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Quantum noise spectra for periodically driven cavity optomechanics
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A growing number of experimental setups in cavity optomechanics exploit periodically driven fields. However,
such setups are not amenable to analysis by using simple, yet powerful, closed-form expressions of linearized
optomechanics, which have provided so much of our present understanding of experimental optomechanics.
In the present paper, we formulate a method to calculate quantum noise spectra in modulated optomechanical
systems, which we analyze, compare, and discuss with two other recently proposed solutions: we term these
(i) frequency-shifted operators, (ii) Floquet [Phys. Rev. A 94, 023803 (2016)], and (iii) iterative analysis
[New J. Phys. 18, 113021 (2016)]. We prove that (i) and (ii) yield equivalent noise spectra and find that (iii) is
an analytical approximation to (i) for weak modulations. We calculate the noise spectra of a doubly modulated
system describing experiments of levitated particles in hybrid electro-optical traps. We show excellent agreement
with Langevin stochastic simulations in the thermal regime and predict squeezing in the quantum regime. Finally,
we reveal how otherwise-inaccessible spectral components of a modulated system can be measured in heterodyne
detection through an appropriate choice of modulation frequencies.
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I. INTRODUCTION

The last ten years have witnessed an impressive raft
of experimental breakthroughs in the field of cavity quan-
tum optomechanics [1]. Despite the enormous diversity of
experimental setups (including membranes, microtoroids,
photonic crystal microcavities and levitated nanoparticles
among others), most experiments are amenable to analysis by
means of the linearized theory of optomechanics. Through
its well-established analysis in frequency space [1,2] one
may obtain the quantum noise spectra, in other words, the
spectra of fluctuations (whether quantum or classical) of
optical and mechanical modes subjected to thermal and optical
noises from the environment. This enabled valuable insights
on the physics underlying optomechanical cooling [3–5],
strong-coupling regimes [6], optical and mechanical squeezing
[7–10], quantum backaction [11], as well as an understanding
of the standard quantum limit (SQL) of optomechanical
displacement sensing [1,2]. Hence, the analysis of quantum
noise spectra from linearized optomechanical theory has
become a ubiquitous tool of optomechanics.

Recently, however, a number of experimental setups have
involved periodically driven fields. Here we do not allude
to classical feedback fields, but rather to scenarios where
cavity driving fields or other trapping fields are harmonically
modulated in order to, for instance, generate mechanical
squeezing [8–10] or even to simply improve the trapping and
cooling [12–14] of levitated optomechanical systems. In such
cases, even in regimes where nonlinearities are entirely absent
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from dynamics, one may no longer adapt the textbook closed-
form mathematical expressions for quantum noise spectra.

An optomechanical system comprising a single optical
cavity mode coupled to a mechanical oscillator is described
by the well-known Hamiltonian [1,2]:

Ĥ = −�â†â + ωMb̂†b̂ + g(â† + â)(b̂† + b̂), (1)

where â (â†) is the annihilation (creation) operator for the
optical mode, and b̂ (b̂†) is the annihilation (creation) operator
for the mechanical mode. � is the detuning between the
input laser and the cavity, ωM is the natural frequency of the
mechanical oscillator, and g is the light-enhanced coupling
strength. Constant �, ωM, and g correspond to standard
optomechanics. Dissipation is characterized by a single optical
damping rate κ , and an intrinsic mechanical damping rate �M.
In the present work we consider the effects of modulating
parameters such as �, ωM, and g (see Fig. 1):

Ĥ (t) = −�(t)â†â + ωM(t)b̂†b̂ + g(t)(â† + â)(b̂† + b̂). (2)

Several previous theoretical studies of modulated optome-
chanics were motivated by the quest to overcome the standard
quantum limit (SQL) by measuring a single quadrature of
the mechanical oscillator [15]. To date, two different ways
to do single-quadrature detection have been proposed: one
considered modulations of the optomechanical coupling g

to perform backaction evasion (BAE) measurements [15,16],
while the other considered modulation of ωM to perform de-
tuned mechanical parametric amplification (DMPA) [17,18].
Closely related schemes to generate mechanical squeezing are
also of much interest. Modulation of the cavity field at 2ωM

results in amplification of one quadrature and to squeezing
of the conjugate quadrature [19,20]. The above studies all
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FIG. 1. Schematic of the modulated optomechanical Hamilto-
nian. â, â† and b̂, b̂† represent the optical and mechanical modes.
The optical mode is driven by a strong coherent field, resulting in
a linearized optomechanical coupling g that connects the optical
amplitude quadrature ŷa(t) = 1√

2
[â(t) + â†(t)] with the position

quadrature x̂(t) = 1√
2
[b̂(t) + b̂†(t)]. The system operators are coupled

to their respective baths by κ for the zero-temperature optical bath,
and by �M for the mechanical bath at 300 K, leading to damping and
dissipation. While for standard optomechanics g, ωM, � are constant,
we investigate here solutions for setups where they are harmonically
modulated.

considered modulation either at or close to ωM (resonant or
near resonant); or modulation at a multiple (usually twice) of
ωM [19,21]. In addition, they considered modulation of either
g(t) [19,21] or of the spring constant [17,18].

In this paper we revisit periodically modulated optome-
chanics by analyzing a system [14] which involves not only
simultaneous modulation of both g and ωM, but also far-off-
resonant modulation at frequencies �ωM. That study was
motivated by the need to understand the distinctive optical
sideband structure of the measured spectra from levitated
nanoparticles in hybrid optical-electric traps [12,13]. In
Ref. [14] an approximate, analytical solution was obtained for
the quantum noise spectra of the optical field and mechanical
displacement. The method produced closed-form expressions
which successfully reproduced experimental spectral features,
but only for the case of weak modulations.

