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Scale-down approaches have long been applied in
bioprocessing to resolve scale-up problems. Miniaturized
bioreactors have thrived as a tool to obtain process relevant
data during early-stage process development. Microfluidic
devices are an attractive alternative in bioprocessing
development due to the high degree of control over process
variables afforded by the laminar flow, and the possibility to
reduce time and cost factors. Data quality obtained with these
devices is high when integrated with sensing technology and is
invaluable for scale-translation and to assess the economical
viability of bioprocesses. Microfluidic devices as upstream
process development tools have been developed in the area of
small molecules, therapeutic proteins, and cellular therapies.
More recently, they have also been applied to mimic
downstream unit operations.
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Introduction

A key challenge in bioprocessing is to gain an in-depth
understanding of the bioprocesses to enable their rapid
and successful development and implementation. This
requires obtaining data that is relevant for the production
scale with minimum amount of labor and at minimum
cost. In addition to process variables (e.g. pH, oxygen, cell
density), physiological and metabolic data, and also data
regarding productivities need to be acquired [1]. At the
production scale, all process information is available but
the associated cost to perform process development is
prohibitive. It is estimated that over 10 000 experiments
are necessary for a single bioprocess development project,
from primary strain screening to pilot-scale trials [2].
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The key experiments are typically performed with
bench-scale bioreactors. Though resulting in reliable
and information rich data, this is still an expensive and
labor intensive endeavor, and the number of experiments
that can be carried out simultaneously are therefore
constrained (Figure 1).

To reduce further cost and time involved in process
development, miniaturized bioreactors are used as an
alternative to bench-scale bioreactors. Miniaturized bior-
eactors, with volumes typically below 100 mL, comprise
both stirred tank reactors and shaken systems, for exam-
ple, shaken flasks and microtiter plates. Microtiter plates
offer a high degree of parallelization, simplicity and
operate with very small volumes. Furthermore, they
enable automation of the optimization processes with
commercially available laboratory robotic platforms min-
imizing time-consuming manual work while increasing
throughput. When combined with design of experiments
(DoE) approaches, the total number of experiments
required is reduced which can minimize the number of
more expensive larger scale experiments. Whilst the
influence of operational and biochemical parameters on
process yields can be obtained, the significance of the data
obtained for larger scale is limited. For example, with
shaken systems similar oxygen mass transfer character-
istics can be obtained, however, hydrodynamics, transport
phenomena and power input [3] differ significantly from
pilot scale reactors. Furthermore, the data obtained per
experiment can be limited due to a lack of process control
and sensor integration. Despite efforts in the last decade
to circumvent this by integrating sensing technology to
monitor and control process variables, monitoring in these
systems is still mostly limited to pH and dissolved oxygen

(DO) [4].

Systems are sought which have the same level of
throughput as shaken systems but are able to generate
data with higher quality and preferably lower cost, in
order to address this bioprocess development challenge.
Microfluidic devices, with characteristic dimensions from
submillimeter to submicrometers, and in which small
amounts of fluids (107 and 107 '®1) are manipulated
[5] have emerged as enabling tools for high throughput
applications. As with traditional bench-scale reactors,
they can in principle be operated in batch, fed-batch,
and continuous modes under a broad range of process
conditions. The flow regime imposed by the small dimen-
sions is laminar, which gives fine control over the tempo-
ral and spatial microenvironment, ideal for the controlled
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Microfluidic devices operating space for bioprocessing. A key challenge in bioprocessing is to obtain the desired information for process
development with data that is relevant to the production scale in a cost-effective manner. Microfluidic devices with their precise control of the
microenvironment can enhance the quality of the data while offering increased throughput. Furthermore, by combining them with sensing
technology, these devices can be made suitable for process development.

and local delivery of reagents, cells or enzymes. With the
introduction of novel fabrication technologies, different
materials, the capability to modify surface conditions, and
nano-structured topographies devices can be tailored to
desired specifications. Monitoring of key process vari-
ables in microfluidic devices is typically achieved with
optical sensors and similar luminescence quenching prin-
ciples (e.g. to monitor oxygen, pH, CO,, glucose and
temperature), by spectroscopy methods (e.g. NIR and
Raman) [6°,7°] and by image analysis [8]. Nonetheless,
there is still a need to implement robust and sensitive
online and in situ detection methods in order to obtain
quality data and achieve a high level of process control.

