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Abstract 

The high level of innovation in drug discovery in recent years has presented a 

significant challenge for drug manufacturing process development, which must 

constantly evolve to meet this increasingly diverse demand. As a result, novel 

process monitoring technologies to rapidly optimise these processes, reduce 

development costs and improve time to market are in high demand in the 

biopharmaceutical industry. Within the context of bioprocess development and 

manufacturing, the main focus of this work is on fermentation and its impact on, and 

interaction with, primary recovery. 

Although E. coli is the most widely researched host organism for recombinant 

protein production and cell death during fermentation has been observed for decades, 

very little is understood about how to quantify and detect cell lysis in late stage 

fermentation, which leads to a number of problems in the downstream process such 

as product loss and poor operational performance. The complex nature of the cell 

broth means that it is difficult to observe lysis directly, and current analytical 

technologies are unable to rapidly and accurately monitor the shift between optimum 

intracellular product concentration and leakage to the cell broth. This thesis proposes 

that by monitoring the physical properties of the cell broth, i.e. by monitoring the 

viscosity, it may be possible to indirectly infer cell lysis, as the release of 

intracellular content, such as host cell protein and nucleic acids, to the cell broth at 

the point of lysis are known to cause an increase in the broth viscosity. 

In this thesis, cell lysis was first characterised in an industrially relevant E. coli 

fermentation producing antibody fragments (Fab'), using a range of common 

analytical techniques. Following this, a method has been developed to rapidly detect 

cell lysis and product loss using at-line viscosity monitoring, and a strong correlation 

was shown to exist between DNA release, product leakage, cytotoxicity and 

viscosity. Viscosity monitoring to detect cell lysis was shown to perform better than 

optical density measurements and online capacitance probes, and could detect lysis 

faster than HPLC, flow cytometry, cytotoxicity assays and DNA quantification. 

Subsequently, a model has been developed to quantify cell lysis using rapid viscosity 
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monitoring. Viscoelasticity studies have also been performed to provide novel 

insight into changes in cell strength during fermentation. Finally, a case study has 

been carried out to demonstrate an application of viscosity monitoring in process 

development, and to enable insight into the impact of upstream processing conditions 

on the efficiency of downstream unit operations. A novel process design using 

crossflow filtration and flocculation achieved a 2.53-fold improvement in total 

product recovered, a 3-fold improvement in solids removal and a 3.6-fold 

improvement in product purity, in comparison to the existing Fab' primary recovery 

process. 

This work presents the novel use of viscosity monitoring in biopharmaceutical 

fermentation to rapidly detect cell lysis and product loss. In doing so, a deeper 

understanding of changes in the physical properties of cell broths during 

fermentation has been obtained, as well as insight into the impact of lysis on various 

primary recovery unit operations. The use of viscosity monitoring to rapidly detect 

lysis and product loss has been shown to be a promising analytical tool to enable 

optimisation in process development and facilitate harvest decision making for large 

scale operation. 
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Impact statement 

Cell lysis in fermentation represents a significant challenge in bioprocessing, and 

current technologies are unable to rapidly and accurately monitor lysis during 

process operation. This creates numerous problems in the downstream process such 

as product loss and poor operational performance. The work carried out in this thesis 

used rheology to characterise and provide an advanced understanding of biological 

processing material, and as a result developed a novel methodology to rapidly detect 

cell lysis and product loss in fermentation by monitoring the viscosity. This 

methodology can now be readily implemented into a range of industrial fermentation 

processes, and additionally presents a significant opportunity to carry out further 

research into monitoring the physical properties of process material using rheology. 

The dissemination of two research papers in academic journals (see Appendix) and 

three conference proceedings will facilitate this by encouraging the wider academic 

community to engage with and contribute to this research area. 

Moreover, the research carried out in this thesis has demonstrated the commercial 

value of monitoring the viscosity of cell broths to detect cell lysis and product loss in 

fermentation. This has direct value for the startup sponsor company, Procellia Ltd., 

as it demonstrates the fundamental proof of concept for its technology. Furthermore, 

the academic publications and conference proceedings resulting from this thesis have 

provided exposure for Procellia within the bioprocessing community, and give 

credibility and momentum to the nascent company, for example when forming future 

academic or commercial partnerships. 

The implementation of the methodology developed in this thesis by drug 

manufacturers, to detect cell lysis and product loss in fermentation, will enable 

informed decision making about harvesting in fermentation to maximise the product 

yield. By improving fundamental process understanding, it is possible to monitor 

critical process parameters, which can ultimately be controlled. The ability to 

monitor and control processes can improve the speed and efficiency of drug 

manufacturing process development, which enables novel therapies to be brought to 

market faster, and therefore patients to receive critical therapies faster. The improved 
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efficiency also implies that development costs can be reduced, and therefore makes 

treatments more affordable for patients.  

The impact of cell lysis in fermentation on operational efficiency in the downstream 

process is also poorly understood within the bioprocessing community. Therefore, 

the work in this thesis also carried out a case study to clearly demonstrate the impact 

of upstream processing conditions on the downstream process. To solve this 

problem, several novel primary recovery process designs were proposed and carried 

out; taking an integrated approach to improve the performance of the whole 

bioprocess across several dimensions (i.e. total product recovered, purity, solids 

removal, capital costs, processing time). The novel designs achieved significant 

improvements in comparison to the existing process, and demonstrated the value of 

taking such an approach to bioprocess design.  

In summary, the expertise, knowledge, methodologies and insight developed as a 

result of this research will facilitate beneficial impact not only in academia, but also 

commercially for both the sponsor company Procellia Ltd. and the wider 

bioprocessing community.  



 7 

Acknowledgements 

I would like to gratefully acknowledge the EPSRC IDTC and Procellia Ltd. for their 

financial support, as well as University College London for conference awards. 

I would like to thank my supervisor Dr Yuhong Zhou. Apart from Yuhong's 

exceptional guidance and deep expertise in the field, I have, above all else, been 

continuously inspired by Yuhong's positive energy and enthusiasm for research, and 

it has been an absolute pleasure for me to work closely with her over the last 4 years. 

I would also like to thank my industrial supervisor Dr Joanna Vlahopoulou, who 

provided a wealth of expertise in rheology and enabled me to obtain an incredibly 

valuable insight into the commercial side of the biotechnology industry. 

Thank you to all my friends and colleagues at UCL. I am extremely grateful to Dr 

Desmond Schofield, Dr Alex Chatel, Dr Ioannis Voulgaris, Dr Adrian Hill and 

Professor Mike Hoare for mentoring me over the last 4 years. I would also like to 

thank Dr Desmond Schofield, Mohd Shawkat Hussain, Dr Alex Chatel, Dr Ioannis 

Voulgaris, Dr Andrea Rayat and Mark Turmaine for collaborating with me on 

various research projects. 

Thank you to my parents, whose unwavering support has enabled me to keep 

pushing every barrier that I encounter. Thank you also for taking my phone calls 

every week for the last 4 years to talk through my E. coli problems. 

Meine liebe Ariana, kaum ein Wort hier wäre ohne dich möglich gewesen. Danke für 

deine Geduld, deine Unterstützung, deine Ermutigung und vor allem deine Liebe. Ich 

verdanke dir alles und dafür ist diese Doktorarbeit dir gewidmet. 

  



 8 

Table of contents 

Declaration --------------------------------------------------------------------------------------- 2 

Abstract ------------------------------------------------------------------------------------------- 3 

Impact statement -------------------------------------------------------------------------------- 5 

Acknowledgements ----------------------------------------------------------------------------- 7 

Table of contents -------------------------------------------------------------------------------- 8 

List of figures ----------------------------------------------------------------------------------- 18 

List of tables ------------------------------------------------------------------------------------ 28 

Nomenclature ----------------------------------------------------------------------------------- 33 

Chapter 1 Introduction ---------------------------------------------------------------------- 39 

1.1 Biologics ---------------------------------------------------------------------------- 40 

1.1.1 Antibodies ----------------------------------------------------------------------- 40 

1.1.1.1 Antibody fragments ------------------------------------------------------ 41 

1.2 Methods of production and challenges ----------------------------------------- 44 

1.2.1 Recombinant protein expression---------------------------------------------- 44 

1.2.2 Host cells ------------------------------------------------------------------------- 44 

1.2.2.1 Eukaryotic hosts ---------------------------------------------------------- 44 

1.2.2.2 Prokaryotic hosts ---------------------------------------------------------- 45 



 9 

1.2.2.2.1 Escherichia coli as a host cell -------------------------------------- 45 

1.2.2.2.1.1 Periplasm --------------------------------------------------------- 46 

1.2.3 Bioprocessing challenges ------------------------------------------------------ 46 

1.3 Cell lysis ---------------------------------------------------------------------------- 47 

1.3.1 Defining cell lysis and cell viability ----------------------------------------- 48 

1.3.2 Understanding cell lysis ------------------------------------------------------- 48 

1.3.3 Impact of cell lysis on the downstream process ---------------------------- 50 

1.4 Bioprocess monitoring technologies -------------------------------------------- 51 

1.4.1 Process analytical technologies ----------------------------------------------- 51 

1.4.2 Challenges with developing monitoring technologies in fermentation - 52 

1.4.3 Process monitoring strategies ------------------------------------------------- 53 

1.4.4 Common bioprocess monitoring technologies ----------------------------- 54 

1.4.4.1 Routine fermenter monitoring and control ---------------------------- 54 

1.4.4.2 Offline analytical technologies ----------------------------------------- 54 

1.4.4.3 Electrochemical sensors ------------------------------------------------- 55 

1.4.4.3.1 Capacitance sensors -------------------------------------------------- 56 

1.4.4.4 Spectroscopic monitoring technologies ------------------------------- 57 

1.4.4.4.1 Optical density measurements -------------------------------------- 57 



 10 

1.4.4.4.2 Near-infrared spectroscopy ----------------------------------------- 58 

1.4.4.4.3 Fluorometry ----------------------------------------------------------- 59 

1.4.4.4.4 UV/Vis spectroscopy ------------------------------------------------ 60 

1.4.4.4.5 Raman spectroscopy ------------------------------------------------- 61 

1.4.4.4.6 In-situ microscopy ---------------------------------------------------- 61 

1.4.4.5 Off-gas analysis ----------------------------------------------------------- 62 

1.4.5 Summary of process monitoring technologies------------------------------ 62 

1.5 Rheology ---------------------------------------------------------------------------- 63 

1.5.1 Rheology definitions ----------------------------------------------------------- 64 

1.5.2 Viscosity ------------------------------------------------------------------------- 67 

1.5.2.1 Viscosity theory ----------------------------------------------------------- 67 

1.5.2.2 Viscosity applications in bioprocessing ------------------------------- 69 

1.5.2.2.1 Einstein equations ---------------------------------------------------- 73 

1.5.3 Viscoelasticity ------------------------------------------------------------------- 74 

1.5.3.1 Viscoelasticity theory ---------------------------------------------------- 74 

1.5.3.2 Viscoelasticity applications in bioprocessing ------------------------- 79 

1.6 Aims and objectives --------------------------------------------------------------- 80 

Chapter 2 Materials & methods ----------------------------------------------------------- 83 



 11 

2.1 Host strain --------------------------------------------------------------------------- 83 

2.2 Fermentation ------------------------------------------------------------------------ 83 

2.2.1 Working cell bank preparation ------------------------------------------------ 84 

2.2.2 SM6Gc defined media --------------------------------------------------------- 84 

2.2.3 Fermentation protocol ---------------------------------------------------------- 85 

2.2.4 Fermentation process control ------------------------------------------------- 86 

2.3 Analytical methods ---------------------------------------------------------------- 87 

2.3.1 Measurement of cell density -------------------------------------------------- 87 

2.3.2 Capacitance measurements ---------------------------------------------------- 87 

2.3.3 Sonication ------------------------------------------------------------------------ 87 

2.3.4 Cytotoxicity assay -------------------------------------------------------------- 87 

2.3.5 Flow cytometry: BP staining -------------------------------------------------- 89 

2.3.6 Nucleic acid and protein quantification ------------------------------------- 89 

2.3.6.1 Picogreen assay ----------------------------------------------------------- 89 

2.3.6.2 Bradford assay ------------------------------------------------------------ 90 

2.3.6.3 Nanodrop measurements ------------------------------------------------ 90 

2.3.7 Product quantification ---------------------------------------------------------- 90 

2.3.8 Particle size distribution ------------------------------------------------------- 91 



 12 

2.3.8.1 Treatment of raw data ---------------------------------------------------- 91 

2.4 Scanning electron microscopy --------------------------------------------------- 92 

2.5 Rheological characterisation ----------------------------------------------------- 93 

2.5.1 Brookfield viscometer ---------------------------------------------------------- 93 

2.5.2 Malvern Instruments Kinexus rheometer ----------------------------------- 94 

2.5.2.1 Viscosity measurements ------------------------------------------------- 95 

2.5.2.2 Viscoelasticity measurements ------------------------------------------- 95 

2.5.3 Treatment of raw viscosity data ---------------------------------------------- 96 

2.5.3.1 Calculating the average shear rate in the bioreactor ----------------- 97 

2.5.4 Preparation of material for rheological characterisation ------------------ 98 

2.5.4.1 Cell paste and supernatant ----------------------------------------------- 98 

2.5.4.2 DNA and protein ---------------------------------------------------------- 98 

2.6 Cell broth processing: primary recovery studies ------------------------------ 99 

2.6.1 Flocculation studies ------------------------------------------------------------ 99 

2.6.2 Periplasmic extraction ---------------------------------------------------------- 99 

2.6.3 Ultra scale-down studies ------------------------------------------------------- 99 

2.6.4 Ultra scale-down centrifugation ---------------------------------------------- 99 

2.6.4.1 Ultra scale-down shear studies ---------------------------------------- 100 



 13 

2.6.4.2 Ultra scale-down centrifugation studies ----------------------------- 101 

2.6.5 Ultra scale-down depth filtration ------------------------------------------- 102 

2.6.6 Ultra scale-down crossflow filtration -------------------------------------- 102 

2.7 Computational methods --------------------------------------------------------- 104 

2.7.1 Modelling cell lysis ----------------------------------------------------------- 104 

Chapter 3 Detecting cell lysis in E. coli fermentation using viscosity   monitoring

 105 

3.1 Introduction ----------------------------------------------------------------------- 105 

3.2 E. coli fermentation -------------------------------------------------------------- 107 

3.3 Characterising cell lysis in fermentation ------------------------------------- 113 

3.3.1 Defining cell lysis and cell viability --------------------------------------- 113 

3.3.2 Determining the optimal harvest time ------------------------------------- 113 

3.3.3 Understanding the relationship between cell lysis and viability ------- 115 

3.4 Developing a method to detect cell lysis using viscosity ------------------ 120 

3.4.1 Determining the viscosity profile of an E. coli fermentation ----------- 120 

3.4.1.1 Flow curves -------------------------------------------------------------- 120 

3.4.1.2 Viscosity profile in fermentation ------------------------------------- 125 

3.4.1.2.1 Comparing the viscosity profiles in fermentation using two 

different instruments ------------------------------------------------------------ 128 



 14 

3.4.1.3 Batch vs. fed-batch fermentation ------------------------------------- 129 

3.4.2 Detecting cell lysis and product loss using viscosity monitoring ------ 132 

3.5 Evaluating viscosity monitoring against other common monitoring 

techniques ---------------------------------------------------------------------------------- 135 

3.5.1 Biomass monitoring: optical density measurements and online 

capacitance measurements ------------------------------------------------------------ 135 

3.5.2 Offline analytical technologies --------------------------------------------- 136 

3.6 Conclusions ----------------------------------------------------------------------- 140 

Chapter 4 Investigating and modelling the effects of cell lysis on    the rheological 

properties of fermentation broths ---------------------------------------------------------- 142 

4.1 Introduction ----------------------------------------------------------------------- 142 

4.2 E. coli fermentation -------------------------------------------------------------- 143 

4.3 Understanding the change in broth viscosity during fermentation ------- 144 

4.4 Oscillatory tests ------------------------------------------------------------------ 149 

4.4.1 Elucidating the viscoelastic properties of E. coli cell paste ------------ 149 

4.4.1.1 Amplitude sweeps ------------------------------------------------------ 149 

4.4.1.2 Frequency sweeps ------------------------------------------------------ 153 

4.4.2 Monitoring changes in viscoelasticity throughout fermentation ------- 156 

4.5 Modelling cell lysis in postinduction fermentation ------------------------- 160 



 15 

4.5.1 Viscosity and cell concentration -------------------------------------------- 160 

4.5.2 Viscosity and protein concentration ---------------------------------------- 164 

4.5.3 Viscosity and DNA concentration ------------------------------------------ 167 

4.5.4 Comparing the shear viscosity of DNA, protein and cells -------------- 167 

4.5.5 Quantifying cell lysis using viscosity monitoring ------------------------ 171 

4.6 Composition of an E. coli cell ------------------------------------------------- 175 

4.7 Conclusions ----------------------------------------------------------------------- 177 

Chapter 5 Evaluating process options in Fab' primary recovery:    crossflow 

filtration with flocculation to improve product   yield, purity and process robustness

 179 

5.1 Introduction ----------------------------------------------------------------------- 179 

5.1.1 Problems with the existing Fab' process ----------------------------------- 180 

5.1.2 Flocculation -------------------------------------------------------------------- 183 

5.1.3 Crossflow filtration ----------------------------------------------------------- 183 

5.1.4 Ultra scale-down technologies ---------------------------------------------- 184 

5.1.5 Aims & objectives ------------------------------------------------------------ 186 

5.2 Upstream processing ------------------------------------------------------------ 187 

5.3 Flocculation studies ------------------------------------------------------------- 193 

5.4 USD primary recovery studies ------------------------------------------------- 196 



 16 

5.4.1 Process scenario 1 ------------------------------------------------------------ 196 

5.4.2 Process scenario 2 ------------------------------------------------------------ 199 

5.4.3 Process scenario 3 ------------------------------------------------------------ 200 

5.5 Flocculation and crossflow filtration ------------------------------------------ 203 

5.6 Evaluating the performance of the three primary recovery scenarios ---- 210 

5.7 Mass balances -------------------------------------------------------------------- 221 

5.7.1 Assumptions for the mass balances ---------------------------------------- 221 

5.7.2 Process sequence 1 ----------------------------------------------------------- 222 

5.7.3 Process sequence 2 ----------------------------------------------------------- 229 

5.7.4 Process sequence 3 ----------------------------------------------------------- 232 

5.7.5 Capital costs and processing time ------------------------------------------ 238 

5.7.6 Summarising the performance of the three process scenarios ---------- 241 

5.8 Conclusions ----------------------------------------------------------------------- 243 

Chapter 6 Considerations for the commercialisation of viscosity    monitoring - 245 

Chapter 7 Conclusions & future work -------------------------------------------------- 250 

Chapter 8 References --------------------------------------------------------------------- 257 

Chapter 9 Appendix ----------------------------------------------------------------------- 271 



 17 

9.1 Publication 1: Detecting cell lysis using viscosity monitoring in E. coli 

fermentation to prevent product loss (Biotechnology Progress) ------------------- 271 

9.2 Publication 2: Investigating and modelling the effects of cell lysis on the 

rheological properties of fermentation broths (Biochemical Engineering Journal)

 280 

9.3 Publication 3: Evaluating process options in Fab' primary recovery: 

crossflow filtration with flocculation to improve product yield, purity and process 

robustness (in preparation for submission, 2018) ------------------------------------ 292 

  



 18 

List of figures 

Figure 1-1: Schematic of a general immunoglobulin (Ig) molecule, highlighting the 

heavy chains in green (VH, CH1, CH2 and CH3), the light chains in blue (VL and 

CL), the Fab' region, the constant region (Fc) and the variable region (Fv). Red 

lines show disulfide bonds. ................................................................................ 43 

Figure 1-2: Illustration of rheometer operation. Diagram shows fixed lower plate, 

and upper plate of surface area, a, that rotates with shear force, f. Sample 

inserted between the upper and lower plates, and sample height (or gap size), h, 

is kept constant during measurement. ................................................................ 66 

Figure 1-3: Definition of shear terms. A rheometer applies a constant shear force, f, 

to a sample of height, h, over a surface area, a, which is displaced by amount, u.

 ............................................................................................................................ 66 

Figure 1-4: Illustration of three general flow behaviours. Shear viscosity, η, vs. shear 

rate, γ, for (a) a Newtonian fluid, (b) a non-Newtonian, shear thinning fluid and 

(c) a non-Newtonian, shear thickening fluid. ..................................................... 68 

Figure 1-5: Phase angle (δ) illustration. showing the input applied sinusoidal stress 

and the measured strain response, with a phase angle of δ. ............................... 78 

Figure 2-1: pTTOD A33 IGS2 plasmid used in E. coli w3110, coding for Fab' 

expression and tetracycline resistance, utilising a tac promoter (Adams et al., 

2009). ................................................................................................................. 83 

Figure 2-2: Correlation for the predicted maximum energy dissipation rate, ε, (W kg-

1) as a function of disc speed, N, (revolutions per second, rps), at the tip of the 

rotating disc in the USD shear device. Correlation developed by computational 

fluid dynamics (adapted from Levy et al. (1999)),  (where ― is the line of best 

fit), and relationship determined based on fluid dynamic analysis (ε = 1.7 x 10-3 

N3.71),    , (Chatel et al., 2014). .................................................................. 101 

file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129825
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129825
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129825
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129825
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129826
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129826
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129826
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129826
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129827
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129827
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129827
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129828
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129828
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129828
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129829
file:///C:/Users/Joseph/Google%20Drive/EngD/Thesis/Joseph%20Newton%20Thesis.docx%23_Toc504129829


 19 

Figure 2-3: Cross-sectional illustration of the USD crossflow filtration device. ..... 103 

Figure 3-1: Characterisation of two typical E. coli fermentation runs. Optical density 

at 600 nm (absorbance units (AU), in triplicate), dry cell weight (g/L, in 

triplicate) and total Fab' concentration (mg/mL, in duplicate). Cells induced 

with IPTG at 36 - 38 h, after a dissolved oxygen tension spike was observed. 

Dry cell weight reached a maximum of 48 g/L and 61 g/L, respectively; total 

Fab' concentration reached 1.6 mg/mL and 1.85 g/L respectively at the end of 

the fermentation. Error bars show standard deviation. .................................... 111 

Figure 3-2: Online fermenter controls for two typical E. coli fermentation runs. Cells 

were induced with IPTG at 36 - 38 h, after a dissolved oxygen tension spike was 

observed. Temperature was controlled at 30°C ± 1 until an OD600 of 38 was 

reached, and maintained at 25°C ± 1 thereafter. pH was controlled at 6.95 ± 

0.05; two spikes between 20-30 h correspond to sodium phosphate shot 

additions (see Materials & methods), and a spike at 36 - 38 h corresponds to the 

induction point. Stirrer rate was controlled between 300-1200 rpm. Dissolved 

oxygen tension (DOT) was controlled at 30% ± 5 for the fermentation duration, 

except for (a) between 30-52 h, where DOT fluctuated significantly (± 10%) 

and was subsequently controlled at 32%. (b) also shows fluctuation in the DOT 

and stirrer rate data in exponential phase, with occasional spikes above ± 10%. 

Data was recorded every 2 min, and smoothed using the "prune" function in 

Prism software (GraphPad Prism 7, Inc., La Jolla, California, USA) to reduce 

the number of data points (every two data points averaged). .......................... 112 

Figure 3-3: Analytical characterisation of cell lysis in an E. coli Fab' fermentation. 

(a) Intracellular Fab' concentration and Fab' leakage to the cell broth (data 

shown postinduction, mg/mL, in duplicate). (b) Cytotoxicity data (based on 

lactate dehydrogenase (LDH) release to the cell broth, data shown 

postinduction, %, in triplicate) and double stranded DNA (dsDNA) release (data 

shown postinduction, mg/mL, in triplicate). Error bars show standard deviation.

 .......................................................................................................................... 114 



 20 

Figure 3-4: Flow cytometry plots for BOX (bis-oxonol) and PI (propidium iodide) 

stains. For each plot, UL quadrant denotes dead cells and cell fragments, UR 

quadrant denotes PI stained cells (nonviable), LL quadrant denotes viable, 

polarised cells, and LR quadrant denotes viable cells that have been stained by 

BOX (depolarised cell membrane). (a) Sample was taken in mid-exponential 

phase, (b) sample was taken in mid-stationary phase at the onset of cell lysis (36 

h postinduction), and (c) sample was taken in late stationary/decay phase (57 h 

postinduction). Samples were measured in triplicate. ...................................... 117 

Figure 3-5: Scanning Electron Microscopy (SEM) images at x10,000 magnification. 

(a) SEM image of an E. coli fermentation sample in early stationary phase. (b) 

SEM image of an E. coli fermentation sample in late stationary phase/decay 

phase, showing; (1) healthy cells, (2) swollen cells, and (3) shells of lysed cells.

 .......................................................................................................................... 119 

Figure 3-6: Viscometry flow curves of E. coli cell broth at various times throughout 

fermentation, over a shear rate of 100-1000 s-1, using a Malvern Instruments 

Kinexus Lab + rotational rheometer. Induction time was at 38 h using IPTG. 

Measurements were carried out at 25°C using 50 mm parallel plates and a 300 

μm gap size. An increase in shear thinning behaviour is evident as the 

fermentation proceeded (flow behaviour index, n, was greater than 0.85 for all 

samples). Single viscometry measurements were recorded at each shear rate, 

and held at steady state for 10 seconds. ........................................................... 123 

Figure 3-7: Comparison of two rheological instruments to measure viscosity. Optical 

density measured at 600 nm (absorbance units, AU, in triplicate). (a) Shear 

viscosity (Pa s, single measurement, held at steady state for 10 seconds) 

measured at 100 s-1 with a Malvern Instruments Kinexus Lab + rotational 

rheometer, at 25°C using 50 mm parallel plates and a 300 μm gap size. 

Induction point was at 38 h with IPTG. (b) Shear viscosity (Pa s, duplicate 

measurements) measured at 75 s-1 with a Brookfield DV-2+ viscometer at 25°C 

using a cup and bob setup (CP-40 cup, coaxial cylinder rotary viscometer). 

Induction point was at 46 h with IPTG. Error bars show standard deviation. . 127 



 21 

Figure 3-8: Shear viscosity trend in a batch E. coli fermentation. Shear viscosity 

measured at 75 s-1 (Pa s, duplicate measurements) with a Brookfield DV-2+ 

viscometer at 25°C using a cup and bob setup (CP-40 cup, coaxial cylinder 

rotary viscometer). Optical density (measured at 600 nm, absorbance units, AU, 

in triplicate), total protein release (mg/mL, measured in triplicate) and DNA 

release (mg/mL, measured in triplicate) presented to compare trends with fed-

batch fermentation. Cells were induced with IPTG at 34 h, however glycerol 

was not fed in order to observe cell lysis. Rapid viscosity increase evident 

immediately after induction point. Fermentation terminated at 70 h. Error bars 

show standard deviation. .................................................................................. 131 

Figure 3-9: Effect of product leakage (mg/mL, measured in duplicate) and DNA 

release (mg/mL, measured in triplicate) on viscosity increase (Pa s, single 

measurement, held at steady state for 10 seconds) in postinduction fermentation 

for three fermentation runs. Error bars show standard deviation. .................... 134 

Figure 3-10: Evaluating online capacitance measurements against viscosity 

monitoring and optical density measurements to detect cell lysis. Capacitance 

profile measured online continuously and automatically converted to viable 

cells/mL. Capacitance data were calibrated offline with flow cytometry data (in 

triplicate). Shear viscosity measured at 100 s-1 (Pa s, single measurement, held 

at steady state for 10 seconds). Cell growth profile shown by optical density as a 

reference (measured at 600 nm, absorbance units, AU, in triplicate). Cells were 

induced with IPTG at 38 h. Error bars show standard deviation. .................... 138 

Figure 4-1: Understanding the relative contributions of components of a cell broth to 

the viscosity increase in postinduction fermentation. Flow curves of E. coli (a) 

cell broth, (b) cell paste and (c) supernatant at various time points in the 

fermentation. Single measurements were recorded at each shear rate, held at 

steady state for 10 seconds, over a shear rate range 100–1,000 s-1. Viscometry 

measurements were carried out at 25°C using 50 mm parallel plates and a 300 

μm gap size. Error bars show standard deviation. ........................................... 146 



 22 

Figure 4-2: Elucidating the rheological properties of an E. coli cell paste. 

Measurements carried out to compare the rheological properties (storage (G') 

and loss (G'') moduli) of E. coli between two different growth stages; mid 

exponential phase and 33 hours postinduction (typical harvest point). (a) 

Dynamic oscillation measurements were taken using an amplitude sweep over a 

shear strain range 0.05-10%, holding frequency constant at 1 Hz. (b) The loss 

tangent, tanδ, is a ratio of the loss modulus to storage modulus (G''/G'), which 

gives a useful quantification of the elasticity of a material. Measurements were 

carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. Error 

bars show standard deviation. .......................................................................... 152 

Figure 4-3: Frequency sweep of E. coli cell paste. Dynamic oscillation measurements 

were taken to determine the rheological properties of the cell paste. Amplitude 

was held constant at 0.1% (within the LVER) and frequency was varied 

between 1 and 10 Hz. Measurements carried out in triplicate to compare the 

rheological properties (storage (G') and loss (G'') moduli and phase angle (δ, °)) 

of E. coli between two different growth stages; mid-exponential phase and 33 

hours postinduction (typical harvest point). Measurements were carried out at 

25°C using 50 mm parallel plates and a 300 μm gap size. Error bars show 

standard deviation. ........................................................................................... 155 

Figure 4-4: Amplitude sweeps of E. coli cell paste to determine the critical strain 

limit. Dynamic oscillation measurements were taken to determine the linear 

viscoelastic range (LVER, the critical strain limit before a material starts to 

break down), using an amplitude sweep over a shear strain range 0.05-10%, 

holding frequency constant at 1 Hz. Measurements carried out at various time 

points throughout fermentation, at 25°C using 50 mm parallel plates and a 300 

μm gap size. Error bars show standard deviation. ........................................... 158 

Figure 4-5: Changes in cell strength during an E. coli (Fab') fermentation. Induced 

with IPTG at 38 h. (a) Optical density at 600 nm (absorbance units (AU), in 

triplicate), dry cell weight (g/L, in triplicate) and total Fab' concentration 

(mg/mL, in duplicate). (b) Shear viscosity (Pa s, single measurement, held at 



 23 

steady state for 10 s) and average storage modulus (G', elastic component) of 

cell paste (Pa, measured in triplicate), calculated by averaging G' over the linear 

viscoelastic range (LVER). Measurements were carried out at 25°C using 50 

mm parallel plates and a 300 μm gap size. Error bars show standard deviation.

 .......................................................................................................................... 159 

Figure 4-6: Determining the relationship between cell concentration and shear 

viscosity. (a) Flow curves of cell suspensions (shown as dry cell weight, g/L) 

measured over a shear rate 100-1,000 s-1, carried out in triplicate, using 50 mm 

parallel plates at 25°C and a 300 μm gap size. (b) The linear relationship 

between cell concentration (dry cell weight, g/L) and shear viscosity at 100 s-1; 

the R2 value was 0.98. Error bars show standard deviation. ............................ 162 

Figure 4-7: Determining the relationship between protein concentration and shear 

viscosity. (a) Flow curves of protein (BSA) solutions measured over a shear rate 

100-1,000 s-1, carried out in triplicate, using 50 mm parallel plates at 25°C and a 

300 μm gap size. (b) The linear relationship between protein concentration and 

shear viscosity at 100 s-1; the R2 value was 0.92. Error bars show standard 

deviation. .......................................................................................................... 165 

Figure 4-8: Determining the relationship between DNA concentration and shear 

viscosity. (a) Flow curves of DNA solutions at various concentrations, 

measured over a shear rate 100-1,000 s-1, carried out in triplicate, using 50 mm 

parallel plates at 25°C and a 300 μm gap size. (b) The linear relationship 

between DNA concentration and shear viscosity at 100 s-1; the R2 value was 

0.99. Error bars show standard deviation. ........................................................ 169 

Figure 4-9: Comparison of model prediction of cell lysis with experimental data. 

Results of an empirical model built with three fermentation datasets (23 total 

data points), to determine DNA concentration in extracellular space (mg/mL, 

experiments carried out in triplicate), and hence cell lysis, from rapid viscosity 

measurements. The R2 value was 0.91, and the model had 3 outliers in the 

dataset. 90% confidence bands are shown. Data was normalised to perform the 



 24 

modelling and de-normalised to obtain the final results. Error bars show 

standard deviation. ........................................................................................... 174 

Figure 5-1: Process flowsheets of the primary recovery sequences under study. (a) 

USD study of the existing sequence for the primary recovery of Fab' from E. 

coli fermentation. (1) indicates Harvest Point 1 at maximum intracellular 

concentration (as seen in Figure 5-3, at 32 h postinduction). (R) indicates re-

suspension with extraction buffer, carried out after centrifugation at a 70% 

dewatering level; (b) USD study carried out using a similar primary recovery 

sequence to that used by Voulgaris et al. (2016), with flocculation and 

centrifugation followed by depth filtration, after fermentation ran to maximum 

productivity i.e. fully autolysed cells. (2) indicates Harvest Point 2 at 57 h 

postinduction (as seen in Figure 5-3); (c) USD study carried out using a novel 

combination of flocculation with crossflow filtration, after fermentation ran to 

maximum productivity i.e. fully autolysed cells, and harvested at Harvest Point 

2 (as seen in Figure 5-3). .................................................................................. 182 

Figure 5-2: Fermentation growth profile for duplicate E. coli Fab' fermentations. 

Cells induced with IPTG at 36 h and fed with glycerol thereafter. Optical 

density at 600 nm (absorbance units (AU), in triplicate) and dry cell weight 

(g/L, in triplicate). Harvest Point 1 and 2 denote harvest at 32 h postinduction 

(process sequence 1) and 57 h postinduction (process sequence 2 and 3), 

respectively. Error bars show standard deviation. ........................................... 191 

Figure 5-3: Product, nucleic acid and viscosity profiles for E. coli Fab' fermentation. 

Cells induced with IPTG at 36 h and fed with glycerol thereafter. Data shown 

postinduction. Harvest Point 1 and 2 denote harvest at 32 h postinduction 

(process sequence 1) and 57 h postinduction (process sequence 2 and 3) 

respectively. (a) Total Fab' concentration, intracellular Fab' concentration and 

Fab' leakage, (mg/mL, in duplicate); (b) Shear viscosity (Pa s, single 

measurement, held at steady state for 10 s) and extracellular nucleic acid 

concentration (mg/mL, in triplicate at 230 nm absorbance). Viscosity 



 25 

measurements were carried out at 25°C using 50 mm parallel plates and a 300 

μm gap size. Error bars show standard deviation. ........................................... 192 

Figure 5-4: Evaluating flocculation conditions for E. coli cell broth. Cell broth used 

was autolysed and harvested at 57 h postinduction. (a) particle size distributions 

for E. coli cell broth with and without flocculation (PEI). Data recorded in 

triplicate and averaged before being treated using a method previously 

described by Chatel et al. (2014), to convert from volume % to volume 

frequency; (b) Extracellular nucleic acid concentration (measured in triplicate at 

230 nm absorbance), extracellular total protein concentration (measured in 

triplicate at 280 nm absorbance) and shear viscosity of the supernatant of E. coli 

cell broth (Pa s, single measurement, held at steady state for 10 s) for different 

concentrations of PEI. Viscosity measurements were carried out at 25°C using 

50 mm parallel plates and a 300 μm gap size. Error bars show standard 

deviation. .......................................................................................................... 195 

Figure 5-5: Depth filtration step for process scenario 1. Depth filtration performed in 

duplicate on a liquid handling robotic platform (Tecan Freedom EVO1), fitted 

with depth filter media with an area of 2.8 x 10-5 m2, and 0.1 μm nominal pore 

size. Vacuum filtration carried out at constant pressure (ΔP = 300 mbar), with 5 

mL of process material. (a) permeate volume (μL) vs. time (seconds); (b) plot of 

t/v (seconds/μL) vs. t (seconds), used to determine the Vmax. R2 values for 

duplicate 1 and 2 were 0.994 and 0.9896, respectively. .................................. 198 

Figure 5-6: Particle size distributions taken to assess floc breakup before and after 

USD shear studies. Cell broth was autolysed and harvested at 57 h 

postinduction and the PSD is shown as a reference. Flocculation was carried out 

at 1% w/v PEI concentration (final concentration in the broth). USD shear 

studies carried out at 1.30 x 105 W/kg. Data recorded in triplicate and averaged 

before being treated using a method previously described by Chatel et al. 

(2014), to convert from volume % to volume frequency. ................................ 201 



 26 

Figure 5-7: Depth filtration for process scenario 2. Depth filtration performed in 

duplicate on a liquid handling robotic platform (Tecan Freedom EVO1), fitted 

with depth filter media with an area of 2.8 x 10-5 m2, and 0.1 μm nominal pore 

size. Vacuum filtration carried out at constant pressure (ΔP = 300 bar), with 5 

mL of process material. (a) permeate volume (μL) vs. time (seconds); (b) plot of 

t/v (seconds/μL) vs t (seconds), used to determine the Vmax. R2 values for 

duplicate 1 and 2 were 0.9868 and 0.9736, respectively. ................................ 202 

Figure 5-8: Particle size distributions before and after flocculation, and after 30 and 

60 min operation with CFF to show floc breakup vs. time for two feed fluxes. 

Data recorded in triplicate and averaged before being treated using a method 

previously described by Chatel et al. (2014), to convert from volume % to 

volume frequency; (a) 1350 L/m2/h feed flux (4,000 rpm in the USD CFF 

device) and (b) 1950 L/m2/h feed flux (6,000 rpm in the USD CFF device). . 205 

Figure 5-9: Crossflow filtration with and without flocculation. (a) Time taken before 

membrane blocked for CFF operation at constant permeate flux of 45.5 L/m2/h 

(1 mL/min for USD device operation) and 1350 L/m2/h feed flux, showing 

duplicate runs with and without flocculation (1% w/v PEI). CFF runs stopped 

upon reaching a transmembrane pressure (TMP) of 2 bar. Average operating 

time without flocculation was 2.2 min ± 0.7 (capacity = 1,677 L/m2 ± 485), and 

average time with flocculation was 16.7 min ± 7 (capacity = 12,687 L/m2 ± 

5,600); (b) water flux tests before and after CFF, shown as normalised water 

permeability (NWP) at 25°C (in duplicate). Error bars show standard deviation.

 .......................................................................................................................... 209 

Figure 5-10: Optical density profiles across each of the three process scenarios. All 

runs carried out in duplicate. Optical density measured at 600 nm (absorbance 

units, AU, in triplicate); (a) fermentation harvested at Harvest Point 1 (see 

Figure 5-3); (b) and (c) fermentation harvested at Harvest Point 2. 

Centrifugation (coupled with USD shear studies as described) carried out at 

6,800 rpm for 5 min (equivalent to industrial scale CSA centrifuge operation at 

48 L/h, based on an equivalent settling area, Vlab/t∑T of 1.96 x 10-8 m/s). Re-



 27 

suspension carried out at a ratio of 1g cells: 7 mL extraction buffer, and 

periplasmic extraction carried out for 12 h at 60°C and 250 rpm in a shaker-

incubator. Depth filtration performed at constant pressure (ΔP = 300 mbar) 

using a nominal pore size of 0.1 μm. PEI concentration was 1% for all runs (w/v 

of broth). CFF runs were carried out at a constant permeate flux of 45.5 L/m2/h 

(1 mL/min) and feed flux of 1350 L/m2/h using a 500 kDa pore size. Error bars 

show standard deviation. .................................................................................. 213 

Figure 5-11: Nucleic acid, total protein and product (Fab') profiles across each unit 

operation for the three process scenarios. All runs carried out in duplicate. Fab' 

was measured in duplicate (mg/mL), total protein in triplicate (at 280 nm 

absorbance, mg/mL) and nucleic acids in triplicate (at 230 nm absorbance, 

mg/mL); (a) process scenario 1; (b); process scenario 2; (c) process scenario 3. 

Error bars show standard deviation. ................................................................. 217 

Figure 5-12: Normalised nucleic acid, total protein and product (Fab') profiles across 

each unit operation for the three process scenarios. All runs carried out in 

duplicate. Fab' was measured in duplicate (mg/mL), total protein in triplicate (at 

280 nm absorbance, mg/mL) and nucleic acids in triplicate (at 230 nm 

absorbance, mg/mL); (a) process scenario 1; (b); process scenario 2; (c) process 

scenario 3. Error bars show standard deviation. .............................................. 218 

Figure 5-13: Summary of the three DSP process scenarios. All runs carried out in 

duplicate; (a) Total solids remaining (%) at the end of each primary recovery 

scenario and overall product yield (%) calculated by mass balance; (b) 

Comparison of impurity levels for each process scenario; [Nucleic acids]/[Fab'], 

[total protein]/[Fab'] and [total impurities]/[Fab']. Fab' measured in duplicate 

(mg/mL), and nucleic acid and total protein measured in triplicate (at 280 nm 

and 230 nm, respectively, mg/mL). Error bars show standard deviation. ....... 220 

  



 28 

List of tables 

Table 2-1: SM6e trace elements formula for SM6Gc defined media (Garcia-Arrazola 

et al., 2005). ------------------------------------------------------------------------------- 84 

Table 2-2: Media components for SM6Gc defined media (Garcia-Arrazola et al., 

2005). -------------------------------------------------------------------------------------- 85 

Table 2-3: Improved PID controller settings for pH, temperature and dissolved 

oxygen tension (DOT) for the Applikon 7 L fermenter ---------------------------- 86 

Table 3-1: Flow behaviour index (n) values for the flow curves presented in Figure 

3-6 of E. coli cell broth at various times throughout fermentation, over a shear 

rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + rotational 

rheometer. Induction time was at 38 h using IPTG. Measurements were carried 

out at 25°C using 50 mm parallel plates and a 300 μm gap size. An increase in 

shear thinning behaviour is evident as the fermentation proceeded (flow 

behaviour index, n, was greater than 0.85 for all samples). Single viscometry 

measurements were recorded at each shear rate, and held at steady state for 10 

seconds. --------------------------------------------------------------------------------- 124 

Table 3-2: Comparison of viscosity monitoring with common fermentation 

monitoring techniques used to detect cell lysis. ----------------------------------- 139 

Table 4-1: Flow behaviour index (n) values for the flow curves presented in Figure 

4-1 (a) of E. coli cell broth at various times throughout fermentation, over a 

shear rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + 

rotational rheometer. Induction time was at 38 h using IPTG. Measurements 

were carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. An 

increase in shear thinning behaviour is evident as the fermentation proceeded 

(flow behaviour index, n, was greater than 0.85 for all samples). Single 

viscometry measurements were recorded at each shear rate, and held at steady 

state for 10 seconds. ------------------------------------------------------------------- 147 



 29 

Table 4-2: Flow behaviour index (n) values for the flow curves presented in Figure 

4-1 (b) of E. coli cell paste at various times throughout fermentation, over a 

shear rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + 

rotational rheometer. Induction time was at 38 h using IPTG. Measurements 

were carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. All 

samples show highly shear thinning behaviour. Triplicate viscometry 

measurements were recorded at each shear rate, and held at steady state for 10 

seconds. Error bars show standard deviation. -------------------------------------- 147 

Table 4-3: Flow behaviour index (n) values for the flow curves presented in Figure 

4-1 (c) of E. coli supernatant at various times throughout fermentation, over a 

shear rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + 

rotational rheometer. Induction time was at 38 h using IPTG. Measurements 

were carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. An 

increase in shear thinning behaviour is evident as the fermentation proceeded. 

Triplicate viscometry measurements were recorded at each shear rate, and held 

at steady state for 10 seconds. Error bars show standard deviation. ------------ 148 

Table 4-4: Flow behaviour index (n) values for the flow curves presented in Figure 

4-6 (a) of E. coli biomass at various times throughout fermentation, over a shear 

rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + rotational 

rheometer. Induction time was at 38 h using IPTG. Measurements were carried 

out at 25°C using 50 mm parallel plates and a 300 μm gap size. An increase in 

shear thinning behaviour is evident as the cell concentration increased. 

Triplicate viscometry measurements were recorded at each shear rate, and held 

at steady state for 10 seconds. Error bars show standard deviation. ------------ 163 

Table 4-5: Flow behaviour index (n) values for the flow curves presented in Figure 

4-7 (a) of protein at various concentrations (10 - 50 g/L), over a shear rate of 

100-1000 s-1, using a Malvern Instruments Kinexus Lab + rotational rheometer. 