Quantum noise spectra are obtained by transforming the
corresponding quantum Langevin equations into frequency
space; in the standard optomechanical case, these are fre-
quently solved only for the individual mode of interest.
However, a rather useful technique arises from so-called
linear amplifier models [22,23] which cast the equations in
a matrix form: c(ω) = T(ω)cin(ω), relating the input optical
and mechanical noises to the field mode operator outputs
by means of a transfer matrix T. Here the vector c(ω) =
(â(ω) â†(ω) b̂(ω) b̂†(ω))T and the Gaussian input noise vector
is cin(ω). We note that the â(ω) solutions here denote the
intracavity field (the actual detected cavity output field is then
straightforwardly obtained by using the input-output relation
âout(ω) = âin(ω) − √

κâ(ω) [24].
Such matrix methods have been used in previous studies

of modulated optomechanics [19,21,25]. However, unlike the
standard case, T couples frequencies which differ by multiples
of the modulation frequency. Its dimension is infinite so
truncation becomes necessary. In this paper we identify two
variants of the approach: in (i) the periodic Hamiltonian
is expanded into a Fourier series, and a covariance matrix
equation is obtained in terms of frequency-shifted system
operators. (ii) In Ref. [21], a Floquet ansatz is used so

steady-state solutions are assumed to be periodic. This results
in a Langevin equation for each Fourier component of the
system operators which can be arranged into a matrix equation
in Fourier space. Although in Ref. [19] a method equivalent
to (i) was noted briefly, it has not previously been used to
calculate quantum noise spectra.

We test the validity of the expressions of Ref. [14]—which
we label method (iii)—in thermal and quantum regimes.
The analytical expressions obtained by iterative solution in
Ref. [14] are an approximate solution of method (i) for regimes
where we may truncate the matrix T to the lowest few orders.
We also investigate the subtle, but interesting, differences
between the two frequency space methods (i) and (ii). We prove
that, although the matrix equations are apparently different, the
methods, in fact, yield equivalent power spectra.

In Sec. III, we apply the formalism to the slowly mod-
ulated system in Ref. [14] where the frequencies g(t) and
ωM(t) are modulated at a frequency ωd � ωM. A destructive
interference process that leads to complete cancellation of
one of the displacement sidebands offers a very stringent test
of the calculations. We verify the results for the intracavity
spectra in the thermal regime by numerical simulation of
the slowly modulated, semiclassical Langevin equations by
using a stochastic differential equation solver [26]. We also
calculate the quantum homodyne spectra in the ponderomotive
squeezing regimes (i.e., optical, not mechanical squeezing),
even in the presence of strong modulations.

In Sec. IV we establish connections between the two
methods (i) and (ii) to give a fuller picture of modulated
optomechanical systems and their implications; in particular,
by considering heterodyne detection of nonstationary spectral
components which are usually inaccessible experimentally.
Finally, we summarize and conclude in Sec. V.

II. THEORY: MATRIX METHODS FOR QUANTUM
NOISE SPECTRA

For compactness and generality, we can extend
Eq. (1) into an n-mode quadratic Hamiltonian Ĥ (t) =
1
2 cT(t)H(t)c(t), where the Hamiltonian matrix H(t) contains
the coupling frequencies between the modes and c(t) =
[ĉ1(t) ĉ

†
1(t) · · · ĉn(t) ĉ

†
n(t)]T is a vector of 2n system operators.

The resulting Heisenberg equation of motion is [27]

ċ(t) = −iσH(t)c(t), (3)

where we set h̄ = 1, and for bosonic ladder operators the
canonical commutation relation (CCR) is

σ = [c,c†] =
n⊕

l=1

(
1 0
0 −1

)
. (4)

Each of the ith mode of c(t) is coupled to an infinite
bath with rate γi which is described by a quantum Langevin
equation:

ċ(t) = −iσH(t)c(t) − γ

2
c(t) + cin(t), (5)

where γ = diag(γ1 γ1 · · · γn γn), and the
scaled input noise operators cin(t) ≡
(
√

γ 1ĉin,1(t)
√

γ 1ĉ
†
in,1(t) · · ·√γ

n
ĉin,n(t)

√
γ

n
ĉ
†
in,n(t))T. They
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are Gaussian noises which we assume to be δ correlated:

〈ĉin,i(t)[ĉin,i ′ (t
′)]†〉 = (n̄i + 1)δii ′δ(t − t ′),

〈[ĉin,i(t)]
†ĉin,i ′ (t

′)〉 = n̄iδii ′δ(t − t ′), (6)

where we denote the 2ith element of cin(t) by ĉin,i . The mode
occupancy n̄i is set by the bath temperature. We further define
a matrix of noise correlations in time:

〈cin(t)[cin(t ′)]†〉 ≡ Nδ(t − t ′)

= diag(γ1(n̄1 + 1) γ1n̄1 · · ·
× γn(n̄n + 1) γnn̄n)δ(t − t ′). (7)

In the case of a time-independent Hamiltonian H(t) = H,
Eq. (3) is diagonal in Fourier space:

c(ω) = T(ω)cin(ω), (8)

where the transfer matrix T(ω) = (−iωI + iσH + γ

2 )−1, I
is the identity matrix, and our convention for the Fourier
transform is such that [c(ω)]† = ∫ +∞

−∞ dωe−iωt [c(t)]†. Equation
(8) underlines the essence of the linear amplifier model of
standard optomechanics [23]: by working in frequency space
we obtain the output noise from the input noise via simple
matrix inversion.

