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Abstract

Presently, there is increasing interest in the deployment of unmanned sur-
face vehicles (USVs) to support complex ocean operations. In order to carry
out these missions in a more efficient way, an intelligent hybrid multi-task
allocation and path planning algorithm is required and has been proposed
in this paper. In terms of the multi-task allocation, a novel algorithm based
upon a self-organising map (SOM) has been designed and developed. The
main contribution is that an adaptive artificial repulsive force field has been
constructed and integrated into the SOM to achieve collision avoidance capa-
bility. The new algorithm is able to fast and effectively generate a sequence
for executing multiple tasks in a cluttered maritime environment involving
numerous obstacles. After generating an optimised task execution sequence,
a path planning algorithm based upon fast marching square (FMS) is utilised
to calculate the trajectories. Because of the introduction of a safety param-
eter, the FMS is able to adaptively adjust the dimensional influence of an
obstacle and accordingly generate the paths to ensure the safety of the USV.
The algorithms have been verified and evaluated through a number of com-
puter based simulations and has been proven to work effectively in both
simulated and practical maritime environments.
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self-organising map

1. Introduction

Recently, there is an increasing interest in the research of unmanned surface
vehicles (USVs). An extensive number of vehicle platforms are being devel-
oped and deployed in numerous practical applications, where the military
utilisations are dominant. By sending the vehicles to carry out dangerous
missions, such as sea patrol and coastal guarding in hazardous environments,
the risk to personnel can be significantly reduced as there is minimal involve-
ment of human operators. Note that using the USVs in civilian applications
is also possible and promising. One deployment is environmental monitor-
ing. In highly polluted lakes, USVs can be sent out to effectively and ef-
ficiently collect water sampling data without exposing humans to harmful
elements. Another potential application is the search and rescue missions
in post-disaster scenes. In Murphy et al. (2008), it has been reported that
together with a micro aerial vehicle, a prototype USV was used to survey
damage in parts of Marco Island after the Hurricane Wilma struck in 2005.
It has been demonstrated that the effective utilisation of USVs can dramati-
cally increase the success rate of the rescue mission by reducing the response
time.

By comparing and analysing the aforementioned applications, it was found
that missions assigned for USVs are normally complex, i.e. a single mission
consists of multiple sub-tasks the USV is required to accomplish subject to
constraints. An example of such a case has been shown in Fig. 1, which
represents a water sample collection mission. Red dots represent the mul-
tiple water monitoring stations, where the critical sampling data is stored.
Stations are located in the area of interest, each with equal importance and
priority, which requires the USV to autonomously visit these locations with
the minimal costs such as the minimum traversal distance or the least energy
consumption. Multiple stations can be viewed as multiple goal points and the
visiting of these points can be regarded as a problem of multi-goal path plan-
ning. It is different from the conventional path planning problem, the aim of
which is to generate a collision-free path towards a single goal point instead
of multiple ones. Due to the complexity of multi-goal path planning, algo-
rithms are normally developed using a hierarchical structure, which includes
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Figure 1: A USV is conducting the environmental monitoring mission.

a high-level task allocation scheme and a low-level path planning scheme. A
sophisticated task allocation algorithm is first used to calculate an optimal
task execution sequence, and then the path planning algorithm is used to
generate collision free trajectories visiting each goal point by following the
sequence.

When performing the task allocation, the problem can be mathematically
summarised as the Travelling Salesman Problem (TSP) that is given a list of
cities and the distances between each pair of cities, to search for the shortest
possible route that visits each city exactly once and returns to the origin city.
Such a problem is NP-hard and can be solved using both exact and heuristic
algorithms. The exact algorithms are able to provide the accurate results but
with extensive computational time making them only suitable for the prob-
lem in low dimension. The heuristic algorithms sacrifices the accuracy of the
searching results by providing near optimal solutions. However, the com-
putational speed is much higher than with deterministic method. Recently,
the most commonly used heuristic approaches include the genetic algorithms
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(Yan et al., 2007), ant colony algorithms (Dorigo and Gambardella, 1997)
and the neural network algorithms (Hertz et al., 1991; Angeniol et al., 1988).
In particular, the self-organising map (SOM) based neural network has be-
come one of the most popular approaches to solve the TSP problem due to
its intuitive appeal, relative simplicity and promising performance (Zhang
et al., 2012; Johnson and McGeoch, 2007).

The fundamental idea behind the application of SOM for TSP is that a cir-
cular closed ring of neurons is formed and gradually moves towards the cities
through competitive training until each city is assigned a neuron. The train-
ing session of the SOM primarily includes two procedures, i.e. the selection
of the winner neuron and the update of the winning neuron as well as its
neighbourhood points. Specific introduction of the SOM will be given in the
latter section. A number of studies have been carried out to improve the
performance of SOM for TSP from the aspects of reducing the computation
complexity and increasing the efficiency of the algorithm. For example, a
dynamic ring structure has been proposed in Angeniol et al. (1988), where
the neurons on the ring can be adaptively added or deleted based upon
the specific training situation. Similarly, in Somhom et al. (1997), a neu-
ron inhibition scheme was integrated with the SOM to prevent the neuron
from winning too much to produce a more balanced result. Cochrane and
Beasley (2003) proposed a co-adaptive approach, which involves both the
competition and co-operation schemes, to improve the solution quality and
the computational time of the SOM. Zhang et al. (2012) also introduced a
combinational approach including the overall and regional competition rules
for the SOM to provide better solution quality as well as maintain the fun-
damental properties of the TSP problem such as the topology preservation
and the convex-hull properties.

