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a b s t r a c t 

Nonlinear registration of 2D histological sections with corresponding slices of MRI data is a critical step 

of 3D histology reconstruction algorithms. This registration is difficult due to the large differences in im- 

age contrast and resolution, as well as the complex nonrigid deformations and artefacts produced when 

sectioning the sample and mounting it on the glass slide. It has been shown in brain MRI registration 

that better spatial alignment across modalities can be obtained by synthesising one modality from the 

other and then using intra-modality registration metrics, rather than by using information theory based 

metrics to solve the problem directly. However, such an approach typically requires a database of aligned 

images from the two modalities, which is very difficult to obtain for histology and MRI. 

Here, we overcome this limitation with a probabilistic method that simultaneously solves for deformable 

registration and synthesis directly on the target images, without requiring any training data. The method 

is based on a probabilistic model in which the MRI slice is assumed to be a contrast-warped, spatially 

deformed version of the histological section. We use approximate Bayesian inference to iteratively refine 

the probabilistic estimate of the synthesis and the registration, while accounting for each other’s uncer- 

tainty. Moreover, manually placed landmarks can be seamlessly integrated in the framework for increased 

performance and robustness. 

Experiments on a synthetic dataset of MRI slices show that, compared with mutual information based 

registration, the proposed method makes it possible to use a much more flexible deformation model in 

the registration to improve its accuracy, without compromising robustness. Moreover, our framework also 

exploits information in manually placed landmarks more efficiently than mutual information: landmarks 

constrain the deformation field in both methods, but in our algorithm, it also has a positive effect on the 

synthesis – which further improves the registration. We also show results on two real, publicly available 

datasets: the Allen and BigBrain atlases. In both of them, the proposed method provides a clear improve- 

ment over mutual information based registration, both qualitatively (visual inspection) and quantitatively 

(registration error measured with pairs of manually annotated landmarks). 

© 2018 Published by Elsevier B.V. 
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. Introduction 

.1. Motivation: human brain atlases 

Histology is the study of tissue microanatomy. Histological anal-

sis involves cutting a wax-embedded or frozen block of tissue into
ort. A complete listing of ADNI investigators can be found at: http://adni.loni.usc. 

du/wp-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 

https://doi.org/10.1016/j.media.2018.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.09.002&domain=pdf
mailto:e.iglesias@ucl.ac.uk
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.media.2018.09.002


128 J.E. Iglesias et al. / Medical Image Analysis 50 (2018) 127–144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

e

 

a  

m  

e  

s  

c  

o  

d  

d  

p

 

u  

a  

s  

r  

D  

e  

M  

f  

c  

i  

o  

h  

(

 

b  

m  

t  

p  

i  

A  

2

 

t  

c  

r  

s  

p  

h  

b  

1  

s  

t  

l

1

 

t  

t  

a  

a  

e  

b  

t  

o  

s  

a  

p  
very thin sections (in the order of 10 microns), which are subse-

quently stained, mounted on glass slides, and examined under the

microscope. Using different types of stains, different microscopic

structures can be enhanced and studied. Moreover, mounted sec-

tions can be digitised at high resolution – in the order of a mi-

cron. Digital histological sections not only enable digital pathology

in a clinical setting, but also open the door to an array of image

analysis applications. 

A promising application of digital histology is the construction

of high resolution computational atlases of the human brain. Such

atlases have traditionally been built using MRI scans and/or asso-

ciated manual segmentations, depending on whether they describe

image intensities, neuroanatomical label probabilities, or both. Ex-

amples include: the MNI atlas ( Evans et al., 1993; Collins et al.,

1994 ), the Colin 27 atlas ( Holmes et al., 1998 ), the ICBM atlas

( Mazziotta et al., 1995; 2001 ), and the LONI LPBA40 atlas ( Shattuck

et al., 2008 ). 

Computational atlas building using MRI is limited by the reso-

lution and contrast that can be achieved with this imaging tech-

nique. The resolution barrier can be partly overcome with ex

vivo MRI, in which motion – and hence time constraints – are

eliminated, enabling longer acquisition at ultra-high resolution ( ∼
100 μm), which in turns enables manual segmentation at a higher

level of detail ( Augustinack et al., 2005; Yushkevich et al., 2009;

Iglesias et al., 2015; Saygin et al., 2017 ). However, not even the

highest resolution achievable with ex vivo MRI is sufficient to study

microanatomy. Moreover, and despite recent advances in pulse se-

quences, MRI does not generate visible contrast at the boundaries

of many neighbouring brain structures, the way that histological

staining does. 

For these reasons, recent studies building computational brain

atlases are using stacks of digitised histological sections, which en-

able more accurate manual segmentations, to build atlases at a su-

perior level of detail. Examples include the work by Chakravarty

et al. (2006) on the thalamus and basal ganglia; by Krauth et al.

(2010) on the thalamus; by Adler et al. (2014, 2016, 2018) on the

hippocampus; our recent work on the thalamus ( Iglesias et al.,

2017 ), and the recently published atlas from the Allen Institute

( Ding et al., 2016 ). 3 

1.2. Related work on 3D histology reconstruction 

The main drawback of building atlases with histology is the fact

that the 3D structure of the tissue is lost in the processing. Sec-

tioning and mounting introduce large nonlinear distortions in the

tissue structure, including artefacts such as folds and tears. In or-

der to recover the 3D shape, image registration algorithms can be

used to estimate the spatial correspondences between the differ-

ent sections. This problem is commonly known as “histology re-

construction” ( Pichat et al., 2018 ). 

The simplest approach to histology reconstruction is to sequen-

tially align sections in the stack to their neighbours using a linear

registration method. There is a wide literature on the topic, not

only for histological sections but also for autoradiographs. Most

of these methods use robust registration algorithms, e.g., based

on edges ( Hibbard and Hawkins, 1988; Rangarajan et al., 1997 ),

block matching ( Ourselin et al., 2001 ) or point disparity ( Zhao

et al., 1993 ). There are also nonlinear versions of serial registra-

tion methods (e.g., Arganda-Carreras et al. 2010; Pitiot et al. 2006;

Chakravarty et al. 2006; Schmitt et al. 2007 ), some of which in-

troduce smoothness constraints to minimise the impact of sections

that are heavily affected by artefacts and/or are poorly registered
3 http://atlas.brain-map.org/atlas?atlas=265297126 . 
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 Ju et al., 2006; Yushkevich et al., 2006; Cifor et al., 2011; Iglesias

t al., 2018 ). 

The problem with serial alignment of sections is that, without

ny information on the original shape, methods are prone to accu-

ulating errors along sections (known as “z-shift”) and to straight-

ning curved structures (known as “banana effect”, since the recon-

truction of a sliced banana would be a cylinder). One way of over-

oming this problem is the use of fiducial markers such as needles

r rods (e.g., Humm et al. 2003 ); however, this approach has two

isadvantages: the tissue may be damaged by the needles, and ad-

itional bias can be introduced in the registration if the sectioning

lane is not perpendicular to the needles. 

Another way of combating the “z-shift” and banana effect is to

se an external reference volume without geometric distortion. In

n early study, Kim et al. (1997) used video frames to construct

uch reference, in the context of autoradiograph alignment. More

ecent works have used MRI scans (e.g., Malandain et al. 2004;

auguet et al. 2007; Yang et al. 2012; Ebner et al. 2017 ). The gen-

ral idea is to iteratively update: 1. a rigid transform bringing the

RI to the space of the histological stack; and 2. a nonlinear trans-

orm per histological section, which registers it to the space of the

orresponding (resampled) MRI plane. A potential advantage of us-

ng MRI as a reference frame for histology reconstruction is that

ne recovers in MRI space the manual delineations made on the

istological sections, which can be desirable when building atlases

 Adler et al., 2016; 2018 ). 

Increased stability in histology reconstruction can be obtained

y using a third, intermediate modality to assist the process. Such

odality is typically a stack of blockface photographs, which are

aken prior to sectioning and are thus spatially undistorted. Such

hotographs help bridge the spaces of the MRI (neither modality

s distorted) and the histology (plane correspondences are known).

n example of this approach is the BigBrain project ( Amunts et al.,

013 ). 

Assuming that a good estimate of the rigid alignment between

he MRI and the histological stack is available, the main techni-

al challenge of 3D histology reconstruction is the nonlinear 2D

egistration of a histological section with the corresponding (re-

ampled) MRI plane. These images exhibit very different contrast

roperties, in addition to modality-specific artefacts, e.g., tears in

istology, bias field in MRI. Therefore, generic information theory

ased registration metrics such as mutual information ( Maes et al.,

997; Wells et al., 1996; Pluim et al., 2003 ) yield unsatisfactory re-

ults. This is partly due to the fact that such approaches only cap-

ure statistical relationships between image intensities at the voxel

evel, disregarding geometric information. 