The explicit time dependence of H(t)—slowly modulated
or otherwise—prevents a straightforward application of the
Fourier transform to obtain a matrix equation similar to Eq. (8).
Nonetheless, one can apply Fourier techniques to Eq. (3) in
two ways: (i) by Fourier expanding the Hamiltonian matrix, or
(ii) by expanding both the Hamiltonian matrix and the system

operators [21]. One can then obtain a linear system either of
frequency-shifted operators or of the Fourier components of
the operators. In the following text we show the equivalence
of methods (i) and (ii) by deriving the power spectrum under
two assumptions: (1) input noise is Gaussian and stationary,
and (2) no explicit time dependence is introduced in the signal
during detection.

A. Method (i): Matrix equation of shifted operators

First we express the periodic Hamiltonian matrix as a
Fourier series: H(t) = ∑

k∈Z Hke
ikωdt . Equation (3) becomes

ċ(t) =
(

−iσ
∑

k

Hke
ikωdt − γ

2

)
c(t) + cin(t), (9)

which in frequency space becomes[
−iωI + γ

2

]
c(ω) = −iσ

∑
k

Hkc(ω + kωd) + cin(ω). (10)

Because of the time dependence of H(t) the vector
c(ω) depends on c(ω + kωd), preventing us from expressing
Eq. (10) as a matrix equation similar to Eq. (8). Instead, we
consider the shifted equations:[

−i(ω + sωd)I + γ

2

]
c(ω + sωd)

= −iσ
∑

k

Hkc(ω + (k + s)ωd) + cin(ω + sωd), (11)

for each k,s. A matrix equation of the form c = Tcin can then
be obtained for the modulated system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
c(ω + 2ωd)
c(ω + ωd)

c(ω)
c(ω − ωd)

c(ω − 2ωd)
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

X(ω + 2ωd) A−1 A−2 A−3 A−4

A1 X(ω + ωd) A−1 A−2 A−3

· · · A2 A1 X(ω) A−1 A−2 · · ·
A3 A2 A1 X(ω − ωd) A−1

A4 A3 A2 A1 X(ω − 2ωd)
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
cin(ω + 2ωd)
cin(ω + ωd)

cin(ω)
cin(ω − ωd)

cin(ω − 2ωd)
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where the 2n × 2n matrix elements are

As = iσHs (13)

X(ω + sωd) = −i(ω + sωd)I + iσH0 + γ

2
. (14)

We denote sth row, lth column element of the transfer matrix
as Tsl(ω), with the central block being [T −1]00(ω) = X(ω).

Our departure point to solve the measured power spectrum
analytically is

Scc† (ω) ≡ lim
T →∞

〈c(ω)[c(ω)]†〉, (15)

where we have generalized for now to the case of operators, and
frequency-space variables are understood to be gated Fourier
transforms: c(ω) = 1√

T

∫ T

0 dteiωd tc(t). Equation (15) is a 2n ×
2n matrix of spectra. We note that Ref. [21] offers a different

way to calculate the measured spectrum, but we come back to
this point later in Sec. III C.

From Eq. (12) we know c(ω) = ∑
l∈Z T0l(ω)cin(ω − lωd).

Substituting this in Eq. (15) we obtain

Scc† (ω) = lim
T →∞

∑
l,l′

T0l(ω)〈cin(ω − lωd)[cin(ω − l′ωd)]†〉

× [T0l′ (ω)]†. (16)

It follows from Eq. (7) (proof in Appendix A) that

lim
T →∞

〈cin(ω − lωd)[cin(ω − l′ωd)]†〉 = Nδll′ . (17)

Therefore,

Scc† (ω) =
∑
l∈Z

T0l(ω)N[T0l(ω)]†. (18)
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In the solution above the Hamiltonian matrix is Fourier expanded while the system operators are left as is, leading to a matrix
equation of shifted operators.

B. Method (ii): Matrix equation of Fourier modes

In an alternative derivation [21] we expand both the Hamiltonian matrix and the system operators in a Fourier series. Let
H(t) = ∑

k∈Z Hke
ikωdt and c(t) = ∑

l∈Z c(l)(t)eilωdt . Then starting from Eq. (5) we use the relation H(t)c(t) = ∑
k Hkc(t)eikωdt =∑

k Hk

∑
l c(l−k)eilωdt to arrive at∑

l

[
ċ(l)(t) +

(
ilωdI + γ

2

)
c(l)(t)

]
eilωdt = −iσ

∑
l,k

[Hkc(l−k)(t) + cin(t)δl,0]eilωdt . (19)

We identify a quantum Langevin equation for each Fourier mode:[
−i(ω − lωd)I + γ

2

]
c(l)(ω) = −iσ

∑
k

Hkc(l−k)(ω) + cin(ω)δl,0. (20)

Here we have assumed stationary input noise and placed it into the zeroth Fourier component. In general, periodic input noises
can be treated as well [28]. The coupled quantum Langevin equations can be written as an infinite-dimensional matrix equation:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
c(−2)(ω)
c(−1)(ω)
c(0)(ω)
c(1)(ω)
c(2)(ω)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

X(ω + 2ωd) A−1 A−2 A−3 A−4

A1 X(ω + ωd) A−1 A−2 A−3

· · · A2 A1 X(ω) A−1 A−2 · · ·
A3 A2 A1 X(ω − ωd) A1

A4 A3 A2 A1 X(ω − 2ωd)
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
0

cin(ω)
0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

with the same transfer matrix as in Eq. (12). The Fourier com-
ponents are sometimes referred to as sidebands or introduced
as “auxiliary” modes [25].