Induction time was at 38 h using IPTG. Measurements were carried out at 25°C 

using 50 mm parallel plates and a 300 μm gap size. An increase in shear 

thinning behaviour is evident as the cell concentration increased, however all 



 30 

samples were highly shear thinning. Triplicate viscometry measurements were 

recorded at each shear rate, and held at steady state for 10 seconds. Error bars 

show standard deviation. -------------------------------------------------------------- 166 

Table 4-6: Flow behaviour index (n) values for the flow curves presented in Figure 

4-8 (a) of DNA at various concentrations (0.5 - 4 g/L), over a shear rate of 100-

1000 s-1, using a Malvern Instruments Kinexus Lab + rotational rheometer. 

Induction time was at 38 h using IPTG. Measurements were carried out at 25°C 

using 50 mm parallel plates and a 300 μm gap size. Newtonian behaviour was 

observed for all samples under study. Triplicate viscometry measurements were 

recorded at each shear rate, and held at steady state for 10 seconds. Error bars 

show standard deviation. -------------------------------------------------------------- 170 

Table 4-7: Composition of an E. coli cell (Neidhardt & Umbarger, 1996) ---------- 176 

Table 5-1: Mass balance for solids, product (Fab'), nucleic acids and total protein in 

process scenario 1. Cells harvested at 32 h postinduction and held for 1 h to 

mimic large scale holding time. Mass balance based on starting feed of 1000 L. 

Centrifugation carried out at 48 L/h using a disc stack centrifuge and dewatered 

to a level of 70%. Cell paste (sediment stream) after the first centrifugation step 

was re-suspended in extraction buffer in a ratio of 1: 7. Fab' data measured by 

HPLC (Agilent 1200, Agilent Technologies Inc., California, USA) and shown 

as both intracellular and extracellular concentration, where appropriate. Cell 

concentration was measured by optical density, and converted to wet cell 

weight. Nucleic acid and total protein concentration measured using the 

Nanodrop (Nanodrop 1000 spectrophotometer, Thermo Scientific, Wilmington, 

DE, USA). ------------------------------------------------------------------------------ 228 

Table 5-2: Mass balance for solids, product (Fab'), nucleic acids and total protein in 

process scenario 2. Cells harvested at 57 h postinduction and fully autolysed. 

Mass balance based on starting feed of 1000 L. Flocculation carried out using 

25 % w/v PEI solution and added to reach a final broth concentration of 1%. 

Centrifugation carried out at 48 L/h using a disc stack centrifuge and dewatered 



 31 

to a level of 70%. Fab' data measured by HPLC (Agilent 1200, Agilent 

Technologies Inc., California, USA). Cell concentration was measured by 

optical density, and converted to wet cell weight. Nucleic acid and total protein 

concentration measured using the Nanodrop (Nanodrop 1000 

spectrophotometer, Thermo Scientific, Wilmington, DE, USA). --------------- 231 

Table 5-3: Mass balance for solids, product (Fab'), nucleic acids and total protein in 

process scenario 3. Cells harvested at 57 h postinduction and fully autolysed. 

Mass balance based on starting feed of 1000 L. Flocculation carried out using 

25 % w/v PEI solution and added to reach a final broth concentration of 1%. 

Cell concentration was measured by optical density, and converted to wet cell 

weight. Total protein and nucleic acid concentration measured using the 

Nanodrop (Nanodrop 1000 spectrophotometer, Thermo Scientific, Wilmington, 

DE, USA). Fab' data measured by HPLC (Agilent 1200, Agilent Technologies 

Inc., California, USA). CFF carried out at a flux rate of 45.5 L/m2/h in 

concentration mode, and then a mass balance for a diafiltration step was carried 

out to determine the buffer volume required to reach 1.372 kg total product 

recovered (equal to process scenario 2). -------------------------------------------- 236 

Table 5-4: Equipment sizes and capital costs (taken from Biosolve (Biopharm 

Services, Chesham, UK)) for each of the units used in the three process 

sequences carried out in this study. Costing data obtained from January 2016 

and in US dollars ($). Sizing based on the most appropriate fit for the volumes 

required in this study, and on available equipment in the Biosolve database. 238 

Table 5-5: Processing time (h) required for each unit operation in process scenario 1. 

Centrifugation carried out at 48 L/h, using a disc stack centrifuge. Periplasmic 

extraction carried out for 16 h, according to standard protocol at large scale. 

Depth filtration determined based on a filter area of 5 m2. 2 h product transfer 

time assumed between each step for large scale operation (not included in 

calculations below). ------------------------------------------------------------------- 240 



 32 

Table 5-6: Processing time (h) required for each unit operation in process scenario 2. 

Flocculation at large scale assumed to take 2 h total for 1000 L broth. 

Centrifugation carried out at 48 L/h, using a disc stack centrifuge. Depth 

filtration determined based on a filter area of 5 m2. 2 h product transfer time 

assumed between each step for large scale operation (not included in 

calculations below). ------------------------------------------------------------------- 240 

Table 5-7: Processing time (h) required for each unit operation in process scenario 3. 

Flocculation at large scale assumed to take 2 h total for 1000 L broth. CFF steps 

calculated based on flux rates in both concentration mode and diafiltration 

mode. 2 h product transfer time assumed between each step for large scale 

operation (not included in calculations below). ----------------------------------- 240 

Table 5-8: Summary of the three DSP process scenarios. Product concentration (Fab', 

mg/mL) measured in duplicate. Total product recovered and overall product 

yield at end of DSP were calculated by mass balance, based on 1,000 L of feed 

fermentation broth. Total solids remaining and [Impurity]/[Fab'] were calculated 

from experimental data (runs carried out in duplicate). Capital costs and 

downstream processing (DSP) time were calculated using both Biosolve 

(Biopharm Services, Chesham, UK) and mass balances, based on processing 

1,000 L of feed fermentation broth. The starting points for scenario 2 and 3 

mass balances were normalised, so that experimental variation between 

fermentation runs was removed. ----------------------------------------------------- 242 

 

  



 33 

Nomenclature 

Amembrane Area of the CFF membrane, m2 

Ccells Concentration of cells, g.DCW L-1 

CDNA Concentration of DNA, g L-1 

CNucAc,tot; 

CNucAc,soluble; 

CNucAc,solids 

Concentration of nucleic acids; total, soluble and in the solids 

fraction, mg/mL 

Cprod,tot; Cprod,soluble; 

Cprod,solids 

Concentration of product; total, soluble and in the solids 

fraction, mg/mL 

Cprod,CFFfeed Concentration of product in the CFF feed, mg/mL 

Cprod,CFFretentate1 
Concentration of product in the retentate after CFF in 

concentration mode, mg/mL 

Cprod,CFFretentate2 
Concentration of product in the retentate after CFF in 

diafiltration mode, mg/mL 

Cprod,ext Concentration of extracellular product, mg/mL 

Cprod,int Concentration of intracellular product, mg/mL 

Cprot Concentration of protein, g L-1 

Csol Concentration of solids, g L-1 

CTotProt,tot; 

CTotProt,soluble; 

CTotProt,solids 

Concentration of total protein; total, soluble and in the solids 

fraction, mg/mL 

CF Clarification factor, dimensionless 

Clarificationcent Clarification performance in centrifugation, % 

d50 Median particle diameter, μm 

D Number of diavolumes, dimensionless 

DW Dewatering level, % 

FluxCFF Flux rate for CFF operation, L m-2 h-1 

Fv,i 
Volume frequency distribution, where i is the channel 

number, dimensionless 

G* Complex shear modulus, Pa 

G' Loss modulus, Pa 

G'' Storage modulus, Pa 

g Gravitational acceleration, m s-2 

K Consistency index, Pa sn 

Mliq Mass of liquid in stream, kg 



 34 

MNucAc,tot; 

MNucAc,soluble; 

MNucAc,solids 

Mass of nucleic acids; total, soluble and in the solids fraction, 

kg 

Mprod,tot; Mprod,solids; 

Mprod,soluble 
Mass of product; total, soluble and in the solids fraction, kg 

Mprod, ext Mass of extracellular product, kg 

Mprod, int Mass of intracellular product, kg 

Msol Mass of solids in stream, kg 

Msol, aftext Mass of solids after extraction, kg 

Msol,beforeext Mass of solids before extraction, kg 

Msol,DFfeed Mass of solids in depth filtration feed, kg 

Msol, DFpermeate Mass of solids in permeate (depth filtration), kg 

Msol, feed Mass of solids in feed stream, kg 

Msol, sed Mass of solids in sediment stream, kg 

Msol, sup Mass of solids in supernatant stream, kg 

Mtot Total mass in stream, kg 

MTotProt,tot; 

MTotProt,soluble; 

MTotProt,solids 

Mass of total protein; total, soluble and in the solids fraction, 
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Vsol, sup Volume of solids in supernatant stream, L 

Vtot Total volume, L 

Vtot, sed Total volume in sediment stream, L 

Vtot, sup Total volume in supernatant stream, L 

Vtot, DFpermeate Total volume in the depth filtration permeate, L 

Wi Particle size range of channel number i, dimensionless 

 

Greek letters 

δ Phase angle, ° 

ε Maximum energy dissipation rate, W kg-1 

εext Periplasmic extraction efficiency, % 



 36 

ΔP Pressure drop across inlet/outlet of depth filter 

η Shear viscosity, Pa s 
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DOT Dissolved oxygen tension, % 
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Fab' Antibody fragment or antigen-binding fragment 
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PEI Polyethyleneimine 

PI Propidium iodide 

PID Proportional-integral-derivative 
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PSD Particle size distribution 

PPG Polypropylene glycol 

QbD Quality by design 

RNA Ribonucleic acid 

RQ Respiratory quotient 

scFV Single chain variable fragment 
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TMP Transmembrane pressure, bar 

UF Ultrafiltration 

USD Ultra scale-down 

USP Upstream processing 

v/v Volume/volume 

w/v Weight/volume 

w/w Weight/weight 

VH Heavy chain hypervariable region 

VL Light chain hypervariable region 

 



Chapter 1 Introduction 

Advances in the pharmaceutical industry over the last hundred years, and the 

subsequent evolution of biotechnology, have impacted almost every aspect of our 

lives in the 21st century. The biopharmaceutical industry continues to grow at a rapid 

rate, and in fact, eight out of ten of the best-selling drugs in the world in 2016 were 

produced using biological methods. Throughout the industry, vast amounts of money 

are spent on drug discovery and development, with an estimated $1.7 billion and 12 

years required to bring a drug to market (Kola, 2008). Moreover, the likelihood of a 

drug candidate being approved in clinical trials is estimated to be around 12% 

(DiMasi et al., 2016). 

Despite the huge advances in our ability to treat a wide range of diseases using 

biopharmaceuticals, the cost of drug development and the extremely high risk of 

failure in clinical trials signify a strong need to improve the drug development 

process. By improving the efficiency of process development, and developing tools 

that enable process optimisation and characterisation at an early stage of 

development, the outcomes of the drug development process and clinical trials can 

be improved. The implications of such development tools are vast; not only reducing 

costs for the consumer but also reducing risk by bringing safer, more efficacious 

drugs to market, as well as improving speed to market.  

This project is specifically focused on establishing and developing a novel 

monitoring methodology to enable process monitoring in biopharmaceutical 

production, with the aim of detecting cell lysis in fermentation to prevent product 

loss. The development of this technology has applications in process design, 

characterisation, optimisation, scale-up and large scale production. The following 

sections will provide an overview of the production of antibody fragments (Fab') 

using E. coli as a host organism, highlight some of the challenges associated with its 

production, specifically those associated with cell lysis and discuss recent advances 

in process monitoring technologies. Finally, the overall aims and objectives of this 

thesis will be discussed. 
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1.1 Biologics 

Biologics can be defined as large, complex molecules (typically proteins or 

polypeptides) that are produced by living organisms (such as microbial or 

mammalian cells) (Morrow and Felcone, 2004). In contrast to chemically-

synthesised drugs, biologics are more complicated to produce, harder to characterise, 

are more challenging to scale up and are much more sensitive to conditions such as 

temperature and the chemical environment. The real difference, however, between 

biologics and chemically-synthesised drugs lies in the genetic manipulation of a cell 

through the use of recombinant DNA technology, which involves isolating and often 

modifying human DNA before inserting it into a host cell (such as a mammalian cell 

or a microbial cell), and making the organism express it (i.e. express a product) 

(Morrow and Felcone, 2004).  

The ability to manipulate the genetic information of host organisms has enabled the 

production of large and complex molecules that were previously not possible to 

produce by traditional chemical synthesis. In addition, the complexity of these 

molecules has opened up a vast range of possibilities to treat diseases that were 

previously untreatable and some examples of biologics include antibodies, vaccines, 

gene therapies and enzymes. As a result, their use is now widespread and the 

progress achieved in the last 40 - 50 years has been incredible. The hormone insulin 

was discovered in 1921 by Banting and Best, however it wasn't until 1982 that the 

first insulin product was approved by the Food and Drug Administration (FDA) for 

therapeutic use (Revers and Furczon, 2010), after the discovery of recombinant DNA 

technology by Boyer and Cohen in 1973 (Cohen et al., 1973). Since then, the huge 

developments in the industry have led to a wide range of treatments for various 

cancers (Avasti/bevacizumab, Herceptin/Trastuzumab), arthritis 

(Humira/Adalimumab, Remicade/Infliximab) and vaccines such as Prevnar 

(pneumococcal pneumonia) or Gardasil (human papillomavirus). 

1.1.1 Antibodies 

Antibodies, or immunoglobulins (Ig), are an extremely important class of 

therapeutics. Antibodies are essentially proteins that can be found in the blood, and 
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have a vital role in the immune system; antibodies will bind to specific targets (i.e. 

antigens), for example foreign bodies such as bacteria or viruses. Although 

knowledge of the immune system dates as far back as ancient Greece, origins of the 

use of antibodies as a therapy began with the discovery of von Behring and Kitasato 

in 1890, using small quantities of serum infected with diphtheria or tetanus as a way 

to pre-treat healthy animals against the respective diseases (von Behring and 

Kitasato, 1890). In 2016, antibodies accounted for 5 of the top 10 bestselling drugs 

worldwide, and sales represented around half of all biopharmaceutical revenues in 

2013 (Ecker et al., 2015).  

A full antibody comprises of 4 polypeptides; two identical heavy-chain and two 

identical light-chain regions, that form a Y-shape, as shown in Figure 1-1. Full 

antibodies have an average mass of ~150 kDa and the amino acid sequence at the tip 

of the "Y" shape is highly variable (as highlighted in Figure 1-1, both the light and 

heavy chains), and typically comprises of 110-130 amino acids. This variable region 

gives antibodies their antigen binding specificity i.e. the ability to bind to a specific 

antigen. Antibodies can be divided into 5 major classes, IgG, IgM, IgA, IgD and IgE; 

and are split as such based on their constant region structure (which confers the 

mechanism of antigen binding). As seen in Figure 1-1, the heavy chain region can be 

further subdivided into four sections; CH1, CH2, CH3 and VH. The VH region is 

hypervariable, and the CH regions are constant. Similarly for the light chains, the VL 

region is hypervariable and the CL region is constant. 

1.1.1.1 Antibody fragments 

A full length antibody (i.e. ~150 kDa) is a large and intricate molecule, and 

producing this molecule through biological methods is therefore complex and 

challenging, for example, requiring the necessary host cell machinery for post-

translational modifications. As seen in Figure 1-1, a full length antibody can be 

cleaved into smaller parts, including antibody fragments (Fab', or antigen-binding 

fragments), single chain variable fragments (scFv) and third generation variants of 

such molecules (Nelson and Reichert, 2009). Of these three fragments, Fab' is the 

most widely researched. In addition, genetic engineering can be employed to build 

various combinations of the light and heavy chains of the antibody fragment (Better 
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et al., 1988), in order to affect factors such as affinity, immunogenicity, half-life and 

effector function (Abuchowski et al., 1977).  

Antibody fragments that exhibit antigen-binding properties are a relatively new class 

of therapeutics entering the market (Nelson and Reichert, 2009). Although the 

nascent research into Fab' fragments has focused on cancer treatments, none of the 

three FDA approved fragments (as of 2009; ReoPro (used to prevent cardiac 

ischemic complications for patients undergoing percutaneous coronary intervention 

(PCI) treatment for both coronary heart disease and unstable angina, Janssen/Eli 

Lily), Lucentis (used to treat patients with wet age-related macular degeneration, 

Roche-Genentech) and Cimzia (used to treat both Crohn's disease and rheomatoid 

arthritis, UCB)) were for cancer indications (Nelson and Reichert, 2009). As of 2009, 

a further 19 Fab' fragments were in clinical trials, and their application and interest in 

therapies has been rapidly growing (although they remain a relatively small 

percentage of full mAb's).  

In comparison to full sized antibodies, Fab' fragments have several advantages and 

disadvantages. The smaller size of Fab' fragments means that they can be synthesised 

more easily, require less resources, have lower costs and have a lower burden on the 

host cell, for example there is no need for glycosylation (Li et al., 2013). Another 

advantage of Fab' fragments is that their smaller size enables faster and deeper 

penetration into tissue and tumours (Ward et al., 1989; Jain, 1990; Yokota et al., 

1992). It has also been suggested that the smaller size of the fragment means that 

they can access epitopes that full antibodies cannot reach (Ward et al., 1989).  

Additionally, there are a number of challenges with antibody fragments, such as a 

short half-life in humans (Larson et al., 1983), or undesirable aggregate formation 

(Bird et al., 1988). However, efforts have been made to alleviate the various 

challenges (Wörn and Plückthun, 2001), such as developing antibody fragments that 

are resistant to heat denaturation (Jespers et al., 2004). Therefore, antibody fragments 

are an interesting and rapidly evolving therapy, which present a unique opportunity 

for further study.  
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Figure 1-1: Schematic of a general immunoglobulin (Ig) molecule, highlighting 

the heavy chains in green (VH, CH1, CH2 and CH3), the light chains in blue (VL 

and CL), the Fab' region, the constant region (Fc) and the variable region (Fv). 

Red lines show disulfide bonds. 
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1.2 Methods of production and challenges 

There are a range of host cells available for recombinant protein expression. 

Although full length antibodies are typically produced in mammalian cells, such as 

chinese hamster ovary cells (CHO cells), the smaller size of the Fab' fragments 

means that they can be produced in microbial host cells, such as E. coli. Each host 

cell has advantages and disadvantages, and a selection of commonly used hosts will 

briefly be discussed in this section. Other host cells not covered here, but gaining 

increasing importance in nascent biopharmaceutical research include insect cells and 

plant cells. 

1.2.1 Recombinant protein expression 

In order to achieve recombinant protein expression, the host cell is genetically 

modified by inserting a plasmid into the cell. A detailed review of the transformation 

procedure is not in the scope of this review, however it is a well established and 

robust technique. To briefly summarise; a plasmid is a segment of DNA, separated 

from chromosomal DNA and capable of replicating autonomously within the nucleus 

of the host cell. The plasmid usually includes the coding for antibiotic resistance, as 

well as the coding for the required sequence of amino acids, which enables 

production of the protein of interest.  

1.2.2 Host cells 

1.2.2.1 Eukaryotic hosts 

Eukaryotes such as yeast or mammalian cells have a more complicated genetic 

structure, which has the advantage that they can carry out post-translational 

modifications, can secrete proteins outside of the cell, can carry out advanced folding 

and can produce full length antibodies (Frenzel et al., 2013).  

Some common microbial eukaryotic hosts include filamentous fungi, such as 

Aspergillus which has the ability to secrete Fab' fragments and antibody fusion 

proteins to the medium (Joosten et al., 2003), and can achieve high product titres, for 

example yields of up to 1.2 g/L IgG with Aspergillus niger (Ward et al., 2004).  
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Pichia pastoris is the principally used yeast host cell, and its main advantage is the 

extremely high cell densities achievable in fermentation (Jeong et al., 2011). In 

addition, its growth rate and induction can be controlled via methanol feeding and it 

can secrete recombinant proteins into the medium. However, yields of Fab' in P. 

pastoris achieved only up to 0.5 g/L in bioreactor fermentation (Gasser et al., 2006), 

and issues can arise in yeast expression in general, such as proteolysis during high 

cell density fermentation (Frenzel et al., 2013), or non-homologous recombination 

(Spadiut et al., 2014). 

CHO cells are the most commonly used host cell across the biopharmaceutical 

industry, accounting for 60-70% of all processes and represented 95% of all 

approved therapeutic antibody production in 2013 (Frenzel et al., 2013). The 

significant advantage of CHO cells is their ability to fold, secrete and carry out post-

translational modifications for complex, full length antibodies, as well as achieve 

high product titres, currently in the 1-10 g/L range. However, there are relatively 

high costs associated with CHO cell production and cell culture takes up to 3 weeks 

(in comparison to microbial fermentation which would typically last up to 1 week), 

as the growth rate of CHO cells is slow. 

1.2.2.2 Prokaryotic hosts 

There are several prokaryotic hosts that are used to produce recombinant proteins, 

including both gram-negative (E. coli, Pseudomonas putidas) and gram-positive 

(Bacillus subtilis, Bacillus brevis and Lactobacillus paracasei) bacteria. However, as 

E. coli is so prevalent in the biopharmaceutical industry, this section will focus solely 

on its use. 

1.2.2.2.1 Escherichia coli as a host cell 

E. coli is a gram-negative, rod-shaped bacteria, that is facultatively anaerobic and has 

typical dimensions around 2 μm in length and 0.5 - 1 μm diameter. Under optimum 

conditions, E. coli will double every 20 minutes in exponential phase (i.e. it will 

outgrow any other orgamism). The E. coli K12 strain (used in the research presented 

in this thesis) is one of the most widely studied strains of E. coli, largely because of 
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its debilitated state that does not usually affect the human colon, making it safer to 

use for industrial scale applications.  

E. coli is heavily used as a microbial host to express recombinant proteins such as 

Fab', as glycosylation is not needed (Nelson and Reichert, 2009; Li et al., 2013), it 

has well-characterised genetic properties and has lower associated production costs 

than mammalian cells or other expression systems, for example it can be grown 

using inexpensive, chemically-defined media (Spadiut et al., 2014). E. coli was first 

used to successfully express antibody fragments in 1988 (Better et al., 1988), and is 

now classed as the most important expression system for recombinant protein 

production (Frenzel et al., 2013), achieving yields in the gram per litre range 

(Schmidt, 2004), including when using novel extracellular secretion methods (Ni and 

Chen, 2009). Advances in genetic engineering technology have led to high cell 

density fermentations, which has also significantly increased the achievable product 

titre (Kleman and Strohl, 1994; Riesenberg and Guthke, 1999; Shiloach and Fass, 

2005). E. coli can also be used to produce a range of other recombinant proteins such 

as scFv fragments at high yields (1.2 g/L) (Sletta et al., 2004). 

1.2.2.2.1.1 Periplasm 

The periplasm is a concentrated gel-like matrix in the space between the inner 

cytoplasmic membrane and the bacterial outer membrane (Spadiut et al., 2014). E. 

coli produce Fab' fragments in the cytoplasm, that can be routinely targeted to the 

periplasmic space. This is important because the oxidising conditions in the 

periplasm enable correct folding and formation of disulfide bonds (Better et al., 

1988; Skerra and Plückthun, 1988) and secretion to the periplasm also minimises 

formation of inclusion bodies, which can be a significant problem for E. coli 

production. The secretion to the periplasm presents a large advantage for E. coli as a 

host, in comparison to other microbial systems. 

1.2.3 Bioprocessing challenges 

The bioprocess as a whole comprises many steps involving either the production 

(upstream) or the recovery (downstream) of a therapeutic product. The upstream 



Chapter 1 - Introduction 

 47 

process and downstream process are closely related, and the conditions set in the 

upstream process can significantly impact the downstream efficiency. However, 

many unit operations are currently considered in isolation, which is detrimental to 

the overall objective to optimise the total yield across the bioprocess (typically a 

trade-off is involved). Some of the upstream factors that impact the efficiency and 

costs of the downstream process include the product titre in the fermentation broth, 

solids concentration, the level of contaminants and the viscosity. Furthermore, 

characterising and understanding the behaviour of the process material when scaling 

up from the lab to industrial scale presents a significant challenge, and effective 

scale-up is essential to drive improvements in the efficiency of the development 

process. 

The industry has seen rapid advances in the upstream process in recent years, and 

above all, this has been driven by the developments in synthetic biology, which have 

led to our ability to treat an increasing number of diseases, as well as advances such 

as achieving high cell density fermentation and reaching higher and higher product 

titres. However, these improvements also increase the complexity and challenges in 

the fermentation process, for example achieving sufficient mass and oxygen transfer 

due to the high cell density fermentation broth. 

As such, the bioprocess still has many challenges to overcome, particularly relating 

to meeting the demands of the diverse and constantly evolving range of therapies that 

are required to be produced. Therefore, there remains a need for the rapid and 

efficient development of novel therapies, in order to bring these therapies to market 

as quickly as possible (the pharmaceutical industry has notoriously long development 

times), and according to regulatory standards. This means that there is a strong need 

to both improve our understanding of the bioprocess from a holistic perspective, as 

well as develop novel technologies that will facilitate rapid characterisation, 

optimisation and scale-up. 

1.3 Cell lysis  

Cell lysis is one of many significant challenges in the bioprocess and occurs in the 

late stage of the fermentation process and is difficult to both define and to detect its 
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onset. As highlighted in the previous section, process conditions in fermentation can 

have a significant impact on the efficiency of many downstream unit operations. This 

section will highlight some of the key challenges relating to cell lysis in 

fermentation, and provide an overview of the impact of lysis on downstream 

processing. 

1.3.1 Defining cell lysis and cell viability 

The definitions of cell lysis and cell viability differ. Cell lysis is defined as the 

release of DNA from a cell due to the total disruption of the cell membrane. 

However, cell viability relates to the intactness of the cell membrane, i.e. if the cell 

membrane is non-intact, intracellular content may leak from the cell through porous 

membrane channels. It is believed that cells with non-intact membranes, i.e. leaking 

product or other intracellular content, may have the potential to recover if transferred 

to fresh media. However if DNA is lost from the cell, the cell can be classed as dead. 

1.3.2 Understanding cell lysis 

Bacterial cell death is often observed in the late stage of the fermentation process. 

Understanding this phenomenon has significance both scientifically and 

commercially; deeper process understanding enables higher quality manufacturing 

processes to be built, for example by identifying key parameters to be monitored and 

controlled (Food and Drug Administration, 2004). Traditionally, cell lysis is 

considered to be a consequence of “unbalanced growth” at the end stage of the 

bacterial life cycle (i.e. one or more essential nutrients in the media are at a sub-

optimal concentration). However, despite the numerous studies on autolysis, our 

knowledge is still limited. In addition, cell lysis can be extremely detrimental to a 

process. For example, for processes where the host cell produces and stores the 

product intracellularly, product loss can occur at the point of lysis. The release of 

intracellular content at the point of lysis not only affects the product yield, however 

can also impact downstream unit operations, as well as the robustness of the process 

(i.e. the sensitivity of the unit operations to variations in the process material). 
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Lysis phenomena in microbial fermentations may be influenced by a variety of 

different factors, including: 

• Environmental conditions in the fermenter such as shear stress, osmotic 

imbalance or poor mass and oxygen transfer; 

• Toxic waste product build-up in the cell broth; 

• A lack of nutrients available in the media; 

• Metabolic burden from excessive recombinant protein expression; 

• Internal stresses from a build-up of product in the periplasm or cytoplasm. 

 

There is a metabolic burden associated with recombinant protein expression, which 

typically has a high energy requirement (Sørensen and Mortensen, 2005), and the 

growth rate and productivity of cells are subsequently impacted when a plasmid is 

inserted into the cell. The metabolic burden can be defined as the amount of 

resources (raw material and energy) that are withdrawn from the host metabolism for 

maintenance and expression of the foreign DNA (Bentley and Kompala, 1990). The 

metabolic burden occurs for several reasons, for example the additional strain placed 

on the host cell by plasmid replication, rDNA transcription and plasmid-encoded 

mRNA translation (Bentley et al., 1990), as well as changes in metabolic fluxes, 

enzyme composition and drainage of precursors (Hoffman and Rinas, 2004).  

E. coli produce Fab' fragments that can be routinely targeted to the periplasmic 

space. However, the capacity of the periplasm is limited, for example Fab' fragments 

will leak when exceeding 6% of the volume of the periplasm (Schofield et al., 2016). 

During fermentation, as the limit of the periplasm is reached, cells begin to lose 

viability and leak the Fab' product and other intracellular content to the fermentation 

broth. 

As discussed in section 1.2.2.2.1, high cell density fermentation has led to increasing 

product titres, however this has created additional challenges such as mass and 

oxygen transfer in the fermenter (Kleman and Strohl, 1994; Riesenberg and Guthke, 

1999; Shiloach and Fass, 2005). As cell lysis occurs in fermentation, mass transfer 
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will reduce further, due to the release of intracellular content which interferes with 

mass transfer in the cell broth. In response to this, the fermenter control system will 

increase the agitation and oxygen feeding in order to maintain the appropriate 

dissolved oxygen tension in the media.  

In addition, as the cell population ages and the fermentation progresses, cells in the 

fermenter become weaker (Perez-Pardo et al., 2011) and the shear stresses from the 

high agitation and aeration rates (i.e. particularly at gas-liquid interfaces) can 

exacerbate cell lysis. Furthermore, as the fermentation progresses, toxic waste 

product builds up in the cell broth, which can worsen the conditions for the cells, and 

the nutrient content (e.g. salts or the nitrogen source) in the media continually 

diminishes over time.  

These phenomena all act simultaneously to cause the rapid onset of cell lysis in late 

stage fermentation. For large scale bioreactors, heterogeneity poses additional 

challenges with the availability of dissolved oxygen in the media, availability of 

nutrients in the media and the presence of carbon dioxide (carbon dioxide can 

stimulate lactate formation, which subsequently reduces productivity in the 

bioreactor) (Chen et al., 1992). 

1.3.3 Impact of cell lysis on the downstream process 

Apart from product loss in late stage fermentation, cell lysis has adverse 

consequences on the efficiency of subsequent downstream processing steps including 

homogenisation, microfiltration and centrifugation, and therefore a trade-off exists 

between harvest time and total product yield (Ambler, 1961; Okamoto et al., 2001; 

Meireles et al., 2003; Chan et al., 2006; Balasundaram et al., 2009; Nesbeth et al., 

2011; Perez-Pardo et al., 2011; Aucamp et al., 2014). For example, the remaining 

viable cells at harvest point will become more fragile and break four-fold more than 

those harvested at an earlier stage, if subjected to the equivalent shear level of that in 

an industrial centrifuge (Perez-Pardo et al., 2011). 

As cell lysis occurs in late stage fermentation, leakage of product to the fermentation 

broth also acts to increase the broth viscosity, as large quantities of chromosomal 
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DNA and other intracellular content are released simultaneously into the broth 

(Balasundaram et al., 2009; Nesbeth et al., 2011). High viscosity broths cause 

additional complications downstream. For example, clarification efficiency in 

centrifugation is inversely proportional to the viscosity (Ambler, 1961) and studies 

have previously been carried out investigating the effects of bacterial cell culture age 

on microfiltration performance (Okamoto et al., 2001; Meireles et al., 2003), 

showing that release of intracellular material (such as DNA) due to cell death was 

found to increase fouling and resistance, hence reducing process performance. 

In summary, cell lysis and product loss in late stage fermentation can dramatically 

reduce the overall product yield of the bioprocess. In addition, the release of 

intracellular content such as nucleic acids and host cell protein significantly affect 

the performance of subsequent downstream unit operations. Although many studies 

have been carried out on this, our knowledge is limited, particularly relating to 

understanding the changes in physical properties of fermentation broths during lysis, 

and the impact on the bioprocess. Furthermore, due to both the complexity and a lack 

of understanding, there is a limited ability to directly monitor the onset of cell lysis in 

fermentation.  

1.4 Bioprocess monitoring technologies 

Having highlighted some of the key issues associated with cell lysis in fermentation 

and our limited ability to detect and monitor lysis, this section will discuss the aims 

of process monitoring technologies in the biopharmaceutical industry, provide an 

overview of commonly used monitoring technologies in upstream production and 

outline the key challenges. 

1.4.1 Process analytical technologies 

Process analytical technologies (PAT) are highly desired in the biotechnology 

industry to aid bioprocess development, monitoring and control (Chew and Sharratt, 

2010; Glassey et al., 2011), and are particularly important for the implementation of 

quality-by-design (QbD) initiatives (Read et al., 2009). This initiative has been 

strongly promoted by the FDA since 2002 (Beutel and Henkel, 2011), which brings 
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together process analysis, process knowledge and modelling to create a "built-in" 

quality process (Biechele et al., 2015), by identifying, monitoring and ultimately 

enabling process control of critical parameters. 

The overall aim of the FDA's PAT initiative is to support the innovation and 

efficiency of bioprocess development, manufacturing and quality assurance across 

the industry (Food and Drug Administration, 2004). Building quality into a process 

(i.e. QbD), rather than testing quality in a product enables a more efficient process, 

however requires a deep level of process understanding (Food and Drug 

Administration, 2004). Therefore, before an analytical technology can be built to 

monitor and control a critical process parameter (CPP) or critical quality attribute 

(CQA) in the bioprocess, the parameter must first be identified, understood and 

characterised.  

Critical process parameters are therefore key operating variables that influence the 

production process and some examples in fermentation include cell density, cell 

viability, pH, temperature and dissolved oxygen tension. There are also separate aims 

concerning CPP's in the fermentation process. Firstly, some parameters have a direct 

influence on the host organism, for example the dissolved oxygen tension in the 

media will affect the growth and viability of the cells. Secondly, some parameters are 

critical because they affect the biological activity of the product, such as temperature 

or pH (Ozturk and Hu, 2004). 

Therefore, different process monitoring technologies will focus on different 

applications, and the majority of these technologies are focused on either monitoring 

biomass growth or cell viability in fermentation. Bioprocess variables can include 

physical variables (temperature, foam, viscosity, pressure), chemical variables 

(oxygen, carbon dioxide, metabolites, substrates) or biological variables (biomass, 

cell morphology, cell metabolism) (Biechele et al., 2015).  

1.4.2 Challenges with developing monitoring technologies in fermentation 

Fermentation broths are complex and diverse, and can comprise a whole host of 

material capable of interfering with the desired monitoring or control strategies. 
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Typical suspensions may include cells, a carbon source, a nitrogen source, gas 

bubbles (oxygen, carbon dioxide), micronutrients, the product, the aqueous phase 

and often intracellular content from autolysed cells. This complexity can make it 

difficult to achieve the desired sensitivities and specificities of the analytical 

instrument, and the problem is further exacerbated when cell autolysis takes place as 

the intracellular content such as host cell protein and nucleic acids can interfere with 

chemical-based, biological-based and physical-based measurements. 

The development of in-line process monitoring technologies presents the need for 

sterilisation, including stability of the analytical instrument at high temperatures. For 

offline or at-line technologies, the key issue is contamination when sampling (Beutel 

and Henkel, 2011). For spectroscopic applications in general, which comprise a 

significant proportion of the most promising PAT applications, calibration is a 

significant issue. This is important as fermentations can last for several weeks, and 

once started, it is not possible to recalibrate the instrument. The configuration of 

PAT when applied to disposable technologies must also be considered (Beutel and 

Henkel, 2011).  

Technologies to monitor cell growth are widespread and well developed. However, 

monitoring cell viability or lysis remains a key challenge, and is particularly 

important for processes with host cells that store the product in the periplasmic space 

(or intracellularly), as product loss due to leakage occurs at the point of lysis. 

However, lysis is difficult to observe directly in fermentation because of its inherent 

complexity, and current analytical technologies are unable to rapidly and accurately 

monitor the shift between optimal intracellular product concentration and leakage to 

the fermentation broth. Current industrial processes typically focus on solving this 

problem by monitoring cell density, product titres, product leakage and cell viability 

offline to determine harvesting time (Bowering, 2004; Perez-Pardo et al., 2011).  

1.4.3 Process monitoring strategies 

An in-line monitoring technology can be defined as a sensor that operates within the 

bioreactor system. An at-line sensor operates outside of the bioreactor and sampling 

is necessary (Biechele et al., 2015). Ex-situ monitoring technologies are able to 
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monitor online whilst avoiding contamination and sterilisation issues as they are 

situated on the outside of the bioreactor, however measurements at the bioreactor 

wall may not be representative of the cell population due to axial variations and 

dead-zones, particularly for large scale production. Flow-through cells are able to 

avoid issues such as signal interference from the highly agitated and aerated 

environment within the bioreactor, and can be multiplexed, however sterility 

becomes an issue and more importantly, samples may not be representative of the 

cell population in the bioreactor. Offline sampling is not ideal as it is typically 

carried out after a fermentation, which is inefficient, unreliable and time consuming. 

Most importantly, it removes the possibility to make decisions in real-time. 

1.4.4 Common bioprocess monitoring technologies 

This section will provide an overview of some of the most commonly used 

monitoring technologies in upstream processing and highlight some of the key 

advantages and challenges with each technique. 

1.4.4.1 Routine fermenter monitoring and control 

Online monitoring and control technologies routinely used in biopharmaceutical 

fermentation include temperature (T), dissolved oxygen tension (DOT) and pH. 

Frequently, foaming in the fermenter headspace is controlled via addition of 

antifoam (e.g. a surfactant such as polypropylene glycol, PPG). These parameters are 

controlled to ensure optimal growth of the cell population. A PID (proportional-

integral-derivative) controller is applied to each parameter. 

1.4.4.2 Offline analytical technologies 

There are several technologies that are used to monitor fermentation broths offline. A 

method that is frequently coupled with optical density measurements to measure 

biomass growth is the measurement of wet cell weight and dry cell weight. Wet cell 

weight is typically unreliable due to the variation in water content in a sample (i.e. it 

is limited by the efficiency of centrifugation and subsequent manual removal of 

supernatant from an Eppendorf tube). However, dry cell weight is a robust 



Chapter 1 - Introduction 

 55 

measurement although sample preparation is time consuming as the sample must be 

dried in an oven overnight. 

Flow cytometry is regularly employed to monitor cell viability offline in 

fermentation; however it requires a lengthy and complicated staining procedure that 

also requires post-measurement data analysis. In fact, all cell-based monitoring 

techniques can only detect existing cells and are unable to measure the lysed cells, 

making it infeasible to monitor the extent of cell lysis effectively.  

However, the intracellular content from lysed cells will still remain in the 

bioreactors. Thus, measuring the protein or DNA leakage can give an indication of 

cell lysis. DNA analysis, using assays such as Picogreen™ or spectrophotometric 

absorption devices such as the NanoDrop™ offer another option to monitor cell lysis 

in fermentation. However, Picogreen™ assay requires a comparatively complicated 

protocol and is time-consuming, and proteins can interfere in NanoDrop™ 

measurements as they are absorbed at the same wavelength as nucleic acids (Neves 

et al., 2000). In general, techniques for DNA analysis are susceptible to errors from 

losses due to degradation of DNA or from losses in sample preparation steps such as 

centrifugation (Neves et al., 2000). Lactate dehydrogenase (LDH), a stable cytosolic 

enzyme is also used in microbial and mammalian cultures to detect cell viability, 

however the assay is also offline and relatively time-consuming. In addition, HPLC 

is commonly used to monitor product leakage to the cell broth. HPLC is able to 

accurately quantify the product in the broth, however is time-consuming due to set 

up and sample preparation steps (e.g. centrifugation). 

1.4.4.3 Electrochemical sensors 

Electrochemical sensors are based on the principle that chemical reactions undergo 

changes in electrical properties due to charge transport, such as potential, charge or 

current changes. There are three broad classes of electrochemical sensors; 

potentiometric (measures the potential difference between two electrodes), 

conductometric (measures conductance), and voltametric (measures current by 

varying the potential and determining differences based on charge transport) (Beutel 
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and Henkel, 2011). Standard electrochemical sensors in fermentation include 

dissolved oxygen and pH sensors (as described in section 1.4.4.1). 

1.4.4.3.1 Capacitance sensors 

Dielectric spectroscopy (also called electrochemical impedance spectroscopy) is able 

to measure the number of viable cells in a cell suspension. Dielectric spectroscopy 

works by applying an alternating electric field to the sample (Zhao et al., 2015) and 

measuring the resulting capacitance.  

The plasma membranes of cells are non-conductive, however can hold charge. 

Therefore, intact plasma membranes will hold charge when an electric field is 

applied, enabling the capacitance to be measured (i.e. the measured difference 

between the detected amplitude or frequency when the electric field is reversed) 

(Justice et al., 2011). The capacitance is therefore proportional to the total number of 

intact cells in the culture. Cells that have lysed or are leaking intracellular content, 

i.e. cells with non-intact plasma membranes, have a negligible contribution to 

capacitance, so capacitance measurements can be used to give an indication of viable 

biomass in the culture. The units of capacitance are farads (SI units) or picofarads. 

This is quoted as pF/cm for cell suspensions and can be converted to viable cells/mL, 

grams per litre, or packed mycelial volume (PMV) with the appropriate correlation 

(specific to the species). The capacitance can also be calibrated to offline data such 

as flow cytometry. 

One of the most promising in-line monitoring technologies in fermentation is the 

Aber Instruments Futura biomass probe (Aber Instruments Ltd, Aberystwyth, UK), 

which gained initial popularity due to its success in the brewing industry. This has 

now been used not only in brewing, but also extensively in biopharmaceutical 

production including for yeast fermentation (Fehrenbach et al., 1992; Xiong et al., 

2008; Chopda et al., 2016), E. coli fermentation (Franz et al., 2005; Kaiser et al., 

2008) and mammalian cell culture (Justice et al., 2011; Lee et al., 2015). 

Furthermore, this has recently included integration with control systems, for example 

for online feedback on the specific growth rate to control glucose addition in fed-

batch glutathione production with Saccharomyces cerevisiae (Xiong et al., 2015). 
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Capacitance probes have been widely researched and have been shown to be able to 

monitor the viable biomass and specific growth rate in a range of fermentations. 

However, capacitance measurements tend to perform poorly in late stage 

fermentation, often missing the onset of cell lysis; this is because non-viable cells 

will still hold a certain amount of charge and exhibit some form of capacitance (Sarra 

et al., 1996; Neves et al., 2000). Therefore, although the technology is incredibly 

useful in the early growth stages of fermentation, for the purpose of monitoring cell 

lysis, product loss and viability, its use is limited. 

1.4.4.4 Spectroscopic monitoring technologies 

Spectroscopy is the study of the interaction between electromagnetic radiation and 

matter, and is one of the most advanced and powerful analytical tools available to 

investigate chemical samples. 

1.4.4.4.1 Optical density measurements 

Optical density (OD) is commonly used to measure biomass growth in fermentation 

and some of its benefits include rapid and robust analysis. Optical density is typically 

measured offline; spectrophotometers are widely available in research labs and are 

relatively cheap. In fact, optical density measurements are considered to be a 

benchmark in the industry for monitoring biomass concentration (Biechele et al., 

2015). 

Several in-situ, online optical density probes have been developed for application in 

fermentation and are commercially available (Wu et al., 1994; Kiviharju et al., 2008) 

and can be based on transmission, absorption, reflection or light scattering 

(Vojinovic et al., 2006; Mandenius and Titchener-Hooker, 2013). In addition, an in-

situ, steam sterilisable optical density probe has previously been developed for 

microbioreactors (in the microlitre range) (Zanzotto et al., 2004). However, in-line 

optical density measurements are often highly susceptible to interference from 

agitation and aeration in the bioreactor. 
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Moreover, although optical density measurements provide a good representation of 

cell growth in bioreactors, OD gives an indication of the total biomass obscuring the 

light path, which offers no insight into the viable biomass (a highly desirable 

parameter to monitor in fermentation) (Hewitt and Nebe-Von-Caron, 2004). This 

means that OD measurements systematically underestimate cell lysis in late stage 

fermentation and miss the critical point of product leakage in fermentation; causing 

issues with determining the optimal harvest time. 

1.4.4.4.2 Near-infrared spectroscopy 

In-situ infrared spectroscopic monitoring probes are available on the market and 

have been extensively studied (Doak and Phillips, 1999; Arnold et al., 2002; Navratil 

et al., 2005; Vojinovic et al., 2006; Kiviharju et al., 2008). Due to its high specificity, 

infrared spectroscopic applications are capable of monitoring the chemical properties 

of fermentation broths, including biomass, glucose and protein concentration. Most 

infrared spectroscopy-based research for the purpose of bioprocess monitoring has 

focused on near-infrared spectroscopy, as near-infrared requires no sample 

preparation and its spectra are not affected by the absorption of water (whereas these 

are the greatest challenges for mid-infrared spectroscopy). In fact, it can be argued 

that near-infrared spectroscopy has shown the most promising results of the available 

fermentation monitoring technologies; delivering highly specific insight into the 

chemical properties of complex cell broths, particularly when used in combination 

with advanced multivariate statistical analysis (such as principal component analysis 

or partial least squares regression) (Tosi et al., 2003; Crowley et al., 2005; Finn et al., 

2006). 