.3. Related work on image synthesis for registration 

An alternative to mutual information for inter-modality regis-

ration is to use image synthesis. The premise is simple: if we need

o register a floating image F A of modality A to a reference im-

ge R B of modality B , and we have access to a dataset of spatially

ligned pairs of images of the two modalities { A i , B i }, then we can:

stimate a synthetic version of the floating image F B that resem-

les modality B ; register F B to R B with an intra-modality registra-

ion algorithm; and apply the resulting deformation field to the

riginal floating image F A . In the context of brain MRI, we have

hown in Iglesias et al. (2013) that such an approach, even with

 simple synthesis model ( Hertzmann et al., 2001 ), clearly out-

erforms registration based on mutual information. This result has

een replicated in other studies (e.g., Roy et al., 2014 ), and similar

onclusions have been reached in the context of MRI segmenta-

ion ( Roy et al., 2013 ) and classification ( van Tulder and de Bruijne,

015 ). 

http://atlas.brain-map.org/atlas?atlas=265297126
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Medical image synthesis has gained popularity in the last few

ears due to the advent of hybrid PET-MR scanners, since synthe-

ising a realistic CT scan from the corresponding MR enables ac-

urate attenuation correction of the PET data ( Burgos et al., 2014;

uynh et al., 2016 ). Another popular application of CT synthesis

rom MRI is dose calculation in radiation therapy ( Kim et al., 2015;

iversson et al., 2015 ). Unfortunately, most of these synthesis al-

orithms are based on supervised machine learning techniques,

hich require aligned pairs of images from the two modalities –

hich are very hard to obtain for histology and MRI. 

A possible alternative to supervised synthesis is a weakly su-

ervised paradigm, best represented by the recent deep learning

ethod CycleGAN ( Zhu et al., 2017 ). This algorithm uses two sets

f (unpaired) images of the two modalities, to learn two mapping

unctions, from each modality to the other. CycleGAN enforces cy-

le consistency of the two mappings (i.e., that they approximately

nvert each other), while training two classifiers that discriminate

etween synthetic and real images of each modality in order to

void overfitting. While this technique has been shown to produce

ealistic medical images ( Chartsias et al., 2017; Wolterink et al.,

017 ), it has an important limitation in the context of histology-

RI registration: it is unable to exploit the pairing between the

nonlinearly misaligned) histology and MRI images. Another disad-

antage of CycleGAN is that, since a database of cases is necessary

o train the model, it cannot be applied to a single image pair, i.e.,

t cannot be used as a generic inter-modality registration tool. 

.4. Contribution 

In this study, we propose a novel probabilistic model that si-

ultaneously solves for registration and synthesis directly on the

arget images, i.e., without any training data. The principle behind

he method is that improved registration provides less noisy data

or the synthesis, while more accurate synthesis leads to better

egistration. Our framework enables these two components to it-

ratively exploit the improvements in the estimates of the other,

hile considering the uncertainty in each other’s parameters. Tak-

ng uncertainty into account is crucial: if one simply tries to itera-

ively optimise synthesis and registration while keeping the other

xed to a point estimate, both components are greatly affected by

he noise introduced by the other. More specifically, misregistra-

ion leads to bad synthesis due to noisy training data, whereas ac-

urate registration to a poorly synthesised image yields incorrect

lignment. 

If multiple image pairs are available, the framework exploits the

omplete database, by jointly considering the probabilistic registra-

ions between the pairs. In addition, the synthesis algorithm ef-

ectively takes advantage of the spatial structure in the data, as

pposed to mutual information based registration. Moreover, the

robabilistic nature of the model also enables the seamless in-

egration of manually placed landmarks, which inform both the

egistration (directly) and the synthesis (indirectly, by creating ar-

as of high certainty in the registration); the results show that

he improvement in synthesis yields more accurate registration

han when the landmarks only inform the deformation field. Fi-

ally, we present a variational expectation maximisation algorithm

VEM, also known as variational Bayes) to solve the model with

ayesian inference, and illustrate the proposed approach through

xperiments on synthetic and real data. 

The rest of this paper is organised as follows. In Section 2 ,

e describe the probabilistic model on which our algorithm re-

ies ( Section 2.1 ), as well as an inference algorithm to com-

ute the most likely solution within the proposed framework

 Section 2.2 ). In Section 3 , we describe the MRI and histological

ata ( Section 3.1 ) that we used in our experiments ( Section 3.2 ),
s well as the results on real data and the Allen atlas ( Section 3.3 ).

inally, Section 4 concludes the paper. 

. Methods 

.1. Probabilistic framework 

The graphical model of our probabilistic framework and corre-

ponding mathematical symbols are shown in Fig. 1 . For the sake

f simplicity, we describe the framework from the perspective of

he MRI to histology registration problem, though the method is

eneral and can be applied to other inter-modality registration task

in any number of dimensions. 

Let { M n } n =1 , ... ,N and { H n } n =1 , ... ,N represent N ≥ 1 MRI image

lices and corresponding histological sections. We assume that

ach pair of images has been coarsely aligned with a 2D linear reg-

stration algorithm (e.g., using mutual information), and are hence

efined over the same image domain �n . M n and H n are functions

f the spatial coordinates x ∈ �n , i.e., M n = M n ( x ) and H n = H n ( x ) .

n addition, let K n and K 

h 
n represent two sets of L n corresponding

andmarks, manually placed on the n th MRI image and histolog-

cal section, respectively: K n = { k nl } l=1 , ... ,L n and K 

h 
n = { k 

h 
nl } l=1 , ... ,L n ,

here k nl and k 

h 
nl are 2D vectors with the spatial coordinates of

he l th landmark on the n th image pair; for reasons that will be

pparent in Section 2.2 below, we will assume that every k nl co-

ncides with an integer pixel coordinate. Finally, M 

h 
n represents the

 

th MR image after applying a nonlinear deformation field U n ( x ),

hich deterministically warps it to the space of the n th histologi-

al section H n , i.e., 

 

h 
n ( x ) = M n ( x + U n ( x )) , (1)

hich in general requires interpolation of M n ( x ). 

Each deformation field U n is assumed to be an independent

ample of a Markov Random Field (MRF) prior, with unary poten-

ials penalising large displacements (their squared module), and bi-

ary potentials penalising the squared gradient magnitude: 

p( U n ) = 

1 

Z n (β1 , β2 ) 

∏ 

x ∈ �n 

e −β1 ‖ U n ( x ) ‖ 2 −β2 

∑ 

x ′ ∈B( x ) ‖ U n ( x ) −U n ( x ′ ) ‖ 2 , (2) 

here β1 > 0 and β2 > 0 are the parameters of the MRF (which we

roup in β = { β1 , β2 } ); Z n ( β1 , β2 ) is the partition function; and

( x ) is the neighbourhood of the pixel located at x . We note that

his prior encodes a regularisation similar to that of the popular

emons registration algorithm ( Vercauteren et al., 2007; Cachier

t al., 2003 ). Moreover, we also discretise the deformation fields,

uch that U n ( x ) can only take values in a finite, discrete set of dis-

lacements { �s } s =1 , ... ,S at any location, i.e., U n ( x ) ∈ { �s }. We note

hat these displacements do not need to be integer (in pixels).

hile this choice of deformation model and regulariser does not

uarantee the registration to be diffeomorphic (which might be de-

irable), it enables marginalisation over the deformation fields { U n }

and, as we will discuss in Section 2.2 below, a more sophisticated

eformation model can be used to refine the final registration. 

Application of U n to M n and K n yields not only a registered

RI image M 

h 
n ( Eq. (1) ), but also a set of warped landmarks K 

h .

hen modelling K 

h , we need to account for the error made by the

ser when manually placing corresponding key-points in the MR

mages and the histological sections. We assume that these errors

re independent and follow zero-mean, isotropic Gaussian distribu-

ions parametrised by their covariances σ 2 
k 

I (where I is the 2 × 2

dentity matrix, and where σ 2 
k 

is expected to be quite small): 
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Fig. 1. (a) Graphical model of the proposed probabilistic framework. Circles represent random variables or parameters, arrows indicate dependencies between the variables, 

dots represent known (hyper)parameters, shaded variables are observed, and plates indicate replication. (b) Mathematical symbols corresponding to the model. 
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p(K 

h 
n | K n , U n , σ

2 
k ) = 

L n ∏ 

l=1 

p( k 

h 
nl | k nl − U n ( k 

h 
nl ) , σ

2 
k ) 

= 

L n ∏ 

l=1 

1 

2 πσ 2 
k 

exp 

[
− 1 

2 σ 2 
k 

‖ k 

h 
nl − k nl + U n ( k 

h 
nl ) ‖ 

2 

]
.

(3)

Note that the parameter σ 2 
k 

is assumed to have the same value

for all landmark pairs. While we would expect the variance of the

error to be larger in flat areas of the image (we could make it de-

pendent on e.g., the gradient magnitude), we will here assume that

the landmarks will seldom be located around such uniform areas

– as the user would normally use salient features (e.g., corners) as

reference points. 

Finally, to model the connection between the intensities of the

histological sections { H n } and the registered MRI images { M 

h 
n }, we

follow Tu et al. (2008) and make the assumption that: 

p(H n | M 

h 
n , θ ) ∝ p(M 

h 
n | H n , θ ) . (4)

This assumption is equivalent to adopting a discriminative ap-

proach to model the contrast synthesis. While this discriminative

component breaks the generative nature of the framework, it also

enables the modelling of much more complex relationships be-

tween the intensities of the two modalities, including spatial and

geometric information about the pixels. Such spatial patterns can-

not be captured by, e.g., mutual information, which only models

statistical relationships between intensities (e.g., a random shuf-

fling of pixels does not affect the metric). Any discriminative, prob-

abilistic regression technique can be used to model the synthesis.

