saturating (or near-saturating) insertion density 

of 1 insertion per 13 nucleotides of the genome for log phase samples. In general, 

this was a significant improvement over the previous attempt (Guo et al. 2013). 

 
So as to account for the complexity and stochastic nature of the data, we applied 

a five-state Hidden Markov Model (HMM), where the HMM state provides a 

semi-quantitative estimate of the functional significance of the genome at single 

nucleotide-level resolution. HMM state values are consistent but more detailed 

than genome annotations. So far, amongst the numerous results, we have shown 

that transposon insertions have functional consequences in 90% of the S. pombe 

genome, including 80% of the non-protein-coding regions. Overall, this functional 

annotation map (published online) distinguishes sub gene-level genomic segments 

that have differential effects on cell survival, and is therefore a valuable resource 

for the research community. It also builds the foundation for other studies, which 

together will shed light on our understanding of the biology of S. pombe. In turn, 

such knowledge will provide novel insights into the biology of non-model organisms 

such as ourselves. 
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Supplementary Lists 
 
List A includes 85 non-protein-coding genes with mean HMM state < 1.5, 

coverage > 50%, and not overlapping coding genes. 

 
SPNCRNA.7 
SPNCRNA.11 
SPNCRNA.29 
SPNCRNA.37 
SPNCRNA.70 
SPNCRNA.82 
SPNCRNA.84 
SPNCRNA.92 
SPNCRNA.95 
SPNCRNA.96 
SPNCRNA.99 
SPNCRNA.126 
SPNCRNA.127 
SPNCRNA.128 
SPNCRNA.136 
SPNCRNA.137 
SPNCRNA.138 
SPNCRNA.214 
SPNCRNA.230 
SPNCRNA.231 
SPNCRNA.232 
SPNCRNA.233 
SPNCRNA.234 
SPNCRNA.280 
SPNCRNA.281 
SPNCRNA.283 
SPNCRNA.284 
SPNCRNA.287 
SPNCRNA.290 

SPNCRNA.310 
SPNCRNA.333 
SPNCRNA.359 
SPNCRNA.360 
SPNCRNA.361 
SPNCRNA.362 
SPNCRNA.363 
SPNCRNA.364 
SPNCRNA.365 
SPNCRNA.366 
SPNCRNA.367 
SPNCRNA.368 
SPNCRNA.369 
SPNCRNA.370 
SPNCRNA.371 
SPNCRNA.372 
SPNCRNA.373 
SPNCRNA.389 
SPNCRNA.390 
SPNCRNA.391 
SPNCRNA.396 
SPNCRNA.448 
SPNCRNA.449 
SPNCRNA.482 
SPNCRNA.483 
SPNCRNA.484 
SPNCRNA.485 
SPNCRNA.497 

SPNCRNA.498 
SPNCRNA.499 
SPNCRNA.536 
SPNCRNA.554 
SPNCRNA.601 
SPNCRNA.640 
SPNCRNA.643 
SPNCRNA.727 
SPNCRNA.802 
SPNCRNA.851 
SPNCRNA.855 
SPNCRNA.906 
SPNCRNA.961 
SPNCRNA.1076 
SPNCRNA.1094 
SPNCRNA.1095 
SPNCRNA.1135 
SPNCRNA.1160 
SPNCRNA.1171 
SPNCRNA.1298 
SPNCRNA.1299 
SPNCRNA.1301 
SPNCRNA.1304 
SPNCRNA.1306 
SPNCRNA.1310 
SPNCRNA.1576 
SPNCRNA.1635 
SPNCRNA.1695 
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List B includes 54 pro-ageing genes with a Spearman correlation p-value < 0.05 between count / mean count ratio and time. 