Near-infrared spectroscopy is a rapid, non-destructive and non-invasive 

spectroscopic technique that uses infrared light in the 800 - 2500 nm wavelength 

region of the electromagnetic spectrum. One of the main benefits is its high chemical 

specificity that enables differentiation of molecules based on chemical content, due 

to the uniqueness of the absorption of infrared light by molecular vibrations at 

different wavelengths for different chemical bonds. Fundamental absorptions of 

infrared light occur in the mid-infrared region, however, overtones and combinations 
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of bands are perceptible within the near-infrared region, which can present specific 

information about the analyte.  

The use of at-line, near-infrared spectroscopy has been demonstrated in high cell 

density Saccharomyces cerevisiae fermentation (Finn et al., 2006) to quantify 

biomass, ethanol and glucose concentration; in high cell density Pichia pastoris 

fermentation to measure biomass, product, glycerol and methanol (Crowley et al., 

2005); in a CHO cell culture producing a monoclonal antibody (mAb) to define 

batch trajectories and implement control strategies such as adjusting the feeding rate 

(Hakemeyer et al., 2012); in high cell density E. coli fermentation to monitor 

biomass, acetate, ammonia and glycerol concentration (Hall et al., 1996); and 

Sartorius have developed an ex-situ, flow-through cell (BioPAT® Spectro, Sartorius 

AG, Göttingen, Germany) to monitor cell growth, viability and various analytes in 

mammalian cell culture, which has a "golden batch modelling" feature, to inform the 

operator about deviations from the optimal growth trajectory (Sandor et al., 2013). 

For the latter study, cell viability was able to be predicted between 28-100% with a 

standard error of 4.2%, using principal component analysis with no pre-processing of 

data. 

However, it was also shown that near-infrared was not capable of discriminating 

between three different types of bacterial strains, demonstrating its poor applicability 

for low biomass concentrations in biological systems, or to detect contamination in 

the batch (Tosi et al., 2003). In addition, infrared spectroscopic techniques have a 

high cost and have issues with calibration, which is challenging when fermentations 

can run for 7-14 days (Harms et al., 2002). Although the available technologies are 

able to measure the carbon source, product and biomass concentrations, fermentation 

broths are extremely complex and infrared spectroscopy can have problems with 

sensitivity when analysing molecules at low concentration, such as protein products 

or substrates such as glycerol or glucose.  

1.4.4.4.3 Fluorometry 

Fluorescence-based spectroscopic sensors are widely used for both research and 

industrial applications, and offer several benefits such as the ability to monitor in-situ 
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and online (Beutel and Henkel, 2011). Fluorometry enables the determination of 

protein content for various applications (Shibasaki et al., 2001), and can also be used 

for biomass estimation in fermentation as fluorophores are present inside cells 

(Zabriskie and Humphrey, 1978). The use of a commercially available technology, 

the BioView™ fluorescence spectrometer (DELTA Lights & Optics, Hørsholm, 

Denmark) using 2-dimensional fluorescence spectrocopy has been demonstrated with 

Saccharomyces cerevisiae to monitor changes in fluorophores such as tryptophan 

and NADH in real-time, and the different growth phases of fermentation could be 

recognised by combining the online data with principal component analysis 

(Assawajaruwan et al., 2017), as NADH is a marker for cell viability. The successful 

application of fluorometry has also been demonstrated in CHO cell culture and fungi 

cultivation (Claviceps purpurea) (Boehl et al., 2001). 

In addition, combining fluorometry with chemometrics has been shown to enable 

indirect estimation of non-fluorescent material such as nitrates and succinates (Ulber 

et al., 2003). However, a significant challenge with fluorometry is that complex 

spectra are obtained, with overlapping peaks (i.e. fluorophore interactions are 

present) that make it difficult to interpret results accurately. This requires complex, 

computationally intensive multivariate statistical analysis that is difficult to 

implement (Beutel and Henkel, 2011). 

1.4.4.4.4 UV/Vis spectroscopy 

UV/Vis spectroscopy is based on the excitation of electrons using ultraviolet light 

and visible light, in the range of 10-740 nm. UV/Vis spectroscopy is based on the 

excitation of unsaturated bonds (Pons et al., 2004). The application of UV/Vis 

spectrophotometers has the same benefits as for optical density measurements (for E. 

coli, OD is typically measured at 600 nm), i.e. they are robust, cheap and widely 

available (Beutel and Henkel, 2011). However, measurement of optical density is 

carried out for the purpose of biomass monitoring, whereas UV/Vis spectroscopy 

here refers to the analysis of proteins, analytes and substrates, such as product 

quantification. For example, antibody fragments (Fab'), the product investigated in 

this thesis, is analysed at 220 nm (protein is often analysed between 220 - 280 nm). 
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A charged coupling device (CCD) (using an at-line UV/Vis spectrophotometer) has 

previously been developed for bioprocess monitoring, to detect and measure both 

RNA and protein (BSA) continuously (Noui et al., 2002) in combination with partial 

least squares (PLS). This was demonstrated using Saccharomyces cerevisiae 

homogenate. However, as for all spectroscopic applications, the challenge lies in 

appropriate calibration procedures (using chemometrics) and data treatment 

(Biechele et al., 2015). Although this technology appears promising, there are few 

published examples available related to fermentation monitoring, and it is not widely 

in use in the industry (Biechele et al., 2015). 

1.4.4.4.5 Raman spectroscopy 

Raman spectroscopy is similar to infrared spectroscopy, in that it is a form of 

vibrational spectroscopy. However, Raman spectroscopy is concerned with the 

scattering of light and infrared spectroscopy is concerned with the absorption of 

light. Several analytes can be measured simultaneously in bioprocesses, including 

glucose, acetate and lactate in E. coli fermentation (Lee et al., 2004; Beutel and 

Henkel, 2011; Biechele et al., 2015). Raman spectroscopy is susceptible to light 

scattering, however it has been shown that this can be corrected (Lee et al., 2004). 

The greatest challenge with Raman applications in bioprocessing is the strong 

fluorescence activity of many biological samples, which can overlay and 

significantly interfere with the Raman scattering bonds (Becker et al., 2007; Biechele 

et al., 2015). The future of Raman spectroscopy lies in the ability to resolve this 

issue, in order to enable its application in a wider range of bioprocesses (Becker et 

al., 2007). 

1.4.4.4.6 In-situ microscopy 

In-situ microscopy is a technique based on the light microscope, developed since 

1995 (Suhr et al., 1995), and allows online, non-invasive imaging of cell cultures in 

bioreactors to determine cell density, cell size distribution and morphology (Biechele 

et al., 2015). The analysis can also be automated using image-processing algorithms. 

Visualisation of cell cultures in real-time is an extremely useful tool, however may 
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have limitations in the accuracy of its haemocytometer-style cell counting. Online, 

automated monitoring of cell viability is not possible with this method, as non-viable 

cells cannot be visually distinguished from viable cells in the bioreactor. 

1.4.4.5 Off-gas analysis 

Online mass spectrometry is frequently employed for off-gas analysis in 

fermentation, using a quadrupole mass spectrometer (Coppella and Dhurjati, 1987). 

This can be used to monitor both carbon dioxide evolution rate (CER), oxygen 

uptake rate (OUR) and hence determine the respiratory quotient (RQ), which give a 

strong indication of a cell's metabolic activity. From these measurements, it is 

possible to determine the specific growth rate of the cells. In some cases, infrared 

spectroscopy is used to monitor off-gas, for example carbon dioxide in the AMBR 

bioreactor system (Sartorius AG, Göttingen, Germany). Mass spectrometry has also 

been used in E. coli fermentation to control the rate of nutrient feeding, as the CER is 

roughly proportional to the rate of consumption of the carbon source (Lee, 1996). 

Although a mass spectrometer is expensive, it can be multiplexed to reduce the cost 

per fermentation, and has gained widespread acceptance in the biofuels area, due to 

its ability to also detect simple alcohols such as ethanol (McNeil et al., 2013). 

However, there are some challenges with its use, for example in P. pastoris 

fermentation, methanol (carbon source) has the same molecular mass as oxygen, 

which can affect the accuracy of OUR determination (even when a filter is applied to 

remove the methanol from the mass spectrometer feed). 

1.4.5 Summary of process monitoring technologies 

In summary, process analytical technologies are highly desired in the 

biopharmaceutical industry. There are some very interesting monitoring technologies 

in development or that are already commercially available, and significant advances 

have been made in the field in recent years. The available technologies can monitor a 

range of chemical, physical and biological properties, such as biomass concentration, 

viable biomass concentration, carbon source concentration, product concentration or 

markers of cell lysis such as lactate formation or product leakage. However, many of 

the technologies are limited in their accuracy, cost, incompatibility with sterilisation 
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procedures, complexity or even the expertise required for analysis and data 

interpretation. In addition, there are few technologies available that are able to 

monitor the physical properties of a cell broth, in particular to provide useful 

information regarding cell health. The future of PAT lies in the further development 

of some of the most promising technologies, and their subsequent integration into a 

single bioreactor platform, in order to obtain a comprehensive picture of the 

bioprocess, for example by monitoring the physical, biological and chemical 

properties of a cell broth. This will facilitate a deeper, holistic understanding of the 

process, enable process control and therefore further automation in the industry. 

1.5 Rheology 

Rheology can be defined as the study of the deformation and flow of matter, which 

can be divided into two types of physical properties; viscosity and viscoelasticity. 

Viscosity relates to the internal friction of a fluid and is a measure of its resistance to 

flow, and therefore provides a way to quantify a materials' resistance to flow. 

However, not all materials behave as pure solids or pure liquids. In fact, most 

materials exhibit some form of both types of property, and these materials can be 

classed as viscoelastic. Therefore, viscoelasticity describes both the solid-like 

(elastic) and liquid-like (viscous) characteristics of a material undergoing 

deformation (which can be temporary or permanent). Essentially, viscoelasticity can 

help to classify and quantify the properties of the internal structure and strength of a 

material.  

Rheology is frequently used to characterise materials in the processing industry, from 

oil and gas (e.g. in exploration and drilling) to cosmetics such as toothpaste and hand 

cream. In the biopharmaceutical industry, rheology is typically used in formulation 

for therapeutics. 

This section will discuss the theory, development and use of rheology within the 

context of bioprocessing, with a particular focus on monitoring in fermentation. 
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1.5.1 Rheology definitions 

For all rheological testing, a "shear" is applied to a sample. This can be seen in 

Figure 1-2, where a sample is placed between the upper and lower plates of a 

rheometer, and the upper plate applies shear (lower plate is fixed). For viscosity 

testing, this shear force, f, is a constant shear rate, and for viscoelastic testing an 

oscillation is applied, or strain rate (which oscillates at a defined frequency and strain 

amplitude). Figure 1-3 illustrates the terms required to define shear. Rheology 

involves some standard variables, such as shear stress, shear strain and shear rate, 

which can be described mathematically, in order to develop a picture of rheology (in 

combination with Figure 1-3). Therefore, shear stress can be defined as: 

 
 

   
 

Shear force
Shear stress

Surface area
     Equation 1-1 

  

where shear stress is in units of pascal (Pa), shear force is in units of Newtons (N) 

and surface area is in units of m2.  

Shear strain can be defined as: 

    
Displacement

Shear strain
Height

     Equation 1-2 

  

where shear strain is dimensionless (often plotted as a percentage, %), and 

displacement and height are in units of length (m). 

The shear rate can also be defined as: 
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Change in strain
Shear rate

Change in time
    Equation 1-3 

 

where the change in time is in seconds (s) and shear rate is in units of s-1. 

Therefore, having defined these terms, the shear viscosity can subsequently be 

described by: 

 
τ

η
γ

         Equation 1-4 

 

where η is the shear viscosity (Pa s), τ is the shear stress (Pa) and γ is the shear rate 

(s-1).  

The complex shear modulus, or G*, a measurement of viscoelasticity can also be 

defined as: 

 *
τ

G
λ

        Equation 1-5 

 

where G* is the complex shear modulus, in units of pascal (Pa), τ is the shear stress 

(Pa) and λ is the shear strain. 
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Figure 1-2: Illustration of rheometer operation. Diagram shows fixed lower 

plate, and upper plate of surface area, a, that rotates with shear force, f. Sample 

inserted between the upper and lower plates, and sample height (or gap size), h, 

is kept constant during measurement. 

Figure 1-3: Definition of shear terms. A rheometer applies a constant shear 

force, f, to a sample of height, h, over a surface area, a, which is displaced by 

amount, u.  
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1.5.2 Viscosity 

1.5.2.1 Viscosity theory 

The shear viscosity of a material must always be defined within a particular context, 

i.e. under a set of stated conditions. This is because the viscosity is a function of 

these conditions and will therefore be different for each condition. For example, the 

shear viscosity of water can be said to be η Pa s, at a temperature of T°C. 

A material will have three general flow behaviours; Newtonian, shear thinning 

(pseudoplastic) or shear thickening (dilatant). A Newtonian fluid is where the 

viscosity is independent of shear rate, and examples include water, oil or alcohol. 

The viscosity of non-Newtonian fluids, i.e. shear thinning or shear thickening fluids, 

changes with the shear rate. The viscosity of a shear thinning or pseudoplastic fluid 

will decrease as the shear rate increases, and the viscosity of a shear thickening or 

dilatant fluid will increase as the shear rate increases. This is highlighted in Figure 

1-4 below. Some examples of shear thinning fluids include blood, ketchup and 

polymers. An example of a shear thickening fluid is corn flour.  

In fact, non-Newtonian fluids are very common; most real samples are shear thinning 

with Newtonian regions (i.e. they exhibit Newtonian behaviour at low shear rates). 

Additionally, more materials are shear thinning than shear thickening. 

Non-Newtonian behaviour can be described by the flow behaviour index, n, where a 

Newtonian fluid has a flow behaviour index of 1, a shear thickening fluid has a flow 

behaviour index greater than 1 and a shear thinning fluid has a flow behaviour index 

less than 1. The more pronounced the non-Newtonian behaviour is, the further the 

flow behaviour index is from 1. This will be discussed in more detail in Materials & 

methods section 2.5. 

There are several other types of viscometry tests that can be carried out to determine 

rheological properties such as thixotropy or yield stress, however they are not the 

focus of this work. 
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Figure 1-4: Illustration of three general flow behaviours. Shear viscosity, 

η, vs. shear rate, γ, for (a) a Newtonian fluid, (b) a non-Newtonian, shear 

thinning fluid and (c) a non-Newtonian, shear thickening fluid. 
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1.5.2.2 Viscosity applications in bioprocessing 

Viscosity has previously been used in bioprocessing to monitor various physical 

properties, and has most commonly been applied in fermentation to monitor the cell 

broth. Viscosity monitoring in fermentation gained interest in the 1970's and 80's, 

however lost momentum in the 90's, due to a lack of adequate technology to 

accurately monitor viscosity in complex biological systems. Nevertheless, with much 

more advanced technologies (e.g. more powerful rheometers) entering the 

marketplace recently, its use is starting to gather interest again.  

Studies in the 70s, 80s and early 90s attempted to monitor viscosity in fermentation 

to determine biomass concentration, as cell concentration is directly related to 

viscosity (Leduy et al., 1974; Shimmons et al., 1976; Perley et al., 1979; Picque and 

Corrieu, 1988; Bryan and Silman, 1990; Dhillon et al., 2013). For example, viscosity 

measurements have been used previously to monitor cell concentration in 

filamentous fermentation broths; a capillary-type viscometer has been used to 

monitor the broth viscosity of Hansenula polymorpha (a methylotrophic yeast), 

using cells harvested in both exponential phase and in stationary phase (Perley et al., 

1979). The viscosity was shown to increase non-linearly (second order polynomial 

fit) with cell concentration (Perley et al., 1979), and the small coefficients in the 

polynomial regression indicated that viscosity is a weak function of cell 

concentration. For analysis, the viscosity was normalised by dividing the viscosity of 

the cell suspension by the viscosity of the supernatant, and it was observed that the 

normalised viscosity increased by only a factor of 1.06 as the cell concentration 

doubled from 7.5 g/L to 15 g/L. This result showed that for filamentous organisms, 

other factors significantly influence the viscosity at low cell concentrations, such as 

changing morphology and extracellular product secretion (Perley et al., 1979), which 

could be minimised at high cell concentrations. 

Using a rotational viscometer for Saccharomyces cerevisiae showed better results, 

although mixing experiments were carried out with yeast cells re-suspended in buffer 

solution (Shimmons et al., 1976). The results showed that below volume fractions of 

0.15, a linear relationship between the apparent viscosity and cell concentration was 

evident, however at high cell concentrations the behaviour was non-linear. 
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Interestingly, the apparent viscosity was used to control the cell concentration during 

the mixing of the yeast with distilled water, by controlling the rate of distilled water 

addition using a PI controller. Such an application has crossover to perfusion 

bioreactor systems in biopharmaceutical production, which have also gained 

significant interest in recent years, and which require novel PAT approaches for 

monitoring and control. This result also confirmed that viscosity-cell concentration 

relationships are useful for systems where the effect of other factors, such as 

extracellular solute concentration and cell morphology, are small (Shimmons et al., 

1976). 

A vibrating rod sensor has also been used to characterise the viscosity in xanthan 

production (Xanthomonas campestris) and yoghurt fermentation (Streptococcus 

thermophilus and Lactobacillus bulgaricus). As the viscosity increased, the vibration 

of the rod was dampened and the output signal could be transformed from voltage 

into arbitrary viscosity units (Picque and Corrieu, 1988). In addition, the vibrating 

rod was implemented in-line in the fermenter. However, this empirically-based 

method must be calibrated (with sucrose solution) before each fermentation and a 

non-linear correlation was shown, which resulted in a lack of sensitivity at higher 

viscosities. For example, the sensitivity was 4.4 mV/mPa s for sucrose viscosities in 

the range 1 - 50 mPa s, and 0.9 mV/mPa s in the 200 - 300 mPa s range (Picque and 

Corrieu, 1988). In addition, for the xanthan fermentation studied, a highly viscous 

polysaccharide product, the vibrating rod signal could be correlated to the product 

concentration (in the range 0 - 8.5 g/L) via a second order relationship with a high R2 

value of 0.992. 

Of particular note, Badino et al. (Badino et al., 1999; Badino et al., 2001) have 

previously carried out studies using a custom online rheometer to develop empirical 

correlations between the rheological properties of the cell broth (such as the flow 

consistency index, K, which can be used to give an indication of the non-Newtonian 

behaviour of a material) and biomass concentration, agitation rate and mycelial 

morphology in Aspergillus awamori fermentation. However, agitation rate is not a 

reliable indicator of viscosity when a cascade control system is used because both 

stirrer rate and oxygen gas blending are used to control the dissolved oxygen tension. 
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In addition, the agitation rate is constantly fluctuating significantly during 

fermentation, for example in the fermentation system presented in this thesis (see 

results in Chapter 3, Chapter 4 and Chapter 5), the stirrer rate varied between 300 - 

1200 rpm, which makes it difficult to establish a distinct correlation. 

More recently, a method was developed to determine the viscosity of a Xanthomonas 

campestris fermentation (producing xanthan) by measuring the heat transfer capacity 

(Wunderlich et al., 2016; Schelden et al., 2017) online and in-situ. The heat transfer 

capacity is influenced by the thickness of the boundary layer between the bulk liquid 

in the bioreactor and the wall, which is a function of flow conditions and therefore of 

the viscosity. The results achieved a good correlation with offline data (R2 value of 

0.93), however the method is only applicable for processes with formation of 

biopolymers and filamentous growth (Schelden et al., 2017). 

Monitoring viscosity in fermentation broths where the cells undergo significant 

morphological changes during the various growth phases (i.e. filamentous 

fermentation) has typically shown an increase in viscosity in relation to cell density 

in the exponential phase, followed by a subsequent immediate decrease in viscosity 

in stationary phase (Leduy et al., 1974; Bryan and Silman, 1990; Dhillon et al., 

2013). This is related to changes in cell morphology (for example, during spore 

formation) which significantly affect broth viscosity (Neves et al., 2000). 

Filamentous organisms are considered to be the most challenging expression systems 

due to such high viscosities which lead to problems with mass transfer during 

fermentation (Formenti et al., 2014), and this is the primary reason why so much 

work relating to biomass monitoring using viscosity has been carried out in this area. 

For the case of E. coli cell broths, fewer rheological studies have been carried out. 

The change in viscosity of E. coli suspensions has previously been observed whilst 

undergoing chemical (alkaline) lysis, however this study monitored the change in 

viscosity over the course of the chemical reaction to understand genomic DNA 

denaturation. Additionally, samples were taken at the beginning of stationary phase 

where the cells reached a low optical density, no product was being produced, and 

the analysis method took 30 - 60 minutes (Kong et al., 2009). Nonetheless, this 
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verifies an important consideration; a significant change in viscosity takes place 

during E. coli cell lysis. Additionally, chromosomal DNA was attributed to the 

largest change in rheological properties during lysis. Further to this, the co-

expression of nuclease in E. coli fermentation has been shown to produce a step 

change in the efficiency of centrifugation due to the reduction of the viscosity of the 

cell broth (up to 75%), by removing chromosomal DNA (Balasundaram et al., 2009). 

A recent study focusing on the evaluation of primary recovery options 

(centrifugation and depth filtration) reported an increase in the flow consistency 

index, K, during fermentation, from 0.01 Nsn/m2 at 15 h postinduction to over 0.12 

Nsn/m2 at ~40 h postinduction. This demonstrated that the broth viscosity and the 

non-Newtonian behaviour increased during E. coli fermentation producing a domain 

antibody (dAb) (Voulgaris et al., 2016), and indicated that monitoring the change in 

various rheological parameters such as flow consistency index may be feasible for 

industrial fermentations to determine harvest time. 

In summary, for filamentous cell broths, which undergo morphological changes 

during fermentation, the broth viscosity is significantly affected by changes in 

morphology (Picque and Corrieu, 1988). However, in general (i.e. for fermentations 

that do not undergo significant morphological changes), the viscosity in fermentation 

is determined by both the cell concentration and solute concentration in the broth 

(Reardon and Scheper, 1991).  

Solute concentration often refers to the production of exopolysaccharides (for 

example, in A. pullulans fermentation where the product is a polysaccharide that is 

secreted to the broth (Leduy et al., 1974)), which can significantly affect broth 

viscosity due to its high molecular weight. In addition, for bioprocesses that produce 

plasmid DNA as products, or that have high polysaccharide or protein 

concentrations, the viscosity and non-Newtonian behaviour of the broth can be 

significant (Picque and Corrieu, 1988). This can have a major impact on mass 

transfer, bioreactor design, pumping and power consumption.  
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However, for E. coli cell broths, it is well known that other factors affect the 

viscosity, such as the release of chromosomal DNA from inside the cell during 

homogenisation (Balasundaram et al., 2009). When cell lysis occurs (for example, in 

fermentation, homogenisation or chemical lysis), the intracellular content will leak to 

the broth and the viscosity will increase. Therefore, although viscosity monitoring in 

fermentation has typically been used to determine the biomass concentration, there 

are other factors that affect the viscosity such as the solute concentration in the broth 

(Reardon and Scheper, 1991) that have not previously been considered for E. coli 

fermentation. In addition, detailed characterisation of viscosity changes during cell 

lysis in fermentation have not been carried out for the purpose of fermentation 

monitoring. 

1.5.2.2.1 Einstein equations 

In 1906, Einstein proposed a relationship for the viscosity of a dilute suspension of 

spherical particles, based on hydrodynamics (Einstein, 1906): 

 (1 2.5Lη η         Equation 1-6 

 

where η is the viscosity of the suspension, ηL is the viscosity of the suspending 

medium and φ is the volume fraction (i.e. for fermentation broths, the volumetric 

biomass concentration). 

This theory assumes that all particles are spheres (E. coli are non-spherical) and 

assumes no interactions between particles due to being in a dilute suspension. It also 

assumes that Stokes flow applies, and inertia is neglected (Mewis and Wagner, 

2012). This linear relationship is valid up to a volume fraction of 0.05 or 5%.  

There are various extensions to the Einstein equations for suspensions at higher 

volume fractions, where more complex interactions are present (such as 

hydrodynamic interactions and particle-particle interactions). For semi-dilute 
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suspensions, i.e. up to a 14% volume fraction, the following correlation has been 

developed (Blanch and Bhavaraju, 1976): 

 
2(1 2.5 )Lη η         Equation 1-7 

 

This correlation was validated for yeast suspensions (Deindoerfer and West, 1960), 

and is termed the "Vand equation" (Blanch and Bhavaraju, 1976). At higher volume 

fractions, complex hydrodynamic interactions, cell-cell interactions and random 

Brownian motion become significant, making it extremely challenging to 

characterise the properties of the broth (Mewis and Wagner, 2012). 

Such equations are useful for determining the viscosity of fermentation broths based 

on the volume fraction. However, as discussed above in section 1.5.2.2, factors 

contributing to the viscosity of cell broths include biomass concentration, the solute 

concentration in the broth and for filamentous fermentations, the cell morphology. 

Therefore, the Einstein equations (and extensions to the Einstein equations) assist 

with the determination of one part of the picture of cell broth rheology. This will be 

discussed in more detail in Chapter 4.  

1.5.3 Viscoelasticity 

1.5.3.1 Viscoelasticity theory 

While viscosity measures a materials' resistance to flow, viscoelasticity provides a 

way to understand how a sample behaves before it flows, i.e. at near-rest conditions. 

This is useful as it enables the classification of a material in terms of its internal 

structure and strength. Viscoelasticity describes both the solid-like (elastic) and 

liquid-like (viscous) properties of a material (most materials are a mixture of both). 

A viscoelastic material exhibits non-Newtonian behaviour, however non-Newtonian 

fluids are not necessarily viscoelastic. An example of a viscoelastic material is paint; 

during storage, the paint behaves as a solid (preventing sedimentation), however 
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when painting, it behaves as a fluid, i.e. it will flow in the bristles of a brush and can 

be evenly distributed on a surface. 

The complex shear modulus, G* (defined in section 1.5.1), is a commonly used 

parameter to describe viscoelasticity. G* is comprised of the shear stress over the 

shear strain, and the higher the modulus, the tougher the material. G* can 

alternatively be described by: 

 * ' ''G G iG        Equation 1-8 

 

where i is the imaginary number (√-1), G' is the storage (elastic) modulus and G'' is 

the loss (viscous) modulus. 
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The storage modulus, G' (Pa) can also be expressed as: 

 ' cos( )
τ

G δ
λ

        Equation 1-9 

 

where δ is the phase angle (°), τ is the shear stress (Pa) and λ is the shear strain. 

The loss modulus, G'' (Pa) can therefore be defined as: 

 '' sin( )
τ

G δ
λ

        Equation 1-10 

  

The phase angle, δ, is an important rheological parameter. When applying a 

sinusoidal (oscillatory) signal to a sample, different materials will have different 

response times, i.e. a different lag or phase angle between the applied and measured 

sinusoidal signal. This is demonstrated in Figure 1-5. For a purely elastic (solid-like) 

material, the stress and strain are exactly in phase, i.e. the phase angle is 0°. For a 

purely viscous (liquid-like) material, the stress and strain are 1/4 of a cycle out of 

phase, i.e. the phase angle is 90°. Therefore, if G' is greater than G'', the phase angle 

is less than 45° and the material can be said to be "solid-like". In contrast, if G'' is 

greater than G', the phase angle is greater than 45° and the material can be classified 

as "liquid-like", i.e. the material behaves more as a liquid than a solid. 

In addition, the loss tangent can be used to quantify the elasticity of a material, and is 

a ratio of the loss modulus to the storage modulus: 

 
''

tan
'

G
δ

G
        Equation 1-11 
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There are two main types of measurements used to determine viscoelastic properties; 

the amplitude sweep and the frequency sweep. When a sinusoidal, oscillatory signal 

is applied to a sample, the oscillation is a function of both the amplitude and the 

frequency. Therefore, the two tests are called amplitude sweeps and frequency 

sweeps and are carried out by holding one variable constant whilst varying the other. 

The amplitude sweep experiment is ran to determine the linear viscoelastic range 

(LVER), which is the critical strain limit at which a material starts to break down. 

The frequency sweep experiment is then carried out to record a fingerprint spectrum 

of the material, whilst the amplitude is held constant within the LVER. A frequency 

sweep can classify a material into three general behaviours; a gel, a viscoelastic 

solid, or a viscoelastic liquid. 

There are several other types of viscoelastic tests, such as creep or relaxation tests, 

however they are not the focus of this work.  
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Figure 1-5: Phase angle (δ) illustration. showing the input applied sinusoidal 

stress and the measured strain response, with a phase angle of δ. 
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1.5.3.2 Viscoelasticity applications in bioprocessing 

Viscoelastic measurements have also been used in bioprocess research and 

development. Oscillatory testing was previously used to investigate the effect of cell 

biomass and exopolysaccharides produced by Streptococcus theromphilus and 

Lactobacillus bulgaricus strains during yoghurt fermentation (Vlahopoulou and Bell, 

1993; Vlahopoulou et al., 1994; Vlahopoulou et al., 2001). This work used 

oscillatory testing to gain insight into the metabolic activity of lactic acid bacteria, 

and to understand the contribution of exopolysaccharides to the physical structure of 

fermented milks (Bensmira et al., 2010), assuming that the bacterial cells interacted 

with milk proteins through the production of exopolysaccharides.  

Oscillatory testing has been carried out on flocculated gels of E. coli lysate after 

undergoing chemical lysis (Ciccolini et al., 1999; Levy et al., 1999), demonstrating 

the sensitivity of the elastic modulus of the gel-matrix to shear strain, and results 

from the rheological studies were used to inform research strategies for process 

synthesis. Viscoelasticity has also been used to study mixing and fluid flow in 

simulated xanthan fermentation broths (Galindo and Nienow, 1992) and to analyse 

the viscoelastic nature of filamentous fermentation broths (Mohseni et al., 1997). 

Essentially, viscoelasticity has been shown to be a very useful method to analyse the 

material properties of fermentation broths. 

In terms of understanding the rheological properties of an E. coli cell broth, these 

studies are interesting because they suggest the possibility to derive useful insight 

from viscoelastic testing regarding cell lysis (whether in fermentation or chemical 

lysis). Moreover, rheological testing has also been carried out on calf thymus DNA, 

to understand the formation of a network at high DNA concentrations (Mason et al., 

1996). This shows the sensitivity of oscillatory testing to differences in high 

molecular weight molecules such as DNA; which is known to be an important 

marker for cell lysis (Balasundaram et al., 2009). In addition to viscoelastic testing 

relating to cell lysis, monitoring viscoelastic properties may also be able to provide 

novel insight into the physical properties of cells, such as changes in the strength, 

stability and robustness of the cell population during fermentation, as well as 
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providing insight into any interactions present in the system, for example between 

protein, nucleic acids and cell debris during cell lysis. 

In summary, although few rheological studies on E. coli cell broths have been carried 

out, there is sufficient literature to be able to draw several conclusions regarding 

rheology applications in fermentation. Firstly, viscosity can be used to monitor the 

cell concentration in the fermentation, as cell concentration (volume fraction) is 

directly related to viscosity. Secondly, rheological testing on E. coli cell broth during 

chemical lysis provided useful information regarding changes in the material 

properties of the cell broth (Levy et al., 1999).  

The ability to detect and monitor cell lysis in fermentation remains a significant 

challenge and detailed characterisation of rheological changes during cell lysis in 

fermentation has not been carried out for the purpose of fermentation monitoring. 

There remains a substantial need for novel process monitoring technologies in the 

biopharmaceutical industry to drive improvements in process development and large 

scale production, in order to bring safer and more efficacious drugs to market in a 

shorter time. The development of a novel rheology-based monitoring technology 

may therefore be able to deliver insight into the changes in physical properties of cell 

broths during fermentation, which will aid both our understanding of cell lysis, as 

well as our ability to monitor and subsequently control lysis. Improving 

understanding of cell lysis from a bioprocessing perspective may have useful 

applications in process design, monitoring and optimisation.  

1.6 Aims and objectives 

Cell lysis is often observed in microbial fermentation and remains a key challenge 

that is poorly understood. For host cells with intracellularly-stored products, product 

loss occurs at the point of cell lysis, which can have a huge impact on the final 

product yield. Moreover, when cell lysis occurs, intracellular content such as host 

cell protein and nucleic acids leak to the broth, which acts to increase the viscosity of 

the broth and can have major consequences on the performance of subsequent 

downstream unit operations. 
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The fermentation process itself is characterised by many different and complex 

variables, which make it challenging to monitor and control cell lysis directly. 

Process analytical technologies (PAT) and quality-by-design (QbD) initiatives are 

beginning to demonstrate tangible improvements in the biopharmaceutical industry's 

approach to process development, however due to the inherent complexity of the 

fermentation broth, there remains a significant need for new monitoring technologies 

in fermentation.  

The inability to monitor and control cell lysis in fermentation leads to problems with 

process robustness, such as variations in the material properties of the cell broth 

which in turn affects many of the downstream processing unit operations such as unit 

sizing or the operational performance, for example cake formation in microfiltration. 

Current analytical technologies are unable to rapidly and accurately monitor the shift 

between optimal intracellular product concentration and product leakage to the 

fermentation broth. Using viscosity monitoring in fermentation may facilitate a 

deeper understanding of the physical properties of cell broths, and may provide an 

efficient way to indirectly infer cell lysis, which would enable decision-making about 

harvest time in fermentation and improve our understanding of the impact of lysis on 

the performance of downstream unit operations. 

The overall aim of this thesis is to use viscosity monitoring to detect cell lysis in 

fermentation, in order to gain a deeper understanding of the effects of lysis on the 

physical properties of cell broths and demonstrate its application in process design 

and optimisation by considering the impact on primary recovery unit operations. 

The specific objectives for each chapter are outlined below: 

• Develop a method to rapidly detect cell lysis and product loss in fermentation 

using viscosity monitoring. This will involve characterising cell lysis using a 

range of analytical techniques and then evaluating them in comparison to 

viscosity monitoring 
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• Investigate the effects of cell lysis on the rheological properties of cell broths 

in fermentation. This will involve using advanced rheological testing to gain 

a deeper understanding of the physical properties of cell broths and then 

using this insight to develop a model to quantify cell lysis in postinduction 

fermentation using viscosity monitoring 

 

• Carry out a case study demonstrating an application of viscosity monitoring 

in fermentation. This will involve using viscosity monitoring to make 

decisions about harvest time and to influence an approach to create a novel 

process design in primary recovery 



Chapter 2 Materials & methods 

All chemicals were provided by Sigma-Aldrich (Dorset, UK) unless otherwise stated 

and used as supplied. 

2.1 Host strain 

An E. coli K12 w3110 strain (ATCC 27325) containing the plasmid pTTOD A33 

IGS2 (with specificity for human IL-17) was kindly donated by UCB Pharma Ltd. 

(Slough, UK), coding for a 46 kDa antibody fragment (Fab') utilising a tac promoter. 

The plasmid also codes for tetracycline resistance and is shown in Figure 2-1. 

 

Figure 2-1: pTTOD A33 IGS2 plasmid used in E. coli w3110, coding for Fab' 

expression and tetracycline resistance, utilising a tac promoter (Adams et al., 

2009). 

2.2 Fermentation 

High cell density fed-batch fermentations were carried out using an autoclavable 7 L 

Applikon vessel (vessel diameter 160 mm, aspect ratio 2.3:1; Applikon 

Biotechnology B.V., Schiedam, Holland), with a 5 L working volume using an 

overhead driven double Rushton 6-blade impeller (60 mm diameter). 
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2.2.1 Working cell bank preparation 

A master cell bank vial was kindly provided by UCB Pharma Ltd. (Slough, UK), and 

used to inoculate 200 mL complex LB broth (10 g L-1 tryptone, 5 g L-1 yeast extract 

and 5 g L-1 NaCl) in 1 L baffled shake flasks. Tetracycline was supplemented in each 

shake flask to a working concentration of 10 μg mL-1. The shake flasks were 

subsequently incubated at 37°C and 250 rpm until an optical density (OD600) of 1-1.5 

was reached (4.5-5 h) where the cells were in exponential phase. To make the 

working cell bank, 1 mL of cell broth was added to 1 mL of 50% (v/v) glycerol 

solution and stored in 2 mL cryovials at -80°C. 

2.2.2 SM6Gc defined media 

The formula for SM6Gc defined media is defined in Table 2-1 and Table 2-2, and 

was previously described by Garcia-Arrazola et al. (2005). 

Table 2-1: SM6e trace elements formula for SM6Gc defined media (Garcia-

Arrazola et al., 2005). 

Compound Concentration (g/L) 

Citric acid 100 

CaCl2.6H2O 5 

ZnSO4.7H2O 2.46 

MnSO4.4H2O 2 

CuSO4.5H2O 0.5 

CoSO4.7H2O 0.427 

FeCl3.6H2O 9.67 

H3BO3 0.03 

NaMoO4.2H2O 0.024 
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Table 2-2: Media components for SM6Gc defined media (Garcia-Arrazola et al., 

2005). 

Compound Concentration (g/L) 

(NH4)2SO4 5.2 

NaH2PO4.H2O 4.4 

KCl 4 

MgSO4.7H2O 1.04 

SM6e trace elements 10 mL 

Citric acid. H2O 4.2 

Glycerol 141.12 

PPG 0.2 mL 

CaCl2.H2O 0.25 

 

2.2.3 Fermentation protocol 

Using the working cell bank, the seed train was initiated in the same way as 

described above (in section 2.2.1), and incubated for 4.5-5 h in complex LB media 

with tetracycline (working concentration of 10 μg mL-1) until reaching an OD600 of 1-

1.5. 40 mL of culture was then transferred to a total working volume of 400 mL in 2 

L baffled shake flasks containing tetracycline (working concentration of 10 μg mL-1) 

and SM6Gc media (method previously described by Garcia-Arrazola et al. (2005)). 

The cells were grown in a shaker-incubator in defined SM6Gc media for 20 h at 

30°C and 200 rpm, until reaching an OD600 of 5 (cells in exponential phase). 

600 mL of seed culture was then used to inoculate (at 15 % v/v) the 7 L Applikon 

fermenter. pH was maintained at 6.95 ± 0.05 using an automated PID controller with 

ammonia solution (12% v/v) and phosphoric acid (12% v/v). Dissolved oxygen 

tension (DOT) was controlled (PID controller) at 30% ± 5, using a cascade control 

system with agitation (300-1200 rpm) and oxygen gas blending. Temperature was 

initially controlled (PID controller) at 30°C ± 1 and dropped to 25°C ± 1 thereafter 

upon reaching an optical density (OD600) of 38. At an OD600 of 38, a 32 mL shot of 

MgSO4.7H2O (246.7 g L-1) was added to the fermenter. At an OD600 of 54, 24 mL of 

NaH2PO4.H2O (232.8 g L-1) was added, and at an OD600 of 80, a further 32 mL was 
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added. These shots are added to help stabilise the structure of the outer cell 

membrane of the cells during rapid (exponential) growth by binding with 

lipopolysaccharide (Chen et al., 2004). 

At an OD600 of around 200 (~36-38 h postinoculation), a DOT spike indicated that 

the culture had utilised all of the glycerol carbon source in the media. At this point, 

isopropyl β-D-1-thiogalactopyranoside (IPTG) (Generon Ltd., Maidenhead, UK) was 

added to a target bioreactor concentration of 0.03 g L-1 in order to induce Fab' 

expression, and 80% (w/w) glycerol solution was fed at a rate of 6.4 mL h-1. To 

control foaming, 1 mL of 100% polypropylene glycol (PPG) was added to the 

fermenter prior to inoculation, and as necessary thereafter up to a maximum of 2 mL 

total PPG. Samples were taken from the bioreactor throughout the fermentation and 

the fermentation was typically continued up to 60 h postinduction. 

2.2.4 Fermentation process control 

As discussed in section 2.2.3, several parameters were controlled during the 

fermentation process including temperature, pH, and dissolved oxygen tension. After 

initially setting up the bioreactor, the controller performance for these parameters 

was poor. Therefore, the proportional-integral-derivative (PID) controller for each of 

the parameters was improved. This was done sequentially by trial and error, first 

establishing the P-term, followed by an I-term and finally a D-term where necessary. 

The improved PID terms are displayed in Table 2-3 below. 

Table 2-3: Improved PID controller settings for pH, temperature and dissolved 

oxygen tension (DOT) for the Applikon 7 L fermenter 

 pH Temperature DOT 

P-term 50 20 1.25 

I-term 250 s 2700 s 250 s 

D-term 0 s 0 s 25 s 
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2.3 Analytical methods 

2.3.1 Measurement of cell density 

Optical density was measured at 600 nm using an Ultrospec 500 Pro 

spectrophotometer (Amersham Biosciences Ltd., Amersham, UK). Samples were 

diluted in distilled water, where appropriate. 

Dry cell weight was measured by aliquoting 1 mL of cell broth into pre-dried and 

pre-weighed 2 mL Eppendorf tubes, centrifuging at max rcf (16,100 rcf or 13,200 

rpm, Eppendorf Centrifuge 5415R, Eppendorf, Germany) for 10 min, removing the 

supernatant and drying in an oven overnight at 100°C.  

2.3.2 Capacitance measurements 

The Aber Instruments (Aber Instruments Ltd., Aberystwyth, UK) Futura biomass 

probe (320 mm x 12 mm) was used in fermentations to obtain online, in-situ 

measurements of viable cells/mL. The online biomass probe fits into a standard 325 

mm port on the fermenter headplate and measures the electrical capacitance of cell 

suspensions at various radio frequencies. The probe was set up to measure in dual 

frequency mode, at 1.12 MHz and 15 MHz, which has been optimised by Aber 

Instruments for bacteria. A detailed explanation of dielectric spectroscopy theory 

was discussed in the Introduction (section 1.4.4.3.1). 

2.3.3 Sonication 

Where appropriate, samples were sonicated in order to release intracellular content 

for subsequent analytical measurement. Sonication was carried out using a Soniprep 

150 (MSE Ltd., London, UK), with 4 cycles each consisting of 10 seconds on, 10 

seconds off, at an amplitude of 10 μm. The samples were held in an ice bath during 

sonication. 

2.3.4 Cytotoxicity assay 

The cytotoxicity assay, Cytotox-96 (Promega Inc., Madison, USA), was used to 

determine cell viability, based on lactate dehydrogenase (LDH) release from the cell 
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to extracellular space. The method is non-radioactive and colorimetric based, using 

absorbance spectrophotometry to quantify the amount of LDH present. Cells that 

have lost membrane integrity release LDH to extracellular space. LDH is a stable 

cytosolic enzyme that is released upon cell lysis (similar to [51Cr] release in 

radioactive assays). LDH is deemed to be an effective marker because it does not 

lose its activity or degrade during cell lysis assays.  

In the assay, a tetrazolium salt (iodonitrotetrazolium violet; INT) is converted into a 

red formazan product (by supplying LDH, lactate and NAD+ (nicotinamide adenine 

dinucleotide) as substrates), which can be determined quantitatively using a 

spectrophotometer. The amount of colour is proportional to the amount of lysed cells 

(i.e. concentration of LDH). This reaction sequence is detailed in the equations 

below: 

LDH  

 
LDH

NAD Lactate Pyruvate NADH      Equation 2-1 

 

Diaphorase 

 
Diaphorase

NADH INT NAD Formazan    Equation 2-2 

 

The assay was carried out and measured using a Tecan Safire2 spectrophotometer 

(Tecan Group Ltd., Reading, UK) in 96-well plate format at an optical density of 490 

nm, according to the manufacturer's instructions. 

The assay does not give the concentration of its “positive control” standard, which 

means that a standard curve cannot be produced. Therefore, it is necessary to plot % 

cytotoxicity at each time point by determining the absorbance for both the 

supernatant of undisrupted cells and total LDH release from the supernatant of 

sonicated cells. This is shown in the equation below: 
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 490

490

Experimental LDH release (OD )
% cytotoxicity=

Maximum LDH release (OD )
×100%  Equation 2-3 

 

2.3.5 Flow cytometry: BP staining 

Flow cytometry was performed using an Accuri C6 flow cytometer (BD Biosciences, 

California, USA), using bis-oxonol (BOX) and propidium iodide (PI) stains. 