However, it should be noted that all of the aforementioned studies only con-
sider an environment with no obstacles, and such a problem belongs to the
Euclidean Travelling Salesmen Problem (ETSP). When selecting the winner
neuron during the training, the Euclidean metric is adopted to calculate the
distance between each neuron and the city, and the neuron with the shortest
distance will become the winner. However, Euclidean metric is not feasible
when obstacles exist between the neuron and the city. During the updating
process, neurons should always be outside obstacles. Therefore, to incorpo-
rate the collision avoidance capability into the SOM for TSP, a series of work
has been carried out in Faigl et al. (2011), Faigl (2011), Faigl and Přeučil
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(2011) and Faigl (2016). The main improvement made by these authors is to
propose a new winner neuron selection rules. Instead of using the Euclidean
metric, an approximation of the shortest collision-free path is calculated for
each neuron towards the city and the winner neuron is accordingly selected
based upon the length of the path. To increase the efficiency of the algorithm,
the approximation has been developed based upon the convex polygon par-
tition of the area of interest, where the path can be found in the visibility
graph using the Dijkstra algorithm. The simulation results show that all the
neurons can be kept well away from the obstacles when the SOM is being
updated with optimal collision-free paths able to be easily found.

However, there are two main problems associated with these studies. First,
as noted by the authors, even though the computational time of the proposed
approximation is significantly faster than that of the direct calculation of the
shortest path, it is still much slower than using the conventional Euclidean
distance. Hence, the proposed algorithm may not be feasible for complex
missions, where a large number of goal points need to be visited. Second,
the calculated collision-free path stays rather close to the obstacles. This
is because the approximation adopts the simple visibility graph approach,
which does not respect the distance to the obstacles when generating the
path. Such an approach may be suitable for the mobile robots applications
but not feasible for USVs. In a typical littoral environments, the dimensions
of obstacles (such as the shores) vary with the tides, i.e. rising tide brings
more water covering the reef and making the obstacle's area shrink; whereas,
during the low tide periods, the effective dimension of obstacles can increase.
It is desired that when performing the multi-goal path planning, an adaptive
approach can be developed to address these issues, especially the second one.

Therefore, in this paper, a novel multi-task allocation and path planning al-
gorithm has been proposed. For the multi-task allocation, an improved SOM
with collision avoidance capability is proposed to fast determine a task exe-
cution sequence in an environment with obstacles. The new SOM improves
the work of Faigl et al. (2011) by using a reactive approach to update the
SOM neurons. To maintain the computational efficiency of the SOM, the
Euclidean metric is used for winner selection; whereas, the collision avoid-
ance capability has been achieved by using a new neurons updating process.
A repulsive force field (RFF) has been generated around each obstacle in
the environment, and the SOM neurons are updated not only according to
the distance to the city but also the repulsive forces that expels the neurons
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away from the obstacles. For the path planning, the fast marching method
(FMM) has been used as it is able to generate a smooth trajectory within
sufficient time.

It should be noted that the utilisation of vector field to assist with SOM
has been adopted in some other literature. For example, in Xu and Chow
(2010) and Wu and Chow (2013), vector field consisting of the attractive and
repulsive fields has been incorporated within SOM to achieve an improved
performance on multi-model optimisation problem. However, there are two
aspects distinguishing the algorithm proposed in this paper and the ones
in those literature. First, the aim of using the vector field is different and
the way of constructing the vector field is not the same. In Xu and Chow
(2010), because the vector field is used to assist with the updating process of
the SOM, the fields have been created around neurons instead of obstacles
making the algorithm lack of collision avoidance capability. However, as
the aim of this paper lies in the improvement of the navigation safety, the
repulsive force field (RFF) has been specifically generated around obstacles
such that the collision avoidance requirement can be satisfied. Also, differing
from the conventional way of generating the field, i.e. calculating the force
at each point in the domain, in this paper, the new way of generating the
RFF based upon the FMM (Song et al. (2017)) has been implemented. By
using such an approach, the RFF can be fast created covering the whole area
of interest in a single step.

Second, in order to successfully guarantee the safety, instead of being a uni-
form field as presented in Xu and Chow (2010) and Wu and Chow (2013), the
field proposed in this paper has an adaptive dimension. The area of RFF can
be controlled and varied according to specific requirements by introducing a
new controlling parameter called propagation scale limit. For example, when
a strict demand on the navigation safety presents, the parameter is able to
accordingly restrict the propagation process of the FMM and adaptively ad-
just the dimension of RFF to make sure that sufficient repulsive force can be
generated to avoid any collision. The detailed explanation of such a process
will be given in Section 2.2.

The rest of the paper is organised as follows. Section 2 specifically introduces
the procedures to construct an adaptive RFF. In Section 3, the detailed al-
gorithm structure for multi-task allocation and path planning is described,
which includes the improved SOM algorithm and the FMM based path plan-
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ning algorithm. The proposed algorithms and methods are verified by simu-
lations in Section 4. Section 5 concludes the paper and discusses the future
work.
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2. Adaptive repulsive force field

Artificial potential field method has been commonly used in robotics motion
planning with the primary concept being to construct two different fields that
are repulsive and attractive ones to weigh up the influences from obstacles
and goal points respectively. The fields are normally generated according to
the distance to obstacles or the goal points depending on the type of field
to be constructed and the total potential field is the sum of these two fields.
Note that the main drawback associated with the potential field method is
the local minima problem. To overcome this, in this paper, a new potential
field construction approach based on the fast marching method (FMM) has
been proposed. As stated in Garrido et al. (2008), the FMM constructs the
field by simulating an electromagnetic wave propagation process, where the
wave emanates from the start point and continues to propagate until reaching
the end point. The potential value of the field represents the local distance
to the start point, and the farther away from the start point, the higher the
potential value. Because of this, the generated field will only have one global
minima point which is located at the start point with the potential value
being 0 and no other local minima points exist in other locations within the
area of interest.