 
Systematic I.D. Name Ontology Term 
SPAC1071.11 - FMN binding, oxidoreductase activity 
SPAC1142.08 fhl1 regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPAC17G8.01c trl1 tRNA metabolic process 
SPAC1F5.10 fal1 ribosome biogenesis 
SPAC20G8.01 cdc17 DNA recombination, DNA repair, DNA replication 
SPAC20G8.09c nat10 ribosome biogenesis 
SPAC22E12.18 - human CCNDBP1 ortholog 
SPAC23C11.14 zhf1 detoxification, transmembrane transport 
SPAC23H4.10c thi4 cofactor metabolic process, vitamin metabolic process 
SPAC25B8.02 sds3 chromatin organisation, regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPAC25B8.19c loz1 regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPAC27D7.14c tpr1 transcription (DNA-templated) 
SPAC29B12.08 clr5 chromatin organisation, regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPAC2F3.11 - exopolyphosphatase activity, metal ion binding 
SPAC2F7.11 nrd1 conjugation with cellular fusion, regulation of transcription (DNA-templated), transcription (DNA-templated) 

SPAC31G5.13 rpn11 mitotic sister chromatid segregation, protein catabolic process, 
protein modification by small protein conjugation or removal, regulation of mitotic cell cycle phase transition 

SPAC343.18 rfp2 DNA repair, protein modification by small protein conjugation or removal 
SPAC644.10 med11 transcription (DNA-templated) 

SPAC664.10 klp2 conjugation with cellular fusion, establishment or maintenance of cell polarity, 
microtubule cytoskeleton organisation, mitotic sister chromatid segregation 

SPAC8F11.07c cdc24 DNA recombination, DNA repair, DNA replication 
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SPAPB1E7.09 ogm2 carbohydrate derivative metabolic process, protein glycosylation 
SPAPYUG7.06 sdu1 hydrolase activity 
SPBC119.11c pac1 conjugation with cellular fusion, ribosome biogenesis 
SPBC119.13c prp31 mRNA metabolic process 

SPBC11G11.03 mrt4 mRNA metabolic process, ribosome biogenesis 
SPBC1289.04c pob1 vesicle-mediated transport 
SPBC12C2.10c pst1 chromatin organisation, regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPBC146.14c sec26 vesicle-mediated transport 
SPBC16A3.14 - metal ion binding, structural constituent of ribosome, superoxide dismutase activity 
SPBC16C6.07c rpt1 mitotic sister chromatid segregation, protein catabolic process, regulation of mitotic cell cycle phase transition 
SPBC1778.01c zuo1 cytoplasmic translation, protein folding 
SPBC17G9.03c krs1 cellular amino acid metabolic process, cytoplasmic translation, tRNA metabolic process 
SPBC29A10.07 pom152 nucleocytoplasmic transport 
SPBC2G2.12 hrs1 cellular amino acid metabolic process, cytoplasmic translation, tRNA metabolic process 

SPBC30D10.11 gpi1 carbohydrate derivative metabolic process, lipid metabolic process 
SPBC30D10.12c rsm27 mitochondrial translation 

SPBC336.11 vps52 vesicle-mediated transport 
SPBC354.10 def1 DNA repair, protein catabolic process, telomere organisation 
SPBC3B9.04 oms1 S-adenosylmethionine-dependent methyltransferase activity 
SPBC3E7.01 fab1 conjugation with cellular fusion, lipid metabolic process, signalling 
SPBC428.20c alp6 establishment or maintenance of cell polarity, microtubule cytoskeleton organisation, protein complex assembly 
SPBC4F6.14 nop4 ribosome biogenesis 
SPBC651.08c rpc1 transcription (DNA-templated) 
SPBC660.13c ssb1 DNA recombination, DNA repair, DNA replication, telomere organisation 
SPBC6B1.10 prp17 mRNA metabolic process 
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SPBC776.08c utp22 ribosome biogenesis 
SPCC1393.08 - regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPCC1827.05c - ribosome biogenesis 
SPCC1902.01 gaf1 conjugation with cellular fusion, regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPCC417.08 tef3 cytoplasmic translation 
SPCC553.08c ria1 ribosome biogenesis 
SPCC5E4.06 smc6 DNA recombination, DNA repair 
SPCC757.09c rnc1 mRNA 3'-UTR AU-rich region binding, mRNA binding, protein binding 

SPCC895.05 for3 actin cytoskeleton organisation, establishment or maintenance of cell polarity, 
microtubule cytoskeleton organisation, mitotic cytokinesis, protein complex assembly 
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List C includes 136 anti-ageing genes with a Spearman correlation p-value < 0.05 between count / mean count ratio and time. 