From Eq. (21), the lth Fourier mode c(l)(ω) = Tl0(ω)cin(ω),
so c(ω) = ∑

l∈Z c(l)(ω + lωd). Reference [21] constructs the
spectrum from the Fourier modes, where the role of the
Kronecker δ correlation in Eq. (17) is played by matching
of equal and opposite Fourier indices. Here, we use Eq. (15)
to calculate the measured power spectrum:

Scc† (ω) = lim
T →∞

∑
l,l′

Tl0(ω + lωd)〈cin(ω + lωd)

× [cin(ω + l′ωd)]†〉[Tl′0(ω + l′ωd)]†. (22)

Using the Kronecker δ correlation in Eq. (17), we obtain

Scc† (ω) =
∑
l∈Z

Tl0(ω + lωd)N[Tl0(ω + lωd)]†. (23)

The infinite matrix T and its inverse have diagonals that are
invariant (up to a frequency displacement) with respect to an
equal shift in the row and column indices:

Tll(ω) = Tl+n,l+n(ω + nωd). (24)

This translation property of T is a crucial feature that we will
invoke throughout the paper. Shifting the indices of Eq. (23)
by −l we see that Eqs. (18) and (23) are equivalent. We
then conclude that methods (i) and (ii) yield equivalent power
spectra, a key result of this work.

C. Method (iii): Iterative analytical solution

Method (iii) is a solution obtained in Refs. [14,29] to a
system where the coupling strength and mechanical spring
constant are simultaneously modulated. This challenging
scenario was motivated by the need to analyze and understand
the underlying dynamics for a particular experimental setup
with levitated nanoparticles in an optical cavity.

Levitated optomechanics offers the prospect of full de-
coupling from environmental heating and decoherence using
nanoparticles trapped only by optical fields. This necessitates
operation at ultrahigh vacuum ∼10−8 mbar. However, previous
studies identified a particle loss mechanism as the pressure is
lowered past 1 mbar, presenting a major technical bottleneck.
One solution was to incorporate a Paul trap inside the optical
cavity [13] to create a hybrid electro-optical trap.

In addition to interesting nonlinear dynamics, the hybrid
trap system exhibited characteristic split-sideband spectra.
These were analyzed [14,29] by considering a simultaneous
and out-of-phase excursion in g(t) = 2ḡ sin ωdt and ωM(t) =
ω̄M + 2ω2 cos 2ωdt .

Further details of the method in Refs. [14,29] are given
in Appendix B 2. However, in brief, it is useful to compare
the frequency solution of the Langevin equation for the op-
tical field amplitude ŷ(t) = 1√

2
[â(t) + â†(t)] for the standard

unmodulated optomechanical case:

ŷ(ω) = igη(ω)x̂(ω) + √
κŶin(ω), (25)

with the case where the optomechanical coupling strength is
modulated as g(t) = 2ḡ sin ωdt :

ŷ(ω) = iḡη(ω)[x̂(ω + ωd) − x̂(ω − ωd)] + √
κŶin(ω), (26)
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where the Yin(ω) represent cavity-filtered incident shot noise
(see Appendix B 2) and x̂(ω) is the displacement of the
mechanical oscillator.

We see that the only apparent significant change is to
the mechanical displacement operators which are frequency
shifted by the modulation. Hence it might be tempting to
substitute standard optomechanics noise expressions for x̂(ω)
by simply shifting ω → ω ± ωd and to directly solve the
equation.

However, the most physically interesting effects [14] arise
from cross correlations 〈x̂(ω + ωd)x̂(ω − ωd)〉 between the
ω ± ωd components, generated by the second (2ωd) modula-
tion of ωM(t).

An iterative analytical solution was developed for the
operator x̂(ω + ωd) − x̂(ω − ωd) (see Appendix B 2) which
successfully reproduced experimental features, but remained
accurate only for weak g and ω2. It is straightforward to see by
inspection that the expressions used for the iterative solution
are the central rows of Eq. (12) for c(ω): in other words, the
iterative method is simply an approximation to the shifted
operator method.

III. RESULTS: SIMULATION OF SPLIT-SIDEBAND
SPECTRA

In this section we test and verify the expressions for
the methods (i)–(iii)—both the iterative and the full matrix
solution—against each other and against a numerical solution
of the stochastic Langevin equations. Methods (i) and (ii)
yield indistinguishable results. Both solutions show the same
convergence properties in that they need to be truncated
at a higher order as the modulations become stronger. To
ensure invertibility and convergence, we truncate the matrix in
Eq. (12) at an arbitrarily high odd dimension (17 × 17 block
matrices).

For the numerics we explicitly solved a set of stochastic
Langevin equations corresponding to the semiclassical dy-
namics of the system where we replace each operator in
Eq. (B1) with its (in general complex) expectation value
and its adjoint with the corresponding complex conjugates.
The stochastic noises cin have a Gaussian distribution with
an average variance equal to the step size in the temporal
propagation, such that 〈cin,i(t)c∗

in,i ′(t
′)〉 = 〈c∗

in,i(t)cin,i ′ (t ′)〉 =
2π (n̄ + 1/2)δi,i ′δ(t − t ′).

A. Split-sideband spectra in strong-modulation regime

Figure 2 compares methods (i) and (ii) with method (iii)
as well as with the numerical simulation of the intracavity
spectrum of the doubly modulated system exhibiting the
characteristic split-sideband separated by 2ωd about ωM.
To compare with previous studies [14], each spectrum is
parametrized by both g and ω2. As was previously observed
[14], the ratio of the split-sidebands change as the parameter
ω2/ωd increases. Up to ω2/ωd = 0.9, all the three spectra
exhibit progressively suppressed ωM + ωd peak, and all show
good agreement. From this point onward, however, the iterative
solution fails to change the split-sideband ratio, while the full

solution matches very well with the numerics, even going
past the complete suppression point at ω2/ωd ≈ √

2. We can
also see this behavior in Fig. 2(b) where we plot the ratio of
the split-sidebands as g and ω2 increases. We also verify in
Fig. 2(c) that the split-sideband ratio persists regardless of the
cooperativity and is only determined by ω2/ωd. Depending on
κ/ωM, the split-sideband ratio may fluctuate before reaching a
constant value. The higher the ω2/ωd the lower cooperativity
is required to reach a constant ratio, so at the suppression point
r ≈ 0 for all C. We ensure that split sidebands are well resolved
by choosing �opt � 2ωd.