2.1. Fast marching method

The FMM was first proposed by J. Sethian in 1996 to iteratively solve the
Eikonal equation to simulate the propagation of an interface (Sethian, 1996).
The Eikonal equation has the form as:

|∇(T (x, y))|V (x, y) = 1 (1)

where T(x, y) is the interface arrival time at point (x, y) and V(x, y) is the
interface propagation speed. Eq.1 belongs to the partial differential equation
(PDE) and its numerical solution can be obtained via the upwind differential
method. In Fig. 2, suppose (x, y) is the point at which T(x, y) needs to
be solved. The neighbour of (x, y) is a point set containing four elements
(x + ∆x, y), (x − ∆x, y), (x, y + ∆y), (x, y − ∆y). T(x, y) can be obtained
as:

T1 = min(T(x−∆x,y),T(x+∆x,y)) (2)
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Figure 2: Grid point (x,y) and its neighbours. The grid map has four connectivity, the
grid point therefore has four neighbour points. The grid size is ∆x and ∆y in the x and
y direction respectively.

T2 = min(T(x,y−∆y),T(x,y+∆y)) (3)

|∇T(x,y)| =
√

(T(x,y) − T1

∆x )2 + (T(x,y) − T2

∆y )2 (4)

(T(x,y) − T1

∆x )2 + (T(x,y) − T2

∆y )2 = 1
(V(x,y))2 (5)

where ∆x and ∆y are the grid spacing in the x and y directions. The solution
of Eq. 5 is given by

T(x,y) =


T1 + 1

V(x,y)
if T2 ≥ T ≥ T1,

T2 + 1
V(x,y)

if T1 ≥ T ≥ T2,

quadratic solution of Eq.5
(6)

The pseudo-code of the FMM is shown in Algorithm 1. It adopts the funda-
mentals of Dijikstra algorithm by grouping the grid points into three different
categories, i.e. the Far, Known and Trial point sets:
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• Far : contains grid points with undecided arrival time value (T ). In the
first time step when running the FMM, all grid points except the start
points belong to Far ;

• Known: contains grid points with decided arrival time values (T ). Such
values will not be changed when the algorithm is executed;

• Trial: contains grid points with calculated arrival time values (T );
however, values may be changed when the algorithm is running.

However, instead of employing the classical rectilinear distance metric, it uses
Eq.6 to update the cost function, which measures the distance in Euclidean
metric. The potential field generated using the FMM can thus be viewed as
a distance potential field, where the potential value represents local distance
to the propagation start point. A more explicit illustration of such a field has
been displayed in Fig. 3. In Fig. 3a, two circular obstacles are located near
the centre of the map; while the start and end points are at northwest and
southeast corners respectively. The map is represented by a binary grid map,
where each grid in collision free space has the value 1 and grids in obstacle
areas have the value 0. FMM is then applied to such a grid to simulate
an interface propagation process. The interface is used to help build up a
potential field, whose potential value on each grid point is the local interface
arrival time. The interface begins to proceed from the start point on the
grid map by taking local grid values to determine propagation speed. The
evolution process of interface is shown in Fig. 3b, where the brighter the
colour is, the longer the arrival time. When the interface reaches the target
point (iteration = 40000), the final potential field is created.

2.2. The repulsive force field construction process

The example given in Fig. 3b has a single wave propagation start point; it is
however also possible to run the FMM from multiple start points. Since the
potential field created by the FMM is able to indicate distance information, if
multiple waves are emitted from the obstacles, a new potential field reflecting
how close a local point is to obstacles can thus be generated, based on which
a repulsive force related to the obstacles can be further obtained.

The process of creating the repulsive force field consists of two steps: 1)
using the FMM to generate a repulsive potential field implicitly reflecting
the risk of obstacles and 2) calculating the gradients of the potential field to
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Figure 3: The illustration of the fast marching method (FMM). (a) Grid map. (b) Sim-
ulating interface propagation process by using FM method. Interface starts to emit from
(0, 200) and ends at (200, 0). Process are recorded at iteration times 10000, 20000, 30000,
40000 respectively.
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Algorithm 1 Fast Marching Method Algorithm
Require: configuration space (χ), start point (pstart)

1: assign all the grid points in χ with the cost of Infinity . Initialisation
2: T (pstart)← 0
3: Far← all grid points in χ
4: Known← all grid points with known cost
5: for each adjecent point a of Known point do
6: Trial← a ∪ Trial
7: T (a) = costUpdate(a) . Using Eq. 6
8: end for
9: while Trial is not empty do . Update process

10: p← point with the lowest cost in Trial
11: remove p from Trial
12: Known← p ∪Known
13: for each neighbour point a of p do
14: T̃ (a) = costUpdate(a) . Using Eq. 6
15: if T̃ (a) < T (a) then
16: T (a)← T̃ (a)
17: end if
18: if a ∈ Far then
19: remove a from Far
20: Trial← a ∪ Trial
21: end if
22: end for
23: end while
24: return T

get the corresponding force vector field. In the first step, the FMM is run
to obtain the repulsive potential field, denoted as Drep, where the potential
values represent the distance to obstacles and the longer the distance, the
higher the potential. Drep can be calculated using the expression:

Drep = FMM(pobs, α) (7)

where pobs is the obstacle's location. FMM(•, α) represents the FMM pro-
cess but with a new parameter denoted as the propagation scale limit (α)
added. α has been mainly introduced to control the influence area of obsta-
cles in such a way that after running the FMM, any potential value higher

12



than α will be reset to α to reduce the dimension of the potential field. Fig. 4
represents the process of generating a repulsive potential field in a constrained
environment. A simulated environment representing a typical maritime envi-
ronment with two small islands and a channel has been displayed in Fig. 4a.
The generated Drep with α = 0.8 is represented in Fig. 4b with the contour
plot clearly showing the dimension and the distribution of the potential field.
When the value of α is reduced to 0.3, as shown in Fig. 4c, the area of the
repulsive potential field has been significantly reduced, which demonstrates
that the dimension of the Drep can be controlled by adjusting α. Note that
the value of α should be adaptively calculated according to a number of the
factors such as the safety and the overall distance requirements, which will
not be discussed in this paper.