 
Systematic I.D. Name Ontology Term 
SPAC1039.06 - cell wall organisation or biogenesis 
SPAC11E3.04c ubc13 DNA repair, protein modification by small protein conjugation or removal 
SPAC1296.05c lcp1 regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPAC139.06 hat1 chromatin organisation, transcription (DNA-templated), regulation of transcription (DNA-templated) 

SPAC13D6.02c byr3 cytoplasmic translation 
SPAC13F5.03c gld1 carbohydrate metabolic process 
SPAC13G7.09c - conserved fungal protein 

SPAC140.01 sdh2 carbohydrate derivative metabolic process, generation of precursor metabolites and energy, 
nucleobase-containing small molecule metabolic process 

SPAC1556.06 meu1 Schizosaccharomyces specific protein 
SPAC16C9.06c upf1 mRNA metabolic process 
SPAC1751.01c gti1 transmembrane transport 
SPAC1783.06c atg12 autophagy 
SPAC17A5.11 rec12 DNA recombination, meiotic nuclear division 

SPAC17H9.10c ddb1 chromatin organisation, DNA repair, protein catabolic process, protein modification by small protein conjugation 
or removal, regulation of transcription (DNA-templated), transcription (DNA-templated) 

SPAC1805.08 dlc1 conjugation with cellular fusion, meiotic nuclear division, mitotic sister chromatid segregation 
SPAC1834.03c hhf1 chromatin organisation 
SPAC1834.10c - mitochondrion organisation, protein complex assembly 
SPAC19A8.13 usp101 mRNA metabolic process 
SPAC1A6.09c lag1 lipid metabolic process 
SPAC1B3.08 - COP9 signalosome complex subunit 12 (predicted) 
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SPAC1D4.02c grh1 vesicle-mediated transport 
SPAC1F7.09c dal2 nitrogen cycle metabolic process 
SPAC1F8.08 - Schizosaccharomyces pombe specific protein 

SPAC20G8.10c atg6 autophagy, lipid metabolic process 
SPAC22A12.05 rpc11 mRNA metabolic process, transcription (DNA-templated), tRNA metabolic process 
SPAC22A12.17c - short chain dehydrogenase (predicted) 
SPAC22G7.03 - Schizosaccharomyces specific protein 

SPAC22H12.01c mug35 Schizosaccharomyces specific protein 
SPAC22H12.03 - lipid metabolic process 
SPAC23A1.08c rpl3401 cytoplasmic translation 

SPAC23C11.12 hcn1 meiotic nuclear division, mitotic sister chromatid segregation, protein catabolic process, 
regulation of mitotic cell cycle phase transition 

SPAC23G3.04 ies4 chromatin organisation, transcription (DNA-templated), regulation of transcription (DNA-templated) 
SPAC24H6.03 cul3 protein catabolic process, protein modification by small protein conjugation or removal 
SPAC27E2.12 - Schizosaccharomyces pombe specific protein 

SPAC29B12.05c - mitochondrial S-adenosylmethionine-dependent methyltransferase (predicted) 
SPAC29B12.11c - human WW domain binding protein-2 ortholog 

SPAC2F3.08 sut1 transmembrane transport 
SPAC2F7.17 mrf1 mitochondrial peptide chain release factor (predicted) 
SPAC31A2.08 mrp20 mitochondrial ribosomal protein subunit L23 (predicted) 
SPAC31A2.11c cuf1 regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPAC3A12.17c cys12 cellular amino acid metabolic process 
SPAC3C7.08c elf1 nucleocytoplasmic transport, ribosome biogenesis 
SPAC3F10.04 gsa1 detoxification 
SPAC3G6.02 rpn15 mitotic sister chromatid segregation, nucleocytoplasmic transport, protein catabolic process, 
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protein complex assembly, regulation of mitotic cell cycle phase transition 
SPAC3G9.04 ssu72 mitotic sister chromatid segregation, transcription (DNA-templated) 
SPAC3H1.08c - transmembrane transport 
SPAC3H1.11 hsr1 regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPAC4D7.07c csi2 microtubule cytoskeleton organisation, mitotic sister chromatid segregation 
SPAC4F10.14c btf3 protein folding, protein targeting 
SPAC4G8.02c sss1 protein targeting, transmembrane transport 
SPAC4G9.11c cmb1 DNA repair 
SPAC4G9.20c ymc1 transmembrane transport 
SPAC513.04 - Schizosaccharomyces pombe specific protein 
SPAC521.02 wss1 DNA repair 