In this review an overview on how microfluidic devices
have been employed as tools for process development and
what challenges still remain is presented. In particular, we
will focus on how these devices can be applied to process
development for the production of small molecules, ther-
apeutic proteins, and cells, and discuss their functionali-
ties in the context of these.

Adherent cell culture devices

Microfluidic devices have been used in the past decade to
study the cellular microenvironments of stem cells in a
reproducible and controllable fashion. The fine spatio-
temporal control over the cellular microenvironment

enables controlled delivery of nutrients and other soluble
biochemical factors, wash-out of auto and paracrine sig-
naling factors, and the control over the forces exerted on
the cells, such as the level of hydrodynamic shear stress.
In conventional tissue culture dishes, this level of control
is difficult if not impossible to achieve. Additionally,
device parallelization offers increased throughput, and
integration with analytical tools provides more relevant
data per experiment [8,9°,10]. These advantages make
microfluidic devices ideal to study cell responses, for
example by applying small perturbations to the cellular
microenvironment [11-15].

The incorporation of analytical tools in microfluidic cell
culture devices (WCCD) is challenging due to the small
dimensions and closed nature of the devices. Analytical
methods should allow on-line monitoring to capture the
dynamic behavior of the cells and be non-invasive, and
options include light microscopy [16], optical sensors
[17°°] and electric cell-substrate impedance sensing
(ECIS) [18]. Novel quantitative data can be obtained if
these approaches are combined with automation, for
example using image processing routines with live cell
imaging [8,10]. To further the understanding of cellular
responses, these on-line methods can be complemented
with off-line or at-line methods, such as FACS, HPLC

and flow cytometry; either employing a sacrificial
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approach (i.e. harvesting the entire content of a culture
chamber) or by coupling the effluent stream of the pCCD
with the analytic equipment, respectively. Choosing the
correct at-line or off-line analytical method and related
protocol often represents a trade-off between the accept-
able degree of disturbance of the cell culture and the
information that can be obtained [5]. Non-invasive
approaches avoid this trade-off, and real-time quantifica-
tion of cellular responses, such as cell proliferation and
oxygen kinetics (a key indicator of cell energy metabo-
lism) has recently been successfully achieved from tiny
amounts of cell culture medium and a small population of
cells [9°].

Collecting a large amount of information with an inte-
grated wCCD is of particular use when the production of
cell and gene therapies are envisaged [19]. wCCDs only
require a small starting cell population from patient
samples, cells can be transfected with pluripotent factors
[20] and maintained in continuous long-term cultures.
The cells could then, after further expansion and differ-
entiation, be transplanted back into the patient. No
reports on cell reprogramming under perfusion conditions
have been reported so far, despite advances in transfec-
tion workflows [21] and demonstrated advantages of
perfusion cultures, such as increased proliferation rates
[22] and better identification of reprogramming-enhanc-
ing extrinsic factors [23].

The spatiotemporal control over signaling gradients
afforded by perfusion facilitates the transition from
2D to 3D cell cultures, obtaining better biomimetic
tissues and organ models with increased physiological
relevance [24,25°°,26°°]. These 3D systems can be used
to test the adsorption, distribution, metabolism, elimi-
nation and toxicity (ADMET) of drugs, to support
pharmacokinetics and pharmacodynamics modeling, to
measure drug efficacy, thus ultimately for drug discov-
ery [24,27,28]. For the bioindustry, this will mean tools
which enable the validation and prioritization of drug
candidates, and which could be used in pre-clinical or
clinical trials to determine drug response, dosing and
safety margins [29]. Such 3D systems may also facilitate
comparison between organ models and results from
clinical studies [25°°,26°°].