A new result of the comparison with the full Fourier
methods (i) and (ii) is to provide a more accurate value of
the point at which the second sideband is fully suppressed:
here we observe the suppression point at ω2/ωd ≈ √

2. An
earlier analysis of the based on the approximate method
(iii) gives ω2/ωd ∼ 2 [14]; however, that analysis of the
low-order iterative solution neglected the modification to the
susceptibilities due to higher-order backactions. The second
sideband remains very weak across the entire ω2/ωd ∼ 1 to 2
range, so the underlying physical explanation remains valid.
Curiously, an even simpler model, using a Bessel expansion
of the modulations in the interaction Hamiltonian [29], also
predicts the more accurate ω2/ωd ≈ √

2 result.

B. Optical squeezing in homodyne spectra

Measured spectra detect the cavity output spectrum
âout(ω) = âin − √

κâ(ω), presenting additional interesting ef-
fects arising from correlations between the incoming noise
and the intracavity field due to quantum backaction. In par-
ticular such correlations give rise to ponderomotive squeezing
and power spectrum values below the shot-noise floor near
ω ≈ ωM.

The measured homodyne spectrum detects a single optical
quadrature:

ihom(t) = eiφâout(t) + e−iφa
†
out(t), (27)

and hence the measured power spectrum Shom(ω) =
〈|ihom(ω)|2〉 has four components: Shom(ω) = 〈âout(ω)
[âout(ω)]†〉 + 〈[âout(ω)]†âout(ω)〉 + 〈âout(ω)âout(ω)〉e2iφ +
〈[âout(ω)]†[âout(ω)]†〉e−2iφ , and φ is the local oscillator
phase (φ = 0 for amplitude, and φ = π/2 for phase
quadrature).

Another advantage of the linear amplifier matrix formalism
is that it outputs the full covariance matrix, facilitating
calculation of the homodyne spectra which are constructed
from several separate components. Usually, a probe mode
different from the control beam is used for detection. When
probe coupling is weak and �p = 0 it does not alter system
dynamics but otherwise the probe could significantly couple
to the oscillator motion regardless of the quadrature being
measured. The matrix methods are extendable to any number
of modes so we can easily incorporate probe dynamics.

Figure 3 shows the color map of the quantum homodyne
spectra for the standard case, as well as the modulated case
for three different modulation strengths. Large regions of
squeezing of up to ≈1 dB (20% below the noise floor) can
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FIG. 2. (a) Comparison of the full analytical solution (red, solid) with the iterative solution (black, dashed) of the cavity spectrum Syy(ω)
for different values of ω2/ωd, with ωd fixed. The stochastic numerics (blue, dotted) are obtained by solving the first-order coupled Langevin
equations using XMDS2. There is good agreement among the three, where we see that one of the twin peaks is progressively suppressed until
around ω2/ωd = 0.9, where from this point onward the iterative solution fails to show further suppression. The full analytical spectra, on the
other hand, agree very well with numerics—even showing higher-order sidebands. The parameters are ωd/ωM = 0.05, �2 = 0, n̄b = k

h̄ωM
300 K.

(b) Sideband ratio vs g and ωM for the same system as in panel (a). Note that the full analytical solution (red, lower) achieves the suppression
point, after which the ratio bounces back to R > 0 as ω2/ωd is further increased. The g in panel (a) changes with each ω2/ωd and is given

here in the alternative axis. (c) Split-sideband ratio vs cooperativity C = 4g2

κ�M
for ω2/ωd = 0.05, 0.2, 0.5, 0.9, and 1.4, and for both sideband

resolved (solid, ωM/κ = 1) and otherwise (dotted, ωM/κ = 0.15). The parameters are ωd/ωM = 0.05, �2 = 0, n̄b = k

h̄ωM
300 K. Split-sideband

resolution is ensured by the condition �opt � 2ωd ↔ C�M
2ωd

� 1.

be observed for 0 < φ < π/2. The matrix method correctly
replicates the squeezing profile of the standard case [7].
As expected for an on-resonance probe, the optical field
shows no peaks at φ = 0 while coupling most strongly with
the mechanical oscillator at φ = π/2. Optical squeezing at
the mechanical frequency is impossible to see in standard
optomechanics through homodyne detection, so sensing on-
resonance will always be degraded by back-action noise,
unless one performs a synodyne detection [30] or introduces
modulations within the system [16,18].

Adding a slow modulation in g(t) allows the measurement
of the cross correlation 〈x̂(ω + ωd)x̂(ω − ωd)〉 that causes
squeezing between the twin peaks. Introducing an additional
periodicity in ωM(t) at 2ωd further increases the contribution of
the cross correlation. The result is a squeezed region that grows
with ω2/ωd until it completely suppresses backaction noise
(red) on resonance for ω2/ωd ≈ √

2. Such optical squeezing
has been demonstrated for resonantly modulated optome-
chanical systems, but off-resonant modulated optomechanical
systems could possibly offer a novel way of exploiting cross
correlations for quantum sensing.

IV. DISCUSSION

Although we have shown that both methods (i) and (ii) give
the same results for both intracavity- and homodyne-detected
power spectra, we now investigate whether the equivalence
holds for more general types of spectra. In particular, we
discuss heterodyne detection of modulated optomechanical
systems.