SPAC56F8.04c ppt1 cofactor metabolic process 
SPAC57A10.04 mug10 signalling 
SPAC5H10.03 - phosphoglycerate mutase family 
SPAC5H10.04 - NADPH dehydrogenase (predicted) 
SPAC637.11 rpm2 mitochondrion organisation 
SPAC637.13c slm1 actin cytoskeleton organisation, establishment or maintenance of cell polarity, signalling 
SPAC683.03 - Schizosaccharomyces pombe specific protein 
SPAC823.09c - threonine aspartase (predicted) 
SPAC823.14 ptf1 Mst2 histone acetytransferase acytyltransferase complex (predicted) 
SPAC890.02c alp7 establishment or maintenance of cell polarity, microtubule cytoskeleton organisation 
SPAC8C9.04 - Schizosaccharomyces specific protein 
SPAC959.05c pdi4 protein disulfide isomerase (predicted) 
SPAC9G1.03c rpl3001 cytoplasmic translation, ribosome biogenesis 
SPAC9G1.15c mzt1 microtubule cytoskeleton organisation, protein complex assembly 
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SPACUNK4.16c tps3 carbohydrate metabolic process 
SPACUNK4.19 mug153 Schizosaccharomyces pombe specific protein 
SPAP14E8.05c - UPF0136 family mitochondrial protein (implicated in heme biosynthesis) 
SPAP27G11.16 - Schizosaccharomyces pombe specific protein 

SPAPB24D3.04c mag1 DNA repair 
SPBC106.12c tho4 nucleocytoplasmic transport, regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPBC106.13 gid9 carbohydrate metabolic process, protein catabolic process 
SPBC115.01c rrp46 mRNA metabolic process, ribosome biogenesis, tRNA metabolic process 

SPBC11C11.06c - Schizosaccharomyces specific protein 
SPBC12D12.02c cdm1 DNA repair, DNA replication 
SPBC1347.01c rev1 DNA repair, mitochondrion organisation 
SPBC14C8.04 ilv6 cellular amino acid metabolic process 
SPBC14C8.09c dbl3 IMPACT domain protein, possible chaperone (predicted) 
SPBC15D4.13c - human ASCC1 ortholog 

SPBC1683.06c urh1 carbohydrate derivative metabolic process, cofactor metabolic process, 
nucleobase-containing small molecule metabolic process 

SPBC1683.12 - transmembrane transport 
SPBC16A3.03c ppr7 mitochondrion organisation 
SPBC16G5.19 - Schizosaccharomyces pombe specific protein 
SPBC17G9.08c cnt5 signalling 
SPBC18H10.19 vps38 autophagy 
SPBC21C3.09c - cellular amino acid metabolic process 
SPBC21C3.10c - vitamin metabolic process 
SPBC25B2.10 - Usp (universal stress protein) family protein 
SPBC26H8.01 thi2 vitamin metabolic process 



 

160 

SPBC27.03 meu25 Schizosaccharomyces specific protein 
SPBC28F2.03 ppi1 protein folding 

SPBC29A10.13 atp7 carbohydrate derivative metabolic process, nucleobase-containing small molecule metabolic process, 
transmembrane transport 

SPBC2D10.03c - DUF866 domain protein 
SPBC2D10.09 snr1 cellular amino acid metabolic process 
SPBC2G2.04c mmf1 mitochondrial matrix protein (YjgF family protein Mmf1) 

SPBC30D10.05c - cofactor metabolic process 
SPBC30D10.09c - HVA22/TB2/DP1 family protein 
SPBC336.13c mmp2 mitochondrion organisation, protein maturation, protein targeting 
SPBC3B8.07c dsd1 lipid metabolic process 
SPBC4F6.08c mrpl39 mitochondrial ribosomal protein subunit L39 (predicted) 
SPBC56F2.14 mrpl44 mitochondrial ribosomal protein subunit l44 (predicted) 
SPBC685.04c aps2 vesicle-mediated transport 
SPBC725.03 - cofactor metabolic process, vitamin metabolic process 
SPBC725.11c php2 carbohydrate metabolic process, regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPBC83.16c - protein with a role in clearing protein aggregates (predicted) 

SPBC8D2.02c vps68 vesicle-mediated transport 
SPBC8D2.09c msl1 mRNA metabolic process 
SPBP19A11.01 gcv3 cellular amino acid metabolic process 