Analysis using this method for E. coli analysis has been described elsewhere (Lewis 

et al., 2004). Fermentation samples were diluted to an OD600 of 1.0 AU and 10 µL 

combined with 990 µL of staining solution (50 µg/mL bis-oxonol, 40mM EDTA, 20 

µg/mL propidium iodide, in PBS). Samples were stained for 8 minutes before 

analysis. Cells which remained unstained or stained with bis-oxonol were counted to 

provide an overall measurement of viable cells/mL. Flow cytometry measurements 

were verified by carrying out cell counts using the colony forming units (CFU) 

method. This work was carried out by Dr Desmond Schofield (Department of 

Biochemical Engineering, University College London). 

2.3.6 Nucleic acid and protein quantification 

2.3.6.1 Picogreen assay 

Quant-iT Picogreen assay (Life Technologies Ltd., Warrington, UK) was used to 

determine double-stranded DNA (dsDNA) concentration. Picogreen is a highly 

sensitive method of nucleic acid staining, based on fluorescence spectroscopy, to 

quantify double-stranded DNA in solution. 

Picogreen can quantify dsDNA over three orders of magnitude (linear relationship), 

without interference from other artefacts such as RNA and single-stranded DNA, 

using a standard bacteriophage lambda DNA as a reference to quantify dsDNA in 

unknown samples. The standard DNA curve can be plotted as fluorescence vs. DNA 

concentration.  
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The assay was carried out according to the manufacturer's instructions. Samples were 

diluted as appropriate in the assay buffer provided (to 100 μL total volume). Samples 

were incubated in the dark for 5 min, after addition of 100 μL of reagent to each 

sample, and then measured using a Tecan Safire2 spectrophotometer (Tecan Group 

Ltd., Reading, UK) in 96-well plate format, excited at 480 nm and fluorescence 

emission intensity was measured at 520 nm. 

2.3.6.2 Bradford assay 

Bradford assay (Bio-Rad Laboratories, Inc., Hercules, California, USA) was used to 

determine total protein concentration in samples of cell broth. The assay uses 

Coomassie Brilliant Blue which shifts its absorbance in visible light from 465 nm to 

595nm in the presence of protein, causing a visible colour change. 

Bovine serum albumin (BSA) was used to prepare the standard curve. Samples were 

diluted as appropriate (total volume of 10 μL), and 200 μL of Bradford reagent was 

added to each sample, according to the manufacturer's instructions. Following this, 

samples were immediately measured using a Tecan Safire2 spectrophotometer 

(Tecan Group Ltd., Reading, UK) in 96-well plate format, at 595 nm. 

2.3.6.3 Nanodrop measurements 

A Nanodrop 1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA) 

was used to quantify total soluble protein (at 280 nm) and total nucleic acids (at 230 

nm) of clarified cell broth, according to the manufacturer's instructions. Samples 

(total volume of 3 μL per sample) were diluted where appropriate. 

2.3.7 Product quantification 

Product concentration (Fab') in the supernatant and total product concentration were 

analysed by HPLC (Agilent 1200, Agilent Technologies Inc., California, USA) using 

a 1 mL protein G column (HiTrap, GE Healthcare, Uppsala, Sweden). To measure 

total Fab' concentration, sonication was carried out, followed by centrifugation at 

max rcf (16,100 rcf or 13,200 rpm, Eppendorf Centrifuge 5415R, Eppendorf, 

Germany) for 10 min at 10°C, removing the supernatant and centrifuging for a 
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further 10 min. Bind and elute 20 mM phosphate buffers were used to process the 

samples, at pH 7.4 and pH 2.5 respectively. The concentration of eluted Fab' was 

measured by absorbance at 220 nm. Purified Fab' was kindly provided by UCB 

Pharma Ltd. (Slough, UK), and diluted as appropriate to generate the standard curve 

for calibration. Product peak area was automatically integrated using Agilent's 

software (Agilent Chemstation, Agilent Technologies Inc., California, USA). 

2.3.8 Particle size distribution 

The particle size distribution of the cell broth was analysed by blue and red laser 

light diffraction across the size range 0.01-2,000 μm, using a Malvern Instruments 

Mastersizer 3000 (Malvern Instruments, Malvern, UK).  

The scattering of light as it passes through a dispersed particulate sample can be used 

to determine the Brownian motion velocity, and can therefore establish the 

hydrodynamic diameter of the particle from the Stokes-Einstein equation. The 

Mastersizer 3000 employs multiple detectors to measure the intensity of light 

scattered over a wide range of angles, and each detector analyses particles within a 

certain size range. 

Refractive and absorbance indices used were 1.59 and 0.00 respectively, based on 

latex particles, as the refractive indices of most biological materials are unknown. 

The cell broth sample volume required was dependent on the cell concentration, 

therefore the laser obscuration was held at 12-15% for all samples, and samples were 

added drop-wise until the desired obscuration was achieved (the obscuration value 

was displayed live on the computer). Measurements were taken in triplicate, 

averaged, and recorded as volume percentage vs. particle size interval. The raw data 

were treated, as previously described (Chatel et al., 2014), by converting into volume 

frequency vs. average particle size. 

2.3.8.1 Treatment of raw data 

The measurement of particle size distribution with the Mastersizer produces a 

histogram of volume percentage vs. particle size interval. This covers six orders of 
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magnitude on a logarithmic scale, allowing the entire sample range to be visually 

represented. However, the plot of percentage volume can actually misrepresent data, 

particularly if the distribution has more than one peak. This is because volume is a 

cubic factor of radius, thus the percentage volume of larger particles dominates the 

histogram compared to smaller particles, and also misrepresents the data as the 

particle size ranges are not equal throughout the histogram.  

Therefore, the percentage volume can be converted into volume frequency by 

dividing the percentage volume by the size range for that band, i.e. for the size range 

of channel i: 

 ,
i

v i
i

V
F

W
      Equation 2-4 

 

where Fv,i is the volume frequency distribution, V is the % volume and W is the 

particle size range of the channel. In addition, the particle size range can be 

converted to the average particle size between the size range (Chatel et al., 2014). 

2.4 Scanning electron microscopy 

Cell broth was centrifuged, the supernatant was removed and the pellet was stored at 

-20°C before carrying out analysis with scanning electron microscopy. Cells were re-

suspended for analysis in a primary fixative (2% glutaraldehyde in 0.1 M sodium 

cacodylate buffer (pH 7.3)) and left for 24 h at 3°C. The cells were then washed in 

0.1 M cacodylate buffer and fixed in 1% osmium tetraoxide in 0.1 M cacodylate 

buffer at 3°C for 1.5 h. The cells were washed again in 0.1 M cacodylate buffer and 

washed with dH2O before dehydrating in a graded ethanol-water series to 100% 

ethanol. The samples were then critical-point dried using CO2, and mounted on 

aluminium stubs using sticky carbon taps. The samples were then coated with a thin 

layer of Au/Pd (~2 nm thick) using a Gatan ion beam coater. The samples were 

viewed and imaged with a 7401 FEGSEM (Jeol, Massachusetts, USA). This work 
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was carried out by Mr Mark Turmaine (Department of Biosciences, University 

College London). 

2.5 Rheological characterisation 

Rheological experiments were carried out using two different instruments in order to 

compare results between the two instruments. The first instrument, a Brookfield DV-

2+ viscometer (Brookfield Engineering Laboratories, Inc., Middleboro, MA, USA) 

was used to determine the viscosity of the cell broth during fermentation. The second 

instrument, a Malvern Instruments Kinexus Lab + rheometer (Malvern Instruments, 

Malvern, UK) was used to carry out a range of rheological measurements, including 

measuring the viscosity and viscoelasticity of the cell broth during fermentation.  

2.5.1 Brookfield viscometer 

The Brookfield DV-2+ viscometer (Brookfield Engineering Laboratories, Inc., 

Middleboro, MA, USA) was used to carry out viscometry experiments with a cup 

and bob setup (CP-40 cup, coaxial cylinder rotary viscometer). A water bath was 

used to control the temperature at 25°C in order to mimic conditions found inside the 

fermenter, and 0.9 mL sample was required to fill the cup. The viscometer applied a 

fixed rotational speed (revolutions per minute, rpm, which can be converted to shear 

rate, s-1) to the sample and the resultant shear stress (measured as % torque or 

Newton/m, which can be converted to shear stress, Pa, or Newtons/m2) can be 

recorded manually from the viscometer readout. The gap size between the cup and 

the bob was manually adjusted between each measurement. 

The shear rate can be calculated, according to the Brookfield DV-2+ viscometer 

manufacturer's instructions (Brookfield Engineering Laboratories, Inc., Middleboro, 

MA, USA), by: 

 
sin







       Equation 2-5 
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where γ is shear rate in s-1, ω is the cone speed in rad/sec and θ is the cone angle in °, 

which for the CP-40 spindle is 0.8°. 

The shear stress can be calculated from the torque by: 

 
32 .

3
r





       Equation 2-6 

 

where τ is shear stress in dynes/cm2 (1 dyne/cm2 is equivalent to 0.1 Pa), Γ is the % 

full scale torque (dyne-cm) and r is the cone radius, which for the CP-40 spindle is 

2.4 cm. 

A flow curve can be generated to produce a graph of shear stress vs. shear rate and 

the viscosity can then be determined as the gradient of the line (for Newtonian 

suspensions). Experiments were carried out using a shear rate of 50 s-1 to 1500 s-1, 

selected due to the limitation imposed by the Brookfield instrument. 

2.5.2 Malvern Instruments Kinexus rheometer 

Rheological experiments were carried out with a Malvern Instruments Kinexus Lab 

+ rotational rheometer (Malvern Instruments, Malvern, UK), using 1 mL sample 

volume with 50 mm parallel plates at 25°C and a 300 μm gap size. The rotational 

rheometer applies controlled shear deformation to the sample under examination, to 

measure various rheological properties. Temperature was controlled using a peltier 

plate heating system at 25°C in order to mimic conditions found inside the fermenter. 

All parameters, such as gap size, could be adjusted and controlled using the rSpace 

software (rSpace, Malvern Instruments, Malvern, UK).  

All rheology-based results presented in this thesis were carried out using the Malvern 

Instruments Kinexus Lab + rheometer, except where stated.  
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2.5.2.1 Viscosity measurements 

Viscosity measurements were taken by applying a controlled shear rate over a range 

of 100-1000 s-1 and measuring the shear stress response (automated on the rSpace 

software (rSpace, Malvern Instruments, Malvern, UK)). Measurements were 

recorded at each shear rate after reaching a stable response value i.e. after being 

maintained at steady state for 10 s. Results were automatically plotted in the rSpace 

software and data could be exported to an Excel file. The flow curve can be plotted 

as shear stress vs. shear rate or shear viscosity vs. shear rate. However, current "best 

practice" in scientific publications is to present the data as shear viscosity vs. shear 

rate, on a logarithmic scale.  

2.5.2.2 Viscoelasticity measurements 

Oscillatory testing was carried out via amplitude and frequency sweeps. Amplitude 

sweeps were taken over a shear strain range 0.05-10%, holding frequency constant at 

1 Hz to determine the linear viscoelastic range (LVER); the critical strain limit at 

which a material starts to break down. Frequency sweeps were taken over the range 

1-10 Hz, with shear strain held constant at 0.1 %, within the critical strain region 

(LVER).  

The loss tangent, tanδ, is a ratio of the loss modulus (G'') to storage modulus (G'), 

and can be described: 

 

''

'
tan

G

G
        Equation 2-7 

 

where units of both the storage and loss moduli are in pascal (Pa). The loss tangent 

can be used to quantify the elasticity of a material. A loss tangent value of less than 

one indicates predominantly elastic or solid-like behaviour and a loss tangent greater 

than one indicates predominantly viscous or liquid-like behaviour. 
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2.5.3 Treatment of raw viscosity data 

For Newtonian fluids, the viscosity is the gradient of the straight line plot of shear 

stress vs. shear rate: 

 .          Equation 2-8 

 

where τ (Pa) is shear stress, γ (s-1) is shear rate and η is shear viscosity (Pa s). 

For a non-Newtonian fluid, i.e. where the viscosity changes as the shear rate 

changes, and therefore exhibits shear thinning or shear thickening behaviour, may be 

described by the Power Law: 

 . n         Equation 2-9 

        

where A is zero, B is equal to K, the consistency index (Pa sn) and n, the flow 

behaviour index, is a measure of non-Newtonian behaviour (i.e. a measure of the 

non-linearity of the flow curve, shear stress vs. shear rate). For a shear thinning or 

pseudoplastic fluid, n is less than one and for a shear thickening or dilatant fluid, n is 

greater than one.  

The Power Law can then be rewritten: 

 . n         Equation 2-10 

 

Taking logarithms and separating out the variables, it is possible to obtain a straight 

line plot of log-shear stress vs. log-shear rate, where n is the gradient of the line and 

K is the y-intercept: 
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      Equation 2-11 

 

and 

 2

2
n

K 



       Equation 2-12 

 

Therefore, the apparent viscosity can be determined as: 

 
1. n

app K          Equation 2-13 

 

For fluids that exhibit strong non-Newtonian behaviour, the Power Law is often 

employed to determine the viscosity and to quantify the flow behaviour index, n. 

2.5.3.1 Calculating the average shear rate in the bioreactor 

Flow curves can be generated for each sample measured, however in order to plot 

shear viscosity vs. fermentation time, a single viscosity value was desired. This is 

challenging when the flow curve is non-linear (i.e. non-Newtonian behaviour is 

exhibited), as the viscosity changes depending on the rate of shear. The viscosity can 

either be derived from the Power Law or can instead be determined by using a single 

value of viscosity from a fixed shear rate.  

By using a single value of viscosity from a fixed shear rate, the measurement and 

analysis time can be significantly decreased (i.e. from 10-15 min to 1-2 min). 

However, it was desired to obtain viscosity values at a shear rate that relates to the 

shear rate experienced inside the fermenter. Therefore, it was important to determine 

the average shear rate in the fermenter. Metzner and Otto describe the average shear 
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rate inside a stirred vessel as a linear function of stirrer speed (Metzner and Otto, 

1957; Doran, 1995): 

 .average ik N        Equation 2-14 

 

where γaverage is the average shear rate in the stirred vessel (s-1), Ni is the stirrer speed 

in revolutions per second and k is a constant which for Rushton impellers is 10-13.  

The 7 L Applikon fermenter operates between 300-1200 rpm, as a cascade control 

system is used to control dissolved oxygen tension at 30%. This makes the minimum 

and maximum average shear rate in the fermenter 50 s-1 and 200 s-1 (using k = 10). 

These values are average shear rates, as the shear rate inside the bioreactor is 

strongly dependent on the distance from the impeller.  

Therefore, a fixed shear rate of 100 s-1 was chosen to obtain apparent shear viscosity 

data for cell broth during fermentation, as this provides a more accurate 

representation of the average shear rate found inside the fermenter whilst allowing 

rapid measurement and analysis. 

2.5.4 Preparation of material for rheological characterisation 

2.5.4.1 Cell paste and supernatant 

Cell paste was obtained for rheological measurements by taking 50 mL samples from 

the fermenter, and clarifying twice for 30 minutes each, at 10°C and 1,431 rcf (4,000 

rpm), using an Eppendorf Centrifuge 5810R (Eppendorf AG, Germany), and 

removing the supernatant after each run. 

2.5.4.2 DNA and protein 

Herring Sperm DNA (Promega, Madison, Wisconsin, USA) was used as 

representative DNA to fabricate lysed cell suspensions. Bovine serum albumin 

(BSA) was used as a representative protein to fabricate lysed cell suspensions. 
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2.6 Cell broth processing: primary recovery studies 

2.6.1 Flocculation studies 

A 25% w/v polyethyleneimine (PEI, (C2H5N)n, Mw = 50,000-100,000; MP 

Biomedicals SARL, Illkirch Cedex, France) water-based solution was prepared and 

mixed for 1 h at 21°C (dilution was necessary because 100% PEI is extremely 

viscous). The PEI solution was then added dropwise to the cell broth to a total of 100 

mL (final concentration of 0.5-1.5% w/v), at the tip of the impeller in a 200 mL 

baffled mixing vessel fitted with a Rushton impeller (six-bladed, 2.5 cm diameter, 

stirred at 1,080 rpm, Re = 2,250, Ḡ = (P/Vη)0.5 = 700 s-1, where Ḡ is the mean 

velocity gradient, P/V is the power dissipated per unit volume, η is the suspension 

viscosity (Pa s) and Re is the Reynolds number), and controlled by a Caframo Stirrer 

(BDC1850-220, Caframo Limited, Ontario, Canada). To reach maximum floc 

strength (Bell and Dunnill, 1982), the solution was left to mix for 0.5 h at 21°C, 

where Ḡt ~ 1.25 x 106 (Ḡt > 1 x 105 is required to reach maximum floc strength). 

2.6.2 Periplasmic extraction 

Periplasmic extraction was carried out according to UCB Pharma (Slough, UK) 

protocol using extraction buffer containing 10 mM EDTA and 100 mM Tris, at pH 

7.4. After centrifugation, cells were re-suspended in a 1:7 w/v ratio (cells: buffer) 

and incubated in a shaker-incubator at 60°C and 250 rpm for 12 h. 

2.6.3 Ultra scale-down studies 

2.6.4 Ultra scale-down centrifugation 

In order to mimic large scale centrifugation, the shear (e.g. shear experienced in the 

feed zone of a large scale centrifuge or due to solids discharge in centrifugation) and 

centrifugation steps were decoupled, as carried out and described in detail elsewhere 

(Chatel et al., 2014; Rayat et al., 2016; Voulgaris et al., 2016). 
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2.6.4.1 Ultra scale-down shear studies  

Samples were exposed to shear stress in an ultra scale-down (USD) rotary disc shear 

device (kompAsTM shear device, 20 mL stainless steel chamber of 50 mm internal 

diameter and 10 mm height, fitted with a stainless steel rotating disc of 40 mm 

diameter and 1 mm thickness, with disc speed 0-20,000 rpm) for 20 s, controlled by a 

custom designed power pack (UCL Mechanical Workshop) at either 14,000 rpm or 

8,000 rpm (equivalent to 1.04 x 106 W kg-1 and 1.30 x 105 W kg-1 maximum energy 

dissipation rates (ε) respectively, determined by a computational fluid dynamics 

empirical correlation (Figure 2-2), as described by Chatel et al. (2014)) and adapted 

from Levy et al. (1999). 
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Figure 2-2: Correlation for the predicted maximum energy dissipation rate, ε, 

(W kg-1) as a function of disc speed, N, (revolutions per second, rps), at the tip of 

the rotating disc in the USD shear device. Correlation developed by 

computational fluid dynamics (adapted from Levy et al. (1999)),  (where ― is 

the line of best fit), and relationship determined based on fluid dynamic analysis 

(ε = 1.7 x 10-3 N3.71),    , (Chatel et al., 2014). 

  

2.6.4.2 Ultra scale-down centrifugation studies 

Following USD shear studies, centrifugation was carried out at small scale 

(Eppendorf Centrifuge 5810R, Eppendorf, Germany) for 5 min at 6,800 rpm (5,945 

rcf) based on a Vlab/t∑T of 1.96 x 10-8 m/s (corresponding to a mid-range flow rate of 

an industrial CSA disc stack centrifuge of 48 L h-1
, by correlating the corresponding 

flow rate and equivalent settling areas, as previously described (Chatel et al., 2014; 

Voulgaris et al., 2016)), following the equation: 

 

2( . )

(2. .ln(2. / ( )))

lab
T
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 




    Equation 2-15 

 

where ∑T is the equivalent settling area (m2), Vlab is the volume of process material in 

the centrifuge tube (m3), ω is the radial speed (rad s-1), g is acceleration due to 

gravity (m s-2), and Ri and Ro are the inner and outer radii of the centrifuge tube (m).  
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All centrifugation was carried out at 10°C. Well-clarified supernatant was prepared 

by centrifugation for 30 min at maximum rcf (16,100 rcf or 13,200 rpm, Eppendorf 

Centrifuge 5415R, Eppendorf, Germany). 

The solids remaining (S) was characterized by:  

 

 
( )
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s w

f w

OD OD
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OD OD


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
    Equation 2-16 

 

where ODs is the optical density (at 600 nm) of the supernatant, ODw is the optical 

density of the well-clarified sample and ODf is the optical density of the feed sample. 

2.6.5 Ultra scale-down depth filtration 

Ultra scale-down depth filtration was performed on a liquid handling robotic 

platform (Tecan Freedom EVO1, fitted with a TeVacS two-position vacuum filtration 

manifold, Tecan Group Ltd., Reading, UK). Custom made filter housings (UCL 

Mechanical Workshop) were fitted with 2.8 x 10-5 m2 coupons of depth filter media, 

using a 90SP filter (0.1 μm nominal pore size, Zeta Plus SP Series, 3M, Diegem, 

Belgium). Each pre-cut filter was wetted with 4 mL milliQ water (milliQ water 

purification system, Merck Millipore, Abindgon, UK), followed by 5 mL of process 

material. Vacuum filtration was carried out at constant pressure (ΔP = 300 mbar), 

with the feed volume monitored at 5 s intervals by the liquid handling arm of the 

Tecan robot. A script automatically plotted the permeate vs. time on an Excel 

spreadsheet.  

2.6.6 Ultra scale-down crossflow filtration 

Experiments were carried out using an automated crossflow filtration (CFF) system, 

ÄKTA Crossflow (GE Healthcare Life Sciences, UK), with a custom-made rotating 

disc filter (RDF) system (UCL Mechanical Workshop), geometrically similar to the 

rotating disc filter system used by Ma et al. (2010), however houses a 35 mm 
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diameter stainless steel disc and has a working volume of 5.3 mL. The USD 

membrane filtration device is designed to allow filtration of the material across the 

membrane at variable flux and pressure, and mimics crossflow filtration 

(representative of CFF at large scale) whilst operating in dead-end mode (using a 

similar approach to Ma et al. (2010)). The USD membrane filtration device is 

equipped with a motor, controlled by a speed control unit (UCL Mechanical 

Workshop), which ensures a constant rotational speed of the disc at a given rpm 

(4,000 - 6,000 rpm, corresponding to a feed flux of 1350 - 1950 L/m2/h for large 

scale operation using a V-screen cassette). The device was equipped with a cooling 

jacket to maintain constant temperature, measured via a K-type thermocouple and 

logged using an USB Data Logger (Lascar Electronics Ltd, UK). 47 mm diameter 

membrane discs (effective membrane area of 13.2 cm2, Merck Life Sciences KGaA, 

Germany) with a pore size of 500 kDa were used in the USD membrane filtration 

device. An illustration of the device can be seen in Figure 2-3. 

 

Figure 2-3: Cross-sectional illustration of the USD crossflow filtration device. 
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A new membrane was used for each run, pre-soaked and flushed with milliQ water, 

and water flux tests were carried out before and after to compare the normalised 

water permeability (NWP, normalised to 25°C). The feed flow rate was set using 

UNICORN v5.11, the control software, which also records the feed pressure (which, 

in the case of dead-end flow, is equal to the transmembrane pressure). Data was 

logged every 1.5 - 3 seconds. This work was carried out with Mr Mohd Shawkat 

Hussain (Department of Biochemical Engineering, University College London). 

2.7 Computational methods 

2.7.1 Modelling cell lysis 

An empirical model was created to determine the extent of cell lysis from viscosity 

measurements using the "polyfit" function and the fit was evaluated using the 

"polyval" function in Matlab (The Mathworks, Inc., Natick, Massachusetts, USA). 

The model was created using a linear polyfit function (np=1, where np is the degree 

of polynomial fit). Data was normalised to perform the modelling, and de-normalised 

to obtain final results.  



Chapter 3 Detecting cell lysis in E. coli fermentation using viscosity 

  monitoring  

The results presented in this chapter have been published in the journal 

Biotechnology Progress, "Detecting cell lysis using viscosity monitoring in E. coli 

fermentation to prevent product loss" (see Appendix). 

3.1  Introduction 

Cell lysis is often observed in the late stage of the fermentation process. 

Understanding this phenomenon has significance both scientifically and 

commercially. Traditionally, cell lysis is considered to be a consequence of 

"unbalanced" growth at the end stage of the bacterial life cycle. However, despite the 

numerous studies on autolysis, our knowledge is still limited. Lysis phenomena in 

microbial fermentations may be influenced by a variety of factors, including 

environmental conditions in the fermenter such as shear stress or poor mass and 

oxygen transfer, toxic waste product build-up in the media, metabolic burden from 

excessive recombinant protein expression, as well as internal stresses from a build-up 

of product within the intracellular environment. Advances in fermentation 

technology in recent years have led to the development of high cell density 

fermentation, which not only increases the product titre but also increases 

complications with respect to mass transfer in the dense population (Kleman and 

Strohl, 1994; Riesenberg and Guthke, 1999; Shiloach and Fass, 2005). 

E. coli produce antibody fragments (Fab') that can be routinely targeted to the 

periplasmic space, a concentrated gel-like matrix in the space between the inner 

cytoplasmic membrane and the bacterial outer membrane (Spadiut et al., 2014). 

However, the capacity of the periplasm is limited; Fab' fragments will leak when 

exceeding 6% of the volume of the periplasm (Schofield et al., 2016). During 

fermentation, as the limit of the periplasm is reached, cells begin to lose viability and 

leak the Fab' product and other intracellular content to the fermentation broth.  

Apart from product loss in late stage fermentation, the remaining viable cells become 

more fragile which can significantly impact the performance of many downstream 
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unit operations. For example, cells will break four-fold more than those harvested at 

an earlier stage, if subjected to the equivalent shear level of that in an industrial 

centrifuge (Chan et al., 2006; Balasundaram et al., 2009; Perez-Pardo et al., 2011; 

Aucamp et al., 2014). Lysis can also reduce microfiltration performance, for example 

increasing fouling and resistance (Okamoto et al., 2001; Meireles et al. 2003). 

Therefore, monitoring cell lysis is particularly important for processes with host cells 

that store the product in the intracellular space. However, lysis is difficult to observe 

directly in fermentation, because it is inherently complex and current analytical 

technologies are unable to rapidly and accurately monitor the shift between optimal 

intracellular product concentration and leakage to the fermentation broth. Current 

industrial processes focus on solving this problem by monitoring cell density, 

product titre, product leakage and cell viability to determine harvesting time 

(Bowering, 2004; Perez-Pardo et al., 2011).  

As cell lysis occurs in late stage fermentation, leakage of product to the fermentation 

broth also acts to increase the broth viscosity, as large quantities of chromosomal 

DNA and other intracellular content are released simultaneously into solution 

(Balasundaram et al., 2009; Nesbeth et al., 2011). Therefore, it is proposed that 

monitoring the viscosity of the cell broth during fermentation may be an efficient 

way to indirectly infer cell lysis, which would enable decision making about cell 

harvesting to prevent product loss in late stage fermentation. 

The aim of this chapter is to develop a method to rapidly detect cell lysis in 

fermentation using viscosity monitoring. The specific objectives of this chapter are 

to: 

• Characterise cell lysis in an industrially relevant E. coli fermentation using a 

range of analytical techniques 

 

• Develop a method to rapidly detect cell lysis and product loss in fermentation 

using viscosity monitoring 
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• Evaluate viscosity monitoring against other common fermentation monitoring 

techniques 

3.2 E. coli fermentation 

The high cell density fermentation of E. coli w3110 was carried out in fed-batch 

mode in a 5 L working volume Applikon fermenter. As described in the Materials & 

methods (section 2.2), the cells were initially seeded in shake flasks using LB media 

before being transferred to a second shake flask with SM6Gc media, and grown to an 

optical density (OD600) of 5 (cells in exponential phase) before inoculating the 

fermenter at 15% v/v. 

The growth profile of two typical fermentation runs is shown in Figure 3-1. After 

inoculation, the lag phase in fermentation lasted until ~24 h, when the exponential 

phase subsequently began. Cells grew to a maximum dry cell weight (DCW) of 48 

g/L for Figure 3-1 (a) and to 61 g/L for Figure 3-1 (b), which corresponded to an 

optical density of ~200 - 220. A dissolved oxygen tension (DOT) spike and a pH 

spike were observed at 36 - 38 h (see also Figure 3-2), which indicated complete 

utilisation of the carbon source (glycerol). At this point, isopropyl β-D-1-

thiogalactopyranoside (IPTG) was added to the fermenter, which triggered the over-

expression of the TTOD A33 plasmid coding for antibody fragment (antigen-

binding, Fab') production. At induction point, glycerol feeding began and was fed at 

a constant rate throughout the postinduction phase (6.4 mL h-1). Fermentation runs 

were typically continued up to 60 h postinduction. 

Cells growing in exponential phase allocate the vast majority of their energy to 

reproduction and growth, therefore only a very small concentration of Fab' product 

can be seen at induction point (36 - 38 h, Figure 3-1) and the rapid production of Fab' 

can be seen in stationary phase (after induction with IPTG), reaching 1.6 - 1.85 

mg/mL total product by the end of the fermentation.  

Taking Figure 3-1 (a) as an example; immediately after 38 h, a slight drop in cell 

density was observed, which can be attributed to a time lapse of ~30 min between the 

DOT spike and induction point (IPTG addition, plus starting the glycerol feed). 
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Following this, cell density (OD600 and DCW) was relatively constant in the 

stationary phase, although increased slightly between induction point at 38 h and 82 

h, which is likely to be a result of mild overfeeding of glycerol in stationary phase. 

Nonetheless, Figure 3-1 (a) and (b) represents typical fermentation runs in terms of 

the growth profile and the Fab' production profile. 

It can be seen in Figure 3-1 (a) that the stationary phase appears to continue until a 

drop in cell density was observed from 82 h onwards (44 h postinduction, seen from 

both OD600 data and DCW data). This coincided with a change in the rate of Fab' 

production, which also dropped significantly after 82 h. During fermentation runs it 

was observed that foaming occurred in exponential phase, and PPG (antifoam) 

addition was required (manually added drop-wise), however very little or no foaming 

occurred in stationary phase. 

Figure 3-2 shows the corresponding online control data during two typical 

fermentation runs. As described in Materials & methods (section 2.2.4), the 

proportional integral derivative (PID) control systems for temperature, pH and DOT 

were improved in early fermentation runs, and displays an enhanced control system 

Figure 3-2for the Applikon fermenter. Data points were recorded every 2 min from 

the Applikon control system and smoothed using the "prune" function in Prism 

software (GraphPad Prism 7, Inc., La Jolla, California, USA) in order to plot Figure 

3-2 (every two data points were averaged). 

Taking Figure 3-2 (a) as an example, pH was controlled at 6.95 ± 0.05, however two 

spikes are noticeable between 20-30 h, due to the addition of sodium phosphate shots 

(sodium phosphate is acidic). These shots are added to help stabilise the structure of 

the outer cell membrane of the cells during rapid (exponential) growth by binding 

with lipopolysaccharide (Chen et al., 2004). A pH spike was also observed at 

induction point. This is because the E. coli cells produce (and release) lactic acid 

during cell growth, therefore base (12% v/v ammonia solution) is added throughout 

the exponential phase. At the point that cells run out of glycerol, lactic acid suddenly 

stops being produced, and the continued addition of base causes the pH to shoot up 
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(i.e. before the PID control system kicks in). After induction with IPTG, pH control 

was very good. 

Temperature was controlled at 30°C ± 1 until an OD600 of 38 was reached, and 

reduced to 25°C ± 1 thereafter. Temperature was accurately controlled using a 

mixture of a cooling coil (water cooled to 6°C) that runs inside the fermenter and a 

heating jacket that surrounds the vessel. 

Dissolved oxygen tension (DOT) was controlled at 30% ± 5 for the duration of the 

fermentation, except in Figure 3-2 (a) between 30-52 h, where DOT fluctuated 

significantly (in exponential phase and immediately after), i.e. ± 10%. Therefore, in 

order to protect the cells and ensure that excess oxygen was present in the media, the 

DOT set point was increased to 32% for this duration. This strategy was not adopted 

for all fermentation runs. Figure 3-2 (b) also shows some fluctuation in the DOT and 

stirrer rate data in exponential phase, with occasional spikes above ± 10%. However, 

in postinduction culture, DOT control for all fermentation runs was very good. 

DOT was maintained at 30% using a cascade control system, with agitation (stirrer 

rate controlled between 300-1200 rpm) and oxygen gas blending, so that the oxygen 

gas addition was implemented as the stirrer rate increased to the maximum of 1200 

rpm. In the early stage of the fermentation, the stirrer rate increased to cope with the 

increased oxygen demand of the growing cell population, until early exponential 

phase (~24 h) where the stirrer rate continued increasing, however started to fluctuate 

significantly. This was also reflected in the fluctuation of the DOT. This fluctuation 

was caused by oxygen gas blending, which began in exponential phase and 

continued until induction point. After the dissolved oxygen spike at 36 - 38 h, the 

stirrer rate dropped to ~700 - 800 rpm and steadily increased during stationary phase 

until ~65 - 80 h, where the stirrer rate began to rapidly increase. The increase in 

stirrer speed from 65 h reflects the challenges of mass and oxygen transfer in late 

stage fermentation as the broth viscosity increases during cell lysis. 

Although the DOT was generally well controlled, the PID controller for DOT could 

be further optimised in the future as there was some fluctuation in the stirrer rate and 
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DOT in exponential phase, particularly when oxygen gas blending was implemented. 

This is because the addition of oxygen presents a burden on the PID controller, i.e. 

the cascade control system must handle two control loops; stirrer rate and oxygen gas 

addition. The fermenter setup may therefore require more controlled oxygen addition 

or a different PID control for different growth phases i.e. different controller settings 

for exponential phase, stationary phase etc. However, this was not the focus of the 

present study. 

However, Figure 3-1 and Figure 3-2 demonstrate that although there was some 

variation between dry cell weight, OD and total Fab' concentration between runs 

(which is to be expected in fermentation), the reproducibility of the fermentation 

system was good. 
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Figure 3-1: Characterisation of two typical E. coli fermentation runs. Optical 

density at 600 nm (absorbance units (AU), in triplicate), dry cell weight (g/L, in 

triplicate) and total Fab' concentration (mg/mL, in duplicate). Cells induced 

with IPTG at 36 - 38 h, after a dissolved oxygen tension spike was observed. Dry 

cell weight reached a maximum of 48 g/L and 61 g/L, respectively; total Fab' 

concentration reached 1.6 mg/mL and 1.85 g/L respectively at the end of the 

fermentation. Error bars show standard deviation. 
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Figure 3-2: Online fermenter controls for two typical E. coli fermentation runs. 

Cells were induced with IPTG at 36 - 38 h, after a dissolved oxygen tension 

spike was observed. Temperature was controlled at 30°C ± 1 until an OD600 of 

38 was reached, and maintained at 25°C ± 1 thereafter. pH was controlled at 

6.95 ± 0.05; two spikes between 20-30 h correspond to sodium phosphate shot 

additions (see Materials & methods), and a spike at 36 - 38 h corresponds to the 

induction point. Stirrer rate was controlled between 300-1200 rpm. Dissolved 

oxygen tension (DOT) was controlled at 30% ± 5 for the fermentation duration, 

except for (a) between 30-52 h, where DOT fluctuated significantly (± 10%) and 

was subsequently controlled at 32%. (b) also shows fluctuation in the DOT and 

stirrer rate data in exponential phase, with occasional spikes above ± 10%. Data 

was recorded every 2 min, and smoothed using the "prune" function in Prism 

software (GraphPad Prism 7, Inc., La Jolla, California, USA) to reduce the 

number of data points (every two data points averaged). 
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3.3 Characterising cell lysis in fermentation 

Before assessing the ability of viscosity to detect and monitor cell lysis in 

fermentation, it was first necessary to characterise cell lysis using a range of 

analytical techniques, in order to better understand the mechanisms of lysis. 

3.3.1 Defining cell lysis and cell viability 

The definitions of cell lysis and cell viability differ. Cell lysis is defined as the 

release of DNA from the cell due to total disruption of the cell membrane. Cell 

viability relates to the intactness of the cell membrane, i.e. if the cell membrane is 

non-intact, intracellular content will leak from the cell through porous membrane 

channels. It is believed that cells with non-intact membranes, i.e. leaking product or 

other intracellular content, may have the potential to recover. However if DNA is 

lost from the cell, the cell can be classed as dead. 

3.3.2 Determining the optimal harvest time 

In the fermentation system under study, the Fab' product is produced and then 

targeted to the periplasm of the E. coli cell, until the cells lose viability, product leaks 

to the broth and cell lysis occurs. Traditionally, it is desired to maximise the 

intracellular product concentration in fermentation, and therefore harvest the cells 

before significant product loss occurs. For this reason, it is important to characterise 

the product profiles in fermentation, in order to determine the point of loss of 

viability and hence product loss, and subsequently define the optimal harvest point. 

Having observed the rate of total production of the Fab' product in Figure 3-1, the 

intracellular Fab' concentration and Fab' leakage profiles are shown (postinduction) 

in Figure 3-3 (a) from the fermentation run presented in Figure 3-1 (a). It can be seen 

that the intracellular product concentration increased rapidly after induction and 

reached a maximum of 1.2 mg/mL at 36 h postinduction (74 h total fermentation 

time), decreasing quickly thereafter.  
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Figure 3-3: Analytical characterisation of cell lysis in an E. coli Fab' 

fermentation. (a) Intracellular Fab' concentration and Fab' leakage to the cell 

broth (data shown postinduction, mg/mL, in duplicate). (b) Cytotoxicity data 

(based on lactate dehydrogenase (LDH) release to the cell broth, data shown 

postinduction, %, in triplicate) and double stranded DNA (dsDNA) release 

(data shown postinduction, mg/mL, in triplicate). Error bars show standard 

deviation. 
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In contrast, the product leakage profile (i.e. product leaked to the broth) shown in 

Figure 3-3 (a) is at zero initially after induction, until 10% product leakage 

(calculated as a percentage of the total product at each time point) was observed at 

33 h postinduction (71 h total fermentation time), and product loss increased rapidly 

from this point. At 36 h postinduction, 25% of the product had already leaked to the 

broth, although the maximum intracellular product concentration corresponded to 

this time point. If cells were harvested at 36 h postinduction at manufacturing scale, 

the risk of additional cell lysis and product loss in subsequent unit operations (i.e. 

holding time after harvesting, microfiltration and centrifugation) is extremely high 

due to the shear environment and processing time in the respective unit operations.  

HPLC is a robust method to characterise and quantify product profiles such as 

leakage, and shows the rapid deterioration of cells from 33 h postinduction onwards. 

Therefore, for this fermentation system, 33 h postinduction was chosen as the 

optimal harvest time in order to minimise product loss in subsequent downstream 

unit operations. 

3.3.3 Understanding the relationship between cell lysis and viability 

As cells lose viability and cell lysis occurs in fermentation, intracellular content such 

as the product, host cell protein and nucleic acids are released to the cell broth. In 

Figure 3-3 (b), the postinduction profiles for double stranded DNA (dsDNA) and cell 

cytotoxicity are shown. The cytotoxicity assay is based on lactate dehydrogenase 

(LDH); a stable marker (cytosolic enzyme) that is released due to the loss of cell 

membrane integrity. Loss of membrane integrity implies loss of cell viability and 

hence product leakage. Cytotoxicity is presented as a ratio of LDH in the supernatant 

to total LDH, at each time point. 

As shown in Figure 3-3 (b), dsDNA release and cytotoxicity were both low 

immediately after induction. dsDNA content remained below 0.5 mg/mL and 

cytotoxicity was below 10% until 33h postinduction, where a rapid increase in both 

dsDNA release and cytotoxicity were observed thereafter. The dsDNA release and 

cytotoxicity profiles both correlated well with each other and with the Fab' leakage 

profile shown in Figure 3-3 (a). 
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The flow cytometry plots in Figure 3-4 demonstrate this phenomenon further. For 

each plot, the upper left (UL) quadrant denotes dead cells and cell fragments, the 

upper right (UR) quadrant denotes PI stained cells (nonviable), the lower left (LL) 

quadrant denotes viable, polarised cells, and the lower right (LR) quadrant denotes 

viable cells that have been stained by BOX (depolarised cell membranes). 

Plot (a) in Figure 3-4 shows highly viable cells in mid-exponential phase; 99.6% 

were viable (LL and LR quadrants), and in mid-stationary phase (36 h postinduction; 

as seen in plot (b)), 98.1% of cells were viable. However at this point, 25.5% of these 

cells have been stained by bis-oxonol (BOX) and therefore had depolarised 

membranes. Technically, cells with depolarised membranes are classed as viable 

cells as they have the potential to recover if transferred to fresh media, however, their 

membranes are non-intact and will leak considerable quantities of product and other 

intracellular content if left exposed to the harsh shear environment inside the 

fermenter. 

At 57 h postinduction, shown in Figure 3-4 (c), 93% of the cells were viable; 33.2% 

had polarised membranes and 59.8% had depolarised membranes, and 6.8% of cells 

were nonviable (i.e. stained with propidium iodide (PI)). However, at 57 h 

postinduction, almost 90% of the Fab' product had been lost to the fermentation 

broth. Therefore, although cells with depolarised membrane channels are still 

technically "viable," in terms of fermentation; it can be said that they have lost the 

ability to produce and retain product in the periplasm.  

According to the traditional definitions of cell lysis and viability stated at the 

beginning of this section (3.3), if cells are leaking DNA then lysis is occurring. With 

regards to the fermentation of cells producing a product that is stored in the 

intracellular space (i.e. inside the periplasm); if the cells are leaking product, that is, 

have depolarised, non-intact cell membranes, they can be classed as nonviable. 

Figure 3-3 and Figure 3-4 therefore demonstrate that lysis, loss of cell viability and 

product loss occur simultaneously in fermentation.  
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Figure 3-4: Flow cytometry plots for BOX (bis-oxonol) and PI (propidium 

iodide) stains. For each plot, UL quadrant denotes dead cells and cell fragments, 

UR quadrant denotes PI stained cells (nonviable), LL quadrant denotes viable, 

polarised cells, and LR quadrant denotes viable cells that have been stained by 

BOX (depolarised cell membrane). (a) Sample was taken in mid-exponential 

phase, (b) sample was taken in mid-stationary phase at the onset of cell lysis (36 

h postinduction), and (c) sample was taken in late stationary/decay phase (57 h 

postinduction). Samples were measured in triplicate. 
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Scanning Electron Microscopy (SEM) images were taken of E. coli cells throughout 

a fermentation to provide qualitative observation of cell lysis and are shown in 

Figure 3-5. Figure 3-5 (a) shows highly viable cells, with largely intact cell 

membranes in early stage postinduction culture (i.e. early stationary phase). Figure 

3-5 (b) shows three things in late stage postinduction culture (i.e. late 

stationary/decay phase); (1) some healthy, viable cells, (2) swollen cells and (3) 

empty shells of lysed cells. This suggests that the over-expression and subsequent 

build-up of product within the periplasm (the capacity of the periplasm is limited to 

6% (Schofield et al., 2016)) has a significant stress on the metabolism of the cells, 

leading to a loss of the cell's ability to maintain their osmotic balance in late-stage 

fermentation, seen by the swelling and bursting of the cells in Figure 3-5 (b). 
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Figure 3-5: Scanning Electron Microscopy (SEM) images at x10,000 

magnification. (a) SEM image of an E. coli fermentation sample in early 

stationary phase. (b) SEM image of an E. coli fermentation sample in late 

stationary phase/decay phase, showing; (1) healthy cells, (2) swollen cells, and 

(3) shells of lysed cells. 
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3.4 Developing a method to detect cell lysis using viscosity 

3.4.1 Determining the viscosity profile of an E. coli fermentation 

After characterising cell lysis in an E. coli fermentation, it was important to establish 

the viscosity profile of the cell broth under study, in order to assess the feasibility of 

using viscosity as a monitoring tool to detect cell lysis and product loss. 

3.4.1.1 Flow curves 

The classic method to determine a fluid's resistance to flow i.e. its viscosity, is to 

carry out viscometry testing to obtain the flow curve (shear viscosity vs. shear rate). 

Therefore, viscometry measurements were carried out over the course of a 

fermentation to obtain flow curves, observe any changes in the rheological behaviour 

of the cell broth and determine the shear viscosity profile. 

No sample preparation was required to obtain the flow curves, and the cell broth (1 

mL sample volume) was added directly to the Malvern Instruments Kinexus Lab + 

rheometer. Viscometry measurements were taken over a shear rate range of 100-

1000 s-1, and the resultant shear stress was measured and recorded automatically 

after a steady state value was maintained for 10 seconds. Measurements were carried 

out using 50 mm parallel plates at 25°C and a 300 μm gap size. As a general 

heuristic, the gap size used should be at least 3-fold larger than the largest particle in 

the sample (E. coli cells are ~1-2 μm). Single measurements were carried out for the 

Kinexus rheometer as the steady state measurement allowed multiple readings to be 

taken and averaged over 10 seconds. 