A. Connections between methods (i) and (ii)

In summary, for both methods a set of output field modes
is obtained from a set of input noises by the action of a
transfer matrix T. However, in method (i) the output field
operator c(ω) originates from multiple, frequency-shifted input
noise components cin(ω + lωd). In method (ii), in contrast,
the dynamical operators were decomposed into a Fourier
series c(t) = ∑

l∈Z c(l)(t)eilωdt . In this case these components
c(l)(ω + lωd) originate from the effect of the transfer matrix
on a single input noise component cin(ω).

To investigate these differences, we revisit once more the
measured power spectra by rewriting Eq. (15) in terms of the
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FIG. 3. Color map of the homodyne spectra S
φ

hom(ω) versus the local oscillator (LO) angle φ for the standard case, as well as the slowly
modulated cases with varying ω2/ωd. g = 18.5 kHz. We use two optical modes: the cooling mode at � = −ωM brings down the phonon
occupation from 300 K to n̄b < 1 while the probe mode at �p = 0 is used for readout. Both are at n̄a = 0 and �M = 2.3 × 10−5. The blue (red)
region indicates noise below (above) the imprecision floor. We get a flat spectrum for the amplitude quadrature (φ = 0), while a twin-peak
around ωM for the phase quadrature φ = π/2. We show the color maps for the standard case, as well as for the slowly modulated case for three
different ω2/ωd. Not only do we see familiar regions of squeezing characteristic to standard optomechanics, but also squeezing between the
twin peaks. Maximum squeezing at ≈1 dB (20% below the noise floor) is achieved at φ = π/4. At the suppression point ω2/ωd ≈ √

2 regions
of high backaction noise (red) are replaced by squeezing. The rest of the parameters are the same as in Fig. 2(a).

autocorrelation function [2]:

lim
T →∞

〈c(ω)[c(ω)]†〉 ≡ lim
T →∞

1

T

∫ T

0
dt

∫ T

0
dτeiωτ

×〈c(t + τ )[c(t)]†〉

= lim
T →∞

1

T

∫ T/2

−T/2
dtS(ω,t), (28)

where S(ω,t) is defined as the Fourier transform of the
autocorrelation function. For an ordinary (unmodulated) op-
tomechanical system, the stationarity (i.e., time-translation
invariance) of the stochastic process leads to the Wiener–
Khinchin theorem: limT →∞〈c(ω)[c(ω)]†〉 = S(ω) (indepen-
dent of t).

In method (ii), the periodic modulation of c(t) naturally
implies the periodic modulation of S(ω,t):

S(ω,t) =
∑
l∈Z

S(m)(ω)eimωdt , (29)

and in Ref. [21] it was shown that the measured spectrum is
the zeroth-order component S(0)(ω).

Although the higher-order spectral terms S(m)(ω) appear
to be experimentally inaccessible, we show below that these
|m| > 0 contributions may be measured by using heterodyne
detection with a beat frequency 2 = nωd resonant with the
modulation. Hence the question arises as to how they can be
calculated. It has been shown that S(m)(ω) can be computed
from the Fourier components of the operator by using method
(ii) [21]. In Appendix C we show that the higher spectral
components are, in fact, straightforwardly related to cross
correlations between the method (i) operators:

lim
T →∞

〈c(ω)[c(ω + mωd)]†〉 = S(m)(ω), (30)

and hence higher-order components of the spectrum are also
obtainable from method (i).

B. Measuring nonstationary spectrum components
with heterodyne detection

Heterodyne detection measures a rotating quadrature:

ihet(t) = eiφ+t âout(t) + e−i(φ+t)a
†
out(t), (31)
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and we take φ = 0 as the power spectrum is in general
insensitive to φ. Hence, in frequency space, ihet(ω) = âout(ω +
) + [âout(ω − )]†.

In getting the power spectrum Shet(ω) = limT →∞
〈|ihet(ω)|2〉, intuition suggests that only the terms correlated
at the same frequency will survive while the cross correlations
will vanish. Another way to look at this is through the
time domain, where the heterodyne signal in time will give
rise to a time-dependent autocorrelator, and the cross terms
carrying ±e2it will get averaged out in the Fourier transform
[21]. Both viewpoints regarding the cancellation of cross
correlations rely on the crucial fact that the noise is δ corre-
lated. However, upon closer inspection, the cross correlations
〈âout(ω − )âout(ω + )〉 and 〈[âout(ω + )]†[âout(ω − )]†〉
can indeed be measured if the local oscillator frequency  is
chosen appropriately. This is easy to show by using method (i):

lim
T →∞

〈c(ω + )[c(ω − )]†〉

= lim
T →∞

∑
l,l′∈Z

T0l(ω + )〈cin(ω + lωd + )

× [cin(ω + l′ωd − )]†〉[T0l′ (ω − )]†

×
∑
l∈Z

T0l(ω + )N[T0,l+n(ω − )]†. (32)

The noise correlation in Eq. (7) forces l′ = l + n, and also
n ≡ 2

ωd
∈ Z. Such cross-correlations are useful in quantum

sensing [20,30,31], and Eq. (32) illuminates the interesting
fact that, by introducing an appropriate phase reference
—whether intrinsic to the system or externally—it becomes
possible that a δ-correlated input noise (which vanishes if
ω �= ω′) can give rise to a nonzero correlation of output
noises at different frequencies. In particular, we have shown
how cross correlations (and hence, how rotating parts of
the cavity output spectrum) can be recovered naturally in
modulated systems by using heterodyne detection. The same
idea has been applied on the level of rotating mechanical
quadratures using the Fourier components of the periodic
spectrum [21], which we know from Appendix C are
equivalent to unequal-frequency cross correlations of shifted
operators. Note also that quantum cross-correlations have been
measured, but for a standard optomechanical system [31].