Here we choose to use a regression forest ( Breiman, 2001 ), which

can model complex intensity relationships while being fast to train

– which is crucial because we will have to retrain the forest sev-

eral times in inference, as explained in Section 2.2 below. We as-

sume conditional independence of the pixels in the prediction: the

forest produces a Gaussian distribution for each pixel x separately,

parametrised by μn x and σ 2 
n x . Moreover, we place a (conjugate) In-

verse Gamma prior on the variances σ 2 
n x , with hyperparameters a

and b : 

p(σ 2 
n x | a, b) = 

b a 

�(a ) 
(σ 2 

n x ) 
−a −1 exp (−b/σ 2 

n x ) . (5)

Thanks to the conjugacy property, this choice of prior greatly sim-

plifies inference in Section 2.2 below, as it is equivalent to having

observed 2 a pseudo-samples (tree predictions) with sample vari-

ance b / a . The effect of the prior is to ensure that the Gaussians de-
cribing the predictions do not degenerate into zero variance dis-

ributions. 

Henceforth, we use θ to represent the set of forest parameters,

hich groups the selected features, split values, tree structure and

he prediction at each leaf node. The set of corresponding hyperpa-

ameters are grouped in γ , which includes the parameters of the

amma prior { a, b }, the number of trees, and minimum number of

amples in leaf nodes. The intensity model is hence: 

p(M 

h 
n | H n , θ ) = 

∏ 

x ∈ �n 

p 
(
M 

h 
n ( x ) | H n (W( x )) , θ

)
= 

∏ 

x ∈ �n 

N 

(
M 

h 
n ( x ) ;μn x (H n (W( x )) , θ ) , 

σ 2 
n x (H n (W( x )) , θ ) 

)
, 

here W( x ) is a spatial window centred at x , and N repre-

ents the Gaussian distribution. Given the deterministic deforma-

ion model ( Eq. (1) ), and the assumption in Eq. (4) , we finally ob-

ain the likelihood term: 

p(H n | M n , U n , θ ) = 

∏ 

x ∈ �n 

p ( M n ( x + U ( x )) | H n (W( x )) , θ ) 

= 

∏ 

x ∈ �n 

N ( M n ( x + U ( x )) ;μn x (H n , θ ) , 

σ 2 
n x (H n (W( x )) , θ ) 

)
. (6)

We emphasise that, despite breaking the generative nature of

he model, the assumption in Eq. (4) still leads to a valid objec-

ive function when performing Bayesian inference. This objective

unction can be optimised with standard inference techniques, as

xplained in Section 2.2 below. 

.2. Inference 

We use Bayesian inference to “invert” the probabilistic model

escribed in Section 2.1 above. If we group all the observed vari-

bles into the set O = {{ M n } , { H n } , { K n } , { K 

h 
n } , β, γ , σ 2 

k 
} , the prob-

em is to maximise: 

 

ˆ U n } = argmax 
{ U n } 

p({ U n }| O ) = argmax 
{ U n } 

∫ 
θ

p({ U n }| θ, O ) p(θ | O ) dθ

≈ argmax 
{ U n } 

p({ U n }| ̂  θ, O ) , (7)

here we have made the standard approximation that the poste-

ior p ( θ | O ) is strongly peaked around its mode ˆ θ, i.e., we use point
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stimates for the parameters, computed as: 

ˆ = argmax 
θ

p(θ | O ) . (8)

n this section, we first describe a VEM algorithm to ob-

ain the point estimate of θ using Eq. (8) ( Section 2.2.1 ), and

hen address the computation of the final registrations with

q. (7) ( Section 2.2.2 ). The presented method is summarised in

lgorithm 1 . 

lgorithm 1 Simultaneous synthesis and registration. 

nput: { M n } n =1 , ... ,N , { H n } n =1 , ... ,N , K n , K 

h 
n 

utput: ˆ θ , { ̂  U n } 
q n x ( �) ← 1 /S, ∀ n, x 

Initialise θ with Eq. (13) (random forest training) 

while μn x , σ 2 
n x change do 

E-step: 

for n = 1 to n = N do 

Compute μn x , σ 2 
n x , ∀ x ∈ �n with Eq. (14) 

while q n x changes do 

Fixed point iteration of q n x (Eq. (12)) 

end while 

end for 

M-step: 

Update θ with Eq. (13) (random forest retraining) 

end while 
ˆ θ ← θ
for n = 1 to n = N do 

Compute final μn x , σ 2 
n x , ∀ x ∈ �n with Eq. (14) 

Compute ˆ U n with Eq. (15) or Eq. (16) 

end for 

.2.1. Computation of point estimate ˆ θ of forest parameters 

Applying Bayes’s rule on Eq. (8) and taking logarithm, we obtain

he following objective function: 

ˆ = argmax 
θ

p(θ |{ M n } , { H n } , { K n } , { K 

h 
n } , β, γ , σ 2 

k ) 

= argmax 
θ

log p({ K 

h 
n } , { H n }| θ, { M n } , { K n } , β, γ , σ 2 

k ) + log p(θ | γ )

(9) 

xact maximisation of Eq. (9) would require marginalising over the

eformation fields { U n }, which leads to an intractable integral due

o the pairwise terms of the MRF prior ( Eq. (2) ). Instead, we use a

ariational technique (VEM) for approximate inference. VEM inher-

ts the advantages of standard EM optimisation (it does not require

omputing gradients or Hessian; it does not require tuning step

izes or backtracking; it is numerically stable; and it effectively

andles hidden variables), while enabling (approximate) marginal-

sation over variables coupled by the MRF. 

Since the Kullback–Leibler (KL) divergence is by definition non-

egative, the objective function in Eq. (9) is bounded from below

y: 

[ q ({ U n } ) , θ ] = log p({ K 

h 
n } , { H n }| θ, { M n } , { K n } , β, γ , σ 2 

k } ) 
+ log p(θ | γ ) 

−KL [ q ({ U n } ) ‖ p({ U n }|{ K 

h 
n } , { H n } , θ, { M n } , 

{ K n } , β, γ , σ 2 
k } ) (10) 

 η[ q ]+ 

∑ 

{ U n } 
q ({ U n } ) log p({ U n } , { K 

h 
n } , { H n }| θ, { M n } , { K n } , β, γ , σ 2 

k } )

+ log p(θ | γ ) . (11) 
he bound J [ q ({ U n }), θ ] is the negative of the so-called free en-

rgy: η represents the entropy of a random variable; and q ({ U n })

s a distribution over { U n } which approximates the posterior

p({ U n }|{ K 

h 
n } , { H n } , θ, { M n } , { K n } , β, γ , σ 2 

k 
} ) , while being restricted

o have a simpler form. The standard mean field approximation

 Parisi, 1988 ) assumes that q factorises over voxels for each field

 n : 

 ({ U n } ) = 

N ∏ 

n =1 

∏ 

x ∈ �n 

q n x ( U n ( x )) , 

here q n x is a discrete distribution over displacements at pixel x

f image n , such that q n x ( �s ) ≥ 0, 
∑ S 

s =1 q n x ( �s ) = 1 , ∀ n , x . 

Rather than the original objective function ( Eq. (9) ), VEM max-

mises the lower bound J , by alternately optimising with respect to

 (E-step) and θ (M-step) in a coordinate ascent scheme. We sum-

arise these two steps below. 

-step. To optimise the lower bound with respect to q , it is con-

enient to work with Eq. (10) . Since the first two terms are inde-

endent of q , one can minimise the KL divergence between q and

he posterior distribution of { U n } (see Equation S1 in the supple-

entary material). Building the Lagrangian (to ensure that q stays

n the probability simplex) and setting derivatives to zero, we ob-

ain: 

 n x ( �s ) ∝ p ( M n ( x + �s ) | H n (W( x )) , θ ) e −β1 ‖ �s ‖ 2 

×
L n ∏ 

l=1 

p 

(
k 

h 
nl | k nl − �s , σ

2 
k 

)δ( k nl = x ) 

× exp 

( 

β2 

∑ 

x ′ ∈B( x ) 

S ∑ 

s ′ =1 

‖ �s − �s ′ ‖ 

2 q n x ′ ( �s ′ ) 

) 

. (12) 

his equation has no closed-form solution, but can be solved with

xed point iterations, one image pair at the time – since there is

o interdependence in n . We note that the effect of the landmarks

s not local; in addition to creating a very sharp q n x around pixel

t hand, the variational algorithm also creates a high confidence

egion around x , by encouraging neighbouring pixels to have sim-

lar displacements. This user-informed, high-confidence region will

ave a higher weight in the synthesis, hence improving its quality.

his effect is exemplified in Fig. 2 (a,d), which illustrates the uncer-

ainty in the two components (synthesis and registration) of the

EM algorithm. The spatial location marked by red dot number 1

s right below a manually placed landmark in the histological sec-

ion, and the distribution q n x is hence strongly peaked at a location

ight below the corresponding landmark in the MRI slice. Red dot

umber 2, on the contrary, is located in the middle of the cerebral

hite matter, where there is little contrast to guide the registra-

ion, so q n x is much more spread and isotropic. Red dot number 3

ies in the white matter right under the cortex, so its distribution

s elongated and parallel to the white matter surface. 