The flow curves for a typical fermentation run, taken at various points throughout the 

fermentation, are presented in Figure 3-6. The flow curve of the SM6Gc media is 

presented for reference (~0.00114 Pa s), and has a higher viscosity than that of water 

at 25°C (0.001 Pa s), due to the presence of glycerol and other components such as 

salts in the media (see Table 2-1 and Table 2-2 in Materials & methods). Figure 3-6 

shows that the viscosity increased during exponential phase and then continued to 

increase significantly as the fermentation progressed from stationary phase to cell 

lysis (induction with IPTG was at 38 h). Importantly, the flow curves presented in 
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Figure 3-6 show a clear difference in the viscosity over the course of the 

fermentation. 

Shear thinning behaviour is often observed in high cell density fermentation broths 

that have been partially or wholly disrupted to release their intracellular content, for 

example, after homogenisation using low pressures and a minimum number of passes 

(Li et al., 2012), or during fermentation (Furuse et al., 2002), particularly for yeast 

and filamentous fungi. The extent of non-Newtonian behaviour has implications on 

various processing conditions such as pumping requirements, and is often used in 

quality control to characterise materials. The non-Newtonian behaviour of a fluid can 

be determined by the flow behaviour index, n, which is a measure of the linearity of 

the flow curve. A Newtonian fluid has a flow behaviour index of 1 (where the 

viscosity is independent of the shear rate, i.e. the flow curve is linear); a shear 

thinning fluid has a flow behaviour index of less than 1; and a shear thickening fluid 

has a flow behaviour index of greater than 1. As the flow behaviour index moves 

further away from 1, the non-Newtonian behaviour becomes increasingly apparent. 

In Figure 3-6, it can be seen that the shear thinning behaviour increases as the 

fermentation progresses; the flow curves for early stage stationary phase, late stage 

stationary phase and cell lysis show that the viscosity decreases as the shear rate 

increases, and becomes increasingly apparent as the fermentation progresses. Table 

2-1 presents the values of flow behaviour index for each sample in Figure 3-6, 

demonstrating that the shear thinning behaviour increased to 0.860 as significant cell 

lysis took place. This shear thinning behaviour is thought to be caused by structural 

interactions between cells, cell debris and high molecular weight species, such as 

nucleic acids, that are released to the fermentation broth during cell lysis. As seen in 

Figure 3-3 (b), significant quantities of high molecular weight dsDNA and other 

intracellular content were released to the broth as the fermentation progressed, which 

contributed to the increase in shear thinning behaviour seen in Figure 3-6. 

However, the flow behaviour index, n, remained above 0.85 for all samples, 

demonstrating that the shear thinning behaviour was relatively mild in this E. coli 

fermentation system. This implies that there is only a slight structure in the cell broth 
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during fermentation, as low cell concentrations are present in fermentation broths in 

comparison to homogenisation feeds (which typically have significant structure). 
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Figure 3-6: Viscometry flow curves of E. coli cell broth at various times 

throughout fermentation, over a shear rate of 100-1000 s-1, using a Malvern 

Instruments Kinexus Lab + rotational rheometer. Induction time was at 38 h 

using IPTG. Measurements were carried out at 25°C using 50 mm parallel 

plates and a 300 μm gap size. An increase in shear thinning behaviour is evident 

as the fermentation proceeded (flow behaviour index, n, was greater than 0.85 

for all samples). Single viscometry measurements were recorded at each shear 

rate, and held at steady state for 10 seconds. 
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Table 3-1: Flow behaviour index (n) values for the flow curves presented in 

Figure 3-6 of E. coli cell broth at various times throughout fermentation, over a 

shear rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + 

rotational rheometer. Induction time was at 38 h using IPTG. Measurements 

were carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. An 

increase in shear thinning behaviour is evident as the fermentation proceeded 

(flow behaviour index, n, was greater than 0.85 for all samples). Single 

viscometry measurements were recorded at each shear rate, and held at steady 

state for 10 seconds. 

Sample Flow behaviour index, n 

SM6Gc media 1.028 

Mid exponential phase (32 h) 0.977 

Early stage stationary phase (51 h) 0.939 

Late stage stationary phase (71 h) 0.939 

Cell lysis (82 h) 0.860 
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3.4.1.2 Viscosity profile in fermentation 

After obtaining the flow curves for the cell broth throughout a fermentation, it was 

essential to assess the shear viscosity of the cell broth vs. fermentation time. For this, 

a single value of viscosity was required to plot vs. time. 

For Newtonian fluids, the viscosity is independent of the shear rate, therefore the 

viscosity can be determined from the gradient of the straight line curve of shear 

stress vs. shear rate. However, for fluids that exhibit non-Newtonian behaviour, the 

viscosity changes as the shear rate changes. Therefore, for non-Newtonian fluids, 

either the apparent viscosity can be determined or a single value of viscosity can be 

used from a single shear rate. The methodology for viscosity determination was 

discussed in detail in Materials & methods (section 2.5). Therefore, measurement of 

viscosity at a single shear rate was used to determine the viscosity of the broth. This 

has two main advantages.  

First, in order to mimic the shear environment experienced inside the fermenter, the 

average shear rate in the fermenter could be calculated (see section 2.5 in Materials 

& methods) and the viscosity of the cell broth could then be determined at this shear 

rate using the rheometer. The average shear rate was determined to be 50-200 s-1. 

This is because the fermenter uses a cascade control system, where agitation varies 

between 300-1200 rpm in order to control DOT at 30%. 

Secondly, in order to rapidly determine the viscosity of the cell broth at-line, and 

enable decision-making about cell harvesting; viscosity determination at a single 

shear rate removes the need to obtain the entire flow curve (in order to then calculate 

the apparent viscosity), and reduces the measurement time from 10 min to under 2 

min. 

Therefore a shear rate of 100 s-1 was chosen as the characteristic parameter to obtain 

shear viscosity values. This enabled rapid data acquisition and was representative of 

the shear environment within the bioreactor (between 50-200 s-1). Although the 

impeller speed fluctuated significantly during exponential phase, this did not happen 

in postinduction fermentation, where the impeller speed can be seen to be stable (see 
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Figure 3-2). Therefore, for the purpose of detecting cell lysis in postinduction 

fermentation, the average shear rate calculated in section 2.5 (Materials & methods) 

is appropriate for this growth phase.  

Another important consideration is that at lower shear rates, the measurement will 

pick up more of the polymer interactions (e.g. nucleic acids) that are thought to cause 

an increase in viscosity during cell lysis, and hence enables more precise observation 

of cell lysis. 

The viscosity of fermentation broths is determined by two factors; cell concentration 

and solute concentration in the broth (assuming other factors such as media 

composition, temperature, aeration and agitation are constant) (Reardon and Scheper, 

1991). 

Figure 3-7 (a) shows the viscosity profile obtained using the Kinexus rheometer 

during a typical fermentation run. The growth profile (OD600) is presented as a 

reference. The shear viscosity of the cell broth increased correspondingly to the 

increase in cell density during exponential phase, up to 38 h when a dissolved 

oxygen spike was observed and the cells were subsequently induced with IPTG. At 

this point, the cell density in stationary phase remained constant, and a relatively flat 

viscosity profile was observed, until 71 h (33 h postinduction), where a rapid 

increase in the viscosity was seen. Although the cell density increase in exponential 

phase was large, the resulting increase in viscosity was relatively small. As cell lysis 

progressed, a much larger increase in viscosity was observed (~2.5-fold increase in 

viscosity observed at the end of the fermentation, in relation to the viscosity in early 

stationary phase). 

The viscosity profile shown in Figure 3-7 (a) correlates well with the increase in cell 

density in the growth phase. Additionally, the postinduction viscosity profile closely 

follows the cell lysis trends observed through HPLC (product leakage), flow 

cytometry, DNA release and cytotoxicity. 
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Figure 3-7: Comparison of two rheological instruments to measure viscosity. 

Optical density measured at 600 nm (absorbance units, AU, in triplicate). (a) 

Shear viscosity (Pa s, single measurement, held at steady state for 10 seconds) 

measured at 100 s-1 with a Malvern Instruments Kinexus Lab + rotational 

rheometer, at 25°C using 50 mm parallel plates and a 300 μm gap size. 

Induction point was at 38 h with IPTG. (b) Shear viscosity (Pa s, duplicate 

measurements) measured at 75 s-1 with a Brookfield DV-2+ viscometer at 25°C 

using a cup and bob setup (CP-40 cup, coaxial cylinder rotary viscometer). 

Induction point was at 46 h with IPTG. Error bars show standard deviation. 
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3.4.1.2.1 Comparing the viscosity profiles in fermentation using two different 

instruments 

Figure 3-7 (b) shows the viscosity profile for a separate fermentation, using a 

Brookfield viscometer (coaxial cylinder rotary viscometer) using a cup and bob setup 

with a CP-40 spindle, measured at 75 s-1, controlled at 25°C. Induction point for the 

fermentation run was at 46 h. 

For the fermentation presented in Figure 3-7 (b), the PID control system had not yet 

been fully optimised (as described in Materials & methods section 2.2.4). In addition, 

there was both a very long exponential growth phase (excessive foaming disrupted 

growth), as well as a long stationary phase. However, as seen in Figure 3-7 (b), the 

Brookfield viscometer was able to monitor the viscosity profile of the cell broth. 

Following a similar trend to that observed with the Kinexus rheometer (Figure 3-7 

(a)); the viscosity increased during the growth phase in alignment with the cell 

density increase, was relatively flat in stationary phase before increasing 

significantly as cell lysis occurred. This trend also corresponded well with dsDNA 

release and Fab' leakage during the fermentation.  

Although the general viscosity trends during fermentation aligned well for both 

instruments, there were several issues with the Brookfield viscometer. First, the 

measurements must be manually carried out; rpm and torque must be converted into 

shear rate and shear stress, and viscosity then determined from the flow curve. 

Secondly, the gap size must be manually adjusted and set between each sample. This 

was extremely challenging as the viscosity is dependent on the gap size (for non-

Newtonian materials), therefore small differences in gap size can have an impact on 

the viscosity. For this reason, duplicate measurements were carried out for all 

samples with the Brookfield viscometer. There were differences in the magnitude of 

the viscosity values between the instruments, however this could be for many 

reasons including the different shear rates used (75 s-1 vs. 100 s-1), the different 

geometries used (parallel plates vs. cup and bob), in addition to batch-to-batch 

variation of the cell broth between fermentation runs. Furthermore, as mentioned 

above, for the fermentation run presented with the Brookfield instrument, the PID 
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control system had not yet been optimised, therefore, poor control throughout the 

fermentation would have led to different levels of lysis (and therefore viscosity 

values) in this fermentation. Temperature also significantly affects the viscosity, and 

the water bath used to control the temperature for the Brookfield viscometer offered 

poor control in comparison to the peltier plate system used in the Kinexus rheometer. 

Moreover, in practical terms, the old age of the Brookfield instrument and awkward 

manual set up of the instrument meant that the reliability of the measurements was 

questionable. 

For the Kinexus rheometer, almost all steps in the measurement process were 

automated using the software provided, which is particularly important for setting the 

gap size, controlling temperature and obtaining rapid viscosity measurements. Data 

was analysed automatically; the flow curve was plotted on a graph in real-time 

during the measurements, and a table was populated with data including shear rate, 

shear stress and shear viscosity. Single measurements were able to be carried out for 

the Kinexus rheometer as the steady state measurement allowed multiple readings to 

be taken over 10 seconds and averaged. Duplicates and triplicates were measured 

occasionally, and the results were determined to be highly reproducible.  

Considering that the aim of this study is to rapidly obtain at-line viscosity data in 

order to monitor cell lysis in fermentation, the high reproducibility of the Kinexus 

rheometer and the automated measurement process (including the ability to automate 

the setting of the gap size and temperature) was a more favourable option to rapidly 

obtain accurate viscosity data. In addition, the rheometer allows both viscometry 

testing as well as viscoelasticity testing, which offers the potential to characterise and 

investigate the rheology of the cell broth in a multitude of ways. However, the 

Brookfield instrument only offers the possibility to measure viscosity. 

3.4.1.3 Batch vs. fed-batch fermentation 

A batch fermentation was carried out to gain a deeper understanding of cell lysis and 

compare it to the fed-batch fermentation profile.  
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Figure 3-8 shows the viscosity profile for an E. coli fermentation ran in batch mode. 

DNA release to the cell broth, total protein release and the growth profile (OD600) are 

also shown for reference. The viscosity was measured using the Brookfield 

viscometer, and the same trend can be seen in the growth phase; an increase in 

viscosity in relation to the cell density increase. Cells were induced with IPTG at 34 

h after a dissolved oxygen spike was observed, however glycerol was not fed in the 

postinduction phase in order to observe cell lysis. The cell density can be seen to 

decrease slowly from the induction point. However, the DNA release, total protein 

leakage and viscosity increase rapidly from this point. 

The DNA, protein and viscosity trends correlate well in Figure 3-8. Cell lysis was 

triggered immediately at induction point (seen by the rapid release of DNA and 

intracellular protein) because the addition of IPTG diverted the E. coli cells' energy 

away from maintenance, repair and cell growth and instead to the over-expression of 

the Fab' product. This energy demand for the production of Fab' coupled with a lack 

of carbon source (glycerol) caused the cells to lyse immediately. 

This experiment also demonstrates an important consideration. Glycerol is highly 

viscous, and its addition in postinduction fermentation could result in an increase in 

the viscosity of the cell broth. For example, the viscosity trends observed in Figure 

3-7 during cell lysis could have been caused by an accumulation of glycerol in the 

media (i.e. if cells are dying, the cells would consume less glycerol and the glycerol 

concentration would build up in the broth). However, as shown in Figure 3-8, the 

viscosity increased 5-fold from induction point to the end of the fermentation. 

Therefore, the batch fermentation profile presented shows that cell lysis (i.e. the 

release of intracellular content such as nucleic acids and host cell protein to the cell 

broth) correlates well with an increase in postinduction viscosity that is not 

attributable to glycerol feeding.  
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Figure 3-8: Shear viscosity trend in a batch E. coli fermentation. Shear viscosity 

measured at 75 s-1 (Pa s, duplicate measurements) with a Brookfield DV-2+ 

viscometer at 25°C using a cup and bob setup (CP-40 cup, coaxial cylinder 

rotary viscometer). Optical density (measured at 600 nm, absorbance units, AU, 

in triplicate), total protein release (mg/mL, measured in triplicate) and DNA 

release (mg/mL, measured in triplicate) presented to compare trends with fed-

batch fermentation. Cells were induced with IPTG at 34 h, however glycerol 

was not fed in order to observe cell lysis. Rapid viscosity increase evident 

immediately after induction point. Fermentation terminated at 70 h. Error bars 

show standard deviation. 
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3.4.2 Detecting cell lysis and product loss using viscosity monitoring 

Three fed-batch fermentation runs were carried out and evaluated, to assess whether 

cell lysis and product loss can be detected in a robust and reproducible manner by 

viscosity monitoring.  

Figure 3-9 shows the three fed-batch fermentation runs (postinduction) and presents 

the shear viscosity data (following the protocol developed using the Kinexus 

rheometer) with the product leakage and the DNA release profiles. For all three 

fermentation runs, the postinduction viscosity increase correlated well with DNA 

release and product leakage. This also confirms what was shown in section 3.3; loss 

of cell viability, cell lysis and product loss occur simultaneously in postinduction 

fermentation, and (shown in section 3.4.1.3) that the release of intracellular content 

during cell lysis causes an increase in the viscosity of the cell broth.  

As discussed in section 3.4.1.2, viscosity is determined by both the cell concentration 

and the solute concentration in the broth. The viscosity increase in the growth phase 

of fermentation can predominantly be attributed to the increase in cell concentration, 

and the change in viscosity in stationary phase can predominantly be attributed to the 

solute concentration in the broth. Cell density can vary significantly between 

fermentation batches, which can consequently influence the shear viscosity. 

However, cell density can be assumed to be constant in stationary phase (i.e. 

postinduction). Therefore, taking the viscosity at induction point as a reference (in 

order to negate differences in cell density between batches), i.e. determining the 

postinduction viscosity increase, enables the determination of the viscosity increase 

that is attributable to cell lysis: 

  , 0t
η η η
increase postinduction

     Equation 3-1 

 

where ηt is the viscosity of the cell broth at the time point of interest (postinduction), 

and η0 is the viscosity of the cell broth at induction point.  
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Using this definition, it was determined that a 25% ± 5 increase in postinduction 

viscosity correlated to 10% product loss for the three fermentation runs shown in 

Figure 3-9.  

It is straightforward to characterise the viscosity profile of a fermentation system in 

this way, and correlate this to product leakage and hence cell lysis. Using the results 

presented in this chapter to exemplify a practical application of this method; taking 

into account batch-to-batch variation, a postinduction viscosity increase of 20% may 

be an appropriate time to end the batch, in order to minimise product loss (taking into 

consideration the downstream processing time and operating environment that the 

cells are subject to). 

This method of determining product loss is straightforward, and allows the operator 

to very quickly assess changes in cell viability and ascertain an appropriate harvest 

point by monitoring the viscosity in this way. In addition, results can be determined 

in under 2 minutes as no sample preparation is required. 

To characterise a different fermentation system using this method; one should start 

by assessing the intracellular product profile and product leakage profile of the 

system, taking into account the scale and downstream processing requirements, and 

then determine the optimum harvest point. The harvest point can be correlated to the 

viscosity profile, and viscosity monitoring can then be used at-line to rapidly 

determine the harvest point in subsequent fermentations. 

This methodology shows that viscosity monitoring may be used as an indicator of 

cell lysis in postinduction fermentation, and to determine the optimal harvest time 

(at-line) by indirectly identifying product leakage to the cell broth. 
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Figure 3-9: Effect of product leakage (mg/mL, measured in duplicate) and DNA 

release (mg/mL, measured in triplicate) on viscosity increase (Pa s, single 

measurement, held at steady state for 10 seconds) in postinduction fermentation 

for three fermentation runs. Error bars show standard deviation. 



Chapter 3 - Detecting cell lysis in E. coli fermentation using viscosity monitoring 

 135 

3.5 Evaluating viscosity monitoring against other common monitoring 

techniques 

Viscosity monitoring may be able to observe changes in the physical properties of 

the cell broth during fermentation in order to detect cell lysis. However, there are 

several established technologies available on the market that are used to determine 

harvest time in fermentation by monitoring cell density, product titre, leakage or cell 

viability. This section discusses the advantages and disadvantages of some of these 

methods. 

3.5.1 Biomass monitoring: optical density measurements and online 

capacitance measurements 

Capacitance measurements were carried out using the Aber Instruments (Aber 

Instruments Ltd., Aberystwyth, UK) Futura biomass probe. The in-situ, online 

biomass probe measures the electrical capacitance of cells which can be converted to 

viable cells/mL and was calibrated offline with flow cytometry data. See section 

2.3.2 in Materials & methods for a detailed explanation of its setup. 

It was determined in Figure 3-3 and Figure 3-9 that the postinduction viscosity 

profile correlated well with DNA release and product leakage. Figure 3-10 shows the 

viscosity profile and growth profile (OD600) with the capacitance data. According to 

the optical density profile, the first signs of lysis were observed at 44 h postinduction 

(82 h fermentation time), which corresponded to almost 40% product leakage. For 

the capacitance data shown in Figure 3-10, signs of cell lysis at 41 h postinduction 

(79 h fermentation time) corresponded to 30% product leakage. 

Optical density (OD) measurements are routinely used to monitor biomass growth in 

fermentation. However, OD measurements give an indication of the total biomass 

obscuring the light path, and provide no insight into viable biomass (Hewitt and 

Nebe-Von-Caron, 2004). This means that OD measurements systematically 

underestimate lysis in late stage fermentation and miss the critical point of product 

leakage. 



Chapter 3 - Detecting cell lysis in E. coli fermentation using viscosity monitoring 

 136 

The capacitance probe was able to very successfully monitor cell viability during the 

exponential growth phase and early stationary phase, as seen in Figure 3-10. 

However, capacitance measurements tend to perform poorly in late stage 

fermentation, often missing the onset of cell lysis, as the plasma membranes of non-

viable cells will still hold a certain amount of charge and therefore exhibit some form 

of capacitance (Sarra et al., 1996; Neves et al., 2000). This means that capacitance 

measurements can also overestimate the number of viable cells in the late 

stationary/decay phase of fermentation, as observed in Figure 3-10. 

3.5.2 Offline analytical technologies 

The postinduction viscosity profile closely aligns with the cell lysis trends observed 

through HPLC (product leakage), flow cytometry, DNA release and cytotoxicity. A 

comparison of the common monitoring techniques analysed in this chapter are 

presented in Table 3-2, assessing cost, time required and the ability to detect cell 

lysis and product leakage. 

HPLC is the standard method to monitor product leakage. However, in comparison 

to monitoring viscosity, the up-front capital cost for the rheometer is much lower, the 

maintenance costs and cleaning downtime for the rheometer are minimal, no reagents 

are needed and analysis takes a fraction of the time. In order to assess leakage, the 

cell broth sample must first be centrifuged (in some cases, it is also necessary to 

filter), a standard curve must be prepared for each new HPLC run and each sample 

takes ~20 min to complete. 

Flow cytometry is regularly employed to monitor cell viability in fermentation; 

however, it requires a lengthy and complicated staining procedure that also involves 

postmeasurement data analysis. Additionally, all cell-based monitoring techniques 

can only detect existing cells and are unable to measure the lysed cells, making it 

infeasible to monitor lysis effectively. 

DNA release to the cell broth can give a very good indication of cell lysis. DNA 

release can be analysed using assays including Picogreen or spectrophotometric 

absorption such as the Nanodrop device. However, Picogreen assay requires a 
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comparatively complicated protocol and is time-consuming. In addition, proteins can 

interfere in Nanodrop measurements as they absorb light at the same wavelength as 

nucleic acids (Neves et al., 2000). In general, techniques for DNA analysis are 

susceptible to errors from losses due to degradation of DNA or from losses in sample 

preparation steps such as centrifugation (Neves et al., 2000). 

Cytotoxicity assays, such as the Cytotox-96 assay presented in this chapter, can also 

very effectively monitor cell viability. However, the assay must be carried out offline 

and takes a relatively long time. 

In summary, viscosity was able to rapidly monitor cell lysis and product loss in 

postinduction fermentation, which aligned very closely with data from DNA release, 

a cytotoxicity assay, product leakage (HPLC) and flow cytometry. Optical density 

and capacitance measurements performed poorly in the late stage of the fermentation 

and missed the critical point of product leakage. 
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Figure 3-10: Evaluating online capacitance measurements against viscosity 

monitoring and optical density measurements to detect cell lysis. Capacitance 

profile measured online continuously and automatically converted to viable 

cells/mL. Capacitance data were calibrated offline with flow cytometry data (in 

triplicate). Shear viscosity measured at 100 s-1 (Pa s, single measurement, held 

at steady state for 10 seconds). Cell growth profile shown by optical density as a 

reference (measured at 600 nm, absorbance units, AU, in triplicate). Cells were 

induced with IPTG at 38 h. Error bars show standard deviation. 
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Table 3-2: Comparison of viscosity monitoring with common fermentation 

monitoring techniques used to detect cell lysis. 

Analytical method Cost Time 
Ability to 

detect lysis 

Optical density Low 2 min Poor 

HPLC High ~40 min Good 

Flow cytometry High ~30 min Good 

Online capacitance measurements Medium Online Poor 

DNA assays Low ~40 min Good 

Cytotoxicity assays Low ~70 min Good 

Viscosity monitoring High 2 min Good 
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3.6 Conclusions 

This work represents an important first step in demonstrating the value of monitoring 

the physical properties of cell broths, and that rapid viscosity monitoring has the 

potential to be a useful tool for both process development and process operation at 

manufacturing scale to determine the optimal harvest time and minimise product 

loss. Cell lysis has been characterised for an industrially relevant E. coli fermentation 

using a range of analytical techniques in order to better understand the process and 

mechanisms of lysis. It was shown that product loss, cell viability and cell lysis occur 

simultaneously in fermentation.  

The viscosity profile of the fermentation broth has been established and it has been 

shown that the viscosity correlated very well with product loss, cell viability and cell 

lysis in postinduction fermentation. A method was subsequently developed to rapidly 

detect cell lysis and product loss in postinduction fermentation using viscosity to 

monitor the cell broth. Viscosity monitoring showed an increase in viscosity during 

the exponential phase in relation to the cell density increase, a relatively flat profile 

in early stationary phase, followed by a rapid increase which correlated well with 

product loss, DNA release and loss of cell viability.  

Viscosity monitoring was compared to several monitoring technologies that are 

commonly used to detect cell lysis in fermentation, and was shown to perform better 

than optical density measurements and online capacitance probes, and has equivalent 

performance to HPLC (product leakage), flow cytometry, a cytotoxicity assay and 

DNA quantification. However, monitoring viscosity at-line can provide information 

on lysis in a much shorter time period than the other methods presented; data can be 

obtained in under two minutes, which enables the operator to rapidly make decisions 

about cell harvesting.  

It is thought that a combination of nucleic acids, host cell protein and other 

intracellular content may cause the increase in viscosity in postinduction 

fermentation broths. However, the picture is not clear; complex interactions between 

biomass and their polymers may be present in the composite system (Vlahopoulou 

and Bell, 1993; Vlahopoulou et al., 1994; Okamoto et al., 2001; Vlahopoulou et al., 
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2001). Therefore, the next chapter will focus on investigating the rheological 

properties of cell broths in more detail, in order to determine the contribution that 

each of these components makes to the postinduction viscosity increase, and if 

important interactions are present between cells, cell debris and other intracellular 

content.  



Chapter 4 Investigating and modelling the effects of cell lysis on  

  the rheological properties of fermentation broths  

The results presented in this chapter have been published in the Biochemical 

Engineering Journal, "Investigating and modelling the effects of cell lysis on the 

rheological properties of fermentation broths" (see Appendix). 

4.1  Introduction 

In the previous chapter, viscosity monitoring was shown to be a promising tool to 

monitor the physical properties of cell broths during fermentation. However, 

viscometry makes up only one part of the picture of rheology. In fact, rheology is 

defined as the study of the deformation and flow of matter, and can be divided into 

two types of physical properties; viscosity and viscoelasticity. Viscosity relates to the 

internal friction of a fluid and is a measure of its resistance to flow (for example, oil 

is more viscous than water). Viscoelasticity, however, describes both the solid-like 

(elastic) and liquid-like (viscous) characteristics of a non-Newtonian material 

undergoing deformation (either temporary or permanent), and these characteristics 

are indicative of the structural element interactions within the material. Essentially, 

viscoelasticity can be employed to define the properties of the internal structure and 

strength of a material. Rheology is frequently used to characterise materials across 

the processing industry, from oil and gas to cosmetics such as toothpaste and hand 

cream. In the biopharmaceutical industry, rheology is typically used in the 

formulation of therapeutics. 

There are several technologies currently available on the market that monitor cell 

broths during fermentation, and a detailed review of these technologies has been 

carried out in the Introduction (section 1.4). Advanced technologies such as infrared 

spectroscopy monitor the chemical properties of a cell broth. However, developing 

rheology as a monitoring technology in fermentation, to detect changes in the 

physical properties of cell broth, has the potential to complement chemical and 

biological-based monitoring technologies, such as infrared or fluorescence 

spectroscopy, to provide comprehensive information on both the physical and 
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chemical properties of the fermentation broth. This has significance with respect to 

quality by design (QbD) initiatives in process development, i.e. characterising and 

monitoring key parameters in the process, and monitoring technologies (process 

analytical technologies, PAT) are central to the improvement of biopharmaceutical 

manufacturing (Perez-Pardo et al., 2011). 

This chapter aims to gain a deeper understanding of the rheology of E. coli and 

investigate the effects of cell lysis on the rheological properties of cell broths in 

fermentation. This will involve using advanced rheological testing (both viscosity 

and viscoelasticity) to understand changes in the physical properties of cell broths, 

such as the cause of the increase in postinduction viscosity, and assess whether 

viscoelasticity can provide novel insight into fermentation by monitoring physical 

properties such as cell strength. Using the insight derived from these studies, it may 

be possible to develop a model to quantify cell lysis in postinduction fermentation 

using viscosity monitoring. 

Therefore, the specific objectives of this chapter are to: 

• Characterise the fundamental rheological properties of an E. coli cell broth to 

gain a deeper understanding of the physiological changes in E. coli cells 

during fermentation 

 

• Assess whether viscoelastic measurements can provide novel insight in 

fermentation by monitoring physical properties such as cell strength 

 

• Develop a mathematical model to quantify the extent of cell lysis in 

fermentation using viscosity monitoring 

4.2 E. coli fermentation 

High cell density fed batch E. coli fermentation runs producing antibody fragments 

(antigen-binding, Fab') were carried out as described in the previous chapter (Chapter 

3).  
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4.3 Understanding the change in broth viscosity during fermentation 

After characterising cell lysis in fermentation in the previous chapter, it was desired 

to gain a deeper understanding of the physiological changes that occur during cell 

lysis by determining the relative contributions that individual structural components 

of a cell broth make to the postinduction viscosity increase. In order to do this, the 

components were isolated (as described in Materials & methods section 2.5.4) and 

then viscometry experiments were carried out at various growth stages (i.e. over the 

course of a fermentation run) for cell broth, cell paste and supernatant, as shown in 

Figure 4-1, to obtain the flow curves. 

Figure 4-1 (a) plots the flow curves of the cell broth throughout fermentation, 

showing a five-fold increase in viscosity from 0.0011 Pa s at the start of the 

fermentation to 0.0053 Pa s at the end of the fermentation, and an increase in shear 

thinning behaviour as the fermentation progressed (see Table 4-1) from 1.028 for 

SM6Gc media to 0.868 at 95 h postinduction. The viscosity increased steadily during 

the growth phase until induction point, and over a 70% increase (to 0.00191 Pa s) 

was observed in this phase. The increase in viscosity up to induction point can be 

attributed to the increase in cell concentration during exponential phase. 

From induction point, the viscosity was relatively constant until a 25% increase was 

observed that correlated to 10% product loss (this was discussed in the previous 

chapter), and the viscosity rapidly increased thereafter. The increase in shear 

thinning behaviour observed in Figure 4-1 (a) correlated with cell lysis and the 

release of intracellular content to the cell broth. 

Figure 4-1 (b) displays the flow curves for cell paste at various points during 

fermentation. The viscosity of the cell paste decreased slightly as the fermentation 

progressed through the growth phase from 0.35 Pa s to 0.28 Pa s, however this 

decrease was relatively small in contrast to the marked decrease observed between 

33 h postinduction (the critical point of product leakage and cell lysis for the 

fermentation presented) and 57 h postinduction, from 0.22 Pa s to 0.10 Pa s. This 

aligns with the trend observed from the flow curves for the cell broth in Figure 4-1 
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(a), showing the rapid deterioration of the cells beyond 33 h postinduction and 

correspondingly a significant increase in the viscosity of the cell broth. Additionally, 

significant shear thinning behaviour was observed for all samples and in particular 

for the late stage fermentation sample (57 h postinduction), where a flow behaviour 

index of 0.587 ± 0.0289 was determined (see Table 4-2). 

Figure 4-1 (c) shows flow curves for the supernatant of the fermentation broth in 

mid-exponential phase and late stage fermentation (57 h postinduction). A large 

increase in viscosity was seen for the supernatant at 57 h postinduction, from 

0.00125 Pa s in mid-exponential phase to 0.0048 Pa s. In addition, a significant 

increase in shear thinning behaviour was observed, and the flow behaviour index was 

determined to be 0.766 ± 0.00542 for the 57 h postinduction supernatant sample (see 

Table 4-3). Considering that the SM6Gc media is a Newtonian fluid, and glycerol (a 

major component in the media) is also Newtonian, this reflects a significant change 

in the properties of the supernatant as the fermentation progressed. 

Although the viscosity of the cells (cell paste) decreased significantly during 

fermentation, from 0.35 Pa s to 0.10 Pa s (Figure 4-1 (b)), the overall broth viscosity 

increased (Figure 4-1 (a)). Therefore, it can be seen that the increase in the viscosity 

of the cell broth is a result of the large increase in the supernatant viscosity (Figure 

4-1 (c)). This confirms the hypothesis that the increase in broth viscosity in 

postinduction fermentation can be attributed to the release of intracellular content to 

the broth during cell lysis. In addition, the shear thinning behaviour of both the cells 

and the supernatant increased significantly as the fermentation progressed. 
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Figure 4-1: Understanding the relative contributions of components of a cell 

broth to the viscosity increase in postinduction fermentation. Flow curves of E. 

coli (a) cell broth, (b) cell paste and (c) supernatant at various time points in the 

fermentation. Single measurements were recorded at each shear rate, held at 

steady state for 10 seconds, over a shear rate range 100–1,000 s-1. Viscometry 

measurements were carried out at 25°C using 50 mm parallel plates and a 300 

μm gap size. Error bars show standard deviation. 
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Table 4-1: Flow behaviour index (n) values for the flow curves presented in 

Figure 4-1 (a) of E. coli cell broth at various times throughout fermentation, 

over a shear rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + 

rotational rheometer. Induction time was at 38 h using IPTG. Measurements 

were carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. An 

increase in shear thinning behaviour is evident as the fermentation proceeded 

(flow behaviour index, n, was greater than 0.85 for all samples). Single 

viscometry measurements were recorded at each shear rate, and held at steady 

state for 10 seconds. 

Sample Flow behaviour index, n 

SM6Gc media 1.028 

Mid exponential phase (32 h) 0.977 

Induction point (38 h) 0.908 

33 h postinduction (71 h) 0.939 

57 h postinduction (95 h) 0.868 

 

 

Table 4-2: Flow behaviour index (n) values for the flow curves presented in 

Figure 4-1 (b) of E. coli cell paste at various times throughout fermentation, 

over a shear rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + 

rotational rheometer. Induction time was at 38 h using IPTG. Measurements 

were carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. All 

samples show highly shear thinning behaviour. Triplicate viscometry 

measurements were recorded at each shear rate, and held at steady state for 10 

seconds. Error bars show standard deviation. 

Sample Flow behaviour index, n 

Mid exponential phase (32 h) 0.745 ± 0.0152 

Induction point (38 h) 0.723 ± 0.0331 

33 h postinduction (71 h) 0.881 ± 0.00888 

57 h postinduction (95 h) 0.587 ± 0.0289 
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Table 4-3: Flow behaviour index (n) values for the flow curves presented in 

Figure 4-1 (c) of E. coli supernatant at various times throughout fermentation, 

over a shear rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + 

rotational rheometer. Induction time was at 38 h using IPTG. Measurements 

were carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. An 

increase in shear thinning behaviour is evident as the fermentation proceeded. 

Triplicate viscometry measurements were recorded at each shear rate, and held 

at steady state for 10 seconds. Error bars show standard deviation. 

Sample Flow behaviour index, n 

Mid exponential phase (32 h) 0.967 ± 0.000860 

57 h postinduction (95 h) 0.766 ± 0.00542 
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4.4 Oscillatory tests 

Viscoelasticity and its surrounding theory was discussed in the Introduction (section 

1.5.3) and in Materials & methods (section 2.5.2.2). Having shown that monitoring 

the cell broth viscosity can be a useful tool to detect cell lysis in postinduction 

fermentation (see previous chapter), and having carried out viscometry tests on the 

components of the cell broth (supernatant, cell paste and cell broth); it was desired to 

further investigate the physical properties of the cells by carrying out oscillatory tests 

to assess whether additional rheological properties (i.e. viscoelastic properties) can 

provide novel insight into changes in the physical properties of cells during 

fermentation. 

Oscillatory tests were carried out to characterise and provide insight into the 

viscoelastic properties of the E. coli cells, and to observe changes in their physical 

properties over the course of fermentation. Viscoelasticity can be measured by both 

amplitude sweeps and frequency sweeps. Oscillatory tests were carried out on cell 

paste only, as there was not enough structure present in the other materials studied to 

enable meaningful insight.  

The linear viscoelastic range (LVER) can be defined as the limit at which the 

structure in a sample starts to break down and is where the rheological properties, i.e. 

the shear modulus (G' and G'') and phase angle (δ), are independent of frequency. 

The length, or critical strain limit, of the LVER relates to the stability and robustness 

of a material (i.e. permanent polymer cross-links), and G' is a direct measure of the 

structure in a sample, and therefore provides an indication of the strength of the 

material. 

4.4.1 Elucidating the viscoelastic properties of E. coli cell paste 

4.4.1.1 Amplitude sweeps 

Figure 4-2 presents a comparison of the viscoelastic properties of E. coli at two 

different growth stages; in mid-exponential phase and at harvest point (33 h 

postinduction). An amplitude sweep was initially carried out to determine the LVER 



Chapter 4 - Investigating and modelling the effects of cell lysis on the rheological properties of 

fermentation broths 

 150 

by varying the amplitude (shear strain amplitude, %) from 0.05-10% and holding the 

frequency constant at 1 Hz. 

Figure 4-2 (a) shows the storage (G') and loss (G'') moduli for the two growth stages. 

The storage modulus is more commonly used to classify the LVER as it is more 

sensitive; the storage modulus is a combination of both the complex shear modulus 

(G*) and the phase angle (see Introduction section 1.5.3). The phase angle typically 

increases as the LVER breaks down (as a material breaks down, it becomes more 

fluid), and G* decreases.  

Therefore, it can be seen from the G' profiles that the length of the LVER is greater 

for the 33 h postinduction cell paste than for the mid-exponential phase cell paste, 

i.e. the storage modulus starts to decline earlier for the mid-exponential phase cell 

paste. This means that the structure in the sample, i.e. the structure formed between 

the cells in the paste, starts to break down at an earlier time point for the mid-

exponential phase cells. For the mid-exponential phase cell paste, the structure starts 

to break down at ~0.15% shear strain. For the harvest point cell paste, the structure 

starts to break down at ~0.4% shear strain. Therefore the strain limit of the LVER for 

the two samples (mid-exponential phase and harvest point cell paste) can be defined 

as 0.15% and 0.4%, respectively. 

For both growth stages, it can also be seen in Figure 4-2 that the storage modulus, G', 

was greater than the loss modulus, G'', which shows that both materials exhibited 

solid-like characteristics (i.e. the solid contribution was more pronounced than the 

liquid contribution). Although the cells at 33 h postinduction may be leaking product 

and other intracellular content to the broth due to porous membrane channels (as 

seen in the previous chapter), this result (i.e. the solid-like viscoelastic properties of 

the cell paste) indicates that the cells haven't fragmented and broken down at this 

point, and that the rod-like structure of the E. coli is still relatively intact. 

However, the magnitude of the storage modulus, G', within the LVER is higher for 

mid-exponential phase cell paste than for 33 hours postinduction cell paste, at 339 Pa 
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and 40 Pa respectively, showing a considerable drop in the strength of the cells as the 

fermentation progresses.  

The loss tangent, tanδ, is a ratio of the loss modulus to storage modulus (G''/G'), 

which provides a useful quantification of the elasticity (or solid-like structure) of a 

material. In Figure 3 (b), the loss tangent is plotted for the cell paste at the two 

different growth stages; mid-exponential phase and 33 h postinduction. The loss 

tangent was higher for the 33 h postinduction cell paste, throughout the amplitude 

range (0.05-10%). This indicates a more fluid (i.e. weaker) system, if the shear 

viscosity increases (the postinduction shear viscosity increase was observed in the 

previous chapter).  

This result suggests that polymers in the sample are acting as fillers, and have a 

thickening effect (hence the increased viscosity), which could be caused by the 

formation of a network due to interactions between cells and leaked intracellular 

content. This confirms the insight derived from Figure 4-2 (a); the E. coli cells are 

still rod-like structures at 33 hours postinduction (although porous and leaking 

product), but the cells become weaker and lose rigidity as the fermentation 

progresses. 
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Figure 4-2: Elucidating the rheological properties of an E. coli cell paste. 

Measurements carried out to compare the rheological properties (storage (G') 

and loss (G'') moduli) of E. coli between two different growth stages; mid 

exponential phase and 33 hours postinduction (typical harvest point). (a) 

Dynamic oscillation measurements were taken using an amplitude sweep over a 

shear strain range 0.05-10%, holding frequency constant at 1 Hz. (b) The loss 

tangent, tanδ, is a ratio of the loss modulus to storage modulus (G''/G'), which 

gives a useful quantification of the elasticity of a material. Measurements were 

carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. Error 

bars show standard deviation. 
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4.4.1.2 Frequency sweeps 

After carrying out an amplitude sweep to characterise the cells and define the LVER, 

frequency sweeps were subsequently carried out on the E. coli cell paste. To carry 

out the frequency sweeps, the shear strain amplitude was held constant at 0.1% 

(within the LVER, as seen from Figure 4-2 (a)), and the frequency was varied from 

1-10 Hz. A frequency sweep records a fingerprint spectrum of the material, and can 

be used to classify a material into three types of behaviour; a viscoelastic solid, a gel 

or a viscoelastic liquid. When G'>G'', solid-like behaviour is exhibited, and the 

material can generally be classified as a viscoelastic solid; for a gel, the properties 

(phase angle (δ), G', G'') are independent of frequency; and when G''>G', liquid-like 

behaviour is exhibited, and the material can generally be classed as a viscoelastic 

liquid.  

In Figure 4-3, it can be seen that for both materials (mid-exponential phase cell paste 

and harvest point cell paste), the storage modulus, G', is greater than the loss 

modulus, G'', demonstrating that both materials have solid-like characteristics. This 

reflects the insight derived from the oscillatory tests carried out in Figure 4-2 (an 

amplitude sweep with the frequency held constant at 1 Hz (when within the LVER) 

should have the same result as the frequency data at 1 Hz, with the amplitude held 

constant within the LVER, i.e. they are the same measurement conditions). 

However, both G' and G'' are almost independent of frequency, suggesting that the 

behaviour of the materials are close to that of a gel. For the mid-exponential phase 

cell paste, the phase angle, δ, varied from 14-18° and for the 33 h postinduction cell 

paste, the phase angle varied from 22-35°. Therefore, although a mixture between 

gel-like behaviour and weak viscoelastic solid behaviour was seen for both materials, 

the phase angle change (over the frequency range) increased from mid-exponential 

phase to 33 h postinduction, showing a reduction in the solid-like properties as the 

fermentation progressed. 
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This shows that the cells decreased in strength over the fermentation, and became 

weaker i.e. more liquid-like, again confirming the insight derived from the amplitude 

sweep carried out in Figure 4-2. 
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Figure 4-3: Frequency sweep of E. coli cell paste. Dynamic oscillation 

measurements were taken to determine the rheological properties of the cell 

paste. Amplitude was held constant at 0.1% (within the LVER) and frequency 

was varied between 1 and 10 Hz. Measurements carried out in triplicate to 

compare the rheological properties (storage (G') and loss (G'') moduli and 

phase angle (δ, °)) of E. coli between two different growth stages; mid-

exponential phase and 33 hours postinduction (typical harvest point). 

Measurements were carried out at 25°C using 50 mm parallel plates and a 300 

μm gap size. Error bars show standard deviation. 
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4.4.2 Monitoring changes in viscoelasticity throughout fermentation 

In section 4.4.1, it was observed that there were differences in the strength and 

structure of E. coli cells at two separate growth phases in fermentation (mid-

exponential phase and at 33 h postinduction). In Figure 4-4, amplitude sweeps are 

presented for cell paste, monitored over several time points throughout the 

fermentation; and two phenomena are evident. 

Firstly, it can be seen that the length (or critical strain limit) of the LVER increases 

as the fermentation progresses; the structure in the exponential phase cell paste 

started to break down at 0.15% (as described in section 4.4.1.1) and at the end of the 

fermentation (57 h postinduction), the structure started to break down at 1%. This 

shows that the stability of the cell paste increased as the fermentation progressed, and 

suggests an increase in network formation due to cross-linked polymers. 

Secondly, it can be seen that the magnitude of the elastic component of the shear 

modulus (G') decreased with fermentation time, from 339 Pa in exponential phase to 

20 Pa at 57 h postinduction. As G' is a direct measure of the structure in the sample, 

this implies that the strength of the cells decreased (G') significantly over the 

fermentation.  

The results in Figure 4-4 therefore suggest that although the cell strength decreased, 

the critical strain limit increased due to interactions between cells and intracellular 

content such as DNA and host cell protein, which increased the "stickiness" of the 

cell paste as cell lysis occurred. 

In Figure 4-5 (a), the growth profile for the E. coli fermentation (OD and dry cell 

weight), total Fab' production and shear viscosity profiles are shown as a reference 

(reproduced from the previous chapter). In Figure 4-5 (b), the average G' (averaged 

within the LVER, taken from Figure 4-4) was plotted for each time point, showing a 

rapid drop in cell strength between induction point and the harvest point (33 h 

postinduction). This suggests that after induction at 38 h, the strength of the cells 
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continued to decrease until reaching a critical point (e.g. ~40-60 Pa) where the cell 

membrane begins to deteriorate and product loss and cell lysis occur.  