V. SUMMARY AND CONCLUSION

We present three approaches to solving quantum noise
spectra of periodically modulated optomechanical systems: we
call these (i) shifted operators, (ii) Floquet, and (iii) iterative
methods. We prove that methods (i) and (ii) yield equivalent
spectra, while method (iii) is an analytical approximation to
method (i).

We compare the equivalent methods (i) and (ii) with
Langevin stochastic simulations of the doubly modulated op-
tomechanical Hamiltonian. The previously unexplored regime
of slow but strong modulations in the optomechanical coupling
and mechanical frequency provide a stringent test of the ana-
lytical methods. We demonstrate excellent agreement between
methods (i) and (ii), confirming split-sideband suppression
at ω2/ωd ≈ √

2. Method (iii), being effectively a low-order

truncation of the transfer matrix of method (i), also shows
good agreement up to a certain modulation amplitude.

We also predict resonant squeezing in the quantum regime
for the doubly modulated system as a result of enhanced
cross-correlations in the shifted mechanical spectrum when
ω2/ωd ≈ √

2. While squeezing at the mechanical frequency
has been seen in other modulated schemes [16,30], we
demonstrate possible new schemes for resonant squeezing in
slowly modulated setups.

Finally, we obtain a fuller picture of the periodic character
of the spectra of the Langevin solutions by establishing an
explicit connection between unequal-frequency correlations
of shifted operators and the Fourier components of the
periodic spectrum. We also show how cross correlations (and
hence, rotating components of the spectrum) are recovered
by choosing the heterodyne local oscillator frequency to be
resonant with the modulation of the optomechanical system.
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APPENDIX A: FREQUENCY-SPACE NOISE
CORRELATION IN TERMS OF KRONECKER DELTA

In this appendix we show that the noise correlation used
to derive Eq. (18) follows from the δ correlation in time of
Eq. (6):

lim
T →∞

〈cin(ω + lωd)[cin(ω + l′ωd)]†〉

= lim
T →∞

〈
1√
T

∫ T

0
dtei(ω+lωd)tcin(t)

× 1√
T

∫ T

0
dt ′e−i(ω+l′ωd)t [cin(t ′)]†

〉

= lim
T →∞

1

T

∫ T

0
dtei(ω+lωd)t

×
∫ T

0
dt ′e−i(ω+l′ωd)t ′ 〈cin(t)[cin(t ′)]†〉

= lim
T →∞

1

T

∫ T

0
dtei(ω+lωd)t

∫ T

0
dt ′e−i(ω+l′ωd)t ′Nδ(t − t ′)

= N lim
T →∞

1

T

∫ T

0
dtei(l−l′)ωdt

= Nδll′ . (A1)

We can also generalize to the case of different frequencies that
may arise from an external drive during detection. Assuming
a frequency difference ωdiff, Eq. (A1) becomes

lim
T →∞

〈cin(ω + lωd)[cin(ω + ωdiff + l′ωd)]†〉 = Nδ(l−l′)ωd,ωdiff .

(A2)
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The Kronecker δ forces ωdiff to be an integer multiple of ωd.
In the case of Eq. (32), we take ωdiff = 2. For ωdiff = 0,
Eq. (A2) simplifies to Eq. (A1).

APPENDIX B: ANALYSIS OF SLOWLY MODULATED
SYSTEM

In this appendix we apply the general formalism in Sec. II
to analyze in detail the slowly modulated optomechanical

system used to model levitated nanoparticles in a hybrid
electro-optical trap.

1. Time-periodic Langevin equations

Let c(t) ≡ (â(t) â†(t) b̂(t) b̂†(t))T and denote the 2lth ele-
ment of c(t) by ĉl so that ĉ1 ≡ â and ĉ2 ≡ b̂. The optical and
mechanical modes are coupled to their baths at κ and �M,
respectively, so γ = diag(κ κ �M �M). After symmetrizing
Eq. (1) and using the CCR equation (4), Eq. (3) for the
optomechanical system is, explicitly,

⎛
⎜⎜⎜⎝

˙̂a(t)
˙̂a†(t)
˙̂b(t)
˙̂b†(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

i�(t) − κ
2 0 ig(t) ig(t)

0 −i�(t) − κ
2 −ig(t) −ig(t)

ig(t) ig(t) −iωM(t) − �M
2 0

−ig(t) −ig(t) 0 iωM(t) − �M
2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

â(t)
â†(t)
b̂(t)
b̂†(t)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎝

√
κâin(t)√
κâ

†
in(t)√

�Mb̂in(t)√
�Mb̂

†
in(t)

⎞
⎟⎟⎟⎠. (B1)

2. Iterative analytical method

We review the iterative method to obtain a quantum solution
that is valid in the low order, as previously introduced in
Ref. [14]. From Eq. (B1), the time-domain Langevin equations
for the system operators are

˙̂a(t) =
[
i�(t) + κ

2

]
â(t) + ig(t)[b̂(t) + b̂†(t)] + √

κâin(t),

˙̂b(t) = −
[
iωM(t) + �M

2

]
b̂(t) + ig(t)[â(t) + â†(t)]

+
√

�Mb̂in(t). (B2)

Let us consider the specific case of a slowly modulated
optomechanical system where

g(t) = 2ḡ sin ωdt,

ωM(t) = ω̄M + 2ω2 cos 2ωdt,

�(t) = �̄. (B3)