To increase the uptake of wCCDs in industry, a few key
technical challenges need to be addressed. Consistent
and robust workflows of device sterilization and priming
as well as cell seeding and culturing should be sought, in
addition to the ability to monitor and manipulate cellular
behavior. Standardization of wCCD and it components
[30] will allow the implementation of Good Cell Culture
Practices and integration with automated workflows
enabled by liquid handling robots. Additionally, a basis
for comparison of results between 2D cell monolayer
models and 3D cultures and control mechanisms for
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3D cultures are necessary to implement these system
for cell therapies [26°°].

Flow biocatalysis — continuous enzymatic
catalyzed reactions

Microfluidic devices have been widely applied in chem-
istry for organic synthesis [31,32] due to a number of
advantages, for example the enhanced mass transfer
resulting from the high surface-to-volume ratios and short
diffusion lengths. Whilst these advantages potentially
apply to microfluidic devices for biocatalytic reactions,
not all these advantages have yet been successfully dem-
onstrated [33,34°,35°]; enhanced safety when handling
potentially explosive compounds and point-of-use gener-
ation of toxic chemicals are not typical features of biocat-
alytic processes. In processes where enzymes are used as
catalyst, reaction conditions are usually mild (e.g. tem-
peratures lower than 100 °C and use of aqueous reaction
medium) with no generation of toxic or explosive com-
pounds. Nonetheless, microfluidic devices have been
applied successfully in relevant reaction systems
[34°,35°] supporting the validity of a microfluidic
approach for biocatalysis. These devices offer the possi-
bility to rapidly and in a high throughput manner evaluate
different reaction conditions and different enzyme
variants, improve reaction stability, enable continuous
processing [34°] and, in multi-phase systems, intensify
processes [36].

Continuous processing offers an overall reduction of
operation costs (e.g. by reducing the size of equipment,
lowering energy consumption and reduced waste produc-
tion) compared to batch operation mode. Additionally,
product quality standards can be maintained along the
entire operation time, facilitating repetitive or routine
steps and enabling multistep syntheses [34°]. Multistep
syntheses, such as cascades of chemo-enzymatic or
enzyme—enzyme reactions, can benefit from microfluidic
reactors [35°]: the spatial confinement of reactions into
separate microreactors allows each reaction to be per-
formed under the best possible conditions (as opposed to
one-pot reactions where compromises between the indi-
vidual reactions must be sought). In chemo-enzymatic
reactions, where chemical reactions are proceeded by an
enzymatic one (or vice versa), the major challenge lies in
matching the reaction media to avoid enzyme inhibition
or deactivation. Conversion yields can potentially be
increased with the optimization of the chemical reaction
step or with the aid of reactor engineering [35°], including
the integration of in situ product removal (ISPR) strate-
gies [37]. For enzyme—enzyme reactions, the challenges
are significantly different and include matching reaction
conditions, preventing cross-inhibition and overcoming
enzyme inhibitions caused by reactants and products [38].
Despite the increasing number of coupled enzymatic
reactions for the production of industrial relevant pro-
ducts the number of reports on the synthesis of organic
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compounds is still limited [35°]. Nonetheless, the modu-
lar approach to couple enzymatic reactions will pave the
way to perform 7z vitro biosynthetic reactions in flow.
New molecules can be produced by the creation of de
novo pathways or cascades, which occur naturally through
metabolic reactions in both cells and organs.