SPBP4H10.08 qcr10 carbohydrate derivative metabolic process, generation of precursor metabolites and energy, 
nucleobase-containing small molecule metabolic process 

SPBPB7E8.02 - PSP1 family protein 
SPCC1259.05c cox9 generation of precursor metabolites and energy 
SPCC1259.09c pdx1 cofactor metabolic process 
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SPCC1259.12c gid1 carbohydrate metabolic process, protein catabolic process 
SPCC1281.07c gst4 detoxification 
SPCC1281.08 wtf11 wtf element Wtf11 
SPCC1322.01 rpm1 mitochondrion organisation 

SPCC13B11.01 adh1 carbohydrate derivative metabolic process, carbohydrate metabolic process, cofactor metabolic process, 
generation of precursor metabolites and energy, nucleobase-containing small molecule metabolic process 

SPCC1442.14c hnt1 adenosine 5'-monophosphoramidase (predicted) 
SPCC23B6.05c ssb3 DNA recombination, DNA repair, DNA replication, telomere organisation 
SPCC24B10.03 - Schizosaccharomyces specific protein 
SPCC338.05c mms2 DNA repair, protein modification by small protein conjugation or removal 

SPCC338.10c cox5 carbohydrate derivative metabolic process, generation of precursor metabolites and energy, 
nucleobase-containing small molecule metabolic process 

SPCC338.12 pbi2 membrane organisation 
SPCC417.09c - regulation of transcription (DNA-templated), transcription (DNA-templated) 
SPCC417.11c - cofactor metabolic process 
SPCC548.06c ght8 transmembrane transport 
SPCC550.01c coa4 mitochondrion organisation, protein complex assembly 
SPCC550.07 - acetamidase (predicted) 
SPCC663.04 rpl39 cytoplasmic translation 

SPCC70.02c inh1 carbohydrate derivative metabolic process, nucleobase-containing small molecule metabolic process, 
transmembrane transport 

SPCC794.02 wtf5 wtf element Wtf5 
SPCC965.04c yme1 mitochondrion organisation, protein catabolic process 
SPCP20C8.02c - S. pombe specific UPF0321 family protein 1 
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List D includes 218 non-protein-coding genes with mean HMM state < 1.5, 

coverage > 50%, and overlapping all four time points. 

 
SPNCRNA.7 
SPNCRNA.11 
SPNCRNA.16 
SPNCRNA.22 
SPNCRNA.29 
SPNCRNA.37 
SPNCRNA.47 
SPNCRNA.61 
SPNCRNA.70 
SPNCRNA.84 
SPNCRNA.92 
SPNCRNA.95 
SPNCRNA.96 
SPNCRNA.99 
SPNCRNA.117 
SPNCRNA.119 
SPNCRNA.128 
SPNCRNA.129 
SPNCRNA.136 
SPNCRNA.137 
SPNCRNA.138 
SPNCRNA.139 
SPNCRNA.154 
SPNCRNA.201 
SPNCRNA.230 
SPNCRNA.231 
SPNCRNA.232 
SPNCRNA.233 
SPNCRNA.234 
SPNCRNA.280 
SPNCRNA.281 
SPNCRNA.283 
SPNCRNA.284 
SPNCRNA.287 
SPNCRNA.289 
SPNCRNA.290 
SPNCRNA.291 
SPNCRNA.292 
SPNCRNA.293 
SPNCRNA.310 

SPNCRNA.333 
SPNCRNA.359 
SPNCRNA.360 
SPNCRNA.361 
SPNCRNA.362 
SPNCRNA.363 
SPNCRNA.364 
SPNCRNA.365 
SPNCRNA.366 
SPNCRNA.367 
SPNCRNA.368 
SPNCRNA.369 
SPNCRNA.370 
SPNCRNA.371 
SPNCRNA.372 
SPNCRNA.373 
SPNCRNA.389 
SPNCRNA.390 
SPNCRNA.391 
SPNCRNA.396 
SPNCRNA.446 
SPNCRNA.448 
SPNCRNA.449 
SPNCRNA.471 
SPNCRNA.482 
SPNCRNA.483 
SPNCRNA.484 
SPNCRNA.485 
SPNCRNA.487 
SPNCRNA.497 
SPNCRNA.498 
SPNCRNA.499 
SPNCRNA.503 
SPNCRNA.513 
SPNCRNA.532 
SPNCRNA.536 
SPNCRNA.541 
SPNCRNA.556 
SPNCRNA.558 
SPNCRNA.563 