After generating α, the next step is to vectorise the field to generate the
repulsive vector field. Drep is vectorised by calculating the gradients as:

F = ∇(Drep) = (∂Drep

∂x
,
∂Drep

∂y
) (8)

and the generated F is further normalised such that a unit vector field can
be obtained. However, it should be noted that in practice, the influence of
the repulsive force should vary according to the distance to obstacles, i.e. the
closer to the obstacle, the larger the force. Therefore, F has been re-scaled
by referring to the local distance to obstacles as:

FRep = F ∗ (1−Drep) (9)

The obtained FRep is shown in Fig. 4d, where repulsive force has been clearly
shown.
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Figure 4: The construction of the adaptive repulsive force field. (a) The simulated en-
vironment represents a typical maritime environment including two small islands and a
channel. (b) The generated repulsive potential field (Drep) with α = 0.8. In the potential
field, the further away the location from the obstacles, the higher the potential value. (c)
The generated repulsive potential field (Drep) with α = 0.3. (d) The obtained repulsive
force vector field (FRep) with α = 0.3, where the repulsive force has been clearly shown.
The closer the distance to the obstacles, the larger the repulsive force.
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3. Multi-task allocation and path planning based on the improved
SOM

The structure of the proposed multi-task allocation and path planning algo-
rithm has been illustrated in Fig. 5. Environmental information, including
the dimension of the area of interest as well as obstacles locations, will be
used as the primary system input together with specific mission information
such as the total number and locations of the tasks. This information will
form a synthetic mission map and be fed into the multi-task allocation mod-
ule, where the task execution sequence is calculated. The mission sequence
is then transferred to the path planning algorithm to generate the trajectory
for the USV. The path planning is carried out via two different procedures:
1) the off-line path planning produces a reference trajectory that the USV is
able to follow for most of the operation. 2) the on-line path planning works
alongside the collision risk assessment scheme to modify the path to avoid
any unexpected static or dynamic obstacles. In the following subsections,
algorithms for solving the multi-task allocation 1 and path planning will be
described individually.

3.1. Improved self-organising map (SOM) for TSP

3.1.1. SOM based algorithm for TSP

The self-organising map (SOM) proposed by Kohonen (1990) is a type of
artificial neural network using unsupervised learning to produce low dimen-
sional representation of an input space. The basic structure of SOM is a
two-layered network including the output layer and the input layer as rep-
resented in Fig. 6a. Neurons that need to be trained are contained in the
output layer, and the training is achieved via the connections between output
and input layers. In general, the nodes on the input layer are randomly lo-
cated; while, in the output layer, a two dimensional regular topology such as
the rectangular or the hexagonal grid is used and such a topology is largely
maintained throughout the training process.

When applying the SOM to the TSP, each node Ci in the input layer repre-
sents a city (or a task in task-allocation problem) with a Cartesian coordinate

1multi-task allocation and travelling salesman problem (TSP) mathematically share
the same meaning in this paper.
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(cx, cy) representing its location. The weights associated with the output
layer neurons are in the same dimension and indicates the locations of neu-
rons. Since the fundamental requirement of the TSP is to visit all the cities
and eventually return to the start point, a circular topology (shown in Fig.
6b) is thus used in the output layer. After forming such a topology, neurons
then compete to become the winner throughout the training process, which
adopts an unsupervised strategy consisting of two different procedures:

• Winner selection: a city (Ci) is first selected from the input space.
The Euclidean distance between this city and all the neurons in the
output layer is then calculated by:

dCW = |Ci −Wj| =
√

(cxi − wxj)2 + (cyi − wyj)2, (10)

where Wj represents the location of the jth neuron, and the winner
neuron is selected as the one having the minimum distance value:

Wwin = argmin
W

(dCW ) (11)

• Neighbourhood updating: after the determination of the winner
neuron, the neighbourhood updating process will move the winner neu-
ron as well as its neighbour points towards new positions according to:

Wj = Wj + µ ∗ f(d,G) ∗ (Ci −Wj) (12)

where µ is the learning rate, which determines the computation time.
f(d,G) is the neighbourhood function identifying the neighbourhood
size of the winner neuron. The function can be viewed as a smoothing
kernel which has the central influence on the winner neuron, and various
forms can be used to define such a function with the most commonly
used being:

f(d,G) = exp(−d2/G2) (13)
where d is the lattice distance on the topology and G is the gain param-
eter, which defines the width of the kernel (or the size of the neighbour-
hood). It should be noted that G should be a monotonically decreasing
function of time, This is because during the initial stages, neurons are
relatively far away from the cities, a large G is preferred to make the
neurons can fast move towards its corresponding city; whereas, at the
latter stages, a stable situation has been formed and neurons become
less competitive, therefore a small value of G should be used.
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Figure 6: Illustration of the self-organising map (SOM). (a) Basic structure of the SOM.
A two-layered neural network including input layer and output layer is used. (b) In the
application of the SOM for TSP, a circular topology for the output layer is used.
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Another important issue associated with the SOM for TSP is the determi-
nation of the number of neurons. Too few neurons make it difficult for the
SOM to find the exact solution of the TSP; however, too large a number of
neurons will be a waste of computation resource. After a series of experi-
ments, it has been recommended in Zhang et al. (2012) that 2N or 3N of
neurons is sufficient, where N is the number of cities.