-step. When optimising J with respect to θ , it is more conve-

ient to work with Eq. (11) – since the term η[ q ] can be neglected.

pplying the chain rule of probability, and leaving aside terms in-

ependent of θ , we obtain: 

argmax 
θ

∑ 

{ U n } 
q ({ U n } ) log p({ H n }|{ U n } , { M n } , θ ) + log p(θ | γ ) 

 argmax 
θ

N ∑ 

n =1 

∑ 

x ∈ �n 

S ∑ 

s =1 

q n x ( �s ) log p(M n ( x + �s ) | H n (W( x )) , θ ) 

+ log p(θ | γ ) . (13) 

aximisation of Eq. (13) amounts to training the regressor, such

hat each input image patch H n (W( x )) is considered S times, each
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Fig. 2. Uncertainty of registration and synthesis in the VEM algorithm: (a) Histological section from the Allen atlas. The green dots represent manually placed landmarks. 

(b,c) Mean and variance maps of the synthesised MRI slice, after 5 iterations of the VEM algorithm; higher variance corresponds to higher uncertainty in the synthesis. (d) 

Corresponding real MRI slice. The green dots represent the manually placed landmarks, corresponding to the ones in (a). The heat maps represent the variational distributions 

of displacements ( q n x ) corresponding to the red dots in (a), which illustrate the uncertainty in the registration. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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with an output intensity corresponding to a differently displaced

pixel location M n ( x + �s ) , and with weight q n x ( �s ). In practice,

and since injection of randomness is a crucial aspect of the train-

ing process of random forests, we found it beneficial to consider

each patch H n (W( x )) only once in each tree, with a displacement

�s sampled from the corresponding distribution q n x ( �) – fed to

the tree with weight 1. 

The injection of additional randomness through sampling of �
not only greatly increases the robustness of the regressor against

misregistration, but also decreases the computational cost of train-

ing – since only a single displacement is considered per pixel. We

also note that this sampling strategy still yields a valid stochas-

tic optimiser for Eq. (13) , since q n x is a discrete probability dis-

tribution over displacements. Such stochastic procedure (as well

as other sources of randomness in the forest training algorithm)

makes the maximisation of Eq. (13) only approximate; this means

that the coordinate ascent algorithm to maximise the lower bound

J of the objective function is no longer guaranteed to converge. In

practice, however, the VEM algorithm typically converges after ∼ 5

iterations. 

Combined with the conjugate prior on the variance p ( θ | γ ), the

joint prediction of the forest is finally given by: 

μn x = 

1 

T 

T ∑ 

t=1 

g t [ H n (W( x )) ; θ ] 

σ 2 
n x = 

2 b + 

∑ T 
t=1 ( g t [ H n (W( x )) ; θ ] − μn x ) 

2 

2 a + T 
, (14)

where g t is the guess made by tree t; T is the total number of trees

in the forest; and where we have dropped the dependency of μn x 

and σ n x on { H n , ˆ θ} for simplicity. 

Areas corrupted by artefacts lead to higher variances σ 2 
n x . While

the deformation model in our algorithm cannot describe cracks,

holes or tears (which would require non-diffeomorphic deforma-

tion fields and an intensity model for missing tissue), our method

copes well with these artefacts by yielding high uncertainty (vari-

ance) in these regions. This has the effect of decreasing the

weight of these areas in the registration, as we will explain in

Section 2.2.2 below. An example is shown in Fig. 2 (b,c), in which

the horizontal crack is assigned high uncertainty. High variance is

also assigned to cerebrospinal fluid regions; while these areas do

not display artefacts, their appearance might be bright or dark, de-

pending on whether they are filled with paraformaldehyde, air or

Fomblin (further details on these data can be found in Section 3.1 ).
.2.2. Computation of optimal deformation fields { ̂  U n } 
Once the point estimate ˆ θ (i.e., the optimal regression forest for

ynthesis) has been computed, one can obtain the optimal registra-

ions by maximising p({ U n }| ̂  θ, { M n } , { H n } , { K n } , { K 

h 
n } , β, σ 2 

k 
) . This

mounts to maximising the log-posterior in Eq. (S2) in the supple-

entary material. Given the parameters, this posterior factorises

ver image pairs, and can thus be optimised on n at the time. Dis-

egarding terms independent of U n , substituting the Gaussian like-

ihoods and switching signs in Equation S2 yields, for each image

air, the following cost function for the registration: 

ˆ 
 n = argmin 

U n 

∑ 

x ∈ �n 

[ M n ( x + U n ( x )) − ˆ μn x ] 
2 

2 ̂  σ 2 
n x ︸ ︷︷ ︸ 

Image term 

+ 

1 

2 σ 2 
k 

N l ∑ 

l=1 

‖ k 

h 
nl − k nl + U n ( k 

h 
nl ) ‖ 

2 

︸ ︷︷ ︸ 
Landmark term 

+ β1 

∑ 

x ∈ �n 

‖ U n ( x )) ‖ 

2 + β2 

N ∑ 

n =1 

∑ 

x ∈ �n 

∑ 

x ′ ∈B( x ) 

‖ U n ( x ) − U n ( x 
′ ) ‖ 

2 

︸ ︷︷ ︸ 
Regularisation 

, 

(15)

here the image term is a weighted sum of squared differences,

n which the weights are inversely proportional to the variance of

he forest predictions – hence downweighting the contribution of

egions of high uncertainty in the synthesis. Thanks to the discrete

ature of U n , a local minimum of the cost function in Eq. (15) can

e efficiently found with algorithms based on graph cuts ( Ahuja

t al., 1993 ), such as Boykov et al. (2001) . 

We note that the result does not need to be diffeomorphic or

nvertible, which might be a desirable feature of the registration.

his is due to the properties of the deformation model, which

as chosen due to the fact that it easily enables marginalisation

ver the deformation fields with variational techniques. In practice,

e have found that, once the optimal (probabilistic) synthesis has

een computed, we can obtain smoother and more accurate so-

utions by using more sophisticated deformation models and pri-

rs. More specifically, we implemented the image and landmark

erms of Eq. (15) in our registration package NiftyReg ( Modat et al.,

010 ), instantly getting access to its advanced deformation models,

egularisers and optimisers. NiftyReg parametrises the deformation

eld with a grid of control points combined with cubic B-Splines
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Table 1 

List of parameters in model, values, and summary of criteria for setting them to their corresponding settings. 

Symbol Value Description Criteria for setting Notes 

β1 0.02 Weight of unary term in MRF Visual inspection in pilot image Equivalent to σ = 5 mm 

β2 0.02 Weight of pairwise term in MRF Heuristic: set β2 = β1 N/A 

σ 2 
k 

0.5 mm Variance of landmarks Set to a low value N/A 

a 2 Shape parameter of Inv-Gamma A couple of pseudo-observations Equivalent to 4 pseudo-obs. 

b 5 2 a Scale parameter of Inv-Gamma A small intensity sample variance Equivalent to 4 pseudo-obs. 

T 100 Number of trees in forest More is better, but slower N/A 

N/A 5 Minimum samples in leaves Most packages use 1–10 N/A 

N/A 5 Features sampled at each node Heuristic: sq. root of total features N/A 

α 2/(9| �n |) Weight of proposed image term Match range of mutual information Cost = 1 if all pixels 3 σ away 

N/A 64 Bins for mutual information NiftyReg default N/A 

βb 0.001 Weight of bending energy NiftyReg default Both for proposed and MI 

β l 0.01 Weight of stretching / shearing NiftyReg default Both for proposed and MI 

β j 0 Weight of Jacobian energy NiftyReg default Both for proposed and MI 
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 Rueckert et al., 1999 ). If �n represents the vector of parameters

f the spatial transform x ′ = V ( x ;�n ) for image pair n , we opti-

ise: 

ˆ 
n = argmin 

�n 

α
∑ 

x ∈ �n 

[ M n ( V ( x ;�n )) − ˆ μn x ] 
2 

2 ̂  σ 2 
n x 

+ 

1 

2 σ 2 
k 

N l ∑ 

l=1 

‖ V ( k 

h 
nl ;�n ) − k nl ‖ 

2 

+ βb E b ( �n ) + βl E l ( �n ) + β j E j ( �n ) , (16) 

here E b ( �n ) is the bending energy of the transform parametrised

y �n ; E l ( �n ) is the sum of squares of the symmetric part of

he Jacobian after filtering out rotation (penalises stretching and

hearing); E j is the Jacobian energy (given by its log-determinant);

b > 0, β l > 0, β j > 0 are the corresponding weights; and α > 0 is a

onstant that scales the contribution of the image term, such that

t is approximately bounded by 1: α−1 = 9 | �n | / 2 , i.e., a value of

 is achieved if all pixels are three standard deviations away from

he predicted mean. 

Note that this choice for the final model also enables compar-

son with mutual information as implemented in NiftyReg, which

inimises: 

ˆ 
MI 

n = argmin 

U n 

−MI [ M n (V ( x ;�n )) , H n ( x )] 

+ 

1 

2 σ 2 
k 

N l ∑ 

l=1 

‖ V ( k 

h 
nl ;�n ) − k nl ‖ 

2 

+ βb E b ( �n ) + βl E l ( �n ) + β j E j ( �n ) , (17) 

here MI represents the mutual information. We note that find-

ng the value of α that matches the importances of the data terms

n Eqs. (16) and (17) is a non-trivial task; however, our choice of

defined above places the data terms in approximately the same

ange of values. 