From an operational point of view, costs can be reduced
and biocatalyst productivity (kgproduce kgbi()cmlysfl)
increased with the recirculation or immobilization of
the enzyme in the reactors. This will additionally improve
enzyme stability and avoiding unwanted side reactions in
cascade reactors. The choice between the use of free or
immobilized enzymes should be assessed case-by-case
and will depend on the activity and stability of the
enzymes, operational constraints and overall cost and
performance analysis [39]. Immobilization is typically
carried out with the use of different surface geometries
and chemistries. However, backpressure issues and com-
plex liquid flow patterns in packed bed reactors and low
volumetric productivity in wall-coated microreactors [40]
should be taken into account and can limit the applica-
bility of these reactors. Where free enzymes are the
preferred option, these can be recycled using an in-line
filtration step [35°].

The data obtained can be enhanced with the integration
of sensor technology. This will provide real-time
information on reaction progression [41°42], including
reaction conditions (e.g. pH, temperature and oxygen),
reaction parameters (e.g. substrate and products concen-
trations) and operational conditions (e.g. flow rates and
pressure).

Microbioreactors for submerged
microbiological cultivations

Microbioreactors (wBR), bioreactors with working
volumes in the submillitre range [6°], started with the
seminal work of Kostov ¢ a/. [43°] with the integration of
optical sensors in a stirred and sparged cuvette to monitor
Escherichia coli fermentations, and were shortly after
followed by the first microfluidic bioreactor with a culture
chamber of 5 pl [6°,7°]. Since then, a large number of
rBRs have been developed and their functionality and
instrumentation extended to render them suitable for
process condition screening and process development
[6°,44°]. These developments were enabled by advances
in polymer microfabrication and sensor miniaturization
[17°°]. Despite the lower throughput compared with
microtiter plates (Figure 1), these reactors offer a con-
trolled microenvironment and batch, fed-batch and
continuous culture operation.

The majority of wWBRs make use of the advantages of
polymers, such as the exquisite gas permeability of poly-
dimethylsiloxane (PDMS) for the aeration of the culture,
or the relative ease of structuring polymers like poly

(methyl methacrylate) (PMMA) or PDMS [45] to create
fluidic structures. Additionally, they enable the fabrica-
tion of disposable devices either as a monolith or in a
modular assembly [30]. The high optical transparency of
the polymers facilitates integration of optical detection
methods [17°°]. The layout of most wBRs is planar and
horizontal with mixing occurring in plane either by spin
bars [6°,7°] or by peristaltic motion of the chamber ceiling
[46]. Recently, the group of Krull presented a vertically
orientated bubble-column microreactor [47°°,48°°] where
the air bubbles not only contribute to the mixing effect
but also to the overall volumetric mass transfer coeffi-
cient, reaching approximately 0.14 s~ .

Monitoring in wBRs is almost exclusively achieved by
optical sensors due to their small footprint which allows
easy integration and because they offer non-destructive
measurement in tiny volumes, that is, without interfering
cellular functions or the biological systems. These sensor
have been shown to measure time profiles of pH, O, and
CO;, monitoring the individual analyte as well as multi-
analyte monitoring [17°°], and can be parallelized. More
recently, specific oxygen uptake rate (SOUR) were mea-
sured in real time as an indicator of cell behavior and
metabolism, both in planar as well as vertical n.BR con-
figurations [46,48°°].

To increase industrial uptake, however key technical
challenges need to be addressed. Further developments
in sensing technology are required to detect nutrient
consumption and product formation. This will also allow
the integration of mathematical models [44°] which will
underpin Quality by Design (QbD) approaches for bio-
process development. Online monitoring of nutrients and
product can be accomplished with fluorescence-based
sensors, biosensors as well as potentially surface plasmon
resonance and spectroscopic methods, for example,
Raman; provided that the analytes exhibit Raman-activ-
ity and do not have overlapping Raman spectra. However,
these technologies can be difficult to integrate in multi-
analyte systems (e.g. cross signal interference) or will
consume the analyte (e.g. glucose sensors). Additionally,
conventional off-line or standard at-line analytical equip-
ment (e.g., FACS, HPLC and flow cytometry) can be
employed on a sacrificial based approach or by sampling
ports, respectively. However, sampling is not trivial to
implement due to low wBR working volumes (concomi-
tantly reducing the working volume and altering process
conditions) and by the increased risk of contamination.
Standardization of device components is desired if auto-
mated workflows and process integration is considered.
Furthermore, surface coating is necessary with current
polymer based devices to avoid the adsorption of media
components, must be sought to accomplish this endeavor.
With standardization of device components, the integra-
tion of analytical solutions will be facilitated, in particular
for chromatography or mass spectrometry [44°].