3.1.2. Improved SOM for TSP with obstacle avoidance capability

The Euclidean metric based neuron update function can be explained from
the potential field perspective. The second term on the right hand side of Eq.
12 is acting as an attractive force, which attracts the neurons to move to-
wards the selected city (Ci). By following the Euclidean distance, a shortest
updating route can be clearly formed. However, it is also obvious that with-
out any emphasis on the obstacle avoidance, in a constraint environment the
neuron may enter an obstacle area, which eventually provides a compromised
solution of the problem.

Given the repulsive force field created in the previous section, to incorporate
obstacle avoidance capability, an improved SOM algorithm has been pro-
posed in this paper with the algorithm’s pseudo-code described in Algorithm
2. The main modification made to Eq. 12 is to have a new neuron updating
rule. A repulsive force is added and the neurons updating process will follow
the equation as:

Wj =
Wj + µ ∗ f(d,G) ∗ ( (Ci−Wj)

‖(Ci−Wj)‖ +−→frep) if dobs(Wj) <= dmin,

Wj + αspeed ∗ µ ∗ f(d,G) ∗ (Ci−Wj)
‖(Ci−Wj)‖ otherwise.

(14)

and −→frep is calculated from:
−→
frep = Frep(wxj, wyj) (15)

where Frep(•) is the function returning the local repulsive force at Wj's
position ((wxj, wyj)) by referring to the repulsive force vector field Frep.
dobs(Wj) calculates the minimum distance to the obstacles from the posi-
tion of Wj. dmin is a predefined minimum distance. Eq. 14 reveals that
when dobs(Wj) <= dmin, neurons are close to obstacles and the obstacle
avoidance is thus triggered by updating neurons based upon both attractive
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Figure 7: The improved neuron updating process with the integration of the repulsive
vector field. Neurons will now not only be updated based on the attractive force from the
city but the repulsive force from obstacles.

and repulsive forces (shown in Fig. 7); whereas, if neurons stay in the safe
areas, the conventional updating is applied but a new parameter (αspeed > 1)
introduced to achieve a fast convergence speed.

To demonstrate the obstacle avoidance capability, a comparison between the
conventional SOM and the improved SOM is represented in Fig. 8 using an
environment containing multiple obstacles and 20 tasks to be visited. Fig.
8a shows the updating process of the conventional SOM. It can be observed
that some of the neurons have already entered into the area of the obstacle;
whereas in Fig. 8b, using the improved SOM, neurons can be kept well away
from the obstacle by following the guidance of the repulsive force. Also,
the neurons having no collision risks with obstacles (mainly the neurons on
the left section of the ring), almost the same topology is maintained, which
demonstrates that the improved SOM can largely preserve the feature of
the conventional SOM. This is an important characteristic, especially when
analysing the optimality of the final solution. As mentioned before, the
conventional SOM updates the neurons by maintaining the neighbourhood
topology. Within the generated tour, from each city the nearest location
is always connected; therefore, the shortest sub-tour will be achieved mak-
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Algorithm 2 Improved Self-organising Map Algorithm
Require: set of input cities (χ) in two dimensional space, parameters of the

improved SOM (d,G, µ, αspeed, dmin), the maximum number of iterations
(itermax)

1: Initialise N neurons of SOM with a ring topoloty as W = (W1,W2, ...,WN).
. Initialisation

2: iter ← 0
3: while iter 6= itermax do
4: Randomly select a city (Ci) from (χ)
5: Find the winning neuron (Wi) of the city (Ci) from W using Eq. 10 and 11
6: for each neighbourhood point (Wj) of the winning neuron (Wi) do
7: if Wj is in the obstacle area then
8: Wj = Wj + µ ∗ f(d,G) ∗ ( (Ci−Wj)

‖(Ci−Wj)‖ +−→frep)
9: else

10: Wj = Wj + αspeed ∗ µ ∗ f(d,G) ∗ (Ci−Wj)
‖(Ci−Wj)‖

11: end if
12: end for
13: iter ← iter + 1
14: end while
15: return W

ing the overall tour near-optimal (Leung et al., 2004). Hence, because the
neighbourhood preserving feature can be largely maintained in the improved
SOM, the optimality of solution is also retained.

3.2. Multi-goal path planning for USV

Using the improved SOM, an optimised task execution sequence can be ac-
curately determined. According to Fig. 5, the path planning algorithm is
then called to generate trajectories visiting each mission point. In this paper,
the trajectory is calculated on the basis that minimum distance cost should
be achieved, and intuitively, the straight line connecting each pair of mission
points should be considered as the optimal path. Results provided by the
SOM can be used as the initial solution for path planning, however further
path improvements are required to address two critical issues, i.e. redun-
dant nodes occurring between two missions and the connection between two
missions may pass through an obstacle.
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Figure 8: The comparison of the updating processes. (a) The updating process of the
conventional SOM. (b) The updating process of the improved SOM with collision avoidance
capability.

• Node creation and deletion: After running the SOM algorithm pro-
posed previously, each mission point can be assigned a neuron and a
closed tour visiting each mission is formed with all the neurons be-
ing kept outside obstacles areas. However, redundant neurons will be
possibly located between some of the mission points making the con-
nection of two points unfeasible to be used as the optimal path. This
is caused by the SOM's configuration making the number of neurons
more than that of the cities. Therefore, to address such an issue, the
on-line neuron duplication and deletion scheme proposed in Angeniol
et al. (1988) has been used in this paper to update the SOM with the
optimal number of neurons. The main concept herein is to start the
SOM updating process with a single neuron, and a neuron is duplicated
if it is the winning neuron for two different cities in any iteration and
deleted if it has not been a winner after three iterations.