Defining x̂(t) = 1√
2
[b̂(t) + b̂†(t)] and ŷ(t) = 1√

2
[â(t) +

â†(t)], we obtain from Eq. (B2) the position and optical
amplitude quadratures in frequency space, respectively:

x̂(ω) = iḡμ(ω)[ŷ(ω + ωd) − ŷ(ω − ωd)]

+
√

�MX̂th(ω) + iω2G(ω),
(B4)

ŷ(ω) = iḡη(ω)[x̂(ω + ωd) − x̂(ω − ωd)] + √
κŶin(ω),

where the optical and mechanical susceptibilities are

χO(ω) =
[
−i(ω + �̄) + κ

2

]−1

,

χM(ω) =
[
−i(ω − ω̄M) + �M

2

]−1

,

μ(ω) = χM(ω) − χ∗
M(−ω),

η(ω) = χO(ω) − χ∗
O(−ω). (B5)

The input noise is

X̂th(ω) = χM(ω)b̂in(ω) + χ∗
M(−ω)b̂†in(ω),

Ŷin(ω) = χO(ω)âin(ω) + χ∗
O(−ω)â†

in(ω), (B6)

and the correction due to ωM excursion is G(ω) ≡ χM(ω +
2ωd)b̂(ω + 2ωd) + χM(ω − ωd)b̂(ω − 2ωd) − H.c.

To calculate the power spectral density (PSD) we need to
express the system operators solely in terms of input noises.
Note, however, from Eq. (B4) that the output vectors in ω not
only depend on input noises at ω but also at system operators
at ω ± ωd and ω ± 2ωd. Hence we shift the quantum Langevin
equations:

x̂(ω ± nωd) = ±iḡ[ŷ(ω ± (n + 1)ωd) − ŷ(ω ± (n − 1)ωd)]

+
√

�MX̂th(ω ± nωd) + iω2G(ω ± nωd),

ŷ(ω ± nωd) = ±iḡ[x̂(ω ± (n + 1)ωd) − x̂(ω ± (n − 1)ωd)]

+√
κŶin(ω ± nωd), (B7)

and iteratively substitute in Eq. (B4) the shifted vectors
x̂(ω ± nωd) and ŷ(ω ± nωd) for any n ∈ Z as they arise. Once
we have ŷ(ω) = ∑

l,n Acl
(ω + nωd)ĉin,l(ω + nωd) + A

c
†
l
(ω +

nωd)ĉ†in,l(ω + nωd), the power spectrum is simply Syy(ω) =∑
l |Acl

(ω + nωd)|2n̄l + |A
c
†
l
(ω + nωd)|2(n̄l + 1).

As noise from higher orders is considered, the iterative
method becomes increasingly accurate but equally cumber-
some if done by hand. In the following we apply the method
in Sec. (II A) to the slowly modulated optomechanical system
with n = 2.

3. Matrix equation for slowly modulated system

Equation (12) is a general equation that computes the
system operators from the input noises for any n-mode
modulated optomechanical system. To get the equation for
a slowly modulated system we set c(ω + mωd) ≡ (â(ω +
mωd) â†(ω + mωd) b̂(ω + mωd) b̂†(ω + mωd))T and cin(ω) ≡
(
√

κâin(ω)
√

κâ
†
in(ω)

√
�Mb̂in(ω)

√
�Mb̂

†
in(ω))T. Moreover, the

matrix elements are derived from the Hamiltonian Eq. (1) and

063836-9



ARANAS, AKRAM, MALZ, AND MONTEIRO PHYSICAL REVIEW A 96, 063836 (2017)

the parameters in Eq. (B3) by using Eq. (13) and Eq. (14):

Xn = diag(χO(ω + nωd)

×χ∗
O(−ω − nωd) χM(ω + nωd) χ∗

M(−ω − nωd)), (B8)

A±1 = ±ḡ

⎛
⎜⎝

1 1
−1 −1

1 1
−1 −1

⎞
⎟⎠, (B9)

A±2 = i

⎛
⎜⎝

−�2 0
0 �2

ω2 0
0 −ω2,

⎞
⎟⎠. (B10)

A|n|>2 = 0 because we do not consider here modulations
greater than 2ωd. We substitute (B8) to (B10) in the matrix
equation (12) and calculate the power spectrum using Eq. (18).

APPENDIX C: COMPONENTS OF THE PERIODIC
SPECTRUM IN TERMS OF SHIFTED OPERATORS

We show that the components of the periodic spectrum
can also be calculated by using the shifted-operators approach
where they have a new interpretation as cross correlations of
operators shifted at different frequencies.

As mentioned Sec. III C, the assumption of the Floquet for-
malism is a periodic spectrum S(ω,t) = ∑

m∈Z S(m)(ω)eimωdt

with Fourier components [21]:

S(m)(ω) =
∑

l

∫ +∞

−∞

dω′

2π
〈c(l)(ω + lωd)[c(l−m)(ω′)]†〉

=
∑

l

∫ +∞

−∞

dω′

2π
Tl0(ω + lωd)〈cin(ω)[cin(ω′)]†〉

× [Tl−m,0(ω′ + lωd)]†

=
∑

l

Tl0(ω + lωd)N[Tl−m,0(ω + lωd)]†, (C1)

where we have used Eq. (21) and the noise correlation of
Eq. (7) expressed in frequency space.

Consider the cross correlation of shifted operators from
method (i):

lim
T →∞

〈c(ω)[c(ω + mωd)]†〉

=
∑
l∈Z

T0l(ω)〈cin(ω − lωd)[cin(ω − lωd)]†〉[T−m,l(ω)]†

=
∑

l

T0l(ω)N[T−m,l(ω)]† = S(m)(ω), (C2)

where in the last line we have invoked the translation property
of T. We then see that the Fourier components of the Fourier
spectrum can be calculated using method (i).
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