Current Opinion in Chemical Engineering 2017, 18:61-68

www.sciencedirect.com



Opportunities

Since their inception, microfluidic devices for bioproces-
sing have matured significantly, though microbioreactors
for submerged microbial cultivations and microreactors
for biocatalysis are more developed than adherent cell
culture devices (in the context of bioprocessing). This is
partially also a reflection on the less developed scale-up
trains for cellular therapies. The limitation for further
uptake in industry of miniaturized devices lies in the
lack of a more comprehensive monitoring of all process
variables and sufficient automation, insufficient sample
volume for quality control and integration of downstream
processing. Device standardization and the development
of robust and sensitive sensor technology are important

Figure 2
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for the implementation of Process Analytical Technology
(PAT). Device standardization will also reduce the
dependency of end-users on individual device manufac-
turers (or manufacturer of fluidic interconnects), which
constitutes a significant economic risk for end-users to
implement microfluidic technology in their workflow.
Automation has the potential to remove operator-induced
variability thus improving product quality consistency,
increasing throughput and data quality. This can further
be extended if microfluidic devices are integrated with
robotic platforms. Equally important is the possibility to
multiplex devices and operations with the ability to vary
individual and control different process parameters
(Figure 2).
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Enabling technologies for the implementation of microfluidic devices in bioprocessing. Efficient operation of microfluidic devices requires both the
implementation of sensing technology, in the form of soft sensors, live-cell imaging or traditional analytical systems provided on-line
measurements are supported. The fine and tight control over the cells microenvironment and process variables can be combined with various
control strategies, such as, mathematical models. Standardization of device components and integration of auxiliary devices such as pumps and
valves will facilitate the implementation of automation by the use of robotic platforms or in self-sustained automated platforms, and facilitate

industrial uptake.
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There are opportunities for the uptake of microfluidic
devices in downstream processing (wDSP) provided that
we can properly exploit the design advantages of the
microfluidic devices and combine these with sensor tech-
nology, which will deliver scale-relevant or scale-translat-
able data. WDSP have been far less developed, partially
related to the difficulty to miniaturize traditional DSP
system (e.g. due to complex geometries of the industrial
scale equipment) [49°°]. Nonetheless, there have been
efforts to miniaturize DSP unit operations to the mL
scale, coined an ‘ultra scale-down’ approach, where new
units are designed maintaining equivalent process criteria
(e.g. shear) to the larger scale unit [49°°]. The data
obtained at the small scale in conjunction with opera-
tional models will facilitate scale-translation of down-
stream processing units [49°°].

In recent years, wDSP for process analysis have been
reported, in solid-liquid based separations, either by
adsorptive techniques [50,51°°] or use of membranes
[52], liquid-liquid separations [53] and crystallization
[54]. The applicability of these devices as process devel-
opment tools depends greatly on the integration of ana-
lytics and the amount of samples available for quality
control purposes. The integration of wDSP with upstream
devices will enable the study of whole bioprocess
sequences, having a significant impact in reducing devel-
opment time and costs of full-scale processes. This
approach will become increasingly of value when com-
plex therapies require processing which are different than
typical platform processes and rapid and cost-effective
process development is necessary [55]. They could also
potentially play a role for more stratified and more per-
sonalized therapies.
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