• Path refinement: Without redundant neuron nodes, it can be assured
that each mission will be connected with the straight line, which is the
optimal path for minimum distance. However, the connection between
two missions may still pass through an obstacle as only the neurons
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are considered to be collision free when updating the SOM. One of
the possible ways to address this problem would be to incorporate the
path planning problem into the SOM in such a way that during each
iteration any connection of two neurons that pass through an obstacle
will be re-planned to provide a collision free path. Such a solution is
theoretically feasible but not practically applicable. This is because any
path planning algorithm is time consuming, and for the case when a
considerable number of missions are included in a complex environment,
the execution of path planning together with the SOM will be very slow,
which is not a benefit for practical applications. In addition, during
the initial steps of the SOM, neurons are in a rather unstable state
and will change their position dramatically. Making the use of a path
planning algorithm at this stage is therefore unfeasible. Hence, in this
paper, instead of the direct integration, path planning algorithm has
been applied after running the SOM and node deletion algorithms.

The adopted algorithm is the fast marching square (FMS) method pro-
posed in Garrido et al. (2007) and Liu and Bucknall (2015). It is an im-
proved version of the FMM, which maintains the features of the FMM
such as the path's continuity, smoothness and provides additional fea-
tures such as improved safety. The FMS is represented in Algorithm
3. It first generates a safety potential map (Ms) by applying the FMM
to propagate interfaces from all the points in obstacle areas. Based
on Ms, the FMM is executed again from the start point to generate
the potential field TF MS. A safety parameter (β) is now introduced to
rescale TF MS by following the same procedure described in generating
the adaptive repulsive force field. The dimension of TF MS can thus be
adjusted adaptively to assist with providing the safest trajectory. Fi-
nally, based upon the TF MS the gradient descent method will be used
to search for the optimal trajectory.
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Algorithm 3 Fast Marching Square Algorithm
Require: planning space (M ), start point (pstart), end point(pend), safety

parameter (β)
1: for each point a in obstacle area in M do
2: obstaclePoints← obstaclePoints+ a
3: end for
4: Ms ← FMM(M, obstaclePoints)
5: TF MS ← FMM(Ms, pstart)
6: TF MS ← fieldRescale(TF MS, β)
7: path← gradientDescent(TF MS, pstart, pend)
8: return path
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4. Algorithm validation

To validate the proposed algorithm, two different sets of computer based
simulations have been carried out in this section. The primary aim of the
first simulation set is to verify the effectiveness of the improved SOM algo-
rithm dealing with multi-task allocation in a ’self-constructed’ environment;
whereas, the second test has considered both the multi-task allocation and
path planning requirements and uses a practical maritime environment for
simulations. A number of different simulation configurations have been set
in both tests so as to demonstrate the capability of the proposed algorithm
dealing with various practical requirements, and the results have been anal-
ysed comparatively to show the performances. The algorithm has been coded
in Matlab and simulations are run on the computer with a Pentium i7 3.4
GHz processor and 4GB of RAM.

4.1. Simulations of multi-task allocation using the improved SOM algorithm

4.1.1. Validation of collision avoidance capability

The aim of this test is to validate the effectiveness of the proposed improved
SOM dealing with multi-task allocation in a cluttered environment. A 500
pixels × 500 pixels area has been constructed, in which 18 irregular shaped
obstacles are tightly located, to represent a typical constrained maritime
environment (shown in Fig. 9a). A total number of 30 tasks are also included
in the area with their positions randomly and sparsely located in the free
space (white area). In addition, in order to prevent the neurons colliding
with obstacles during the updating process, parameter α in Eq. (7) has been
configured to be 0.1 such that the algorithm is able to find the sequence for
task execution with the optimal distance and ensured safety.

Simulation results have been shown in Fig. 9, which presents the updating
processes at different time steps. A single neuron is generated at initial time
step with its coordinates located at (120,420), the algorithm then uses the
on-line neuron creating strategy to increase the number of neurons so as to
appropriately assign each task with a neuron. For example, at time step 8
(shown in Fig. 9a), 59 neurons have been generated to form the ring of the
SOM. It also can be observed that because of the attraction forces generated
by the target points at the bottom right of the area, the SOM ring moves
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towards the centre of the operational space to ensure that tasks in ’remote’
areas can also be assigned with a neuron on the ring.

The collision avoidance capability of the improved SOM algorithm can also
be demonstrated from the simulation results. As the updating process is
being iterated, the SOM ring encounters a number of obstacles and is able
to avoid violating these obstacles by following the guidance of the generated
repulsive force field. In Fig. 9b, instead of entering the obstacle, the ring has
been split to form two different parts. Nodes staying above the obstacle will
be primarily used to map the tasks on the upper section of the area; whereas
the rest nodes will continue to move towards the centre part of the area but
being well kept away from the obstacles (shown in Fig. 9c).

Once it has reached the centre of the area, the ring will then be expanded so
as to better cover each task. Such a phenomenon has been clearly represented
in Fig. 9d - 9f. It also should be noted that the number of the neurons is
decreasing during these time steps. This is because that during the initial
steps neurons have been created constantly to make sure that enough nodes
can be generated to cover all tasks in the area of interest. However, once a
neuron has reached the threshold, which has been set as the 2.5 times of the
number of the tasks, the deletion process will become dominant to eliminate
those neurons that have won after 3 times in an iteration. The number of
neurons on the SOM ring generated at each time step has been recorded and
shown in Fig. 10, it can be seen that from time step 333 the number of
neurons has been stable and remains at 30, which is the same as the number
of tasks. At time step 462, all tasks have been assigned with a neuron, which
subsequently generates a task execution sequence shown in the Fig. 9h. Note
that when executing the tasks between task 6 - 7, 13 - 14 and 28 - 29, the
straight line cannot be used as the optimal route as it will violate the obstacle
area, it is therefore required to use the path planning algorithm to generate
a new route in these places, the result of which will be represented in later
simulations.