.3. Summary of the algorithm and implementation details 

The proposed method is summarised in Algorithm 1 , and pa-

ameter settings (and criteria for setting them) are listed in Table 1 .

e define { �s } as a grid covering a square with radius 10 mm,

n increments of 0.5 mm; this is enough to model all deforma-

ions we encountered in our datasets, since we assume that im-

ges are linearly pre-aligned. The approximate posteriors q n x ( �)

re initialised to 1/ S , evenly spreading the probability mass across

ll possible displacements (i.e., maximum uncertainty in the regis-

ration). Given q n x , Eq. (13) is used to initialise the forest param-

ters θ . At that point, the VEM algorithm alternates between the

 and M steps until convergence is reached. Convergence would

deally be assessed with θ but, since these parameters can vary
ignificantly from one iteration to the next due to the randomness

njected in training, we use the predicted means and variances in-

tead ( μn x , σ 2 
n x ). 

In the E-step, each image pair can be considered independently.

irst, the histological section is pushed through the forest to gen-

rate a prediction for the (registered) MR image, including a mean

nd a standard deviation for each pixel ( Eq. (14) ). Then, fixed point

terations of Eq. (12) are run until convergence of q n x , ∀ x ∈ �n . In

he M-step, the approximate posteriors q of all images are used

ogether to retrain the random forest with Eq. (13) . When the al-

orithm has converged, the final predictions (mean, variance) can

e generated for each voxel, and the final registrations can be com-

uted with Eq. (15) , or with NiftyReg (see details below). 

The random forest regressor used Gaussian derivatives (orders

ero to three, and three scales: 0, 2 and 4 mm) and location as

eatures. Injection of randomness is a crucial aspect of random

orests, as it increases their generalization ability ( Criminisi et al.,

011 ). Here we used bagging ( Breiman, 1996 ) at both the image

nd pixel levels, and used random subsets of features when split-

ing data at the internal nodes of the trees. An additional random

omponent in the stochastic optimization is the sampling of dis-

lacements � to make the model robust against misregistration

see Section 2.2.1 ). While all these random elements have benefi-

ial effects, these come at the expense of giving up the theoreti-

al guarantees on the convergence of the VEM algorithm – though

his was never found to be a problem in practice, as explained in

ection 2.2.1 above. 

For the final registration, we used the default regularisation

cheme in NiftyReg, which is a weighted combination of the bend-

ng energy (second derivative) and the sum of squares of the sym-

etric part of the Jacobian. We note that NiftyReg uses β j = 0 by

efault; while using β j > 0 guarantees that the output is diffeomor-

hic, the other two regularisation terms ( E b , E l ) ensure in practice

hat the deformation field is well behaved. 

Table 1 summarises the values that we used for the parame-

ers of the proposed algorithm, as well as those for the compet-

ng, mutual information based registration. We used a pilot image

1/T2 image pair to coarsely tune β1 , based on visual inspection

f the distributions q n x (i.e, as in Fig. 2 d). We then heuristically set

2 = β1 . All other parameters were set either heuristically or based

n the default values from software packages, but never tuned on

he data. 

More specifically: we set the variance of the manual landmark

lacement to a low value, to reflect the high confidence in annota-

ions provided by the user. We set the hyperparameters γ = [ a, b] T 

o values equivalent to a few (4) pseudo-observations with a small

ample intensity variance (5 2 ); the main objective is just to avoid

ixels with zero variance in the synthesis. For the random forest,

e used 100 trees. The more trees in the ensemble, the better the
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performance is expected to be – but the slower the training and

testing are. The minimum number of samples in leaf nodes was set

to 5, which is within the usual range in the literature (between 1

and 10). For the number of features sampled at each node in train-

ing, we used the square root of the total number of features, which

is a common heuristic. The weight of the image term in Eq. 16 ( α)

attempted to match the range of this term to that of mutual infor-

mation, with a value that makes it equal to 1 if all pixels are three

standard deviations away from the mean predicted by the synthe-

sis. Finally, all the parameters related to NiftyReg were set to the

default values defined in the package, including the number of bins

for computing the mutual information, and the relative weights of

the different regularisers. The only parameter we swept in the ex-

periments was the control point spacing of the final registration,

which is well known to have a strong effect on the output. 

3. Experiments and results 

3.1. Data 

We used three datasets to validate the proposed technique; two

real (Allen Institute atlas, BigBrain atlas), and one synthetic. The

real datasets enable us to assess how the algorithm behaves in a

practical scenario. However, quantitative evaluation on real data is

limited because it can only rely on manually placed landmarks,

rather than full deformation fields – due to the unavailability of

perfectly aligned histology-MRI data. For that reason, in addition

to Allen and BigBrain, we have also included experiments on a

synthetic MR dataset including T1-weighted and (synthetically de-

formed) T2-weighted scans. While these images are not necessarily

an accurate substitute for the histology-MRI registration problem,

they enable a direct, pixel-wise comparison of the estimated de-

formations with the ground truth fields that were used to generate

them. 

3.1.1. Synthetic MRI dataset 

The synthetic data were generated from 676 (real) pairs of T1-

and T2-weighted scans from the publicly available ADNI dataset.

The ADNI was launched in 2003 as a public-private partnership,

led by Principal Investigator Michael W. Weiner, MD. The primary

goal of ADNI has been to test whether serial magnetic resonance

imaging, positron emission tomography, other biological markers,

and clinical and neuropsychological assessment can be combined

to measure the progression of mild cognitive impairment and early

Alzheimers disease. 

The resolution of the T1 scans was approximately 1 mm

isotropic; the ADNI project spans multiple sites, different scanners

were used to acquire the images; further details on the acquisi-

tion can be found at http://www.adni-info.org . The T2 scans cor-

respond to an acquisition designed to study the hippocampus, and

consist of 25–30 coronal images at 0.4 × 0.4 mm resolution, with

slice thickness of 2 mm. These images cover a slab of tissue con-

taining the hippocampi, which is manually oriented by the opera-

tor to be approximately orthogonal to the major axes of the hip-

pocampi. Once more, further details on the acquisition at different

sites can be found at the ADNI website. 

The T1 scans were preprocessed with FreeSurfer ( Fischl, 2012 )

in order to obtain skull-stripped, bias-field corrected images with

a corresponding segmentation of brain structures ( Fischl et al.,

2002 ). We simplified this segmentation to three tissue types (gray

matter, white matter, cerebrospinal fluid) and a generic back-

ground label. The processed T1 was rigidly registered to the cor-

responding T2 scan with mutual information, as implemented in

NiftyReg ( Modat et al., 2014 ). The registration was also used to

propagate the brain mask and automated segmentation; the for-

mer was used to skull-strip the T2, and the latter for bias field cor-
ection using the technique described in Van Leemput et al. (1999) .

ote that we deform the T1 to the T2 – despite its lower resolution

because of its more isotropic voxel size. 

From these pairs of preprocessed 3D scans, we generated a

ataset of 10 0 0 pairs of 2D images. To create each image pair, we

ollowed these steps: 1. Randomly select one pair of 3D scans; 2. In

he preprocessed T2 scan, randomly select a (coronal) slice, other

han the first and the last, which sometimes display artefacts; 3.

ownsample the T2 slice to 1 × 1 mm resolution, for consistency

ith the resolution of the T1 scans; 4. Reslice the (preprocessed)

1 scan to obtain the 2D image corresponding to the downsampled

2 slice; 5. Sample a random diffeomorphic deformation field (de-

ails below) in the space of the 2D slice; 6. Combine the deforma-

ion field with a random similarity transform, including rotation,

caling and translation; 7. Deform the T2 scan with the composed

eld (linear + nonlinear). 8. Rescale intensities to [0,255] and dis-

retise with 8-bit precision. Note than we deform the T2 slices –

ather than the T1 counterpart – to avoid interpolating the T1 data

wice. The T2 images play the role of the MRI, and the T1s play

he role of histology. 

To generate synthetic fields without biasing the evaluation, we

sed a deformation model different from that used by NiftyReg

i.e., a grid of control points and cubic B-Splines). More specifically,

e created diffeormorphic deformations as follows. First, we gen-

rated random velocity fields by independently sampling bivariate

aussian noise at each spatial location (no x-y correlation) with

ifferent levels of variance; smoothing them with a Gaussian fil-

er; and multiplying them by a window function in order to pre-

ent deformations close to the boundaries; we used exp [0.01 D ( x )],

here D ( x ) is the distance to the boundary of the image in mm.

hen, these velocity fields were integrated over unit time using a

caling and squaring approach ( Moler and Van Loan, 2003; Arsigny

t al., 2006 ) to generate the deformation fields. Sample velocity

nd deformation fields generated with different levels of noise are

hown in Fig. 3 . 

Given the synthetic deformation fields, we generated spatially

pread pairs of salient landmarks with the following iterative pro-

edure: 1. Feeding the T1 slice through a Harris corner detector

 Harris and Stephens, 1988 ). 2. Taking the pixel with the highest

esponse x max , following the ground truth deformation to obtain

he corresponding location in the deformed T2 slice, and corrupt-

ng it with Gaussian noise of variance σ 2 
k 

; this pair of locations

s added to the set of landmarks of the slice. 3. Multiplying the

arris response by a complementary Gaussian function centred at

 max , i.e., f ( x ) = 1 − exp [ −0 . 5 ‖ x − x max ‖ 2 /σ 2 ] , with standard devi-

tion σ equal to 1/10 of the image dimensions; this ensures that

he following landmarks will be far from the current x max , even-

ually leading to a set of spatially spread set. 4. Going back to

tep 2, until enough landmarks have been generated. In this it-

rative procedure, the Harris detector ensures that landmarks are

ocated at salient points (rather than image regions of flat appear-

nce), mimicking the way in which human labellers place land-

arks. The complementary Gaussian, on the other hand, ensures

hat the landmarks are spatially distributed across the images, in

rder to assist the registration across the full image domain. This

utomated landmark generation procedure is illustrated in the ex-

mple in Fig. 7 b. 