This result demonstrates the potential of viscoelastic parameters, such as G', to be 

determined, related to critical lysis factors and subsequently monitored in 

fermentation to provide useful information such as quantifying changes in cell 

strength during fermentation and providing insight into the physical state of the E. 

coli cells. 

This study demonstrates a novel application in bioprocessing, using viscoelasticity to 

monitor cell strength in fermentation, which can be related to cell health. The useful 

insight derived from these experiments presents the potential to explore further 

opportunities using rheology-based monitoring in bioprocessing, such as using 

rheology to quantify and classify production processes or in primary recovery unit 

operations, for example as a novel process analytical technology for quality by 

design applications. In addition, monitoring the viscoelastic properties of cell broths 

shows significant potential to be used in combination with shear viscosity monitoring 

to enable superior classification of the physical properties of cell broths. 
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Figure 4-4: Amplitude sweeps of E. coli cell paste to determine the critical strain 

limit. Dynamic oscillation measurements were taken to determine the linear 

viscoelastic range (LVER, the critical strain limit before a material starts to 

break down), using an amplitude sweep over a shear strain range 0.05-10%, 

holding frequency constant at 1 Hz. Measurements carried out at various time 

points throughout fermentation, at 25°C using 50 mm parallel plates and a 300 

μm gap size. Error bars show standard deviation. 
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Figure 4-5: Changes in cell strength during an E. coli (Fab') fermentation. 

Induced with IPTG at 38 h. (a) Optical density at 600 nm (absorbance units 

(AU), in triplicate), dry cell weight (g/L, in triplicate) and total Fab' 

concentration (mg/mL, in duplicate). (b) Shear viscosity (Pa s, single 

measurement, held at steady state for 10 s) and average storage modulus (G', 

elastic component) of cell paste (Pa, measured in triplicate), calculated by 

averaging G' over the linear viscoelastic range (LVER). Measurements were 

carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. Error 

bars show standard deviation. 
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4.5 Modelling cell lysis in postinduction fermentation 

As discussed in the previous chapter, the viscosity of fermentation broths is 

determined by two factors; cell concentration and solute concentration in the broth 

(assuming other factors such as media composition, temperature, aeration and 

agitation are constant) (Reardon and Scheper, 1991). In section 4.3, it was 

demonstrated that the release of intracellular content during cell lysis in fermentation 

causes an increase in postinduction broth viscosity. 

Cells, representative protein and DNA were isolated and prepared at various 

concentrations, in order to gain a deeper understanding of the contributions of these 

individual components to the overall viscosity of a fermentation broth. The aim was 

then to create a model to quantify cell lysis. 

4.5.1 Viscosity and cell concentration 

It is already known that the concentration of cells affects the viscosity of cell broths. 

Figure 4-6 (a) plots flow curves for cell suspensions at various concentrations 

(shown as dry cell weight). An increase in shear thinning behaviour was observed as 

the concentration of cells increased (shown in Table 4-4); which corresponded with 

the results shown in Figure 4-1. 

As described in the previous chapter, 100 s-1 was chosen as the characteristic 

parameter to obtain apparent viscosity values for all studies presented, because at 

lower shear rates, the measurement will pick up more of the polymer interactions 

(such as nucleic acids) that are thought to cause an increase in viscosity during cell 

lysis in fermentation.  

Taking the viscosity values from Figure 4-6 (a) at 100 s-1, Figure 4-6 (b) shows a 

linear relationship between cell concentration and shear viscosity, with an R2 value 

of 0.98. In exponential phase and early stationary phase fermentation, viscosity is 

predominantly determined by cell concentration. Therefore, it can be seen that a 

linear relationship exists between cell concentration and shear viscosity in the growth 

phase of E. coli fermentation. 
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The error bars for cell suspensions at higher concentrations are relatively large and it 

is thought that this may be caused by cell aggregation from centrifugation and re-

suspension in sample preparation steps, as well as errors in the dry cell weight 

measurement process (typically not very robust). However, the relationship between 

cell concentration and shear viscosity is presented below in Equation 4-1, where 

Ccells is cell concentration (g.DCW/L) and ηcells is shear viscosity in Pa s; 

  
55.38 10 0.00062cells cellsη C      Equation 4-1  

 

This result confirms that Einstein's well-known viscosity equation, based on 

hydrodynamic theory for dilute suspensions of spherical particles (Einstein, 1906), is 

appropriate for the growth stage of the E. coli fermentation system presented in this 

study (see Introduction, section 1.5.2.2.1). The Einstein equation is of a linear form 

and based on the volume fraction of spherical particles, which can be considered to 

be roughly equivalent to the volumetric viable cell concentration. At higher cell 

concentrations, this linearity may not be appropriate, however further work must be 

carried out in a separate study to determine the fit of the Einstein equation (and 

extensions to the Einstein equation) to non-spherical E. coli cells at higher cell 

concentrations, as well as determining the influence of non-viable particles such as 

cell debris on the volume fraction. 
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Figure 4-6: Determining the relationship between cell concentration and shear 

viscosity. (a) Flow curves of cell suspensions (shown as dry cell weight, g/L) 

measured over a shear rate 100-1,000 s-1, carried out in triplicate, using 50 mm 

parallel plates at 25°C and a 300 μm gap size. (b) The linear relationship 

between cell concentration (dry cell weight, g/L) and shear viscosity at 100 s-1; 

the R2 value was 0.98. Error bars show standard deviation. 
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Table 4-4: Flow behaviour index (n) values for the flow curves presented in 

Figure 4-6 (a) of E. coli biomass at various times throughout fermentation, over 

a shear rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + 

rotational rheometer. Induction time was at 38 h using IPTG. Measurements 

were carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. An 

increase in shear thinning behaviour is evident as the cell concentration 

increased. Triplicate viscometry measurements were recorded at each shear 

rate, and held at steady state for 10 seconds. Error bars show standard 

deviation. 

Sample Flow behaviour index, n 

6.5 g/L DCW 0.965 ± 0.00189 

14.5 g/L DCW 0.933 ± 0.00816 

20.5 g/L DCW 0.880 ± 0.0433 

26.5 g/L DCW 0.842 ± 0.140 

32.5 g/L DCW 0.767 ± 0.105 
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4.5.2 Viscosity and protein concentration 

Figure 4-7 displays flow curves of bovine serum albumin (BSA) protein at various 

concentrations, ranging from 10-50 g/L. At all concentrations, protein solutions 

exhibited highly shear thinning behaviour, as seen in Figure 4-7 (a) and in Table 4-5, 

ranging from a flow behaviour index of 0.6 - 0.7. Nonetheless, plotting the 

relationship between protein concentration and shear viscosity in Figure 4-7 (b) at 

100 s-1, there is a clear linear relationship evident, with an R2 value of 0.92. The 

relationship between protein and shear viscosity is presented below in Equation 4-2, 

where ηprot is the viscosity of protein in Pa s and Cprot is the concentration of protein 

(g/L); 

 
53.79 10 0.0016prot protη C        Equation 4-2  

  

E. coli cells contain a vast range of proteins and although they differ from BSA (a 

globular protein), it is thought that the total concentration of protein in the cell broth 

is more important in determining the viscosity of the broth, than the viscosity of a 

specific protein (of which there is a wide range), and therefore it was assumed that 

the relationship between total protein in the fermentation broth and shear viscosity is 

linear. However, for this relationship to be used in a model, the rheological 

properties of host cell protein (i.e. E. coli) must be analysed in detail, as different 

proteins may also present very different rheological properties. 
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Figure 4-7: Determining the relationship between protein concentration and 

shear viscosity. (a) Flow curves of protein (BSA) solutions measured over a 

shear rate 100-1,000 s-1, carried out in triplicate, using 50 mm parallel plates at 

25°C and a 300 μm gap size. (b) The linear relationship between protein 

concentration and shear viscosity at 100 s-1; the R2 value was 0.92. Error bars 

show standard deviation. 
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Table 4-5: Flow behaviour index (n) values for the flow curves presented in 

Figure 4-7 (a) of protein at various concentrations (10 - 50 g/L), over a shear 

rate of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + rotational 

rheometer. Induction time was at 38 h using IPTG. Measurements were carried 

out at 25°C using 50 mm parallel plates and a 300 μm gap size. An increase in 

shear thinning behaviour is evident as the cell concentration increased, however 

all samples were highly shear thinning. Triplicate viscometry measurements 

were recorded at each shear rate, and held at steady state for 10 seconds. Error 

bars show standard deviation. 

Sample Flow behaviour index, n 

10 g/L BSA 0.693 ± 0.0448 

20 g/L BSA 0.657 ± 0.0329 

30 g/L BSA 0.658 ± 0.0135 

40 g/L BSA 0.655 ± 0.0155 

50 g/L BSA 0.601 ± 0.0106 
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4.5.3 Viscosity and DNA concentration 

Figure 4-8 (a) plots the flow curves for DNA at various concentrations (0.5 g/L to 4 

g/L). All flow curves displayed Newtonian behaviour over the shear rate range 

studied (100-1000 s-1), i.e. where the shear viscosity is independent of the shear rate, 

as shown in Table 4-6. As seen in Figure 4-8 (b), a linear relationship between DNA 

and viscosity is also evident, and an R2 value of 0.99 was obtained. The relationship 

between DNA concentration and shear viscosity is shown below in Equation 4-3, 

where CDNA is DNA concentration (g/L) and ηDNA is the viscosity of DNA in Pa s; 

 0.0005123 0.001DNA DNAη C      Equation 4-3 

 

This study used herring sperm DNA, a frequently studied and widely available DNA 

for research use. However, the wide range of nucleic acid content found in the cell 

broth during cell lysis is much more complex than this. This may include both DNA 

and RNA, as well as fragments of nucleic acids that have been degraded due to the 

harsh environment found inside the bioreactor. Therefore, although this study 

presented an interesting result, it only provides an indication of the complex mixture 

of nucleic acids found in the cell broth. In this way, it could be that RNA or 

fragments of nucleic acids have shear thinning behaviour, as well as a contribution to 

the overall broth viscosity. 

4.5.4 Comparing the shear viscosity of DNA, protein and cells 

From Figure 4-6, Figure 4-7 and Figure 4-8, it can be seen that cell concentration, 

protein concentration and DNA concentration all have linear relationships with shear 

viscosity. It is widely believed that the release of DNA during cell lysis causes the 

increase in viscosity in postinduction fermentation, and on a gram per gram basis, 

this is true; DNA has a much higher impact on the shear viscosity. This is reflected 

in the gradient of the linear equations; the gradient of the viscosity-DNA relationship 

is 0.0005123 and the gradient of the viscosity-protein relationship is 3.79 x 10-5. 
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However, for the high cell density E. coli fermentation under study, extracellular 

protein concentration reached up to 40 g/L and extracellular DNA typically reached 

~3 g/L. Comparing Figure 4-7 and Figure 4-8; protein at a concentration of 40 g/L 

has a shear viscosity of ~0.003 Pa s and DNA at a concentration of 3 g/L has a shear 

viscosity of ~0.0025 Pa s. Therefore, it can be seen that protein (in quantities 

typically found inside the bioreactor during cell lysis) has an equal or greater 

contribution to the shear viscosity as DNA.  

In addition, the non-Newtonian behaviour of the cells increased as the cell 

concentration increased, exhibiting shear thinning behaviour. Moreover, for the 

entire shear rate range studied, 100-1000 s-1, including the average shear rate found 

inside the bioreactor (100 s-1, see Materials & methods section 2.5 for discussion of 

this) the DNA displayed Newtonian behaviour. However, the protein displayed 

strong non-Newtonian, shear thinning behaviour at all concentrations studied. This is 

interesting because it shows that protein has both a significant contribution to the 

shear viscosity increase during cell lysis, as well as a considerable effect on the shear 

thinning behaviour of the cell broth seen in late stage fermentation. 
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Figure 4-8: Determining the relationship between DNA concentration and shear 

viscosity. (a) Flow curves of DNA solutions at various concentrations, measured 

over a shear rate 100-1,000 s-1, carried out in triplicate, using 50 mm parallel 

plates at 25°C and a 300 μm gap size. (b) The linear relationship between DNA 

concentration and shear viscosity at 100 s-1; the R2 value was 0.99. Error bars 

show standard deviation. 
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Table 4-6: Flow behaviour index (n) values for the flow curves presented in 

Figure 4-8 (a) of DNA at various concentrations (0.5 - 4 g/L), over a shear rate 

of 100-1000 s-1, using a Malvern Instruments Kinexus Lab + rotational 

rheometer. Induction time was at 38 h using IPTG. Measurements were carried 

out at 25°C using 50 mm parallel plates and a 300 μm gap size. Newtonian 

behaviour was observed for all samples under study. Triplicate viscometry 

measurements were recorded at each shear rate, and held at steady state for 10 

seconds. Error bars show standard deviation. 

Sample Flow behaviour index, n 

0.5 g/L DNA 1.01 ± 0.00325 

1 g/L DNA 1.00 ± 0.000434 

2 g/L DNA 0.991 ± 0.0207 

3 g/L DNA 0.997 ± 0.00335 

4 g/L DNA 0.995 ± 0.00197 
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4.5.5 Quantifying cell lysis using viscosity monitoring  

The definition of cell lysis is that if cells are leaking DNA, then cell lysis is 

occurring. Therefore, DNA leakage to the fermentation broth can be used as a 

method to monitor and quantify cell lysis. From Figure 4-8, it can be seen that a 

linear relationship between DNA and viscosity exists.  

In the growth phase of fermentation, viscosity is determined by cell concentration 

(i.e. such as the Einstein viscosity equation). However, in postinduction cell cultures 

(where cell concentration can be assumed to be constant), there are other factors 

affecting broth viscosity, such as the leakage of intracellular content. It has 

previously been shown (Voulgaris et al., 2016) that a relatively linear relationship 

exists between DNA leakage and product loss. In addition, the simultaneous leakage 

of DNA and the Fab' product during cell lysis was shown in the previous chapter. 

Therefore, assuming a proportional relationship between DNA and other intracellular 

content; by carrying out rapid viscosity monitoring during fermentation, DNA 

leakage to the broth can be modelled and quantified, and cell lysis and product loss 

can be inferred based on DNA release. 

A linear model was created, shown in Figure 4-9, using experimental data from 3 

identical fermentation runs, with 23 total data points. The model was created using 

MATLAB (The Mathworks, Inc., Natick, Massachusetts, USA), however this was 

done for convenience and to generate a logical methodology. It is recommended that 

users could execute this model very easily in Microsoft Excel or other more 

accessible software programs. Having previously determined a linear relationship 

between shear viscosity and DNA (Figure 4-8), the model was created using a linear 

"polyfit" function (n=1, where n is the degree of polynomial fit). The determined 

equation is presented below in Equation 4-4: 

 0905.8( ) 0.1486DNA tC η η       Equation 4-4 
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where CDNA is the concentration of DNA that has leaked to the fermentation broth, ηt 

is the shear viscosity at the time point of interest (postinduction) and η0 is the shear 

viscosity at induction point in fermentation, taken as a zero point in order to negate 

differences in cell density between batches (as discussed in the previous chapter).  

By the time the cell density changes substantially in fermentation (see Figure 4-5), 

considerable cell lysis has already taken place (and a typical batch would be 

terminated at a much earlier time point), therefore it was assumed that cell density is 

constant throughout the stationary phase, and a cell concentration factor was not 

implemented into the model. 

An R2 value of 0.91 was determined for the model, which shows a highly linear 

relationship between the postinduction cell broth viscosity and DNA release. 

Generally, the model performed very well for all three fermentation datasets, and the 

majority of data points fell within the 90% confidence bands, with the exception of 

three outliers seen in Figure 4-9. A greater number of data points are at lower 

viscosities, and this is the most critical point to detect cell lysis and product leakage. 

In real fermentation runs, the batch would be ended before reaching such high 

viscosities (where the aim is to minimise product loss to the cell broth), which for 

this E. coli fermentation system corresponds to an increase in viscosity of up to 0.001 

Pa s. Below an increase in shear viscosity of 0.001 Pa s, almost all data points were 

within the 10% confidence bands and the model performed particularly well in this 

region. 

The model in Figure 4-9 demonstrates that by taking rapid at-line or indeed online 

viscosity measurements, it is possible to instantly quantify DNA leakage to the 

fermentation broth. This enables the operator to make rapid decisions about cell 

harvesting, as DNA leakage has implications on many downstream processing unit 

operations. The potential application of this model for other fermentation systems 

would be particularly useful for host cells with intracellularly-stored recombinant 

protein products. However, generally, it is useful to know DNA leakage during 

fermentation, including for mammalian cell processes where the product is secreted 

to the extracellular space; the DNA release would indicate cell lysis and hence the 
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level of contamination in the broth. This model also gives an indication of product 

loss, as product loss occurs simultaneously to DNA release (Voulgaris et al., 2016) 

(and see results in previous chapter, Chapter 3). 
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Figure 4-9: Comparison of model prediction of cell lysis with experimental data. 

Results of an empirical model built with three fermentation datasets (23 total 

data points), to determine DNA concentration in extracellular space (mg/mL, 

experiments carried out in triplicate), and hence cell lysis, from rapid viscosity 

measurements. The R2 value was 0.91, and the model had 3 outliers in the 

dataset. 90% confidence bands are shown. Data was normalised to perform the 

modelling and de-normalised to obtain the final results. Error bars show 

standard deviation. 
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4.6 Composition of an E. coli cell 

The composition of an E. coli cell was published by Neidhardt & Umbarger (1996), 

and is shown below in Table 4-7. It was discussed in the previous section that protein 

has a significant contribution to the viscosity increase during cell lysis in 

postinduction fermentation, and in fact; protein makes up 55% of the dry weight of a 

cell. 

In addition, high molecular weight DNA only makes up 3.1% of the dry weight of a 

cell. This shows that, although the DNA content of a cell is small, the relative impact 

that DNA has on the viscosity is large. However, although RNA is only a single 

strand of nucleotides and is much shorter than DNA, the RNA content of a cell 

makes up 20.5%; a significant component. Therefore, it is possible that in such a 

large proportion, RNA also has a significant contribution to the viscosity of the cell 

broth during cell lysis. This would be interesting to study further, although a study by 

Kong et al. (2009) showed that RNA does not significantly affect the viscosity 

during chemical lysis in E. coli. 

Moreover, lipids (9.1%) and lipopolysaccharides (3.4%) make up a significant 

proportion of the dry weight of a cell, and may have a role in affecting the 

rheological properties of a cell broth during lysis. This may also be interesting to 

study in further detail. 

It has also been shown that E. coli can secrete exopolysaccharides under stressed 

conditions such as osmotic and oxidative stresses (Lonescu & Belkin, 2009), which 

work to exhibit a protective effect on the E. coli cells, making them more resistant to 

heat and acid treatment (Chen and Mao, 2004). It would therefore be interesting to 

quantify colanic acid formation during late stage fermentation, and understand how 

this interacts with cell aggregation and cell lysis; cell aggregation has been shown to 

be affected by extracellular polymeric substances (Eboigbodin & Biggs, 2008), and 

would also affect the viscosity of the cell broth due to a change in the size of the 

particles (i.e. cells). 
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Table 4-7: Composition of an E. coli cell (Neidhardt & Umbarger, 1996) 

Composition of an E. coli cell % Dry weight 

Protein 55 

RNA 20.5 

DNA 3.1 

Lipids 9.1 

Lipopolysaccharides 3.4 

Peptidoglycan 2.5 

Glycogen 2.5 

Polyamines 0.4 

Metabolites, Cofactors, Ions 3.5 
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4.7 Conclusions 

The previous chapter focused on developing a method to detect cell lysis using rapid 

viscosity monitoring in postinduction fermentation. The present chapter has added to 

this work by carrying out advanced rheological studies on E. coli cells to develop a 

deeper understanding of the effects that cell lysis has on the physical properties of 

cell broths. 

Components of the cell broth (cells and supernatant) were isolated and their viscosity 

was compared to whole cell broth. It was determined that the increase in shear 

viscosity in postinduction fermentation originates from the large increase in 

supernatant viscosity, which can be attributed to the release of intracellular content 

from the cells during lysis.  

Oscillatory tests were then carried out on cell paste and used to gain insight into 

changes in the strength and stability of the cells over the course of fermentation. The 

change in cell strength was quantified and monitored using the storage modulus (G'). 

A decrease in the storage modulus and an increase in the LVER were observed, 

suggesting that although cell strength decreases over the fermentation, interactions 

are present between cells and leaked intracellular content such as DNA, which 

increases the "stickiness" of the paste.  

These results demonstrate the power of rheology to characterise and monitor the 

physical properties of cell broths, which can provide useful information on cell 

health such as changes in cell strength. The insight derived here presents a useful 

opportunity to further explore rheology-based monitoring techniques in 

bioprocessing. 

Cells, protein and DNA were isolated and viscometry tests were carried out at 

different concentrations. Linear relationships between shear viscosity and cells, 

protein and DNA concentration were observed. It was also shown that protein is 

shear thinning and has a significant contribution to viscosity in lysed cell broths, in 

addition to DNA, which has not previously been considered. Based on the linear 
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viscosity-DNA relationship, an empirical model was created, where it is possible to 

accurately quantify the level of cell lysis (by determining DNA concentration in the 

cell broth), by carrying out rapid at-line viscosity measurements. This directly 

indicates product loss, as a proportional relationship exists between DNA leakage 

and product loss, and therefore enables operators to make rapid decisions about 

harvest time. It is also envisaged that this model could be used for a wide range of 

industrial fermentation systems simply by characterising the relationship between 

viscosity and DNA leakage, and then implementing at-line viscosity monitoring.  

The next chapter will focus on a process design case study, demonstrating the use of 

viscosity monitoring in fermentation to determine the optimal harvest time, where 

the aim is to understand the impact of upstream processing conditions on various 

primary recovery unit operations. 



 

Chapter 5 Evaluating process options in Fab' primary recovery:  

  crossflow filtration with flocculation to improve product 

  yield, purity and process robustness  

5.1  Introduction 

Cell lysis in late stage fermentation represents a significant challenge in 

bioprocessing. In addition to product loss, impurities such as nucleic acids and host 

cell protein lead to large variations in the material properties of the cell broth, and 

therefore significantly impact both the operational performance of many downstream 

unit operations, as well as the robustness of the process. For the fermentation system 

under study in this thesis, the product is targeted to and stored in the periplasmic 

space, and therefore it is desired to harvest the cells at maximum intracellular 

product concentration. However, by doing this, there are many challenges to 

overcome with respect to cell lysis, such avoiding premature lysis during 

fermentation.  

Considering the many problems associated with avoiding lysis in fermentation that 

have been observed and discussed throughout this thesis, this results chapter focuses 

on assessing a novel processing strategy, by running fermentations to maximum 

productivity (i.e. full autolysis), thereby achieving a much higher total product titre, 

and instead focusing on the recovery of the product from the extracellular space. It is 

proposed that this strategy may also reduce variability in the material properties of 

the cell broth and therefore improve the robustness of the process, as well as improve 

product yield. Therefore, this chapter aims to demonstrate an application of viscosity 

monitoring in fermentation to detect cell lysis and to inform novel process design 

strategies, focusing on assessing the impact that cell lysis has on several primary 

recovery unit operations.Two primary recovery sequences have been carried out 

using ultra scale-down (USD) technology, and evaluated alongside the existing Fab' 

primary recovery process, on the basis of total product recovered, impurity 

concentration, solids removal, processing time, capital costs and complexity.  



Chapter 5 - Evaluating process options in Fab' primary recovery: crossflow filtration with flocculation 

to improve product yield, purity and process robustness 

 180 

5.1.1 Problems with the existing Fab' process 

E. coli is extensively used for the production of recombinant proteins and has in fact 

become the most popular expression platform (Rosano and Ceccarelli, 2014). There 

are many advantages of using E. coli as a host organism to produce recombinant 

proteins, some of which include the ability to be grown to high cell density using 

inexpensive media, well-characterized genetic properties (Spadiut et al., 2014) and 

no requirement for glycosylation (Li et al., 2013). Recombinant proteins such as 

antibody fragments (Fab') produced in E. coli can be routinely targeted to the 

periplasmic space, however the capacity of the periplasm is limited (Schofield et al., 

2016). As the periplasm reaches this capacity, cell lysis occurs and product is lost to 

extracellular space (see results Chapter 3 and Chapter 4). Traditionally, it is desired 

to retain the Fab' product within the periplasm during fermentation and harvest the 

cells before significant lysis and product leakage occurs. As such, the aim is to 

maximise intracellular product concentration in fermentation, however, there is a 

narrow processing window between optimal intracellular concentration and the rapid 

onset of cell lysis.  

Upon reaching maximum intracellular product concentration, the cell broth is 

harvested. This typically includes holding time (up to several hours at large scale) 

and pumping the broth to the following unit operation i.e. beginning primary 

recovery operation. However, at the point of maximum intracellular product 

concentration, the cells are weak and fragile (Perez-Pardo et al., 2011). This means 

that cells will continue to lose viability while they are held and stirred in a holding 

tank, and will be susceptible to lysis from the shear experienced due to pumping. 

Therefore, the existing process lacks robustness, as the pumping and product hold 

step can lead to significant product loss, as well as variation in the level of lysis. For 

example, at harvest point, the level of product loss may be 10%, however after 

product hold and pumping, this can reach as high as 40%. In addition, previous 

studies suggested that the shear experienced due to discharge from disc stack 

centrifuges can result in 10-20% disruption of E. coli cells (Gray et al., 1972). These 

issues mean that the final product yield at the end of primary recovery can 
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significantly vary, which also presents issues with equipment sizing for both primary 

recovery as well as for the subsequent purification steps. 

As seen in Figure 5-1 (a), the existing Fab' primary recovery sequence involves 

centrifugation to harvest the cells, re-suspension of the cell paste in extraction buffer 

to an appropriate level, periplasmic extraction to release the Fab' product from the 

cells, followed by centrifugation and depth filtration to remove the cell debris 

(Aucamp et al., 2014). However, due to the finite capacity of the periplasm to store 

the product, a constraint exists in the upstream process which limits the total amount 

of recoverable product in the downstream process. This is compounded by the 

limitations of each unit operation, as each unit operation also has a maximum 

achievable yield. Therefore, the large number of unit operations in the existing Fab' 

primary recovery process also reduce the overall product yield. 
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Figure 5-1: Process flowsheets of the primary recovery sequences under study. 

(a) USD study of the existing sequence for the primary recovery of Fab' from E. 

coli fermentation. (1) indicates Harvest Point 1 at maximum intracellular 

concentration (as seen in Figure 5-3, at 32 h postinduction). (R) indicates re-

suspension with extraction buffer, carried out after centrifugation at a 70% 

dewatering level; (b) USD study carried out using a similar primary recovery 

sequence to that used by Voulgaris et al. (2016), with flocculation and 

centrifugation followed by depth filtration, after fermentation ran to maximum 

productivity i.e. fully autolysed cells. (2) indicates Harvest Point 2 at 57 h 

postinduction (as seen in Figure 5-3); (c) USD study carried out using a novel 

combination of flocculation with crossflow filtration, after fermentation ran to 

maximum productivity i.e. fully autolysed cells, and harvested at Harvest Point 

2 (as seen in Figure 5-3). 
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5.1.2 Flocculation 

A range of research has previously been carried out with the aim of overcoming the 

various challenges of cell lysis in fermentation, including the selective release of 

product from the periplasm (Jalalirad, 2013), or the co-expression of nuclease to 

reduce nucleic acid content in the cell broth (Balasundaram et al., 2009). However, 

these methods have their own unique challenges, such as the need to avoid premature 

cell lysis in fermentation (Mergulhão et al., 2005).  

Previous work by Voulgaris et al. (2016) carried out a study to evaluate the ability to 

recover a recombinant protein product (domain antibody, dAb) from a fermentation 

ran to maximum productivity, (i.e. maximum total product titre) where the majority 

of cells had lysed, so that over 95% of product had been released to the cell broth, 

using a sequence similar to that shown in Figure 5-1 (b). In this work, 

polyethyleneimine (PEI) was used as a precipitant and flocculant at the end of 

fermentation to clean up the cell broth; selectively precipitating and flocculating host 

cell protein, nucleic acids and endotoxins, in addition to flocculating cells and cell 

debris (Voulgaris et al., 2016).  

Some advantages of flocculation include the quick action of the PEI reagent and its 

ability to remove a wide range of impurities and cell debris by high speed 

centrifugation (due to the larger particle size of the flocculated material). A detailed 

review of the use of flocculation for lysed cell suspensions has been carried out 

elsewhere (Rayat et al., 2016; Voulgaris et al., 2016), however there are several 

studies demonstrating the successful use of flocculation in primary recovery 

(Milburn et al., 1990; Salt et al., 1995; Berrill et al., 2008; Espuny Garcia del Real et 

al., 2014; Voulgaris et al., 2015), such as a reduction of contaminants by over 50-

fold when using a combination of flocculation, USD shear stress and centrifugation 

(Chatel et al., 2014). 

5.1.3 Crossflow filtration 

Microfiltration (MF) and ultrafiltration (UF) processes are established technologies 

across various industries including biopharmaceutical and pharmaceutical 
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manufacturing (Baruah et al., 2005). Crossflow filtration (CFF), where the feed 

flows tangentially to the membrane surface (as opposed to perpendicular flow in 

traditional depth filtration), is also used in primary recovery to separate recombinant 

protein from E. coli lysate (Forman et al., 1990), for example after homogenisation 

(Bailey and Meagher, 1997). Key advantages of using CFF instead of centrifugation 

or depth filtration include better separation in terms of clarification and product 

yield, better control over the process and lower capital and operating costs (Keefe 

and Dubbin, 2005). However, although CFF can achieve higher product yields by 

operating in diafiltration mode after the concentration step, the product will become 

increasingly diluted. In general, important challenges in the commercial development 

of microfiltration include process robustness, such as excessive membrane fouling 

due to high impurity loading in the feed material, and scalability, although CFF is 

thought to be more appropriate than depth filtration for large scale applications 

(Belfort et al., 1994; Yavorsky et al., 2003).  

The use of flocculation in combination with centrifugation and/or depth filtration has 

previously been shown to improve product yield, throughput and clarification 

(Berrill et al., 2008; Roush and Lu, 2008; Chatel et al., 2014; Espuny Garcia del Real 

et al., 2014), however given the apparent processing advantages of CFF compared to 

both centrifugation and depth filtration, it may also be possible to obtain superior 

operational performance (i.e. throughput and capacity), clarification, product purity 

and yield by using CFF in combination with flocculation (see Figure 5-1 (c)). 

Therefore, if equivalent or superior operational performance can be achieved, CFF 

combined with flocculation may be able to replace both centrifugation and depth 

filtration unit operations. This would simplify the primary recovery process and open 

up a range of new possibilities for biopharmaceutical process design and operation. 

5.1.4 Ultra scale-down technologies 

To improve speed to market for groundbreaking therapies, a popular theme currently 

trending in the biopharmaceutical industry is leveraging technological innovation in 

order to streamline drug discovery and process development. There are a multitude 

of opportunities available within this space and some examples include the use of 
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computational biology for "virtual screening" in drug discovery (Lavecchia and Di 

Giovanni, 2013), upstream advances in synthetic biology and genome engineering 

techniques such as CRISPR (Hsu et al., 2014), the Tecan robotics platform (Dong et 

al., 2016), and TAP's AMBR 250 system (Xu et al., 2016) for automated, high-

throughput analysis, the development of high-throughput microfluidic devices such 

as "lab on a chip" (Liu and Lu, 2016) or "organs-on-chips" devices (Esch et al., 

2015) and ultra scale-down (USD) technologies (Rayat et al., 2016).  

Ultra scale-down technologies use millilitre quantities of material to gain an 

understanding of how a process will behave at large scale. A comprehensive review 

of the development of this technology has been carried out elsewhere (Rayat et al., 

2016), however some of the benefits include the ability to carry out high-throughput 

experiments, process automation, reduced scale-up risk, the ability to assess process 

design alternatives at small scale (e.g. following quality by design (QbD) principles 

and a design of experiments approach (DoE)) and the rapid optimisation of 

processing conditions. USD technologies have received most attention in the early 

primary recovery stages of the bioprocess, which therefore enables researchers to 

investigate the interactions and trade-offs between upstream processing conditions 

and downstream operation efficiency (Rayat et al., 2014). This permits the researcher 

to take a process integration approach in order to rapidly optimise sections of, or 

even the entire bioprocess from end to end, which has traditionally been difficult to 

carry out due to the complexity, cost and time requirements for large scale 

bioprocessing. 

There are several examples of ultra scale-down applications for process integration 

and process design, some highlights include studying the interaction between 

fermentation, homogenisation and centrifugation for the recovery of antibody 

fragments from E. coli (Li et al., 2013), the integration of host strain bioengineering 

and bioprocess development to screen and evaluate process robustness for a range of 

engineered strains (Aucamp et al., 2014), characterisation of the impact of 

conditioning methods (e.g. flocculation) on clarification performance by continuous 

centrifugation (Chatel et al., 2014) and the evaluation of options for the harvest of 

recombinant protein in E. coli fermentation, based on the extent of cell lysis 
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(Voulgaris et al., 2016). There are also many published studies demonstrating the 

ability of various USD technologies to mimic both pilot and large scale 

bioprocessing (Hutchinson et al., 2006; Perez-Pardo et al., 2011; Li et al., 2012; 

Lopes and Keshavarz-Moore, 2012; Espuny Garcia del Real et al., 2014). 

Additionally, the development of an ultra scale-down CFF device has previously 

been carried out by Ma et al. (2010), and a microscale CFF device has been 

developed by Rayat et al. (2014) to facilitate parallel analysis and integration for 

automated bioprocessing, and both devices included verification at pilot and large 

scale. 

5.1.5 Aims & objectives 

The research presented in this chapter uses USD technology as a platform to rapidly 

evaluate the performance of three bioprocess designs, based on a set of criteria 

including total product recovered, purity (total protein and nucleic acid impurity 

profiles) and clarification performance. In doing so, this chapter also aims to 

demonstrate that the novel use of CFF in combination with flocculation can achieve 

equivalent or superior clarification performance compared to the existing primary 

recovery process for Fab' produced in E. coli, in addition to a reduction of nucleic 

acid and host cell protein levels, whilst improving overall product yield, reducing 

primary recovery processing time, reducing the number of unit operations and 

lowering capital costs. 

The overall aim of this chapter is to carry out a case study demonstrating an 

application of viscosity monitoring in process development. This will involve using 

viscosity monitoring to make decisions about harvest time and to influence an 

approach to create a novel process design in primary recovery. 

The specific objectives of this chapter are to: 

• Demonstrate an application of viscosity monitoring in fermentation process 

development by carrying out a case study 
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• Use ultra scale-down technology to gain an understanding of the impact of 

upstream processing conditions on downstream operation efficiency 

• Evaluate the performance of a novel process design, based on several criteria 

such as clarification performance, total product yield, product purity, capital 

costs and processing time 

5.2 Upstream processing 

High cell density E. coli fermentations were carried out in fed-batch mode in a 5 L 

working volume Applikon fermenter, as previously described in results Chapter 3 

and Chapter 4. Figure 5-2 shows the growth profile of typical duplicate fermentation 

runs, where dry cell weight reached a maximum of 60 g/L which corresponded to an 

OD600 of ~200. The exponential phase began at ~24 h and recombinant protein 

expression (Fab') was induced at 36 h with IPTG, after a dissolved oxygen spike was 

observed due to complete utilisation of the carbon source. At this point, glycerol was 

fed at a constant rate (6.4 mL/min), enabling rapid Fab' production in stationary 

phase. Harvest Point 1 and Harvest Point 2 are displayed in Figure 5-2, which 

correspond to 32 h postinduction and 57 h postinduction, respectively. 

The duplicate product (Fab') profiles for the fermentation are shown in Figure 5-3 

(a). After induction, rapid Fab' production began and reached a total of 1.9 mg/mL 

by the end of the fermentation. Intracellular product concentration increased rapidly 

until 32 - 36 h postinduction, where the concentration peaked and rapidly decreased 

thereafter. It can also be seen that product loss to the broth, i.e. Fab' leakage, 

remained low until reaching 32 h postinduction, and rapidly increased thereafter. 

To carry out the primary recovery sequences presented in this chapter, cells were 

harvested at two separate time points. First, cells were harvested at maximum 

intracellular product concentration (0.8 mg/mL) at Harvest Point 1 (denoted on 

graph, Figure 5-3 (a)), in order to carry out process scenario 1 (see Figure 5-1 (a)). 

Second, cells were harvested at maximum productivity i.e. maximum total product 

titre, where significant cell autolysis had taken place (Harvest Point 2, 1.85 mg/mL 
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total product titre) to carry out process scenarios 2 and 3 (Figure 5-1 (b) and (c) 

respectively).  

Therefore, for process scenarios 2 and 3, where the fermentation was ran to 

maximum productivity, the product titre was much higher than for scenario 1 

(harvested at maximum intracellular concentration). In addition to the increase in 

product titre, this fermentation strategy also removed the need to avoid premature 

lysis in stationary phase, as it was desired to maximise the recovery of product in 

extracellular space (i.e. in the cell broth). 

At Harvest Point 2, almost 60% of product had leaked to the broth, and material was 

then frozen and stored at -80°C before carrying out the DSP sequences. After 

thawing, cells were shaken gently for 1 h at room temperature before carrying out the 

process scenarios, at which point over 99% of product was found in extracellular 

space. For a real fermentation run using fresh cell broth, it is believed that ~100% 

lysis could rapidly be achieved at the end of fermentation by turning off fermenter 

controls (i.e. aeration and glycerol feeding) and continuing to agitate the cell broth 

for a short period. 

The process sequence shown in Figure 5-1 (a) was carried out with fresh cells, after 

stirring gently for 1 h at room temperature to mimic holding time at large scale, as it 

was desired to retain the product within the periplasm and avoid cell lysis. At 

Harvest Point 1, ~10% product leakage to the broth had taken place. After holding 

time in process scenario 1, ~26% of product had leaked to the broth, which is a 

typical level of lysis after holding time at large scale. However, as discussed in 

section 5.1, this level can vary significantly, which can have a major impact on the 

product yield, process robustness and the performance of downstream unit 

operations, due to large variations in the material properties of the harvested cell 

broth. 

In Figure 5-3 (b), the postinduction viscosity and nucleic acid profiles are shown. 

Shear viscosity was used to monitor the level of cell lysis in fermentation, using the 

method previously described in results Chapter 3 and Chapter 4. The nucleic acid 
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concentration in the broth increased from 2 to ~5 mg/mL between 0 and 20 h 

postinduction, showing that some lysis took place in early stationary phase. Between 

20 - 32 h postinduction, the nucleic acid concentration increased to ~7.5 mg/mL (i.e. 

at Harvest Point 1), and rapidly increased thereafter until reaching almost 12 mg/mL 

at Harvest Point 2. The shear viscosity profile correlated well with the nucleic acid 

profile, increasing slightly between 0 and 20 h postinduction, then increasing to 

reach ~0.003 Pa s at Harvest Point 1, and rapidly increasing from this point onwards 

to 0.008 Pa s at Harvest Point 2. 

The nucleic acid and viscosity profiles also provide an indication of the ease of 

processing for the two different harvest points; it is known that high viscosity is 

challenging for many downstream unit operations (see Introduction, section 1.3.3), 

and the nucleic acid content gives an indication of contaminants in the cell broth. 

Therefore, by monitoring the viscosity profile, it could be possible in the future to 

quantify the level of cell lysis and determine the amount of flocculant to add in the 

primary recovery step directly after fermentation (for process scenarios 2 and 3). 

The Fab' titre and dry cell weight were slightly higher for the experiments presented 

in this chapter, in comparison to the results presented in Chapter 3 and Chapter 4. 

This is due to a recalibration issue; the tubing for the fermentation system was 

replaced before carrying out these experiments (i.e. the tubing for glycerol feeding), 

and the feeding rates were subsequently recalibrated. After recalibration, it is likely 

that the glycerol feed rate was slightly higher than in the fermentation runs reported 

in the previous results chapters, due to limitations imposed by discrete pump 

increments. This can be seen in Figure 5-2, where the dry cell weight continued to 

increase after induction point at 36 h. The overfeeding of glycerol and increased 

biomass also explains the increase in Fab' titre to 1.85 mg/mL. In addition, the final 

shear viscosity reached at Harvest Point 2 was higher than in previous fermentation 

runs, at 0.008 Pa s. However, the Fab' leakage profile, seen in Figure 5-3 (a), 

remained the same as in previous fermentation runs, where the onset of leakage was 

consistently observed between 32 - 36 h postinduction. This is due to the limited 

capacity of the periplasm. 
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Nucleic acid concentration and viscosity were used in this chapter to monitor the 

level of cell lysis. In Chapter 3 and Chapter 4, Picogreen assay was used to monitor 

double stranded DNA (dsDNA) in the cell broth, as dsDNA has a greater 

contribution to the viscosity, due to its longer length and higher molecular weight. 

However, Table 4-7 presented in Chapter 4 showed that RNA makes up a significant 

amount of a cell's weight, and may also have a contribution to the viscosity increase 

in postinduction fermentation. Furthermore, this chapter focuses on the performance 

of primary recovery unit operations. It is not only double stranded DNA that causes 

problems in downstream processing, but also single stranded DNA and RNA. In 

addition, for the purpose of monitoring the performance of contaminant removal in 

the flocculation step, total nucleic acid concentration is more meaningful, as PEI will 

precipitate and flocculate all nucleic acids, not only double stranded DNA. 

Therefore, total nucleic acid concentration was monitored in this chapter.  
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Figure 5-2: Fermentation growth profile for duplicate E. coli Fab' 

fermentations. Cells induced with IPTG at 36 h and fed with glycerol thereafter. 

Optical density at 600 nm (absorbance units (AU), in triplicate) and dry cell 

weight (g/L, in triplicate). Harvest Point 1 and 2 denote harvest at 32 h 

postinduction (process sequence 1) and 57 h postinduction (process sequence 2 

and 3), respectively. Error bars show standard deviation. 
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Figure 5-3: Product, nucleic acid and viscosity profiles for E. coli Fab' 

fermentation. Cells induced with IPTG at 36 h and fed with glycerol thereafter. 

Data shown postinduction. Harvest Point 1 and 2 denote harvest at 32 h 

postinduction (process sequence 1) and 57 h postinduction (process sequence 2 

and 3) respectively. (a) Total Fab' concentration, intracellular Fab' 

concentration and Fab' leakage, (mg/mL, in duplicate); (b) Shear viscosity (Pa s, 

single measurement, held at steady state for 10 s) and extracellular nucleic acid 

concentration (mg/mL, in triplicate at 230 nm absorbance). Viscosity 

measurements were carried out at 25°C using 50 mm parallel plates and a 300 

μm gap size. Error bars show standard deviation. 
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5.3 Flocculation studies 

In preliminary studies carried out by Voulgaris et al. (2016), PEI concentration was 

assessed between 0.1 and 6% w/v of the broth (final concentration in the broth), and 

0.5% PEI was chosen based on its ability to aggregate particles in the submicron 

range i.e. particles that are difficult to remove through centrifugation. In this section, 

the aim was to evaluate flocculation conditions for the E. coli cell broth at Harvest 

Point 2. PEI was therefore assessed at a range of concentrations, across several 

dimensions; the ability to flocculate cells and cell debris i.e. aggregate submicron 

particles, the removal of nucleic acids and host cell protein, and reduction of the 

supernatant viscosity. 

The cell broth was harvested at 57 h postinduction and was fully autolysed. Cell 

broth was flocculated with PEI and assessed at three concentrations; 0.5%, 1.0% and 

1.5% w/v final concentration in the broth. Figure 5-4 (a) presents the particle size 

distributions before and after flocculation, at each of the PEI concentrations, showing 

that all three concentrations successfully flocculated the material, with the smallest 

particle size around 2 μm and a median particle size, or d50, of 139.65 μm (in 

comparison to a median particle size of 2.50 μm before PEI addition). 