To further demonstrate the performance of algorithm, a comparison of com-
putational time has been presented in Table 1. The proposed algorithm
is tested in the same complex environment as shown in Fig. 9a but with
different number of tasks to be executed. It can be observed that the compu-
tational time, as one would expect, grows with the number of tasks with the
longest time taking about 50s, which is fast enough for the USV to make an
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Figure 9: The updating processes of the improved SOM for multi-task allocation in clut-
tered environment. A total number of 30 tasks are located in the area of interest, which
includes 18 randomly generated obstacles. While the SOM is being updated, all neurons
can be kept well away from obstacles. (a) Step 13. (b) Step 22. (c) Step 36. (d) Step 77.
(e) Step 160. (f) Step 288. (g) Step 372. (h) Step 462.
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Figure 9: Continued.
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Figure 10: The number of generated neurons during the SOM updating process. Addition
and deletion processes have been constantly used to ensure optimal number of neurons
will be generated.

Table 1: Comparison of computational time for different environments with different ob-
stacles

No. of tasks Time (s) Propagation scale limit

10 17 0.1
20 25 0.1
30 26 0.1
40 38 0.1
50 50 0.1

off-line decision. However, when the algorithm is implemented for the on-line
decision making, improvement is still required to reduce the computational
time down to seconds. One of the possible approaches would be to port the
current algorithm from Matlab to more computational efficient languages
such as C++. Also, current algorithm is coded in single-threaded execu-
tion structure, some subroutines could be parallelised so that the multi-core
processor can be used to improve the computational efficiency.

29



Table 2: Simulation configurations for different safety requirements

No. of
simulation No. of obstacles No. of tasks Propagation

scale limit
Total

distance
1 14 30 0.1 1570 pixels
2 14 30 0.5 1619 pixels

4.1.2. Validation of safety settings

In this section, the capability of the algorithm dealing with different safety
requirements has been verified. A similar simulation environment to the pre-
vious test has been used, which is shown in Fig. 11a. However, less obstacles
are included in the right hand side of the environment while obstacles in the
left hand side remain the same. The reason for such a configuration is to
compare the algorithm's capability in areas with dense and sparse obstacles,
respectively. To evaluate the algorithm's performance against different safety
requirements, two different values for propagation scale limit (α) have been
used, with the values being 0.1 and 0.5 respectively. A small value for α
means the algorithm has less concerns on the safety (e.g. the distance to the
obstacles) and more emphasise on the total distance.

Simulation results have been presented in Fig. 11. Fig. 11a and 11b show the
obtained task executing sequences with α values of 0.1 and 0.5 respectively,
and Fig. 11c and Fig. 11d illustrate the generated repulsive force for the
associated α. By comparing Fig. 11a and Fig. 11b, it can be observed that
similar sequence can be obtained under different values of α. Especially, on
the right hand side of the environment where less obstacles exist, an exactly
same result has been obtained for visiting the task from 11 - 30. However,
in the area with dense obstacles (left hand side of the environment), a dif-
ferent executing sequence has been obtained. In Fig. 11a, a more aggressive
approach has been adopted placing the generated sequence closer to obsta-
cles. In particular, the straight line connecting tasks 2 and 3 has already
violated the obstacle, which requires the path planning algorithm to further
refine this route when the USV is carrying out the tasks. On the contrary,
in Fig. 11b, as the value of α is increased to 0.5, a safer strategy can be
formed by keeping the straight lines connecting each pair of tasks away from
obstacles, and this means that the USV can simply follow this sequence to
visit each task without additional path refinement. The main reason behind
this phenomenon is that sparsely located obstacles create the repulsive force

30



field with less influence in the left hand side of the environment (shown in
Fig. 11c and Fig. 11d) making the algorithm update the SOM with minor
effect from the repulsive force. However, in the area marked by the red circle
in Fig. 11b, densely located obstacles generate the repulsive force field which
fills up the space (shown in Fig. 11d), and when the SOM is being updated,
neurons tend to stay along the areas with neutralised force (marked by the
red line in Fig. 11d) making the final formed ring further away from the ob-
stacles. It however should also be noted that such a difference is established
on the sacrifice of the total distance. As shown in Table 2, the total distance
for the test with α equal to 0.1 is 1570 pixels, which is 3 % less than that of
the test having an α value of 0.5.
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Figure 11: Simulation results for different safety requirements. (a) Results when α = 0.1.
(b) Results when α = 0.5. (c) The generated repulsive force field when α = 0.1. (d) The
generated repulsive force field when α = 0.5.
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4.2. Simulations of multi-task allocation and path planning

In this section, simulations have been undertaken to validate the capability
of the proposed algorithm dealing with multi-task allocation as well as path
planning. It is assumed the USV is carrying out an environmental monitoring
mission, which requires the vehicle to collect the water sampling data from
multiple water monitoring stations. The area of interest has been selected
near Forder Lake, UK with the region ranging from N52°23′34.08′′/W4°14′6′′
to N50°23′34.08′′/W4°13′48′′. The electronic map of the given area is shown
in Fig. 12a, which is further converted to a 640 pixels × 602 pixels binary
map represented in Fig. 12b.

Apart from the general requirements of the environmental monitoring mis-
sion, i.e. the USV should visit all the water monitoring stations with optimal
cost, another important issue that needs consideration is the effect of the high
and low tide has. As discussed in Introduction, different states of tide will
significantly influence the dimension of an obstacle making some of the water
sampling stations beyond the USV's capability to visit during low tide peri-
ods. It therefore requires the algorithm to determine which stations (or tasks)
can be executed in accordance with the specific situation and subsequently
allocate the tasks and plan the trajectory.