.1.2. Real data: Allen dataset 

The Allen atlas is based on the left hemisphere of a 34-year-

ld donor. The histology of the atlas includes 106 Nissl-stained

ections of the whole hemisphere in coronal plane, with man-

al segmentations of 862 brain structures. Sample sections of the

ataset are shown in Figs. S7 and S8 of the supplementary mate-

ial. Due to the challenges associated with sectioning and mount-

ng thin sections from complete hemispheres, artefacts such as

http://www.adni-info.org
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Fig. 3. Synthetic velocity (top row) and corresponding deformation fields (bottom row) generated with three different levels of noise σ v . 

Fig. 7. Example from synthetic dataset: (a) Deformed T2 image, used as floating image in the registration. (b) Corresponding T1 scan, used as reference image, with 10 

automatically placed landmarks (blue dots) overlaid. (c) Corresponding synthetic T2 image, after 5 iterations of our VEM algorithm. (d) Registered with mutual information. 

(e) Registered with our algorithm. Both in (d) and (e), the control point spacing was set to 6 mm. We have overlaid on all five images a manual outline of the gray matter 

surface (in red) and of the ventricles (in green), which were drawn using the T1 scan (b) as a reference. Note the poor registration produced by mutual information in the 

ventricles and cortical regions – see for instance the areas pointed by the yellow arrows in (d). (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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oles, large cracks, and severe staining inhomogeneities are preva-

ent in this dataset; see examples in Figure S8, or the horizontal

rack in Fig. 2 a. These artefacts make the Allen atlas representative

f typical histological images, and hamper image registration. 

The sections of the Allen atlas are 50 μm thick, and digitised at

 μm in-plane resolution with a customised microscopy system –

hough we downsampled them to 200 μm to match the resolution

f the MRI data (details below). We also downsampled the man-

al segmentations to the same resolution, and merged them into

 whole brain segmentation that, after dilation, we used to mask

he histological sections. The histology and associated segmenta-

ions can be interactively visualised at http://atlas.brain-map.org ,

nd further details can be found in Ding et al. (2016) . No 3D re-

onstruction of the histology was performed in their study. 

In addition to the histology, high-resolution MRI images of the

hole brain were acquired on a 7 T Siemens scanner with a cus-

om 30-channel receive-array coil. The specimen was scanned in
 vacuum-sealed bag surrounded by Fomblin to avoid artefacts

aused by air-tissue interfaces. The images were acquired with a

ultiecho flash sequence (TR = 50 ms; α = 20 °, 40 °, 60 °, 80 °;
choes at 5.5, 12.8, 20.2, 27.6, 35.2, and 42.8 ms), at 200 μm

sotropic resolution. Once more, the details can be found in Ding

t al. (2016) . In this study, we used a single volume, obtained by

veraging the echoes corresponding to flip angle α = 20 °, which

rovided good contrast between gray and white matter tissue, as

ell as great signal-to-noise ratio. The combined image was bias

eld corrected with the method described in Van Leemput et al.

1999) using the probability maps from the LONI atlas ( Shattuck

t al., 2008 ), which was linearly registered with NiftyReg ( Modat

t al., 2014 ). A coarse mask for the left hemisphere was manually

elineated by JEI, and used to mask out tissue from the right hemi-

phere, which is not included in the histological analysis. Sample

oronal slices of this dataset are shown in Fig. 2 a (histology) and b

MRI). 

http://atlas.brain-map.org
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3.1.3. Real data: BigBrain dataset 

The publicly available BigBrain atlas consists of a full brain of a

64-year-old donor ( Amunts et al., 2013 ). The brain was embedded

in paraffin and, using a large-scale microtome, cut into 7404 coro-

nal sections with 20 μm thickness. All 7404 sections were stained

for cell bodies, and digitised at 20 μm resolution – to match the

section thickness. Sample sections of the dataset are shown in

Figs. S9 and S10 of the supplementary material. As in the Allen

Atlas, severe artefacts (though not as pronounced) are prevalent

in this dataset – see examples in Fig. S10. The atlas also includes

an MRI scan of the sample, which was acquired on a 1.5T scan-

ner using a 12-channel coil. The volume was acquired with an

MPRAGE sequence with parameters: TR = 2220 ms, TE = 3 ms,

IR = 1200 ms, α = 15 ◦, resolution 0.4 × 0.4 × 0.8 mm 

3 , 6 aver-

ages. The sample was scanned inside a Plexiglas cylinder and kept

in formalin; extensive degassing of the formalin was performed to

eliminate air bubbles. No manual segmentations are available for

this dataset. 

In addition to the raw data, the BigBrain dataset includes a very

accurate 3D reconstruction of the histology, which was performed

with a complex pipeline that involved not only manual interven-

tion, but also ∼ 250, 0 0 0 h of CPU time on a high-performance

computing cluster (see details in Amunts et al., 2013 ). Since Big-

Brain provides an approximate spatial alignment between the MRI

scan and the 3D reconstruction of the histology, it is straightfor-

ward to derive a correspondence between histological sections and

corresponding coronal slices. Therefore, rather than using the full

raw dataset (placing manual landmarks on 7404 pairs of images

would be excruciating), we only considered the histological sec-

tions that correspond to coronal slices in the brain MRI scan. We

left aside the first and last 20 slices, which contain very little tis-

sue, ending up with 331 pairs of images (histological sections and

MRI slices). We downsampled these histological sections to 400 μ
m pixel size, to match the resolution of the MRI. 

3.2. Experimental setup 

In the experiments, we compared the performance of our pro-

posed method with that of mutual information based registration.

First, we conducted thorough experiments on the synthetic data,

in which we swept the control point spacing in the registration.

And second, we used the optimal parameter settings to register

the real data from the Allen Institute and the BigBrain atlas. We

note that we use the NiftyReg implementation of mutual informa-

tion based registration as competing method, because it is the only

way of comparing the image terms of the two approaches (i.e., Eqs.

(16) and (17) ) in a fair manner. In other words: if we used a differ-

ent registration package as competing method, we could not dis-

ambiguate whether differences in performance stem from the im-

age terms or from differences in implementation details, regularis-

ers, etc. 

In the synthetic data, we considered three different levels of

Gaussian noise ( σv = 10 , 20 , 30 mm) when generating the velocity

fields, in order to model nonlinear deformations of different sever-

ity. The standard deviation of the Gaussian smoothing filter was set

to 5 mm, in both the horizontal and vertical direction. The random

rotations, translations and log-scalings of the similarity transform

were sampled from zero-mean Gaussian distributions, with stan-

dard deviations of 2 °, 1 pixel, and 0.1, respectively. We then used

NiftyReg with mutual information and our method to recover the

deformations, both using the same landmark sets. We used differ-

ent spacings between control points (from 3 to 21 mm, with 3 mm

steps) to evaluate different levels of model flexibility. Otherwise

we used the parameters listed in Table 1 , both for our proposed

method ( Eq. (16) ) and mutual information ( Eq. (17) ). We tested

our algorithm in two different scenarios: running it on all image
airs simultaneously, or on each image pair independently (i.e.,

ith N = 1 ). In the former case, bagging was used at both the slice

nd pixel levels, using 66% of the available images, and as many

ixels per image as necessary in order to have a total of 25,0 0 0

raining pixels. In the latter case, which represents the common

ase that a user runs the algorithm on just a pair of images, we

sed 66% of the pixels to train each tree. 

In the Allen Institute data, we compared mutual information

ased registration with our approach, using all slices simultane-

usly in the synthesis with bagging (as for the synthetic data, us-

ng 66% of the images in each tree, randomly sampling 25,0 0 0 pix-

ls). In order to put the MRI in linear alignment with the histo-

ogical sections, we used an iterative approach very similar to that

f Yang et al. (2012) . Starting from a stack of histological sections,

e first rigidly aligned the brain MRI to the stack using mutual

nformation. Then, we resampled the registered MRI to the space

f each histological section, and aligned them one by one using a

imilarity transform combined with mutual information. The reg-

stration of the MRI was then refined using the realigned sections,

tarting a new iteration. Upon convergence of the linear registra-

ion procedure, we resampled the MR images into the space of the

istological sections. Next, a human labeller (JEI) manually anno-

ated 1104 pairs of landmarks – approximately 11 per image pair.

he landmarks were placed on salient points that were easy to

ecognise on both images (e.g., corners of sulci, gyri, and subcor-

ical structures), while being spatially spread across the images –

n order to inform the registration throughout the whole image do-

ain. The exact number of landmarks on each image pair depends

n the amount of tissue in the histological section, and the ob-

erver’s discretion. These landmarks were randomly divided into

wo folds, with cross-validation purposes. We then used the two

ompeting methods to nonlinearly register the histological sections

o the corresponding resampled MR images. We used the same pa-

ameters as for the experiment with the synthetic data, setting the

ontrol point spacing to the optimal values from such experiments

6 mm for the proposed approach, and 18 mm for mutual informa-

ion; see Section 3.3.1 below); note that, for the manual landmarks,

k = 0 . 5 mm was equivalent to 2.5 pixels at the resolution of this

ataset – rather than one pixel, as in the synthetic data. We pro-

uced three different registrations with each method: one using

ll landmarks (for qualitative evaluation based on visual inspec-

ion), and two using the landmarks in the cross-validation folds

for quantitative evaluation). 