Figure 5-4 (b) shows the supernatant viscosity, extracellular nucleic acid 

concentration and extracellular protein concentration before and after PEI addition. It 

can be seen that increasing the concentration of PEI caused a reduction in 

extracellular protein and nucleic acid, which was also reflected in the reduction in 

supernatant viscosity. However, a trade-off exists; although higher levels of PEI 

increased the removal of nucleic acids and host cell protein, the flocculated material 

became extremely difficult to pipette at higher PEI concentrations due to the high 

solids concentration. Further, high levels of PEI create additional challenges 

downstream where there would also be a need to demonstrate its removal after the 

primary recovery steps. However, due to batch to batch variability in fermentation, 

adding enough PEI to the broth is also necessary to ensure robustness in the 

flocculation process. Therefore, 1% PEI was chosen to go forward, on the basis that 

it successfully flocculated cells and cell debris (above ~2 μm particle size), reduced 
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the supernatant viscosity by 17.6% and reduced the concentration of nucleic acids 

and host cell protein in the supernatant by 34.7% and 16.1%, respectively, without 

causing significant processability issues.   
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Figure 5-4: Evaluating flocculation conditions for E. coli cell broth. Cell broth 

used was autolysed and harvested at 57 h postinduction. (a) particle size 

distributions for E. coli cell broth with and without flocculation (PEI). Data 

recorded in triplicate and averaged before being treated using a method 

previously described by Chatel et al. (2014), to convert from volume % to 

volume frequency; (b) Extracellular nucleic acid concentration (measured in 

triplicate at 230 nm absorbance), extracellular total protein concentration 

(measured in triplicate at 280 nm absorbance) and shear viscosity of the 

supernatant of E. coli cell broth (Pa s, single measurement, held at steady state 

for 10 s) for different concentrations of PEI. Viscosity measurements were 

carried out at 25°C using 50 mm parallel plates and a 300 μm gap size. Error 

bars show standard deviation. 
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5.4 USD primary recovery studies 

Ultra scale-down (USD) operating parameters (e.g. centrifugation and depth 

filtration) were selected based on both USD experimental data and previous studies 

by Voulgaris et al. (2016), to mimic typical conditions for large scale bioprocessing. 

This section presents an overview of the primary recovery processing sequences 

under study. 

5.4.1 Process scenario 1 

After harvesting cells at Harvest Point 1 (see Figure 5-3 (a)) and holding the broth 

for 1 h, the primary recovery sequence for process scenario 1 was carried out (see 

Figure 5-1 (a)). USD shear studies and centrifugation were first carried out. The 

broth was exposed to a shear stress (maximum energy dissipation rate) equivalent to 

1.04 x 106 W/kg to mimic the shear level experienced in the feed zone and due to 

solids discharge in an industrial disc stack centrifuge. Following shear studies, small 

scale (bench-top) centrifugation was carried out at 6,800 rpm for 5 min, which was 

equivalent to industrial scale CSA centrifuge operation at 48 L/h, based on an 

equivalent settling area, Vlab/t∑T of 1.96 x 10-8 m/s (see Materials & methods section 

2.6.4 for calculation). The broth was subsequently dewatered to 70%.  

After dewatering, the cell paste was re-suspended in extraction buffer at a ratio of 1 g 

cells: 7 mL extraction buffer, and periplasmic extraction was carried out for 12 h at 

60°C and 250 rpm in a shaker-incubator to release the Fab' product. After extraction, 

USD shear studies and centrifugation were again carried out to remove the cells and 

cell debris. For the second shear study, a shear stress of 1.30 x 105 W/kg was used to 

mimic the shear experienced in the feed zone of an industrial disc stack centrifuge. 

Centrifugation conditions for the second centrifugation step were the same as stated 

above.  

Following centrifugation, depth filtration was carried out on the supernatant stream, 

at constant pressure (300 mbar) using a nominal pore size of 0.1 μm. Figure 5-5 (a) 

shows the permeate volume vs. time for the duplicate USD depth filtration runs. The 

filtration performance was good, and had high reproducibility. It can be seen that the 
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filters became blocked at around 160 seconds after 4,800 μL had passed through to 

the permeate stream. To obtain the Vmax (capacity), i.e. to assess the performance of 

the filtration unit, (time/volume) vs. time could be plotted for both duplicates, as 

shown in Figure 5-5 (b). 

Lines of best fit were subsequently fitted to the t/v vs. t plots, and the R2 values for 

duplicate 1 and 2 were determined to be 0.994 and 0.9896, respectively. For the filter 

used, i.e. of area 2.8 x 10-5 m2, the Vmax was proportional to 1/gradient of the straight 

line, which was determined to be 21,688 and 20,446, respectively. Dividing these 

values by the area of the filter used gives the Vmax value per m2, which was 

calculated to be 752 ± 31 L/m2. This is the capacity of the filter for the material 

under study, i.e. the limit before the filter blocks, per unit area of the filter. The 

capacity can be used to scale the operation, and determine the area of the filter 

required at large scale production. 
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Figure 5-5: Depth filtration step for process scenario 1. Depth filtration 

performed in duplicate on a liquid handling robotic platform (Tecan Freedom 

EVO1), fitted with depth filter media with an area of 2.8 x 10-5 m2, and 0.1 μm 

nominal pore size. Vacuum filtration carried out at constant pressure (ΔP = 300 

mbar), with 5 mL of process material. (a) permeate volume (μL) vs. time 

(seconds); (b) plot of t/v (seconds/μL) vs. t (seconds), used to determine the Vmax. 

R2 values for duplicate 1 and 2 were 0.994 and 0.9896, respectively.  
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5.4.2 Process scenario 2 

After harvesting cells at Harvest Point 2 (see Figure 5-3 (a)), the primary recovery 

sequence for process scenario 2 was carried out with fully autolysed cell broth (see 

Figure 5-1 (b)). The cell broth was flocculated with PEI for 30 min at 1,080 rpm, in 

order to reach maximum floc strength (see Materials & methods, section 2.6.1). After 

flocculation, USD shear studies were carried out at a maximum energy dissipation 

rate of 1.30 x 105 W/kg, followed by centrifugation at 6,800 rpm for 5 min, which 

was equivalent to industrial scale CSA centrifuge operation at 48 L/h, based on an 

equivalent settling area, Vlab/t∑T of 1.96 x 10-8 m/s. 

As seen in Figure 5-6, particle size distributions were taken to assess floc breakup 

after USD shear studies, as flocculated material is known to be shear sensitive. In 

Figure 5-6, the cell broth is shown before flocculation as a reference and had a 

median particle size (d50) of 11.7 μm. The particle size distributions after flocculation 

and after USD shear studies are presented, and a small amount of floc breakup due to 

shearing can be seen. After shear studies, the two peaks around 100 μm and 1000 μm 

became more pronounced, and shifted slightly to the left. This shifted the median 

particle size, or d50, from 213.8 μm to 144.7 μm. In addition, a very small number of 

particles were detected at just below 1 μm after USD shear studies. Although the 

average particle size reduced, the vast majority of particles remained above 2 μm 

(over 99%), showing minimal floc breakup due to shearing, and a significant 

improvement in the particle size distribution profile after both flocculation and shear 

studies. 

Following USD shear studies and centrifugation, depth filtration was carried out at 

constant pressure (300 mbar) using a filter with 0.1 μm nominal pore size, in the 

same manner as for process scenario 1 (described in section 5.4.1). Figure 5-7 (a) 

shows the permeate volume vs. time for duplicate runs with the supernatant stream 

from the centrifugation step. In comparison to the plots shown in Figure 5-5 (a) for 

process scenario 1; although the filter did not block, the total permeate volume was 

much lower, at ~2,000 μL and it took longer to reach this volume; the runs were 

ended after 500 seconds. 
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The same procedure was followed to determine the Vmax (as described for process 

scenario 1 in section 5.4.1) and Figure 5-7 (b) shows the straight line plots of t/v vs. 

t, where the R2 values for duplicate 1 and 2 were 0.9868 and 0.9736, respectively. 

The duplicate values for 1/gradient of the straight line (shown in Figure 5-7 (b)) were 

calculated to be 6913 and 6275, respectively. The Vmax was subsequently calculated 

to be 236 L/m2 ± 16. The capacity of the filter was significantly lower for process 

scenario 2 than for process scenario 1, which is to be expected due to the increase in 

impurities in the cell broth attributable to cell lysis. 

5.4.3 Process scenario 3 

After harvesting cells at Harvest Point 2 (see Figure 5-3 (a)), the primary recovery 

sequence for process scenario 3 was carried out with fully autolysed cell broth (see 

Figure 5-1 (c)). The cell broth was flocculated with PEI for 30 min at 1,080 rpm, in 

order to reach maximum floc strength (see Materials & methods, section 2.6.1). 

Directly after flocculation, crossflow filtration (CFF) was carried out.  

For crossflow filtration, it was possible to use a 500 kDa pore size, whilst achieving 

good operational performance. However, as seen in Figure 5-7 (a), using a filter size 

lower than 0.1 μm for process scenario 2 would have been challenging, and 

insufficient material (permeate volume) would have been available for further 

analysis. The next section will discuss flocculation with crossflow filtration in more 

detail. 
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Figure 5-6: Particle size distributions taken to assess floc breakup before and 

after USD shear studies. Cell broth was autolysed and harvested at 57 h 

postinduction and the PSD is shown as a reference. Flocculation was carried out 

at 1% w/v PEI concentration (final concentration in the broth). USD shear 

studies carried out at 1.30 x 105 W/kg. Data recorded in triplicate and averaged 

before being treated using a method previously described by Chatel et al. 

(2014), to convert from volume % to volume frequency. 
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Figure 5-7: Depth filtration for process scenario 2. Depth filtration performed 

in duplicate on a liquid handling robotic platform (Tecan Freedom EVO1), 

fitted with depth filter media with an area of 2.8 x 10-5 m2, and 0.1 μm nominal 

pore size. Vacuum filtration carried out at constant pressure (ΔP = 300 bar), 

with 5 mL of process material. (a) permeate volume (μL) vs. time (seconds); (b) 

plot of t/v (seconds/μL) vs t (seconds), used to determine the Vmax. R2 values for 

duplicate 1 and 2 were 0.9868 and 0.9736, respectively. 
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5.5 Flocculation and crossflow filtration 

Flocculated material is known to be shear sensitive, therefore, having determined the 

concentration of PEI to use for the flocculation step, it was also necessary to 

understand the extent of floc breakup that occurs due to the shear experienced during 

crossflow operation, particularly at high feed flow rates. Particle size distributions 

were taken to assess floc breakup during operation with CFF at two different feed 

fluxes; 1350 and 1950 L/m2/h (i.e. at 4,000 and 6,000 rpm in the USD device), where 

typical values range from 300 - 2100 L/m2/h for a V-screen cassette. Therefore, the 

feed fluxes used in this study were in the mid and high range for the typical use of 

this cassette. 

Particle size distributions are shown in Figure 5-8 for the two feed fluxes. The 

particle size distribution for a typical E. coli cell broth before flocculation is shown 

as a reference, and had a median particle size of 2.47 μm. The same trend can be 

seen for both feed fluxes; after flocculation with PEI, the minimum particle size of 

the flocs was around 2 μm and the median particle size after flocculation was 370.8 

μm for the 1350 L/m2/h feed flux, and 308.2 μm for the 1950 L/m2/h feed flux (a 

separate flocculation was carried out for each feed flux experiment; this variability 

will be discussed in more detail later). 

After 30 min operation with the CFF device, no particles can be seen in the 200 to 

1000 μm size range, and a greater number of particles are in the 1 to 100 μm size 

range. The median particle sizes for the two flux rates after 30 min CFF operation 

were 27.4 μm and 19.7 μm, respectively for the 1350 L/m2/h and 1950 L/m2/h feed 

fluxes. After 60 min operation, the peak at around 5 μm increased, whilst the tail 

decreased in the 30 to 100 μm range. The median particle sizes for the two flux rates 

after 60 min CFF operation were subsequently 19.2 μm and 11.4 μm, respectively for 

the 1350 L/m2/h and 1950 L/m2/h feed fluxes. This shows that floc breakup occurred 

over the 60 min period for both feed fluxes; 1350 and 1950 L/m2/h. 

In comparison to non-PEI treated cell broth, where the smallest particle was around 

0.3 μm; the smallest particle size after 60 min CFF operation was still much greater 
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for both feed fluxes (~1 μm). However, after 60 min CFF operation, the smallest 

particle size and the median particle size for the 1350 L/m2/h feed flux was slightly 

higher than for the 1950 L/m2/h feed flux. Therefore, 1350 L/m2/h was chosen to 

operate the CFF device as less floc breakup occurred with this feed flux. 

It can also be seen that floc breakup after CFF operation (for both feed fluxes) was 

much higher than for the USD shear studies carried out in Figure 5-6. This is largely 

due to the long exposure time in the CFF device compared to the shear studies (i.e. 

30 - 60 min vs. 20 s). Although CFF is regarded as lower shear operation than 

centrifugation in general, this result shows that the shear impact of the long operating 

time on the floc could be more severe than that in disc-stack centrifugation.    
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Figure 5-8: Particle size distributions before and after flocculation, and after 30 

and 60 min operation with CFF to show floc breakup vs. time for two feed 

fluxes. Data recorded in triplicate and averaged before being treated using a 

method previously described by Chatel et al. (2014), to convert from volume % 

to volume frequency; (a) 1350 L/m2/h feed flux (4,000 rpm in the USD CFF 

device) and (b) 1950 L/m2/h feed flux (6,000 rpm in the USD CFF device). 
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After establishing the flocculation conditions and determining the feed flux to use for 

CFF operation, CFF runs were carried out in concentration mode with both 

flocculated material and non-flocculated material, to provide a comparison between 

their respective performances.  

For the purpose of comparison of the process sequence, the CFF device was selected 

to be operated at constant permeate flux in concentration mode only, at a typical 

mid-range flux rate for industrial microfiltration operation of 45.5 L/m2/h (1 mL/min 

for the USD device). All runs were carried out until the transmembrane pressure 

(TMP) reached 2 bar. Figure 5-9 (a) shows the time taken for the transmembrane 

pressure to reach 2 bar, i.e. the time before the membrane can be considered to be 

blocked, for CFF operation both with and without flocculation.  

For non-flocculated cell broth, harvested at 57 h postinduction and fully autolysed, 

the membrane blocked almost immediately after 2.2 min ± 0.7. The capacity for CFF 

operation can be determined by dividing the throughput (i.e. 2.2 mL) by the area of 

the membrane (13.2 cm2). Therefore, the capacity for non-flocculated, fully 

autolysed cell broth was determined to be 1,677 L/m2
 ± 485.  

For CFF runs with flocculated, fully autolysed cell broth, a good operating time was 

achieved of 16.7 min ± 7, and it was calculated (as described above) that the capacity 

was 12,687 L/m2
 ± 5,600. Although there was significant variation in the runs, as 

seen in the error bars in Figure 5-9 (a), this nonetheless represents a 5-10-fold 

improvement in throughput by using flocculation, in comparison to non-flocculated 

broth. The variation observed for CFF operation with the non-flocculated cell broth 

was 32%, and the variation for the flocculated cell broth was 44%. 

Water flux tests were carried out before and after each CFF run, in order to assess the 

extent of irreversible fouling on the membrane. Figure 5-9 (b) presents the water flux 

tests as normalised water permeability (NWP), normalised to 25°C for CFF 

operation with and without flocculation. The NWP was determined by increasing the 

permeate flux (in L/m2/h, or LMH) in a step-wise fashion and measuring the 

corresponding change in TMP (in bar), using milliQ water before and after each CFF 
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run. Plotting the TMP vs. flux relationship for each water flux test yielded a straight-

line plot, and the gradient of the line was equal to the NWP (LMH/bar), which was 

then normalised to 25°C using a correction factor (actual temperature values varied 

between 21 and 23°C between runs). 

It was observed in Figure 5-9 (b) that significant fouling occurred during runs both 

with and without flocculation, however fouling occurred at a much slower rate for 

flocculated material, as seen by the increase in throughput in Figure 5-9 (a). Further, 

fouling on the membrane was 34% higher after CFF runs without flocculation than 

with flocculation (different starting permeability values). Although a high level of 

fouling for both runs was observed, the higher level of fouling observed for the runs 

without flocculation is due to the higher soluble content in the material, for example 

soluble nucleic acids and protein. However, further characterisation of the 

relationship between flux and transmembrane pressure is needed for optimal design 

of the process in the future. 

In addition, variation in the NWP was seen between runs; the average NWP value 

before runs with flocculated broth was considerably lower than before the non-

flocculated runs. A new membrane was used for each CFF run, and this shows that 

there was a large variation between the permeability of each of the membranes. This 

variation in the NWP between CFF runs could explain the variation seen in Figure 

5-9 (a); as mentioned above, the variation seen between the runs was 32% and 44% 

for non-flocculated and flocculated broth, respectively. Another explanation for the 

high variation seen in the CFF runs is that lysed E. coli cell broth consists of a 

diverse and complex mixture of biological material, which leads to a challenging 

downstream process. Further, flocculation at 100 mL scale was difficult due to the 

presence of dead volumes in the small-scale vessel. For large scale flocculation, it is 

believed that this would not be a problem, however this could have contributed to the 

variability seen in the runs with flocculation. 

Even though variation was observed, a significant improvement was seen in CFF 

performance by using PEI, in comparison to non-flocculated material. A mid-range 

permeate flux was used, and a high capacity was attained. However, the 
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reproducibility would need to be addressed when scaling up to large scale crossflow 

filtration operation. 
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Figure 5-9: Crossflow filtration with and without flocculation. (a) Time taken 

before membrane blocked for CFF operation at constant permeate flux of 45.5 

L/m2/h (1 mL/min for USD device operation) and 1350 L/m2/h feed flux, 

showing duplicate runs with and without flocculation (1% w/v PEI). CFF runs 

stopped upon reaching a transmembrane pressure (TMP) of 2 bar. Average 

operating time without flocculation was 2.2 min ± 0.7 (capacity = 1,677 L/m2 ± 

485), and average time with flocculation was 16.7 min ± 7 (capacity = 12,687 

L/m2 ± 5,600); (b) water flux tests before and after CFF, shown as normalised 

water permeability (NWP) at 25°C (in duplicate). Error bars show standard 

deviation. 
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5.6 Evaluating the performance of the three primary recovery scenarios 

After establishing the various USD operating parameters, the three process 

sequences were then carried out. This section aims to evaluate the performance of the 

three scenarios based on several criteria, including clarification performance (i.e. 

solids removal), total product yield and product purity. 

Figure 5-10 shows the optical density profiles after each unit operation across the 

three process scenarios. The OD600 profiles for process scenario 1 are shown in 

Figure 5-10 (a), where it can be seen that the optical density of the harvested 

fermentation feed at 32 h postinduction (see Figure 5-2) was 203 ± 6.24. After 

carrying out USD shear studies and centrifugation, the OD600 of the supernatant was 

determined to be 2.30 ± 0.172. The solids remaining for this step was calculated to 

be 0.783% (see Materials & methods, section 2.6.4 for calculation). As described in 

section 5.4.1, dewatering was carried out to a level of 70% and the cell paste was 

then re-suspended in extraction buffer, at a ratio of 1 g cells: 7 mL buffer. The OD600 

after re-suspension and periplasmic extraction was 25.2 ± 1.19. Following the second 

USD shear studies and centrifugation step, the OD600 of the supernatant was 

determined to be 0.887 ± 0.0137 and the solids remaining at this stage was 3.35%. 

Both centrifugation steps in process scenario 1 were able to achieve high solids 

separation, which is due to the settings used to mimic a low-medium flow rate for an 

industrial CSA centrifuge, of 48 L/h. After the depth filtration step, the OD600 was 

determined to be 0.668 ± 0.00429 and the level of solids remaining was determined 

to be 74%. The separation performance was relatively poor for depth filtration, and 

the rate at which the material passed through the filter (see Figure 5-5) suggests that 

either the pore size of 0.1 μm may have been too large, or that the solids removal was 

already high as many of the large particles had been removed in the centrifugation 

step. The overall solids remaining for the primary recovery process sequence 1 was 

determined to be 0.307%. 

The OD600 profiles for process scenario 2 are shown in Figure 5-10 (b). After harvest 

at 57 h postinduction, the OD600 was 52.2 ± 4.75. Flocculation was carried out, 

followed by USD shear studies and centrifugation, and the OD600 of the supernatant 
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was determined to be 0.179 ± 0.0146. The solids remaining after the centrifugation 

step was subsequently calculated to be 0.194%, and the good separation performance 

can be attributed to the use of flocculation. After centrifugation, depth filtration was 

carried out in the same manner as for process scenario 1 (described above), and the 

OD600 of the permeate after filtration was 0.1195 ± 0.00569. The solids remaining 

after the depth filtration step was therefore determined to be 41.7%.  

The relatively poor depth filtration performance could be due to the high 

concentration of soluble impurities remaining in the supernatant after centrifugation 

(which would affect the optical density), and could have also caused the slow rate of 

increase in permeate volume seen in Figure 5-7 (a) due to interactions with the filter 

media (nucleic acids are charged). However, the high number of solids remaining 

(41.7%) may also be because there were few solids remaining in the broth, as the 

preceding centrifugation performance was very good. To improve the permeate flow 

rate for this depth filtration step, the pore size of the filter could be increased above 

0.1 μm, as the flocculated solid material had a particle size much larger (>1 μm, see 

Figure 5-6 and Figure 5-4 (a)). 

The optical density profiles for process scenario 3 are shown in Figure 5-10 (c). 

After harvest, the starting OD600 of the fully autolysed cell broth was 67.3 ± 3.38. 

The solids remaining, SCFF, for CFF runs was calculated in a different way to the 

centrifugation solids remaining calculations: 

 100%s
CFF

f

OD
S

OD
       Equation 5-1 

 

where ODs is the optical density (at 600 nm) of the permeate and ODf is the optical 

density of the feed sample. 

After CFF runs, the OD600 of the non-flocculated permeate was 0.121 ± 0.00611 and 

0.0723 ± 0.00234 for the flocculated permeate. The solids remaining after CFF was 
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therefore determined to be 0.173% for CFF runs without flocculation and 0.112% for 

CFF runs with flocculated cell broth. Therefore, a 40% improvement in clarification 

between CFF runs with and without flocculation can also be seen, which can be 

attributed to the removal of submicron particles in the flocculation step and the larger 

particle size of the flocs, which improved separation in the CFF step. 

Although the starting optical densities were different between process scenario 1 

(harvested at 32 h postinduction, at the onset of cell lysis) and process scenarios 2 

and 3 (both harvested at 57 h postinduction, cells were fully autolysed), it should be 

noted that for scenarios 2 and 3, the cell broth contained a much higher concentration 

of impurities in the liquor, as the lysed cells had released their intracellular content to 

the broth. Therefore, although the cell concentration was lower, the primary recovery 

steps were more challenging due to the increased impurity content. In addition, it 

should be noted that the starting optical densities for process scenarios 2 and 3 were 

slightly different, due to variation between repeated fermentation runs. 

Given this, the clarification efficiency achieved in both scenarios 2 and 3 was 

superior to that in scenario 1, which can be attributed to the use of flocculation. 

However, clarification performance for all three scenarios was good.  
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Figure 5-10: Optical density profiles across each of the three process scenarios. 

All runs carried out in duplicate. Optical density measured at 600 nm 

(absorbance units, AU, in triplicate); (a) fermentation harvested at Harvest 

Point 1 (see Figure 5-3); (b) and (c) fermentation harvested at Harvest Point 2. 

Centrifugation (coupled with USD shear studies as described) carried out at 

6,800 rpm for 5 min (equivalent to industrial scale CSA centrifuge operation at 

48 L/h, based on an equivalent settling area, Vlab/t∑T of 1.96 x 10-8 m/s). Re-

suspension carried out at a ratio of 1g cells: 7 mL extraction buffer, and 

periplasmic extraction carried out for 12 h at 60°C and 250 rpm in a shaker-

incubator. Depth filtration performed at constant pressure (ΔP = 300 mbar) 

using a nominal pore size of 0.1 μm. PEI concentration was 1% for all runs (w/v 

of broth). CFF runs were carried out at a constant permeate flux of 45.5 L/m2/h 

(1 mL/min) and feed flux of 1350 L/m2/h using a 500 kDa pore size. Error bars 

show standard deviation. 
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Figure 5-11 displays the contaminant profiles (nucleic acid and total protein) and 

product profiles (intracellular and extracellular Fab' concentration, where 

appropriate) across each of the three process scenarios. Figure 5-12 shows the same 

profiles, however they have been normalised to the starting concentrations for ease 

of comparison across the scenarios.  

The starting nucleic acid and total protein concentrations in the fermentation broth 

for process scenarios 2 and 3 (Figure 5-11 (b) and (c)) were over double that of the 

fermentation feed for scenario 1 (Figure 5-11 (a)), however the recoverable Fab' titre 

was also more than double.  

Figure 5-11 (a) shows the starting nucleic acid and total protein concentrations in the 

broth for process scenario 1 to be 6.02 ± 0.85 mg/mL and 112 ± 6.54 mg/mL, 

respectively, and both concentrations stayed relatively constant after centrifugation. 

After re-suspension of the cell paste, the contaminants in the broth were low, as 

expected, however the presence of 0.898 ± 0.00347 mg/mL nucleic acids and 16.9 ± 

0.147 mg/mL total protein in the broth were due to the 70% dewatering level, i.e. the 

broth was not fully dewatered and some soluble contaminants remained in the 

stream. After extraction, the concentration of contaminants increased due to cell 

lysis. The aim of extraction is to extract the Fab' product from the periplasm, whilst 

minimising the release of host cell protein and nucleic acids. However, the 

concentration of both nucleic acids and total protein after extraction increased to 2.94 

± 0.0160 mg/mL and 61.6 ± 0.62 mg/mL, respectively. Following the second 

centrifugation step and depth filtration, the contaminants in the supernatant stayed 

relatively constant, which is to be expected as these steps were focused on separating 

solids and liquid, and the contaminants were solubilised in the broth. 

The initial Fab' concentrations are shown in Figure 5-11 (a) as both intracellular and 

extracellular, which were 0.783 ± 0.0219 mg/mL and 0.275 ± 0.0160 mg/mL, 

respectively (~26% product loss due to lysis). Following centrifugation, the Fab' 

concentration in the supernatant was 0.192 ± 0.00758 mg/mL; which was lost due to 

the 70% dewatering level. After re-suspension of the cell paste (1:7 dilution), the 

desired intracellular product concentration was 0.291 ± 0.000989 mg/mL and after 
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extraction, the product concentration in the broth was 0.140 ± 0.00115 mg/mL. The 

product concentration stayed relatively constant for the subsequent primary recovery 

unit operations, however a small amount of product was lost at each stage, and the 

final product concentration after depth filtration was 0.137 ± 0.00168 mg/mL. 

Figure 5-11 (b) shows the starting concentrations of host cell protein and nucleic acid 

as 220 mg/mL and 12.4 mg/mL, respectively; significantly higher concentrations 

than in process scenario 1. After flocculation and centrifugation, the contaminant 

concentration in the broth reduced considerably to 167 mg/mL total protein and 8.48 

mg/mL nucleic acids. After depth filtration, the concentration of contaminants stayed 

relatively constant, as the remaining contaminants were solubilised in the cell broth 

and therefore able to pass through the filter. 

The initial Fab' concentration in the broth for process scenario 2, harvested at 57 h 

postinduction and fully autolysed, is shown in Figure 5-11 (b) at 1.75 ± 0.00450 

mg/mL. The product concentration decreased after flocculation and centrifugation to 

1.54 ± 0.172 mg/mL, which suggests that some product was lost in the centrifugation 

step (typically 5% is lost) and some product was lost in the flocculation step. 

Following centrifugation, depth filtration was carried out and the final product 

concentration in the permeate was determined to be 1.42 ± 0.32 mg/mL. The high 

variation in the duplicates could be due to variation observed in the flocculation 

setup at small-scale (previously described) which was then propagated through the 

subsequent unit operations. 

Figure 5-11 (c) shows the contaminant and product profiles for process scenario 3. 

The initial total protein and nucleic acid concentrations were 268 ± 0.713 mg/mL and 

13.9 ± 0.125 mg/mL, respectively. After carrying out flocculation and crossflow 

filtration, a significant reduction in contaminants was observed, to 150 ± 0.699 

mg/mL total protein and 7.74 ± 0.0117 mg/mL nucleic acids. The product 

concentration in the broth of the harvested fermentation feed at 57 h postinduction 

(fully autolysed) was 1.95 ± 0.0235 mg/mL. After flocculation and CFF operation in 

concentration mode, the final Fab' concentration was 1.23 ± 0.143 mg/mL. 

Therefore, a significant drop was observed in the product titre after this unit 
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operation. This will be discussed in more detail in the following sections. The 

variation also seen in the product titre after flocculation and CFF could be due to the 

variation in the flocculation setup and CFF runs, as seen in Figure 5-9 (a). 



Chapter 5 - Evaluating process options in Fab' primary recovery: crossflow filtration with flocculation 

to improve product yield, purity and process robustness 

 217 

 

Figure 5-11: Nucleic acid, total protein and product (Fab') profiles across each 

unit operation for the three process scenarios. All runs carried out in duplicate. 

Fab' was measured in duplicate (mg/mL), total protein in triplicate (at 280 nm 

absorbance, mg/mL) and nucleic acids in triplicate (at 230 nm absorbance, 

mg/mL); (a) process scenario 1; (b); process scenario 2; (c) process scenario 3. 

Error bars show standard deviation. 
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Figure 5-12: Normalised nucleic acid, total protein and product (Fab') profiles 

across each unit operation for the three process scenarios. All runs carried out 

in duplicate. Fab' was measured in duplicate (mg/mL), total protein in triplicate 

(at 280 nm absorbance, mg/mL) and nucleic acids in triplicate (at 230 nm 

absorbance, mg/mL); (a) process scenario 1; (b); process scenario 2; (c) process 

scenario 3. Error bars show standard deviation. 
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Figure 5-13 summarises the performance of the three process scenarios, in terms of 

overall product yield, solids removal and product purity. Figure 5-13 (a) shows the 

total solids remaining for each of the primary recovery sequences, where a 3-fold 

improvement in solids removal was achieved for scenario 3, in comparison to 

scenario 1. A 4-fold improvement in solids removal was also achieved for scenario 2, 

compared to scenario 1. The overall product yield is also shown, where it can be seen 

that process scenarios 2 and 3 achieved significant improvements in comparison to 

process scenario 1; this was calculated by mass balance and will be discussed in 

more detail in the next section. 

Figure 5-13 (b) shows the impurity profiles for each primary recovery sequence. The 

use of flocculation and CFF in scenario 3 achieved a 3.6-fold improvement in 

product purity, in comparison to the existing Fab' primary recovery process seen in 

scenario 1. Flocculation with centrifugation in scenario 2 also achieved a 3-fold 

improvement in product purity, in comparison to scenario 1. As mentioned above, 

although the contaminant levels in process scenarios 2 and 3 were higher than 

observed in process scenario 1, the product titre was also higher. Therefore, process 

scenarios 2 and 3 achieved superior results than process scenario 1, in terms of solids 

removal, product yield and product purity. 
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Figure 5-13: Summary of the three DSP process scenarios. All runs carried out 

in duplicate; (a) Total solids remaining (%) at the end of each primary recovery 

scenario and overall product yield (%) calculated by mass balance; (b) 

Comparison of impurity levels for each process scenario; [Nucleic acids]/[Fab'], 

[total protein]/[Fab'] and [total impurities]/[Fab']. Fab' measured in duplicate 

(mg/mL), and nucleic acid and total protein measured in triplicate (at 280 nm 

and 230 nm, respectively, mg/mL). Error bars show standard deviation. 
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5.7 Mass balances 

In order to determine the total product recovered and impurity profiles for each 

process sequence, as well as the capital costs and downstream processing time, mass 

balances were carried out for the solids, the Fab' product, total protein and nucleic 

acids. The following sections detail the assumptions made to carry out the mass 

balances, the calculations required and the results for each process sequence. 

5.7.1 Assumptions for the mass balances 

The assumptions made to carry out the mass balances are listed below: 

• All mass balances were calculated on the basis of 1,000 L feed fermentation 

broth 

• For the centrifugation steps, a 70% dewatering level was assumed; the 

highest level in an industrial disc stack centrifugation process were assumed 

so that the results drawn from the analysis are more reliable (Salte et al., 

2006) 

• For scenario 1, the experimentally-determined periplasmic extraction 

performance was poor (~30%). Therefore, for the mass balance calculations, 

the efficiency for the periplasmic extraction step was raised to 80%, a typical 

level for industrial extraction processes (personal communication with a 

colleague in the Department of Biochemical Engineering, University College 

London) 

• Starting concentrations for product, solids, nucleic acids and total protein for 

process scenarios 2 and 3 were normalised to enable an equal comparison, as 

there was a slight variation in the starting experimental concentrations due to 

repeated fermentation runs (e.g. 1.95 mg/mL and 1.75 mg/mL were 

normalised to 1.85 mg/mL starting Fab' concentration in the fermentation 

feed)  

• Cell concentration was measured by optical density, and converted to wet cell 

weight in order to carry out the mass balances. This was done by converting 

OD600 measurements to dry cell weight measurements using a ratio of 1 
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absorbance unit (AU): 0.261 g/L dry cell weight (determined 

experimentally). Following this, the dry cell weight was multiplied by 3 to 

get wet cell weight (a typical rule of thumb is that wet cell weight is 3x dry 

cell weight for E. coli cells) (Bratbak and Dundas, 1984) 

• For the depth filtration steps, it was assumed that all liquor passed through to 

the permeate, however the total protein, nucleic acids and product were 

assumed to have a 10% rejection coefficient, i.e. 10% of solutes were 

retained by the membrane 

• For the flocculation steps in process scenarios 2 and 3, 10% product was 

assumed to be lost in the solids fraction after PEI addition (Ma et al., 2010). 

In addition, taking estimates from experimental data (Figure 5-4), 30% 

nucleic acids and 15% total protein were assumed to precipitate into the 

solids fraction after PEI addition 

• It was assumed that the volume of liquor was equivalent to the mass of liquor 

(i.e. the density of the liquor was that of water, as only small molecules were 

present in the water) 

• It was assumed that the density of solids debris, ρsol, was 1.05 kg/L (Wong et 

al., 1997) 

5.7.2 Process sequence 1 

Table 5-1 shows the results of the mass balances carried out for process scenario 1. 

Mass balances were carried out for solids, product, nucleic acids and total protein. As 

discussed in the previous section (section 5.6), the clarification performance for the 

first centrifugation step was 99.21% (solids remaining = 0.79%) and the clarification 

performance for the second centrifugation step was 96.65% (solids remaining = 

3.35%). 

The starting solids concentration (wet cell weight) was calculated to be 158.831 g/L, 

shown in Table 5-1, and the starting feed volume was assumed to be 1000 L. The 

mass of solids remaining in the supernatant after the first centrifugation step was 

therefore calculated as: 
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 ,sup sol, (1 )sol feed centM M clarification     Equation 5-2 

 

where Msol,sup is the mass of solids in the supernatant (kg), Msol,feed is the mass of 

solids in the feed stream (kg) and clarificationcent is the clarification performance for 

the first centrifugation step, described above as 99.21%.  

Therefore, the mass of solids remaining in the supernatant after the first 

centrifugation step was calculated to be 1.255 kg and the mass of solids in the 

sediment stream could be calculated as: 

 ,sed ,sol sol feed centM M clarification     Equation 5-3 

 

where Msol,sed is the mass of solids in the sediment stream after centrifugation (kg). 

Thus, the mass of solids in the sediment stream was determined to be 157.577 kg for 

the first centrifugation step. In the same way, the mass balance for the solids in the 

second centrifugation step was calculated to be 4.434 kg in the supernatant stream 

and 127.930 kg in the sediment stream (with a clarification efficiency of 96.65%). 

To calculate the volume of liquor in the sediment stream, the experimental 

dewatering level (DW) of 70% was used. The dewatering level can be calculated as: 

 
, ,

, , ,

sol sed sol sed

tot sed sol sed liq sed

V V
DW

V V V
 


    Equation 5-4 

  

where Vsol,sed is the volume of solids in the sediment stream (L), Vtot,sed is the total 

volume in the sediment stream (L) and Vliq,sed is the volume of liquor in the sediment 
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stream (L). This can then be rearranged to obtain the volume of liquor in the 

sediment stream (Vliq,sed): 

 
,

,

1
( )

sol sed
liq sed

sol

MDW
V

DW ρ


      Equation 5-5 

 

where ρsol is the density of solids debris, assumed to be 1.05 kg/L. 

The volume of liquor in the sediment stream was thus calculated to be 64.317 L and 

it was assumed that the volume of liquor was equivalent to the mass of liquor. 

Therefore, the mass of liquor was determined to be 64.317 kg in the sediment stream 

after the first centrifugation step. The mass of liquor in the supernatant stream could 

then be determined to be 784.415 kg. 

The mass of liquor was calculated in the second centrifugation step using the same 

method; 52.216 kg and 1589.368 kg were determined to be in the sediment and 

supernatant streams, respectively. 

The total mass in each of the streams could also be calculated as: 

 tot liq solM M M        Equation 5-6 

  

where Mtot is the total mass in the stream (kg), Mliq is the total mass of liquor in the 

stream (kg) and Msol is the total mass of solids in the stream (kg). 

In addition, the total volume in each of the streams could be calculated. For example, 

in the supernatant stream after the first centrifugation step: 
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,sup

,sup ,sup ,sup ,sup( )
sol

tot sol liq liq

sol

M
V V V V

ρ
      Equation 5-7 

  

where Vtot,sup is the total volume in the supernatant (L), Vsol,sup is the volume of solids 

in the supernatant (L) and Vliq,sup is the volume of liquor in the supernatant (L). 

Therefore, the total volume in the supernatant stream after the first centrifugation 

step was 785.610 L, and the total volume in the sediment stream was therefore 

determined to be 214.390 L, based on a starting feed of 1000 L. For the second 

centrifugation step, the total volumes in the sediment and supernatant streams were 

calculated in the same way as above, and it was determined that 174.055 L and 

1593.591 L were in the sediment and supernatant streams, respectively. 

As described previously, the cells were diluted in a ratio of 1 g cells: 7 mL extraction 

buffer for the periplasmic extraction step. The volume was thus adjusted accordingly 

for this step in the mass balance (i.e. 1553.256 L buffer was added to the 214.390 L 

centrifugation sediment stream and the sediment was re-suspended, while the mass 

of solids remained constant).  

After extraction, the mass of solids was calculated by: 

 , , ,(1 )sol aftext sol beforeext ext sol beforeext extM M ε M ε f      Equation 5-8 

  

where Msol,aftext is the mass of solids in the stream after extraction (kg), Msol,beforeext is 

the mass of solids in the stream before extraction (kg), εext is the extraction efficiency 

(set to 80%, see assumptions) and f is 0.8, a factor to account for the remaining 

weight of the lysed cells (i.e. 80% of the mass of the lysed cells (80%) was assumed 

to remain, so that 20% of the mass of the lysed cells was lost to extracellular space as 
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liquid). The mass of solids remaining after extraction was therefore calculated to be 

132.364 kg. 

To carry out the mass balance for the solids in the depth filtration unit operation, the 

mass in the permeate stream was calculated as: 

 , ,sol DFpermeate sol DFfeed DFM M S     Equation 5-9 

  

where Msol,DFpermeate is the mass of solids in the permeate stream (kg), Msol,DFfeed is the 

mass of solids in the feed stream (i.e. the supernatant stream from the second 

centrifugation step, kg) and SDF is the solids remaining for the depth filtration unit 

operation, calculated in section 5.6 as 74%. Therefore the mass of solids in the 

permeate stream was determined to be 3.281 kg. As described in the assumptions, it 

was assumed that all of the liquor from the supernatant in the second centrifugation 

step passed through to the permeate stream in the depth filtration step. Therefore, 

1589.368 L (or 1589.368 kg) of liquor was found in the permeate stream. 

Subsequently, the volume in the permeate stream could be calculated: 

 
,

, ,

sol DFpermeate

tot DFpermeate liq DFpermeate

sol

M
V V

ρ
    Equation 5-10 

  

where Vtot,DFpermeate is the total volume in the permeate stream (L) and Vliq,DFpermeate is 

the volume of liquor in the depth filtration permeate (L). Vtot,DFpermeate was 

determined to be 1592.493 L. 

For the product, total protein and nucleic acid mass balances, the depth filtration unit 

was assumed to have a 10% rejection coefficient, i.e. 90% of soluble material would 

pass through the filter. The product mass balance is shown in Table 5-1 for process 
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scenario 1, and both intracellular and extracellular balances are shown, to 

demonstrate how their profiles changed over each unit operation. The final product 

recovered in the first primary recovery process sequence was 0.542 kg, based on a 

starting fermentation feed of 1000 L. This product was recovered in a total volume of 

1592.493 L (at a concentration of 0.340 mg/mL), which can be attributed to the 

significant dilution (1: 7) required in the periplasmic extraction step. The product 

yield achieved for each step (where appropriate) is also shown in Table 5-1, and the 

overall yield for the primary recovery sequence was calculated to be 51.2%. 

Table 5-1 also shows the mass balances for nucleic acids and total protein, 

respectively. These calculations were carried out by using both experimentally 

determined values and the method described above to determine the total volume, 

which enabled the determination of the mass. It can be seen that 4.523 kg nucleic 

acids and 94.915 kg total protein remained in the broth at the end of the primary 

recovery sequence, in 1592.493 L final volume. 
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Table 5-1: Mass balance for solids, product (Fab'), nucleic acids and total 

protein in process scenario 1. Cells harvested at 32 h postinduction and held for 

1 h to mimic large scale holding time. Mass balance based on starting feed of 

1000 L. Centrifugation carried out at 48 L/h using a disc stack centrifuge and 

dewatered to a level of 70%. Cell paste (sediment stream) after the first 

centrifugation step was re-suspended in extraction buffer in a ratio of 1: 7. Fab' 

data measured by HPLC (Agilent 1200, Agilent Technologies Inc., California, 

USA) and shown as both intracellular and extracellular concentration, where 

appropriate. Cell concentration was measured by optical density, and converted 

to wet cell weight. Nucleic acid and total protein concentration measured using 

the Nanodrop (Nanodrop 1000 spectrophotometer, Thermo Scientific, 

Wilmington, DE, USA).  

 
Ferm. 

Feed 

Cent. 1 

Sup. 

Cent. 1 

Sed. 

Before 

Ext. 

After 

Ext. 

Cent. 2 

Sup. 

Cent. 2 

Sed. 

DF 

Perm. 

Csol (g/L) 158.831 1.597 735.000 89.145 74.882 2.783 735.000 2.060 

Msol (kg) 158.831 1.255 157.577 157.577 132.364 4.434 127.930 3.281 

Mliq (kg) 848.732 784.415 64.317 1617.573 1641.585 1589.368 52.216 1589.368 

Cprod,int 

(mg/mL) 
0.783 0.008 3.622 0.439 0.088 0.003 0.862 / 

Cprod,ext 

(mg/mL) 
0.275 0.307 0.156 0.019 0.370 0.378 0.302 0.340 

Mprod,int 

(kg) 
0.783 0.006 0.777 0.777 0.155 0.005 0.150 / 

Mprod,ext 

(kg) 
0.275 0.241 0.034 0.034 0.655 0.602 0.053 0.542 

CNucAc 

(mg/mL) 
6.024 7.087 2.129 0.258 2.937 3.154 0.949 2.840 

MNucAc 

(kg) 
6.024 5.567 0.456 0.456 5.191 5.026 0.165 4.523 

CTotProt 

(mg/mL) 
111.688 131.394 39.478 4.788 61.622 66.178 19.906 59.601 

MTotProt 

(kg) 
111.688 103.224 8.464 8.464 108.926 105.461 3.465 94.915 

MTot (kg) 1007.563 785.670 221.894 1775.150 1773.949 1593.802 180.147 1592.649 

VTot (L) 1000.000 785.610 214.390 1767.646 1767.646 1593.591 174.055 1592.493 

Product 

yield 

(%) 

/ / 76.6 100 80 92 / 90 
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5.7.3 Process sequence 2 

Table 5-2 shows the mass balances carried out for the second process scenario. As 

seen in Table 5-2, the starting concentration of solids in the fermentation feed was 

45.824 g/L, in a volume of 1000 L. 41.667 L of PEI (the volume of 25% w/v PEI 

solution required to achieve 1% final concentration in the broth) was then added to 

the broth to carry out the flocculation step. This volume diluted the total 

concentrations of protein, product and nucleic acids, however their respective total 

masses stayed the same. Furthermore, due to the precipitation and flocculation with 

PEI, some soluble nucleic acids, protein and Fab' product were assumed to 

precipitate into solids, which caused the mass and concentration of solids to almost 

double after PEI addition (to 86.644 kg and 83.178 g/L, respectively). Therefore, the 

masses and concentrations of product, nucleic acids and total protein are shown in 

Table 5-2, broken down into the total, soluble and solids fractions. To determine this, 

10% product was assumed to be lost in the solids fraction after PEI addition. In 

addition, taking estimates from experimental data (Figure 5-4), 30% nucleic acids 

and 15% total protein were assumed to precipitate into the solids fraction after PEI 

addition. 