SPNCRNA.565 
SPNCRNA.568 
SPNCRNA.569 
SPNCRNA.572 
SPNCRNA.576 
SPNCRNA.578 
SPNCRNA.579 
SPNCRNA.581 
SPNCRNA.584 
SPNCRNA.601 
SPNCRNA.603 
SPNCRNA.604 
SPNCRNA.605 
SPNCRNA.606 
SPNCRNA.633 
SPNCRNA.639 
SPNCRNA.673 
SPNCRNA.676 
SPNCRNA.677 
SPNCRNA.688 
SPNCRNA.695 
SPNCRNA.700 
SPNCRNA.734 
SPNCRNA.750 
SPNCRNA.759 
SPNCRNA.789 
SPNCRNA.796 
SPNCRNA.799 
SPNCRNA.802 
SPNCRNA.805 
SPNCRNA.838 
SPNCRNA.847 
SPNCRNA.885 
SPNCRNA.898 
SPNCRNA.908 
SPNCRNA.914 
SPNCRNA.924 
SPNCRNA.936 
SPNCRNA.937 
SPNCRNA.952 
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SPNCRNA.961 
SPNCRNA.1002 
SPNCRNA.1017 
SPNCRNA.1033 
SPNCRNA.1062 
SPNCRNA.1072 
SPNCRNA.1076 
SPNCRNA.1079 
SPNCRNA.1094 
SPNCRNA.1095 
SPNCRNA.1096 
SPNCRNA.1097 
SPNCRNA.1104 
SPNCRNA.1105 
SPNCRNA.1118 
SPNCRNA.1126 
SPNCRNA.1127 
SPNCRNA.1131 
SPNCRNA.1135 
SPNCRNA.1136 
SPNCRNA.1139 
SPNCRNA.1148 
SPNCRNA.1160 
SPNCRNA.1171 
SPNCRNA.1173 
SPNCRNA.1174 
SPNCRNA.1178 
SPNCRNA.1180 
SPNCRNA.1181 
SPNCRNA.1183 
SPNCRNA.1191 
SPNCRNA.1193 
SPNCRNA.1195 

 
SPNCRNA.1204 
SPNCRNA.1212 
SPNCRNA.1217 
SPNCRNA.1224 
SPNCRNA.1240 
SPNCRNA.1250 
SPNCRNA.1263 
SPNCRNA.1264 
SPNCRNA.1265 
SPNCRNA.1266 
SPNCRNA.1267 
SPNCRNA.1268 
SPNCRNA.1276 
SPNCRNA.1277 
SPNCRNA.1289 
SPNCRNA.1294 
SPNCRNA.1298 
SPNCRNA.1299 
SPNCRNA.1301 
SPNCRNA.1303 
SPNCRNA.1304 
SPNCRNA.1306 
SPNCRNA.1307 
SPNCRNA.1309 
SPNCRNA.1310 
SPNCRNA.1321 
SPNCRNA.1354 
SPNCRNA.1356 
SPNCRNA.1381 
SPNCRNA.1383 
SPNCRNA.1405 
SPNCRNA.1412 
SPNCRNA.1429 

 
SPNCRNA.1454 
SPNCRNA.1456 
SPNCRNA.1476 
SPNCRNA.1481 
SPNCRNA.1489 
SPNCRNA.1495 
SPNCRNA.1508 
SPNCRNA.1515 
SPNCRNA.1525 
SPNCRNA.1529 
SPNCRNA.1535 
SPNCRNA.1539 
SPNCRNA.1570 
SPNCRNA.1577 
SPNCRNA.1582 
SPNCRNA.1590 
SPNCRNA.1592 
SPNCRNA.1603 
SPNCRNA.1613 
SPNCRNA.1618 
SPNCRNA.1620 
SPNCRNA.1634 
SPNCRNA.1635 
SPNCRNA.1638 
SPNCRNA.1639 
SPNCRNA.1640 
SPNCRNA.1655 
SPNCRNA.1661 
SPNCRNA.1675 
SPNCRNA.1682 
SPNCRNA.1695 
SPNCRNA.1696 

 