Finally, the experimental setup for the BigBrain data was al-

ost the same as for the Allen Institute data. Again, we com-

ared our approach with mutual information based registration.

he parameters for the synthesis was the same as for Allen. We

ote that it was not necessary to rigidly align the MRI to the

istology, as an approximate alignment is already given in this

ataset, as explained in Section 3.1.3 . As for the Allen dataset, JEI

anually labelled 3, 839 pairs of landmarks across the 331 im-

ge pairs (approximately 12 per pair, placed on salient points),

hich were randomly split into two folds. The control point spac-

ng was again 6 mm for the proposed approach and 18 mm for mu-

ual information. Once more, we computed registrations using all

he landmarks, for qualitative evaluation, but also using the land-

arks within each fold, for quantitative evaluation. In this dataset,

k = 0 . 5 mm was equivalent to 1.25 pixels. 

.3. Results 

.3.1. Synthetic data 

Figs. 4–6 show the mean registration error as a function of the

ontrol point separation and the number of landmarks for three

ifferent levels of noise deformation: 10, 20 and 30 mm, which

orrespond to mild, medium and strong deformations, respectively.
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Fig. 4. Mean and maximum registration error in mm for deformations with σv = 10 (mild). 
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he mean error reflects the precision of the estimation, whereas

he maximum is related to its robustness. When using mutual in-

ormation, finer control point spacings in the deformation model

ield transforms that are too flexible, leading to very poor results

even in presence of control points); see example in Fig. 7 . Both

he mean and maximum error improve with larger spacings, flat-

ening out at around 18–20 mm. 

The proposed method, on the other hand, provides higher pre-

ision with flexible models, thanks to the higher robustness of the

ntramodality metric. The two versions of the method (estimating

he regressor one image pair at the time or from all images si-

ultaneously) consistently outperform mutual information in ev-

ry scenario. An important difference in the results is that the

ean error hits its minimum at a much smaller control point spac-

ng (typically 6 mm), yielding a much more accurate registration;

ee example in Fig. 7 , and also further examples – including or-

hogonal views (i.e., from 3D reconstructions) – in Figs. S1-S6 in

he supplementary material. Moreover, the maximum error has al-

eady flattened at that point (6 mm) in almost every tested setting.

In addition to supporting finer control points spacings, the pro-

osed method can more effectively exploit the information pro-

ided by landmarks. In mutual information based registrations,

he landmarks guide the registration, especially in the earlier it-

rations, since their relative cost is high. However, the landmarks

nly constrain the deformation field locally, and further influence

n the registration (e.g., by improving the estimation of the joint

istogram) is indirect and very limited. Therefore, the quantitative

ffect of adding landmarks on the mean and maximum errors is

ather small. 
Our proposed algorithm, on the other hand, explicitly exploits

he landmark information not only in the registration, but also in

he synthesis. Following the exponential MRF term in Eq. (12) , the

andmarks sharpen the distribution q not only at their locations,

ut also in their surroundings (see for instance Tag 1 in Fig. 2 d).

herefore, very similar displaced locations of these pixels are con-

istently selected when sampling for each tree of the forest, which

reatly informs the learning of the appearance model, i.e., the syn-

hesis – particularly since the model is learned directly from the

est data, and adapts to variations in staining, MRI contrast, etc.

ncreased number of landmarks N l yields higher performance both

or our proposed method and mutual information. However, given

hat better synthesis leads to improved registration, the gap in

erformance between the two methods actually widens as N l in-

reases, as reflected by the quantitative results. 

When no landmarks are used and image pairs are assessed in-

ependently, the proposed algorithm can be seen as a conven-

ional inter-modality registration method. In that scenario, the re-

ults discussed above still hold: our method can be used at finer

ontrol point spacings, and provides average reductions of 11%, 22%

nd 15% in the mean error, at σv = 10 , σv = 20 and σv = 30 , re-

pectively. We also note that, as one would expect, our method

nd mutual information produce almost identical results at large

ontrol point spacings. 

Finally, we note a modest improvement is observed when im-

ge pairs are considered simultaneously – rather than indepen-

ently. Nevertheless, the joint estimation consistently yields higher

obustness at the finest control point spacing (3 mm), and also pro-

uces smaller errors across the different settings when the defor-
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Fig. 5. Mean and maximum registration error in mm for deformations with σv = 20 (medium). 

Table 2 

Mean, median and maximum registration errors on Allen dataset 

(in mm). The p-value corresponds to a paired, non-parametric, 

Wilcoxon signed-rank test comparing the landmark-wise errors 

produced by the two competing methods. 

Method Mean Median Maximum p-value 

Mutual info. 1.83 1.49 46.25 N/A 

Proposed 1.49 1.22 18.45 4 . 4 · 10 −33 
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mations are mild ( Fig. 4 ). We hypothesise that, even though the si-

multaneous estimation has the advantage of having access to more

data (which is particularly useful with more flexible models, i.e.,

finer spacing), the independent version can also benefit from hav-

ing a regressor that is tailored to the single image pair at hand. 

3.3.2. Results on Allen Institute data 

Table 2 displays the quantitative results for this dataset. In ab-

solute terms, the errors are larger than for the synthetic data in

Section 3.3.1 above, due to the starker differences in image con-

trast between the two modalities, and the presence of artefacts

in the histology. Still, the proposed method provides a signifi-

cant ( p ∼ 10 −33 ) reduction in registration error, compared with the

baseline, mutual information based approach; we note that regis-

tration errors are not independent across landmarks or even im-

ages, so statistical testing produces underestimated p values, but

the results still clearly point towards a statistically significant im-

provement. 

The decrease in registration error is also apparent from the reg-

istered images. Fig. 8 shows a representative coronal section of
he data, which covers multiple cortical and subcortical structures

f interest (e.g., hippocampus, thalamus, putamen and pallidum).

omparing the segmentations propagated from the histology to the

RI with the proposed method ( Fig. 8 d) and mutual information

 Fig. 8 e) using all available landmarks in both cases, it is appar-

nt that our algorithm produces a much more accurate registra-

ion. The contours of the white matter surface are rather inaccurate

hen using mutual information; see for instance the insular (Tag

 in the figure), auditory (Tag 2), or polysensoral temporal cortices

Tag 3); or area 36 (Tag 4). Using the proposed method, the reg-

stered contours follow the underlying MRI intensities much more

ccurately. The same applies to subcortical structures. In the tha-

amus (light purple), it can be seen that the segmentation of the

eticular nucleus (Tag 5) is too medial when using mutual infor-

ation. The same applies to the pallidum (Tag 6), putamen (Tag

) and claustrum (Tag 8). The hippocampus (dark purple; Tag 9) is

oo inferior to the actual anatomy in the MRI. Once more, the pro-

osed algorithm produces, qualitatively speaking, much improved

oundaries. 

To better assess the quality of the reconstruction as a whole

rather than on a single slice), Fig. 9 shows the propagated seg-

entations in the orthogonal views: sagittal ( Fig. 9 a, b) and axial

 Fig. 9 c, d). The proposed method produces reconstructed segmen-

ations that are smoother and that better follow the anatomy in

he MRI scan. In sagittal view, this can be easily observed in sub-

ortical regions such as the putamen (Tag 1 in Fig. 9 b), the hip-

ocampus (Tag 2) or the lateral ventricle (Tag 3); and also in corti-

al regions such as the premotor (Tag 4), parahippocampal (Tag 5)

r fusiform temporal (Tag 6) cortices. The improvement is also ap-

arent from how much less frequently the segmentation leaks out-
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Fig. 6. Mean and maximum registration error in mm for deformations with σv = 10 (strong). 

Table 3 

Mean, median and maximum registration errors on BigBrain 

dataset (in mm). The p-value corresponds to a paired, non- 

parametric, Wilcoxon signed-rank test comparing the landmark- 

wise errors produced by the two competing methods. 

Method Mean Median Maximum p-value 

Mutual info. 1.70 1.31 18.02 N/A 

Proposed 1.41 1.19 14.09 5 . 4 · 10 −23 
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ide the brain when using our algorithm. Similar conclusions can

e derived from the axial view; see for instance the putamen (Tag

 in Fig. 9 d), thalamus (purple region, Tag 2), polysensory temporal

ortex (Tag 3) or insular cortex (Tag 4). 

.3.3. Results on BigBrain data 

Table 3 displays the quantitative results for the BigBrain dataset.

he errors are once more clearly larger than for the synthetic

ataset, but slightly smaller than for the Allen Institute data, since

he artefacts are not as strong in this dataset (e.g., compare Fig-

re S8 with Figure S10). As in Section 3.3.1 , our method provides

 significant improvement over mutual information based registra-

ion ( p ∼ 10 −23 ), with reduced mean, median and maximum regis-

ration errors (again, p values need to be interpreted with caution

ue to the lack of statistical independence between landmarks and

mages). 