The mass balance was then carried out for the centrifugation step, in the same 

manner as described in section 5.7.2. Here, the clarification performance was 99.8%, 

and the mass of solids in the sediment stream was determined to be 86.476 kg, and 

0.168 kg in the supernatant stream. For a 70% dewatering level, the total volume in 

the supernatant after the centrifugation step was 979.443 L. The depth filtration step 

was carried out as described in section 5.7.2; and the solids remaining was calculated 

in section 5.6 to be 41.7%. Therefore, the remaining solids in the permeate stream 

were determined to be 0.07 kg. 

The mass balances for the Fab' product, nucleic acids and total protein were carried 

out using the same method as described above. As seen in Table 5-2, the final mass 

of soluble Fab' in the depth filtration permeate stream was determined to be 1.372 

kg. In addition, the use of PEI in this primary recovery sequence enabled an overall 

reduction in nucleic acid content by 39.3% (to 8.013 kg) and a 26.3% reduction in 
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total protein (to 180.191 kg), in comparison to the starting masses (as seen in Table 

5-2). The final volume was determined to be 944.045 L. The product yield achieved 

for each step (where appropriate) is also shown in Table 5-2, and the overall yield for 

the second primary recovery sequence was calculated to be 74.2%.  
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Table 5-2: Mass balance for solids, product (Fab'), nucleic acids and total 

protein in process scenario 2. Cells harvested at 57 h postinduction and fully 

autolysed. Mass balance based on starting feed of 1000 L. Flocculation carried 

out using 25 % w/v PEI solution and added to reach a final broth concentration 

of 1%. Centrifugation carried out at 48 L/h using a disc stack centrifuge and 

dewatered to a level of 70%. Fab' data measured by HPLC (Agilent 1200, 

Agilent Technologies Inc., California, USA). Cell concentration was measured 

by optical density, and converted to wet cell weight. Nucleic acid and total 

protein concentration measured using the Nanodrop (Nanodrop 1000 

spectrophotometer, Thermo Scientific, Wilmington, DE, USA).  

 Ferm. Feed After PEI Cent. 1 Sup. Cent. 1 Sed. DF Perm. 

Csol (g/L) 45.824 83.178 0.172 1389.745 0.074 

Msol (kg) 45.824 86.644 0.168 86.476 0.070 

Mliq (kg) 956.358 959.149 923.852 35.296 923.852 

Cprod,tot (mg/mL) 1.851 1.777 1.556 5.242 1.453 

Cprod,soluble (mg/mL) 1.851 1.599 1.556 2.274 1.453 

Cprod,solids (mg/mL) 0.000 0.178 0.0004 2.968 0.0002 

Mprod,tot (kg) 1.851 1.851 1.524 0.326 1.372 

Mprod,soluble (kg) 1.851 1.665 1.524 0.141 1.372 

Mprod,solids (kg) 0.000 0.185 0.0004 0.185 0.0002 

CNucAc,tot (mg/mL) 13.199 12.671 9.094 68.978 8.488 

CNucAc,soluble (mg/mL) 13.199 8.870 9.086 5.464 8.484 

CNucAc,solids (mg/mL) 0.000 3.801 0.008 63.514 0.003 

MNucAc,tot (kg) 13.199 13.199 8.907 4.292 8.013 

MNucAc,soluble (kg) 13.199 9.240 8.900 0.340 8.010 

MNucAc,solids (kg) 0.000 3.960 0.008 3.952 0.003 

CTotProt,tot (mg/mL) 244.503 234.723 204.454 711.173 190.872 

CTotProt,soluble (mg/mL) 244.503 199.514 204.381 122.910 190.840 

CTotProt,solids (mg/mL) 0.000 35.208 0.073 588.263 0.032 

MTotProt,tot (kg) 244.503 244.503 200.251 44.252 180.191 

MTotProt,soluble (kg) 244.503 207.827 200.179 7.648 180.161 

MTotProt,solids (kg) 0.000 36.675 0.071 36.604 0.030 

MTot (kg) 1002.182 1045.793 924.021 121.772 923.923 

VTot (L) 1000.000 1041.667 979.443 62.224 944.045 

Product yield (%) / 90 91.5 / 90 
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5.7.4 Process sequence 3 

Table 5-3 shows the mass balances carried out for the third process scenario with 

flocculation and crossflow filtration. As seen in Table 5-3 the starting concentration 

of solids in the fermentation feed was 45.824 g/L, in a volume of 1000 L. Carried out 

in the same way as for process scenario 2, described in section 5.7.3, 41.667 L of PEI 

(the volume of 25% w/v PEI solution required to achieve 1% final concentration in 

the broth) was then added to the broth for the flocculation step, which caused an 

increase in the total solids concentration to 83.178 g/L.  

To carry out the mass balance for the subsequent CFF step (in concentration mode), 

the total volumes in the permeate and retentate were first calculated. To calculate the 

volume in the permeate stream for a 1000 L starting fermentation feed volume, the 

concentration factor (CF) must first be calculated: 

 
,expCFFpermeate erimental CFFchamber

CFFchamber

V V
CF

V


   Equation 5-11 

  

where VCFFpermeate,experimental is the experimentally determined permeate volume (16.7 

mL) and VCFFchamber is the working volume of the chamber in the USD CFF device 

(5.3 mL). 

The concentration factor was therefore determined to be 4.15. Following this, the 

volume in the retentate could be calculated as: 

 
,Feed CFF

CFFretentate

V
V

CF
      Equation 5-12 
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where VCFFretentate is the volume in the retentate (L) and VFeed,CFF is the volume in the 

feed of the CFF device (for the mass balance, this was 1041.667 L after the 

flocculation step). 

The volume in the retentate was therefore 250.947 L and the volume in the permeate 

could then be determined to be 790.720 L. 

The clarification performance, described in section 5.6 as 0.112% solids remaining in 

the CFF permeate stream, was used to calculate the mass of solids in the retentate 

and permeate streams after CFF. These were determined to be 0.0973 kg in the 

permeate stream and 86.644 kg in the retentate stream.  

For the product mass balance, displayed in Table 5-3, it can be seen that after the 

CFF step (carried out in concentration mode), 1.172 mg/mL soluble product was 

found in the permeate stream, based on a total feed product concentration of 1.777 

mg/mL (1.599 mg/mL soluble product). This amounted to a total product mass of 

0.927 kg; a 1.71-fold increase in product recovered in comparison to that seen in 

process scenario 1. However, ~44% of the soluble product remained inside the CFF 

chamber (0.739 kg). In addition, for process scenario 2, the total product recovered 

was calculated to be 1.372 kg.  

For large scale CFF operation, diafiltration would be carried out to recover the 

remaining product inside the chamber, therefore, the diavolume required to achieve 

an equal product recovery to that of scenario 2 was calculated. First, the overall 

desired yield was set to 1.372 kg (to match process scenario 2). This meant that an 

additional 0.445 kg Fab' product was required to be recovered in the diafiltration 

step. Next, the rejection coefficient (σprod) of the product was calculated (from the 

CFF concentration step) using the equation: 

 Pr , 1 Pr ,
prodσ

od CFFretentate od CFFfeedC C CF    Equation 5-13 
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Which can be rearranged to determine the rejection coefficient, σprod: 

 

Pr , 1

Pr ,

ln( )

ln( )

od CFFretentate

od feed

prod

C

C
σ

CF
     Equation 5-14 

 

where σprod is the rejection coefficient for the Fab' product, CProd,CFFretentate1 is the 

concentration of the product in the retentate stream after the CFF step carried out in 

concentration mode (3.680 mg/mL), CProd,CFFfeed is the concentration of product in 

the starting feed before CFF (1.777 mg/mL) and CF is the concentration factor (4.15, 

as described above). Therefore, the rejection coefficient for the Fab' product was 

determined to be 0.512. 

Following this, the number of diavolumes, D (i.e. the additional buffer volume in the 

diafiltration step), required to achieve a total yield of 1.372 kg Fab', was calculated 

using the equation: 

 
- (1- )

Pr , 2 Pr , 1
prodD σ

od CFFretentate od CFFretentateC C e   Equation 5-15 

  

Which can be rearranged to determine the number of diavolumes required, D: 

 

Pr , 2

Pr , 1

ln( )

( -1)

od CFFretentate

od CFFretentate

prod

C

C
D

σ
      Equation 5-16 
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where D is the number of diavolumes, CProd,CFFretentate2 is the concentration of product 

in the retentate after the diafiltration step (1.906 mg/mL) and CProd,CFFretentate1 is the 

concentration of product in the retentate after the CFF concentration step (3.680 

mg/mL), as described above. 

Consequently, the number of diavolumes required, D, was determined to be 1.347, 

which was equivalent to a total buffer volume of 337.658 L. This meant that the total 

volume at the end of the third primary recovery sequence was 1128.820 L, with a 

total product of 1.372 kg. For both scenario 2 and 3, this represents a 2.53-fold 

improvement in total product recovered, in comparison to the existing Fab' process 

(process scenario 1). A further increase in product recovery would be possible using 

diafiltration after CFF ran in concentration mode, however this would increasingly 

dilute the recovered product in the permeate stream. The product yield achieved for 

each step (where appropriate) is also shown in Table 5-3 and the overall yield for the 

third primary recovery sequence was subsequently calculated to be 74.2% 

(equivalent to process scenario 2). Additionally, the total product yield for the CFF 

steps (concentration with diafiltration) was calculated to be 82.4%. 

As seen in Table 5-3, nucleic acids and total protein mass balances were carried out 

in the same way as described above, using experimental values to establish the 

concentration of protein and nucleic acids in the permeate and retentate streams, and 

to determine the rejection coefficients in the CFF step ran in concentration mode. 

The rejection coefficient for nucleic acids, σNucAc, was determined to be 0.595 and the 

rejection coefficient for total protein, σTotProt, was determined to be 0.589. The 

starting total mass of nucleic acids was 13.199 kg, and after PEI addition (30% of the 

total nucleic acids were assumed to precipitate to the solids fraction, as described in 

section 5.7.3) and CFF in concentration mode, 5.963 kg total nucleic acids was found 

in the permeate stream. For the total protein mass balance, the initial mass was 

244.503 kg and 109.390 kg total protein was found in the permeate stream after PEI 

addition (15% of the total protein was assumed to precipitate to the solids fraction, as 

described in section 5.7.3) and the CFF step in concentration mode. Therefore, for 

flocculation with PEI followed by CFF (scenario 3), a 55% reduction in both total 

protein and nucleic acids was achieved. 
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Table 5-3: Mass balance for solids, product (Fab'), nucleic acids and total 

protein in process scenario 3. Cells harvested at 57 h postinduction and fully 

autolysed. Mass balance based on starting feed of 1000 L. Flocculation carried 

out using 25 % w/v PEI solution and added to reach a final broth concentration 

of 1%. Cell concentration was measured by optical density, and converted to 

wet cell weight. Total protein and nucleic acid concentration measured using the 

Nanodrop (Nanodrop 1000 spectrophotometer, Thermo Scientific, Wilmington, 

DE, USA). Fab' data measured by HPLC (Agilent 1200, Agilent Technologies 

Inc., California, USA). CFF carried out at a flux rate of 45.5 L/m2/h in 

concentration mode, and then a mass balance for a diafiltration step was 

carried out to determine the buffer volume required to reach 1.372 kg total 

product recovered (equal to process scenario 2). 

 
Ferm. 

Feed 

After 

PEI 

CFF 

Perm. 

CFF 

Retent. 

Diafil. 

Perm. 

Diafil. 

Retent. 

Total 

Prod. Rec. 

Csol (g/L) 45.824 83.178 0.123 344.881 0.000287 344.880 0.0000863 

Msol (kg) 45.824 86.644 0.0973 86.547 0.0000972 86.547 0.0974 

Mliq (kg) 956.358 959.149 790.627 168.521 338.100 168.522 1128.727 

Cprod,tot 

(mg/mL) 
1.851 1.777 1.173 3.680 1.317 1.906 1.216 

Cprod,soluble 

(mg/mL) 
1.851 1.599 1.172 2.943 1.316 1.170 1.215 

Cprod,solids 

(mg/mL) 
0.000 0.178 0.000263 0.737 0.00061 0.736 0.000368 

Mprod,tot (kg) 1.851 1.851 0.927 0.923 0.445 0.478 1.372 

Mprod,soluble 

(kg) 
1.851 1.665 0.927 0.739 0.445 0.294 1.372 

Mprod,solids (kg) 0.000 0.185 0.000208 0.185 0.000208 0.185 0.000415 

CNucAc,tot 

(mg/mL) 
13.199 12.671 7.541 28.837 / / / 

CNucAc,soluble 

(mg/mL) 
13.199 8.870 7.535 13.075 / / / 

CNucAc,solids 

(mg/mL) 
0.000 3.801 0.00562 15.762 / / / 

MNucAc,tot (kg) 13.199 13.199 5.963 7.237 / / / 

MNucAc,soluble 

(kg) 
13.199 9.240 5.958 3.281 / / / 

MNucAc,solids 

(kg) 
0.000 3.960 0.00445 3.955 / / / 
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CTotProt,tot 

(mg/mL) 
244.503 234.723 138.342 538.412 / / / 

CTotProt,soluble 

(mg/mL) 
244.503 199.514 138.290 392.428 / / / 

CTotProt,solids 

(mg/mL) 
0.000 35.208 0.052 145.984 / / / 

MTotProt,tot (kg) 244.503 244.503 109.390 135.113 / / / 

MTotProt,soluble 

(kg) 
244.503 207.827 109.349 98.479 / / / 

MTotProt,solids 

(kg) 
0.000 36.675 0.0412 36.634 / / / 

MTot (kg) 1002.182 1045.793 790.724 255.068 338.100 255.068 1128.824 

VTot (L) 1000.000 1041.667 790.720 250.947 338.100 250.947 1128.820 

Product yield 

(%) 
/ 90 55.7 / 60.3 / 82.4 
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5.7.5 Capital costs and processing time 

After carrying out the mass balances, the total processing time and capital costs for 

each of the primary recovery sequences were determined. First, equipment was sized 

appropriately and capital costs were obtained using Biosolve (Biopharm Services, 

Chesham, UK); shown in Table 5-4 below. 

 

Table 5-4: Equipment sizes and capital costs (taken from Biosolve (Biopharm 

Services, Chesham, UK)) for each of the units used in the three process 

sequences carried out in this study. Costing data obtained from January 2016 

and in US dollars ($). Sizing based on the most appropriate fit for the volumes 

required in this study, and on available equipment in the Biosolve database. 

Equipment Size Capital cost ($) 

Bioreactor 1000 L 486722 

Disc Stack Centrifuge Max. 600 L/h 648614 

Vessel (flocculation) 1000 L 62353 

Vessel (extraction) 3000 L 78578 

CFF 5 m2 167400 

Depth Filtration 5 m2 5647 

 

 

After obtaining appropriate equipment sizes, the processing times for each of the unit 

operations could be determined. These are shown for each process scenario in Table 

5-5, Table 5-6 and Table 5-7 below. It was assumed that 2 h was required for product 

transfer between each unit operation at large scale.  

For the depth filtration step in process scenario 1, the flux rate could be determined 

from the data shown in Figure 5-5 (a). This was determined by obtaining the 

permeate volume per unit of time (within the linear region in Figure 5-5 (a)). The 

permeate flow rate was therefore determined to be 0.1152 L/h and dividing this value 
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by the USD depth filter area (2.8 x 10-5 m2), the flux rate was calculated to be 4114 

L/m2/h. For a 5 m2 filter area, the time required to filter 1593.591 of broth was 

0.0775 h (rounded to 1 h in Table 5-5 below). 

For the depth filtration step in process scenario 2, the flux rate was determined to be 

514.3 L/m2/h (with a permeate flow rate of 0.0144 L/h), calculated in the same way 

as described above, from the data shown in Figure 5-7 (a). For a 5 m2 filter area, the 

time required to filter 979.443 L broth was 0.381 h (rounded to 1 h in Table 5-6 

below). 

To calculate the time required for the CFF steps in process scenario 3, both 

concentration and diafiltration time were calculated by: 

 
,

( )

Feed CFF
CFF

CFF Membrane

V
t

Flux A



    Equation 5-17 

  

where tCFF is the time required for each of the CFF steps (in concentration or 

diafiltration mode), VFeed,CFF is the volume of feed, FluxCFF is the flux rate used for 

CFF operation (45.5 L/m2/h) and AMembrane is the area of the membrane used (5 m2).  
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Table 5-5: Processing time (h) required for each unit operation in process 

scenario 1. Centrifugation carried out at 48 L/h, using a disc stack centrifuge. 

Periplasmic extraction carried out for 16 h, according to standard protocol at 

large scale. Depth filtration determined based on a filter area of 5 m2. 2 h 

product transfer time assumed between each step for large scale operation (not 

included in calculations below). 

 
Centrifugation 

1 

Periplasmic 

Extraction 

Centrifugation 

2 

Depth 

Filtration 

Time 

(h) 
20.833 16.000 36.826 1.000 

 

 

Table 5-6: Processing time (h) required for each unit operation in process 

scenario 2. Flocculation at large scale assumed to take 2 h total for 1000 L 

broth. Centrifugation carried out at 48 L/h, using a disc stack centrifuge. Depth 

filtration determined based on a filter area of 5 m2. 2 h product transfer time 

assumed between each step for large scale operation (not included in 

calculations below). 

 Flocculation Centrifugation Depth Filtration 

Time (h) 2.000 21.701 1.000 

 

 

Table 5-7: Processing time (h) required for each unit operation in process 

scenario 3. Flocculation at large scale assumed to take 2 h total for 1000 L 

broth. CFF steps calculated based on flux rates in both concentration mode and 

diafiltration mode. 2 h product transfer time assumed between each step for 

large scale operation (not included in calculations below). 

 Flocculation CFF (Concentration) CFF (Diafiltration) 

Time (h) 2.000 4.579 1.609 
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5.7.6 Summarising the performance of the three process scenarios 

Table 5-8 shows a summary of the three process scenarios. It can be seen that both 

scenario 2 and 3 achieved a 2.53-fold improvement in total product recovered, in 

comparison to the existing Fab' recovery process (scenario 1). By running the 

fermentation to maximum productivity for process scenarios 2 and 3, i.e. full 

autolysis, the initial total product concentration was significantly greater than for 

process scenario 1 (where the aim was to avoid product loss and maximise the 

intracellular product concentration). 

 However due to the diafiltration step with CFF (337 L additional buffer volume), the 

concentration of Fab' in scenario 3 (1.216 mg/mL) was lower in comparison to 

scenario 2 (1.453 mg/mL). A further increase in product recovery would be possible 

using diafiltration after CFF, however this would increasingly dilute the 

concentration of the recovered product in the permeate stream. 

The capital costs for the downstream processing sequences as well as total 

downstream processing (DSP) time were estimated using Biosolve, based on 1,000 L 

starting fermentation feed. The use of CFF with flocculation demonstrated a 

significant reduction in processing time (14 h) and capital costs ($230,000) in 

comparison to both scenario 1 and 2. The intensified process designs in scenario 2 

and 3 were able to achieve higher product yields largely due to the reduction in the 

number of unit operations in the sequences. At a scale of 1,000 L feed material, the 

third process sequence is favourable, however it should be noted that as the scale 

increases to full industrial production, centrifugation may be a more feasible unit 

operation than crossflow filtration, as it can be ran continuously at high flow rates 

and the capital costs become more economical at a larger scale in comparison to 

CFF.  
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Table 5-8: Summary of the three DSP process scenarios. Product concentration 

(Fab', mg/mL) measured in duplicate. Total product recovered and overall 

product yield at end of DSP were calculated by mass balance, based on 1,000 L 

of feed fermentation broth. Total solids remaining and [Impurity]/[Fab'] were 

calculated from experimental data (runs carried out in duplicate). Capital costs 

and downstream processing (DSP) time were calculated using both Biosolve 

(Biopharm Services, Chesham, UK) and mass balances, based on processing 

1,000 L of feed fermentation broth. The starting points for scenario 2 and 3 

mass balances were normalised, so that experimental variation between 

fermentation runs was removed. 

 Scenario 1 Scenario 2 Scenario 3 

Product concentration 

(mg/mL) 
0.340 1.453 1.216 

Product recovered (kg) 0.542 1.372 1.372 

Overall product yield (%) 51.2 74.2 74.2 

Total solids remaining (%) 0.307 0.0810 0.112 

[Impurity]/[Fab'] 469 155 129 

Capital costs ($) 1,400,000 700,000 230,000 

DSP time (h) 82.659 30.701 14.188 

Final volume (L) 1,592.493 944.045 1,128.820 
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5.8 Conclusions 

This study demonstrates an approach to assess alternative primary recovery options 

using ultra scale-down technology to gain insight into large scale processing. Three 

primary recovery sequences were evaluated and compared, with a focus on a novel 

process design using CFF with flocculation directly after fermentation ran to 

maximum productivity i.e. full cell autolysis. 

The use of flocculation with CFF in concentration mode achieved a 1.71-fold 

improvement in total product recovered, which was increased to 2.53-fold by 

carrying out diafiltration (using a diavolume of 1.347x the CFF chamber volume). In 

addition, a 3-fold improvement in solids removal and a 3.6-fold improvement in 

product purity were achieved, in comparison to the existing Fab' recovery process 

(process scenario 1). Acceptable operation (in terms of permeate flux) was attained 

for CFF at USD scale, which was equivalent to mid-range operation at large scale. 

This process design is deemed to be more robust, as the need to avoid premature 

lysis in fermentation is removed and the process sequence is simplified. Further, it 

was shown that this approach to process design i.e. by taking a holistic view of the 

process to understand the impact of upstream processing conditions on downstream 

operation efficiency, demonstrated a significant reduction in both DSP time and 

capital costs. 

This study provides a basis for rapidly assessing alternative process designs, using 

USD technology to identify suitable primary recovery process designs before taking 

through to large scale. In doing so, this study also demonstrated an application of 

fermentation viscosity monitoring in process development, and its utility in rapidly 

assessing challenges such as detecting the level of lysis in the cell broth, inferring the 

level of contaminants and understanding the impact of high viscosity on the process, 

such as pumping. 

It would also be interesting to investigate additional process variables such as effects 

on product quality due to lysis or flocculation, although a previous study showed no 

effect on the aggregation of a domain antibody (dAb) using PEI (Chatel et al., 2014). 
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Another factor to consider is the need to demonstrate removal of the PEI reagent 

after downstream processing. The process sequences studied here may be used to 

assess their application to other cell lines and products such as yeast and mammalian 

cells. 



 

Chapter 6 Considerations for the commercialisation of viscosity  

  monitoring  

The central aim of this thesis is to develop a method to rapidly detect cell lysis and 

product loss in fermentation using viscosity monitoring, in order to enable decision 

making about harvest time, and to demonstrate the application and value of viscosity 

monitoring in process development and optimisation. 

Process monitoring technologies in fermentation typically focus on monitoring 

biomass growth or cell viability, and do so by monitoring chemical or biological 

variables. However, the work in this thesis has demonstrated that physical properties 

can be monitored to provide useful information about the cell broth. In this research, 

a deeper understanding of changes in the physical properties of cell broths during 

fermentation has been obtained, as well as insight into the impact of lysis on various 

primary recovery unit operations. The novel use of viscosity monitoring in 

biopharmaceutical fermentation to rapidly detect lysis and product loss has been 

shown to be a promising analytical tool for both process development and large scale 

manufacturing, to enable rapid decision-making about cell harvesting in order to 

minimise product loss. In addition, the application of viscosity monitoring has been 

demonstrated in process development, in combination with high-throughput, ultra 

scale-down technology to rapidly evaluate novel primary recovery process designs. 

Therefore, this work additionally demonstrates the value of developing an online, in-

situ probe to monitor the viscosity and other rheological parameters in 

biopharmaceutical fermentation.  

Procellia Ltd., the industrial sponsor of this thesis, are working to commercialise an 

online, in-situ viscosity sensor for industrial biopharmaceutical fermentation, that 

will ultimately be used as part of a platform technology for the predictive modelling 

of novel cell quality indicators. The product will be a hardware (probe)/software 

(modelling) combination, that is able to monitor both the volume fraction (biomass 

concentration) and the viscosity of the cell broth.  

The current in-line probe uses ultrasound spectroscopy to measure both the 

amplitude attenuation and the change in ultrasound velocity of the fermentation 
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broth. By employing a set of equations called the ECAH equations (Epstein, Carhart, 

Allegra and Hawley), the amplitude attenuation can be converted into to the volume 

fraction (i.e. to determine the biomass concentration of the cell broth). In addition to 

monitoring the biomass concentration, the Einstein equations can be implemented, in 

order to determine the viscosity of the cell suspension, based on the cell 

concentration. 

The work carried out in this thesis has demonstrated that significant value can be 

derived from monitoring the physical properties of an industrially relevant, high cell 

density E. coli fermentation. Therefore, the first step towards the commercialisation 

of this technology should be to take forward the use of viscosity monitoring to 

demonstrate its application in large scale fermentation, for a range of products and 

host cells. This will further demonstrate the proof of concept and the value of 

viscosity monitoring for a wide range of biopharmaceutical fermentation systems, 

and will also provide a reference point for the subsequent validation with the in-situ 

viscosity sensor. 

In order to develop the product to reach this point, there are several issues that need 

to be addressed. First, after integrating the ECAH equations to successfully measure 

the volume fraction from the amplitude attenuation, the models need to be able to 

accurately determine the viscosity of the cell broth, particularly at high cell 

concentrations. The volume fraction can be converted to viscosity via the Einstein 

equations, which become increasingly complex as the volume fraction increases. For 

high cell density fermentation systems, this may be challenging as the model 

complexity may require significant computational power, and the accuracy of the 

models needs to be verified at high volume fractions. 

In addition, it is known that the viscosity in fermentation is not only affected by the 

volume fraction, but also by the solute concentration in the broth. The work in this 

thesis has demonstrated that the intracellular content released during cell lysis has a 

significant impact on the viscosity in late stage fermentation. The amplitude attention 

can be used to determine the volume fraction, however the sound velocity may be 

used to monitor chemical changes in the media. By developing the capability to 
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detect chemical changes in the media (changes in ultrasound velocity), this can be 

integrated with the models to detect volume fraction (amplitude attenuation), to 

create a new model to accurately monitor the viscosity of the cell broth throughout 

the entire fermentation, based on both volume fraction and chemical content in the 

cell broth. This will bring the probe to the point of accurately monitoring the 

viscosity of fermentation broths. 

A further challenge to address that is generic to all in-situ fermentation probes 

includes minimising the effect of aeration (i.e. gas bubbles) and agitation on signal 

interference. Some early work has been undertaken by the company to mitigate this, 

however further development must be carried out in order to ensure the success of 

the technology. This could be done with post-measurement modifications to reduce 

the noise. It should be noted that the in-situ probe has also been designed to 

withstand high temperature sterilisation procedures.  

After developing the product to the point of being able to accurately monitor 

viscosity in fermentation, the work carried out in this thesis can be integrated into the 

software part of Procellia's product. The model created in Chapter 4 can be integrated 

in order to detect and quantify lysis (based on DNA release to the cell broth) and 

product loss in real-time by online viscosity monitoring. The ability to achieve this 

will be a major milestone for the company, and will demonstrate the significant 

commercial value of the technology. Further relationships can be characterised in a 

similar way, for example by developing models for the relationship between 

viscosity and total protein release or product leakage in postinduction fermentation. 

This will provide operators with extremely useful information by directly quantifying 

cell lysis as well as indicating the level of contaminants in the broth (i.e. to specify 

the downstream conditions required). This information is useful because it will 

enable real-time connectivity and integration between the upstream and downstream 

unit operations. 

In addition to monitoring the viscosity, it may be possible to monitor other physical 

parameters using ultrasound spectroscopy, such as the storage modulus of the cell 

broth. This would be particularly useful in fermentation systems that have significant 
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structure, i.e. strong viscoelastic behaviour (for example, mycelial fermentations). 

The work carried out in this thesis (see Chapter 4) has demonstrated that monitoring 

the storage modulus can provide unique information regarding changes in the 

strength of the cells during fermentation. Therefore, an opportunity exists to develop 

the capability to monitor the storage modulus as a key cell quality indicator (i.e. to 

monitor cell strength). In order to do this, the storage modulus will need to be 

extensively characterised in fermentation and subsequently validated. As a result, the 

ultimate aim of Procellia's software is to be able to model and interpret valuable 

information such as volume fraction (biomass concentration), viscosity (cell lysis) 

and storage modulus (cell strength) to create a novel predictive modelling system to 

indicate cell health in fermentation. 

With regards to the hardware element of Procellia's technology (i.e. the physical 

probe), several aspects need to be considered for its commercialisation. First, the 

probe has been designed to be able to measure a range of ultrasound frequencies (1-

10 MHz), however it currently operates at a fixed frequency of 5 MHz. The ECAH 

equations may also be able to provide information on particle size as an output from 

the model. By adjusting the probe hardware to measure the ultrasound properties of 

the cell broth across a range of frequencies, it may be possible to determine the 

particle size distribution and therefore provide useful information on the cell broth, 

for example, the level of cell debris in the broth. This would be extremely useful for 

process operation as cell debris can impact downstream unit operations such as 

centrifugation and microfiltration. 

Moreover, when considering the commercialisation of Procellia's technology in the 

bioprocessing industry, it is important to assess the evolution and impact of single-

use technology. Over the last 10 years, single-use technology has become 

increasingly prevalent in the bioprocessing industry, and this has led to a change in 

the way that process monitoring technologies are applied. To avoid contamination 

issues, DOT, pH and temperature probes are now routinely used as ex-situ 

technologies, i.e. to monitor the respective variables from outside of the bioreactor 

wall. This is an important consideration if Procellia want to move into the single-use 

market; not only must a new probe prototype be developed to monitor the cell broth 
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ex-situ, but it will also be necessary to work with single-use manufacturers to 

integrate Procellia's technology with the existing set up. 

The ultimate aim of PAT is to be able to control all critical parameters in the process. 

The further development of Procellia's technology will enable the monitoring and 

eventual control of a range of physical parameters in fermentation to provide a 

wealth of information regarding cell health. The work in this thesis has demonstrated 

the commercial value of monitoring the physical properties of cell broths and an 

exciting opportunity exists to commercialise Procellia's technology. The work 

carried out in this thesis has therefore laid the foundation for the further development 

and commercialisation of an in-situ, online viscosity sensor. 



 

Chapter 7 Conclusions & future work 

Cell lysis is a considerable challenge in biopharmaceutical fermentation, and is 

particularly important for host cells that store the product in the intracellular space 

(for example, in the periplasm), as product loss occurs at the point of lysis. Apart 

from product loss during cell lysis, impurities such as nucleic acids and host cell 

protein are released simultaneously to the cell broth, which leads to large variations 

in the material properties of the broth. This significantly impacts both the operational 

performance of many downstream unit operations as well as the robustness of the 

process, as many downstream processes are sensitive to the process material 

properties. 

Cell lysis in fermentation has been observed for decades, however our ability to 

monitor and detect lysis is limited. The ability to detect lysis has significance both 

academically and commercially, however it is challenging as the complex nature of 

the cell broth means that it is difficult to observe lysis directly, and current analytical 

technologies are unable to rapidly and accurately monitor the shift between optimum 

intracellular product concentration and leakage to the cell broth. Therefore, there 

exists a need to improve our understanding of the phenomenon of cell lysis, and by 

improving understanding, it is possible to develop solutions to monitor and 

ultimately control lysis. As a result, this thesis has focused on characterising cell 

lysis in E. coli fermentation to improve process understanding, and subsequently 

developing a novel methodology to monitor and detect cell lysis in fermentation. 

To investigate cell lysis and develop a deeper understanding of the associated 

problems, fermentations have been carried out using an industrially relevant, high 

cell density E. coli strain producing antibody fragments (antigen-binding, Fab'), and 

a range of analytical techniques have been used to characterise the progression of 

cell lysis in late stage fermentation. Following this, the viscosity profile of the 

fermentation broth has been characterised, which showed an increase in viscosity 

during exponential phase in relation to the cell density increase, a relatively flat 

profile in stationary phase, followed by a rapid increase during late stage 

fermentation which correlated well with product loss, DNA release and loss of cell 
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viability. After establishing a strong correlation between cell lysis and postinduction 

viscosity, a methodology has been developed to monitor the viscosity of the cell 

broth at-line, in order to rapidly detect cell lysis and product loss in postinduction 

fermentation. The at-line viscosity monitoring method was then evaluated against 

several common monitoring technologies, and results confirmed that viscosity 

monitoring can accurately identify lysis and product leakage at an earlier time point 

than optical density measurements and online capacitance measurements, and can 

obtain results in under 2 minutes; faster than flow cytometry, DNA assays, 

cytotoxicity assays and HPLC measurements. The ability to accurately and rapidly 

detect cell lysis is critical to enable rapid decision making for industrial process 

operation. This work has therefore demonstrated the utility of rapidly monitoring the 

physical properties of fermentation broths for recombinant protein production, and 

that viscosity monitoring has the potential to be a valuable tool for process 

development to determine the optimal harvest time and minimise product loss. 

After determining the viscosity profile during fermentation, establishing a correlation 

between postinduction viscosity and then developing a method to rapidly detect cell 

lysis, it was desired to further investigate the physical properties of fermentation 

broths to understand whether rheological testing could provide information relating 

to the causes of the postinduction viscosity increase during fermentation. Therefore, 

components of the cell broth have been isolated (cell broth, cells and supernatant) 

and it was observed that the increase in cell broth viscosity in postinduction 

fermentation is a result of the large increase in the supernatant viscosity, which can 

be attributed to the release of intracellular content to the broth during lysis. In 

addition, oscillatory rheological testing has been carried out on cell paste to 

understand changes in the strength and stability of cells during fermentation, which 

was quantified and monitored using the storage modulus. A decrease in the storage 

modulus and an increase in the LVER were observed, suggesting that although cell 

strength decreases over the fermentation, interactions exist between cells and leaked 

intracellular content such as DNA, which increases the "stickiness" of the cell paste. 

Therefore, monitoring the viscoelastic properties of cells has also demonstrated 

potential as a tool to detect changes in cell strength during fermentation. Cell 

strength is an important property that significantly impacts the downstream process, 
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including the performance in cell harvesting, cell disruption and cell debris removal 

such as centrifugation or microfiltration unit operations.  

Cell lysis can be defined as the release of DNA from the cell. The release of DNA to 

the cell broth during cell lysis in late stage fermentation causes significant problems 

in the downstream process. Therefore, having demonstrated a linear correlation 

between DNA and viscosity, a model has been developed to quantify the extent of 

cell lysis in postinduction fermentation, using rapid at-line viscosity monitoring. This 

model enables results in under 2 minutes, to provide information regarding the level 

of DNA present in the cell broth (i.e. the level of contaminants), and provides useful 

information to fermenter operators to determine the optimal harvest time and to 

assess the impact of the contaminants on downstream unit operations, for example to 

determine the conditions to be used in centrifugation. Product leakage and DNA 

release have been shown to occur simultaneously in fermentation; therefore the 

model also directly indicates product loss. This model has the potential to be used in 

a wide range of industrial fermentation systems, simply by characterising the 

relationship between viscosity and DNA leakage, and then implementing rapid, at-

line viscosity monitoring. 

Following the studies to understand and characterise cell lysis in fermentation using 

rheology, a process design case study has been carried out, where two alternative 

primary recovery process sequences have been designed and evaluated to avoid the 

problems associated with cell lysis in fermentation and simultaneously intensify the 

primary recovery process. The focus of this study was on taking an integrated 

approach to process design by understanding and assessing the impact of upstream 

processing conditions (i.e. harvest time) on primary recovery unit operations. 

Fermentation was carried out and ran to full autolysis (i.e. maximum productivity) in 

order to remove the challenges associated with avoiding product loss and lysis in 

fermentation and to therefore minimise process variation. Running the fermentation 

to full autolysis enables a higher product titre to be achieved, however it also creates 

a high level of contaminants in the cell broth. To overcome this, PEI was proposed as 

a primary recovery step directly after fermentation to precipitate and flocculate the 

contaminants, followed by a crossflow filtration step. The novel primary recovery 
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sequence achieved a significant improvement in total product recovered, solids 

removal and product purity in comparison to the existing primary recovery process, 

whilst reducing capital costs, processing time and intensifying the process. 

This study has provided a basis for rapidly assessing alternative design options, by 

using ultra scale-down technology to identify suitable primary recovery process 

designs before taking through to large scale. In doing so, this study has also 

demonstrated an application of fermentation viscosity monitoring in process 

development, and its utility in rapidly assessing challenges such as detecting the 

level of lysis in the cell broth, inferring the level of contaminants and understanding 

the impact of high viscosity on the process. 

The work undertaken in this thesis has opened up avenues for further research 

projects to be carried out. In Chapter 3, the PID controller for the 7 L Applikon 

fermenter online controls (T, DOT, agitation) were improved. However, it was 

observed that significant fluctuation occured in exponential phase. It would be 

interesting to develop and integrate a PID controller that would enable different PID 

settings at different growth stages in the fermentation, which may enable higher cell 

densities and product titres.  

The viscosity profile has been established and characterised in Chapter 3 for a high 

cell density E. coli fermentation system, and related to cell lysis. In order to develop 

this work further, it would be interesting to integrate viscosity measurements with 

online control data, for example stirrer rate (shear rate) to determine the Reynold's 

number throughout the fermentation, and integrate this into a computational fluid 

dynamics model to deliver insight into fluid flow patterns and mixing, which would 

be particulary useful as a scale-up tool in fermentation. 

The rheological properties of E. coli cells (i.e. bulk rheological properties) have been 

characterised in Chapter 4. Atomic force microscopy can be carried out to elucidate 

the rheological properties of a single E. coli cell. It would be interesting to be able to 

observe changes in the rheological properties (i.e. microrheology) of individual cells 

over fermentation time, and compare this information to the bulk rheological 
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behaviour of the cells. In doing so, this would facilitate a deeper understanding of 

cell lysis, in particular the interactions between cells, cell debris and leaked 

intracellular content as cell lysis occurs. 

In addition, a cell concentration factor could be integrated into the model developed 

in Chapter 4, which could be done using online viable biomass measurements with 

the Aber Instruments capacitance probe. This would enable a more accurate 

quantification of cell lysis, based on both viable biomass and viscosity (i.e. DNA and 

intracellular content release).  

Further, investigating the impact of colanic acid formation during late stage 

fermentation, and understanding how this interacts with cell aggregation and cell 

lysis would be interesting to study further; cell aggregation has been shown to be 

affected by extracellular polymeric substances (Eboigbodin & Biggs, 2008), and 

would also affect the viscosity of the cell broth due to a change in the size of the 

particles (i.e. cells). The in-line viscosity probe being developed by Procellia Ltd. 

may be able to determine particle size distribution in real-time, and this could be 

incredibly useful for a range of fermentation systems. 

In order to establish viscosity monitoring as a valuable and robust analytical 

technology, the methodology developed in this thesis needs to be extended to a range 

of biopharmaceutical applications. First, it is important to demonstrate the use of 

viscosity monitoring in E. coli strains that produce other periplasmically-stored 

products, for example domain antibodies or plasmid DNA products. This can be 

done by carrying out fermentations and then ascertaining the relationship between 

the shear viscosity, cell lysis and product loss. Following this, other microbial strains 

could be examined, for example the yeast P. pastoris, which can be grown to high 

cell densities and stores the product intracellularly (for example, virus-like particles). 

Additionally, the viscosity profile of mammalian cell cultures could be explored. 

This would be interesting as mammalian host cells such as CHO will typically 

secrete the product to the cell broth, and it would be necessary to gain an 

understanding of the impact of product secretion on the viscosity of the broth, and 

whether cell lysis in mammalian cell culture can be detected by viscosity monitoring. 
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Furthermore, viscosity monitoring could be applied to other unit operations where 

viscosity has a significant impact on the operational performance. Some examples 

include homogenisation, in which viscosity monitoring could be a valuable process 

development tool to detect and optimise cell disruption levels against the number of 

passes and the pressure. Also, viscosity monitoring could be applied to the 

periplasmic extraction step to optimise extraction time, i.e. by minimising DNA 

release and maximising product release. Viscosity monitoring could also be used in 

microfiltration operation, to monitor the viscosity of both the retentate and permeate 

streams in order to detect the level of fouling on the membrane. 

Above all, the work carried out in this thesis demonstrates that significant value can 

be found in using rheology to monitor the physical properties of cell broths, and that 

viscosity monitoring could be used in combination with other analytical technologies 

such as infrared spectroscopic monitoring to provide a comprehensive picture of the 

cell broth, by monitoring both the physical and chemical properties. Therefore, this 

work additionally demonstrates the value of developing an online, in-situ probe to 

monitor the viscosity and other rheological parameters in biopharmaceutical 

fermentation.  

The ultimate aim of the sponsor company, Procellia Ltd., is to bring to market an in-

line probe for real-time viscosity monitoring in fermentation, that can be used as part 

of a platform technology for the predictive modelling of novel cell quality indicators. 

The technology will be a hardware (probe)/software (modelling) combination, that is 

able to monitor both the volume fraction (biomass concentration) and the viscosity of 

the cell broth. In addition to monitoring the viscosity, it may be possible to monitor 

other physical parameters such as particle size distribution and the storage modulus 

of the cell broth in fermentation systems that have significant structure (for example, 

mycelial fermentations). This would enable monitoring of the storage modulus as a 

cell quality indicator (i.e. to monitor cell strength). In order to do this, the storage 

modulus will need to be extensively characterised in fermentation and validated, 

along with the volume fraction (biomass concentration) and viscosity, as parameters 

to indicate cell health. Additionally, the model developed in this thesis to quantify 

DNA release based on viscosity measurements can be integrated with the software 
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part of Procellia's technology. This will enable the online determination and 

monitoring of cell lysis, which will be a powerful tool for process operation. The 

development of the software part of the product will be key to its success, in 

particular the models required to ultimately control cell lysis in fermentation using a 

range of inputs such as volume fraction, viscosity and storage modulus will be highly 

complex.  

In addition to the commercialisation of an online, in-situ ultrasound probe, this may 

then be able to be brought together with various online monitoring technologies to 

create an integrated control platform in fermentation. For example, online viscosity 

monitoring, cell lysis quantification, cell strength and particle size distribution could 

then be integrated with the online determination of the Reynold's number and 

computational fluid dynamics models (as discussed above), online fermenter controls 

such as temperature, DOT and stirrer rate, the Aber Instruments online capacitance 

probe for viable biomass determination and infrared technologies providing chemical 

information of the cell broth. This would enable a robust view to be obtained of 

chemical, biological and physical properties of the cell broth and through this, a 

control system to be developed for optimal fermentation monitoring and control. 

In summary, the work carried out in this thesis has laid a solid foundation for the 

further development of viscosity monitoring as a tool to detect cell lysis and product 

loss in recombinant protein production. In addition, the novel primary recovery 

process designs created and evaluated in this thesis have demonstrated significant 

improvements to the existing process, and the value of the integrated process design 

concept to find a global process optimum, i.e. by considering the impact of upstream 

processing conditions on downstream unit operations has been demonstrated. In 

order to validate these process designs, the product quality should first be assessed 

for each unit operation in the process. These processes can then be further optimised 

through a design of experiments (DoE) approach, to achieve an even higher product 

titre, product yield, solids removal and improved impurity profiles.
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Abstract 

Cell lysis and intracellular product loss in fermentation represent a significant 

challenge in bioprocessing; impurities such as nucleic acids and host cell protein lead 

to large variations in the material properties of the cell broth and therefore impact 

process robustness in downstream processing unit operations. In this article, two 

alternative primary recovery approaches were carried out using ultra scale-down 

(USD) technology, and evaluated alongside the existing Fab' primary recovery 

process on the basis of total product recovered, impurity concentration, solids 

removal, processing time, capital costs and complexity. 

This research verified the novel use of crossflow filtration (CFF) in combination 

with flocculation as a microfiltration step directly after fermentation to intensify the 

primary recovery process. This process design achieved a 2.53-fold increase in total 

product recovered, a 3-fold improvement in solids removal and a 3.6-fold 

improvement in product purity in comparison to the existing Fab' recovery process. 

Acceptable operation in terms of permeate flux was attained with CFF at USD scale, 

which was equivalent to mid-range operation at large scale. This process is deemed 

to be much more robust, as the need to avoid premature lysis in fermentation is 

removed and the primary recovery sequence is simplified. Further, it was shown that 

this approach to process design i.e. by taking a holistic view of the process to 

understand the impact of upstream processing conditions on downstream operation 

efficiency, demonstrated a significant reduction in both DSP time and capital costs. 

Keywords: fermentation; primary recovery; E. coli; crossflow filtration; 

flocculation; ultra scale-down. 

 