Figure 13 presents simulation results when considering the tide effect. In
Fig. 13a, 20 water sampling stations (displayed as the blue dots) are located
in the area. Among them, three stations (marked by red dash circles) have
been chosen to stay in the littoral areas. During the low tide period, because
of the low water level the USV is prevented from visiting these three stations.
The tide height effect has mainly been accommodated for by adjusting the
propagation scale limit (α) in this paper. During the rising tide period, the
decreasing dimension of the obstacle area makes the free space larger, small
value of α has therefore been selected to make the algorithm able to explore
more tasks. The result when α = 0.1 has been presented in Fig. 13b. It
can be observed that a closed tour shown in yellow line is able to cover all
20 stations (tasks). On the contrary, Fig. 13c shows the results with α =
0.3. Note that tasks located in the shallow water areas have been excluded
because of the generated repulsive force; whereas the rest of tasks can still
be visited by the closed tour shown by the yellow line.

Fig. 14 shows another simulation case where a total number of 30 stations
have now been selected. These stations now all stay well away from shorelines
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Figure 12: A practical simulation environment. (a) The environment near Forder Lake,
UK with the region ranging from N52°23′34.08′′/W4°14′6′′ to N50°23′34.08′′/W4°13′48′′.
(b) The converted binary map of the electronic map.

however the straight line connecting each two stations may be too close to
land. Fig. 14b shows the result when α = 0.1. The proposed algorithm
can still generate a closed tour to visit these stations. However, it should be
noted that the straight line between task 16 and 17 crosses the shallow water
areas making such a route may not be feasible during the low tide period.
Therefore, a path planning algorithm is required for this route when the USV
is executing the tasks, and this result has been presented in Fig. 14c. The
FMS algorithm is utilised by selecting the safety parameter (β) equal to 0.3.
It can be observed that the updated route forms a curve to successfully avoid
the prohibited areas.
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Figure 13: Simulation results with 20 water sampling stations. (a) The simulation en-
vironment. Three stations (marked by red dash circles) have been chosen to stay in the
littoral areas, which will be affected by the tide. (b) Results when α = 0.1. (c) Results
when α = 0.3.
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Figure 14: Simulation results with 30 water sampling stations. (a) The simulation en-
vironment. All stations now all stay well away from shorelines however the straight line
connecting each two stations may be too close to land in different tide periods. (b) Results
when α = 0.1. (c) Results when β = 0.3.
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5. Conclusions and future work

In this paper, a new multi-task allocation and path planning algorithm for
USV operating in cluttered maritime environment has been proposed with
the main contribution on addressing the safety issues. In terms of the multi-
task allocation, an improved SOM with collision avoidance capability is de-
signed and developed. It has been demonstrated that the algorithm can fast
assign the tasks and generate an execution sequence according to different
safety requirements imposed by obstacles. Using the optimised execution se-
quence, the fast marching square (FMS) based path planning algorithm will
then be used to calculate the trajectory. Paths can be adaptively modified
based upon the dimensions of obstacles to ensure the safety while the USV
is navigating.

To further develop the algorithm, improvement will be first carried out to
design a new decision making algorithm to help determine the value of prop-
agation scale limit (α). As mentioned in Section 2.2, α is influenced by a
number of different factors such as the safety and distance requirements, and
the value of it is calculated according to specific environment situation. For
example, when the USV is navigating in a cluttered environment, safety issue
is of more importance than the distance requirement, therefore α should be
calculated with more weighting assigned to the safety factor. According to
this and to fast determine α, a priority assessment strategy will be designed
and incorporated within current algorithm to intelligently assign weightings
to different factors and consequently calculate the value of α.

The second improvement is to consider more practical environmental con-
straints, especially the influences generated by the surface currents. Strong
currents may affect the tracking performance of a USV making it unfeasible
for the vehicle to execute certain tasks that are located in the areas with
complicated hydrology condition. Algorithms should be designed to be able
to monitor these environmental constraints and dynamically update the task
execution sequence. In addition, from the path planning level, the effect
from surface currents could be compensated for by generating trajectories
that make the best use of the currents flow. Another important environmen-
tal constraint is the water depth between the reef top and the sea level. It is
possible for a USV to collide with the underwater reef top, which is difficult
to be observed from the image information. Therefore, to effectively avoid
such a risk, additional sensing devices such as underwater camera or sonar
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should be mounted on the USV to detect the environment, and the designed
algorithm should be capable of considering those environment information
to generate more secured task execution sequence and path planning results.

The third improvement is to add the dynamic obstacles avoidance capabil-
ity into the path planning algorithm. Currently, only static obstacles have
been considered; whereas in a complex maritime environment, the collision
avoidance with moving ships is equally crucial. In particular, evasive ac-
tions should be generated by adhering to the maritime navigation regulations
(the International Regulations for Preventing Collisions at Sea 1972 (COL-
REGs)). Therefore, to successfully achieve the dynamic collision avoidance
capability, an intelligent reasoning model is required, and one of the effec-
tive approaches would be to use the self-organising fuzzy neural network
(SOFNN) (Wang et al. (2016)), which provides superior learning capability
and is adaptive to disturbances in the reasoning environment. When devel-
oping the decision making system based upon the SOFNN, conventional col-
lision avoidance conditions including the velocities of the ships and distance
between two ships can be merged with COLREGs to effectively generate an
optimised evasive action, i.e. the steering angle that a USV should take to
avoid a moving vessel.

The final improvement is to expand the current algorithm to a larger scale
unmanned vehicles system. Multiple USVs formations can be used to un-
dertake more complicated missions which require long mission duration. In
addition, a cross-platform system involving the cooperation between USVs
and unmanned aerial vehicles can also be developed to support ocean opera-
tions. All of these systems would require more sophisticated task-allocation
and path planning algorithms considering wider range constraints such as
the scalability and flexibility of multiple vehicles.
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