Fig. 10 shows qualitative results for this dataset. More specif-

cally, the figure displays a set of reconstructed slices in the two

lanes orthogonal to the sectioning direction, i.e., axial and sagittal.

he proposed method yields reconstructions that are more consis-
ent than those produced by mutual information. Areas that are

learly better reconstructed include: the cerebellum, for which the

econstruction is crisper in every slice in which it is visible (see

reen boxes in the figure); the basal ganglia, which is greatly and

rtificially enlarged by mutual information based registration (see

ed boxes); the occipital region, in which our proposed method

ields a much smoother reconstruction (see blue boxes in the fig-

re); and the cortical surface, which is smoother when recon-

tructed with our method in all images in the figure (see for ex-

mple the areas marked with black boxes). Finally, we note that

hese reconstructions are not as sharp as those in the BigBrain

ebsite; it is not our goal here to produce reconstructions of such

igh quality, which would require careful artefact correction, inten-

ity normalisation, and considering the intra-modality registration

f neighbouring sections in the reconstruction. 

. Discussion and conclusion 

In this article, we presented a novel method to simultaneously

stimate the registration and synthesis between a pair of corre-

ponding images from different modalities. The results on both

ynthetic and real data show that the proposed algorithm is supe-

ior to standard inter-modality registration based on mutual infor-

ation, albeit slower due to the need to iterate between registra-

ion and synthesis – especially the former, since it requires nested

teration of Eq. (12) . Our Matlab implementation runs in 2–3min

or images of size 256 2 pixels, but parallelised implementation in

++ or on the GPU should greatly reduce the running time. 

The quantitative experiments on synthetic data demonstrated

hat our algorithm supports much more flexible deformation mod-
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Fig. 8. (a) Coronal slice of the MRI scan. (b) Corresponding histological section, registered with the proposed method. (c) Corresponding manual segmentation, propagated to 

MR space. (d) Close-up of the region inside the blue square, showing the boundaries of the segmentation; see main text (Section / 3.3.2 ) for an explanation of the numerical 

tags. (e) Segmentation obtained when using mutual information in the registration. See http://atlas.brain-map.org for the color map. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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els than mutual information (i.e., smaller control point spacing)

without compromising robustness, attributed to the more stable

intra-modality metric (which we have made publicly available in

NiftyReg). Moreover, these experiments also showed that our al-

gorithm can more effectively take advantage of the information

encoded in manually placed pairs of landmarks. Mutual informa-

tion alone only benefits from the constraints that landmarks in-

troduce in the deformation fields, which yields a small decrease

in registration error. Our method, on the other hand, also exploits

landmark information in synthesis, which further improves the re-

sults, as registration and synthesis inform each other in model fit-

ting. The more landmarks we used, the larger the gap between

our method and mutual information was – however, we should

note that, in the limit, the performance of the two methods would

be the same, since the registration error would go to zero in

both cases. 
The proposed method relies on a number of parameters, which

nfluence the final result. As explained in Section 2.3 , these param-

ters were set to sensible values defined a priori , except for the pa-

ameters of the MRF, which were coarsely tuned by visual inspec-

ion of the output on a pilot dataset. The fact that the same pa-

ameter values produced satisfactory outputs in all three datasets

ndicates that the output is not too sensitive to parameter settings.

he only parameter that has a great influence on the results is the

ontrol point spacing – which is well known from the image reg-

stration literature. This is the reason why control point spacing is

he only parameter – along with landmark count – that we swept

n the experiments to find suitable values. On a related note, we

ust note that, in the experiments with synthetic data, the relative

ontributions of the data terms in Eqs. (16 ) and (17) are slightly

ifferent, since com puting the value of α that makes these contri-

utions exactly equal is very difficult. However, the minor differ-

http://atlas.brain-map.org
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Fig. 9. (a) Sagittal slice of the MRI scan, with registered segmentation superimposed. The deformation fields used to propagate the manual segmentations from histology to 

MRI space were computed with mutual information. (b) Same as (a), but using our technique to register the data. (c) Axial slice, reconstruction with mutual information. (d) 

Same slice, reconstructed with our proposed method. See http://atlas.brain-map.org for the color map. 
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h  
nces that our heuristic choice of α might introduce do not under-

ine the results of the experiments, since the approximate effect

f modifying α is mildly shifting the curves in Figs. 4–6 to the left

r right – which does not change the conclusions. 

Our method also outperformed mutual information when ap-

lied to real data from the Allen Institute and BigBrain datasets,

hich are more challenging due to the more complex relation-

hips between the two contrast mechanisms, and the presence of

rtefacts such as cracks and tears. Qualitatively speaking, the su-

eriority of our approach is clearly apparent from Figs. 9 and 10 ,

n which it produces much smoother segmentations and recon-

tructions in the orthogonal planes. We note that we did not in-

roduce any smoothness constraints in the reconstruction, e.g., by

orcing the registered histological sections to be similar to their

eighbours, through an explicit term in the cost function of the

egistration. Such a strategy would produce smoother reconstruc-

ions, but these would not necessarily be more accurate – particu-

arly if one considers that the 2D deformations fields of the differ-

nt sections are independent a priori , which makes the histologi-

al sections conditionally independent a posteriori , given the MRI

ata and the image intensity transform. Moreover, explicitly en-

orcing such smoothness in the registration would preclude qual-

tative evaluation through visual inspection of the segmentation in

he orthogonal orientations. 

The proposed algorithm is hybrid in the sense that, despite be-

ng formulated in a generative framework, it replaces the likeli-

ood term of the synthesis by a discriminative element. We em-

hasise that such a change still yields a valid objective function

 Eq. (9) ) that we can approximately optimise with VEM – which

aximises Eqs. (10) and (11) instead. The VEM algorithm alter-

ately optimises for q and θ in a coordinate descent scheme, and

s in principle guaranteed to converge. In our method, we lose this

roperty due to the approximate optimisation of the random forest

arameters, since injecting randomness is one of the key elements

f the success of random decision trees. However, in practice, our
lgorithm typically converges in 5–6 iterations, in terms of changes

n the predicted synthetic image (i.e., in μn x and σ 2 
n x ). 

Our approach can also be used in an online manner, i.e., if data

ecome progressively available at testing. For example, the random

orest could be optimised on an (ideally) large set of images, con-

idering them simultaneously in the framework. Then, when a new

air of images arrives, one can assume that the forest parameters

re fixed and equal to ˆ θ, and proceed directly to the estimation

f the synthetic image μ1 x , σ
2 
1 x and deformation field 

ˆ U 1 . An al-

ernative would be to fine tune θ to the new input, considering

t in isolation or jointly with the other scans. But even if no other

revious data are available (i.e., N = 1 ), the registration uncertainty

ncoded in q prevents the regression from overfitting, and enables

ur method to still outperform mutual information. This is in con-

rast with supervised synthesis algorithms, which cannot operate

ithout training data. 

The work presented in this paper also opens up a number of

ew directions of related research. One direction is integrating

eep learning techniques into the framework, which could be par-

icularly useful when large amounts of image pairs are available,

.g., in a large histology reconstruction project. The main chal-

enges to tackle are overfitting and avoiding to make the algorithm

mpractically slow. A possible solution to this problem would be to

se a pretrained network, and only update the connections in the

ast layer during the analysis of the image pair at hand (e.g., as in

ang et al., 2017 ). Another direction of future work is the exten-

ion of the algorithm to 3D. Albeit mathematically straightforward

no changes are required in the framework), such extension poses

roblems from the practical perspective, e.g., the memory require-

ents for storing q grow very quickly. Another avenue of future

ork is the application to other target modalities, such as optical

oherence tomography (OCT). 

Yet another interesting direction would be to explicitly model

rtefacts in the probabilistic model. While the method proposed

ere copes with cracks, holes, etc., by downweighting them in the
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Fig. 10. Orthogonal views of reconstructed BigBrain using mutual information based information and our approach. Leftmost columns: axial view, from inferior to superior. 

Rightmost columns: sagittal view, from medial to lateral. The boxes mark areas in which the proposed method yields more accurate results than mutual information based 

registration; please see text in Section 3.3.3 for explanations. 
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registration, better results might be obtained by using more com-

plex, non-diffeomorphic deformation fields which, combined with

intensity models for missing tissue, could better represent these

artefacts. In a similar fashion, a relevant direction of future work

is the simulation of histological artefacts in images – possibly MRI

slices, or histological sections with little or no artefacts. The ex-
sting literature on such simulations is surprisingly sparse, even

hough such synthetic images would enable us to quantitatively

valuate the performance of registration methods in presence of

racks, tears, folding, etc. Finally, we will also explore the possi-

ility of synthesising histology from MRI. This a more challenging

ask that might require multiple input MRI contrasts, depending on
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he target stain to synthesise. However, synthetic histology would

ot only provide an estimate of the microanatomy of tissue im-

ged with MRI, but would also enable the symmetrisation of the

ramework presented in this article; by computing two syntheses,

he robustness of the algorithm would be expected to increase. 

The algorithm presented in this paper represents a significant

tep towards solving the problem of aligning histological images

nd MRI, by exploiting the connection between registration and

ynthesis within a novel probabilistic framework. We will use this

ethod to produce increasingly precise histological reconstructions

f tissue, which in turn will enable us to build probabilistic atlases

f the human brain at a superior level of detail. 
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