
  

 

  

Title: Effect of population viral load on prospective HIV incidence in a hyper-

endemic rural African community 

 

Authors:  F. Tanser1,2,3,4*, A. Vandormael1,5, D. Cuadros6, A Phillips4, T. de Oliveira3,5, A 

Tomita1,5, T Bärnighausen1,4,7,8, D. Pillay1,9 

 

Affiliations: 

1 Africa Health Research Institute, Durban, South Africa. 

2 School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa. 

3 Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of 

KwaZulu-Natal, South Africa. 

4 Research Department of Infection & Population Health, University College London, UK. 

5 KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health 

Sciences, University of KwaZulu-Natal. 

6 Department of Geography and Geographic Information Science, University of Cincinnati, 

Cincinnati, OH, USA. 

7 Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 

Boston, USA. 

8 Heidelberg Institute for Public Health, University of Heidelberg, Heidelberg, Germany. 

9 Division of Infection and Immunity, University College London, UK. 

 

*To whom correspondence should be addressed:   

 

 

One Sentence Summary: 

Our results demonstrate that HIV population viral load indices that explicitly account for the 

underlying variations in HIV prevalence could play a key role in targeting prevention 

interventions to vulnerable communities in hyper-endemic African populations.    



Abstract 

 

Monitoring HIV population viral load (PVL) has been advocated as an important means of 

inferring HIV transmission potential and predicting the future rate of new HIV infections in a 

particular community. However, the relationship between the PVL measures and directly-

measured HIV incidence has not been quantified in any setting and most importantly not in a 

hyper-endemic sub-Saharan African setting. We assessed this relationship using one of Africa’s 

largest population-based prospective population cohorts, in rural KwaZulu-Natal, South Africa in 

which we followed 8,732 HIV-uninfected participants between 2011 and 2015. Despite clear 

evidence of spatial clustering of high viral loads in some communities, our results demonstrate 

that PVL metrics that are derived from aggregation of viral load data only from the HIV-positive 

members of a particular community did not predict HIV incidence in this typical hyper-endemic, 

rural African population.  Only once we used modified PVL measures which combined viral 

load information with the underlying spatial variation in the proportion of the population infected 

(HIV prevalence) did we find a consistently strong relationship with future risk of HIV 

acquisition. For example, every 1% increase in the overall proportion of a population having a 

detectable virus, was independently associated with a 6.3% increase in the risk of HIV 

acquisition (p=0.001). In hyper-endemic African populations, these modified PVL indices could 

play a key role in targeting and monitoring interventions in the most vulnerable communities 

where the future rate of new HIV infections is likely to be highest. 

 

  



Introduction 

The dramatic scale-up of combination antiretroviral therapy (ART) to over 15 million 

people with HIV(1) has resulted in substantial population-level reductions in HIV-related 

mortality as well as evidence of reductions in the rate of new HIV infections in some 

developed(2) and developing country contexts (3). Notwithstanding this impact, the rate of new 

HIV infections remains unacceptably high with 70% of new HIV infections continuing to occur 

in sub-Saharan Africa (4). Some mathematical models suggest that the epidemic could be 

reversed by 2050 if high-levels of ART coverage are achieved (in combination with other 

effective interventions such as medical male circumcision). Scaling up ART therefore remains a 

key global priority. In response, the UNAIDS has set “the ambitious but achievable” targets of 

diagnosing 90% of all people living with HIV, to initiating 90% of all diagnosed people on ART, 

and achieving virologic suppression for 90% of people on ART by 2020;  with the aim of 

increasing all of these targets to 95% by 2030 (5). As the world ramps up to meet and exceed 

these targets, it becomes critical to not only monitor progress, but also provide empirical 

evidence for any resultant impact of expanding levels of viral suppression on life expectancy and 

the rate of new HIV infections at a population level.  

One of the ways in which the impact of moving towards the UNAIDS 90-90-90 treatment 

targets could be monitored is through measuring the trends in HIV population viral load (PVL)  

(6, 7). The HIV viral load level in semen or blood is the single most important biological 

determinant of transmission between an HIV-positive and an HIV-negative individual (8, 9). It 

follows that an aggregation of individual HIV viral RNA concentrations for a particular 

geography or community over a given time period (viz, PVL) could constitute a sensitive 

biological index of treatment programme success as well as potentially estimate the 



“transmission potential” of a particular geography. Indeed, community viral load has been 

endorsed as a key measure by the CDC(10),  and has been used to infer both the effectiveness of 

a treatment programme as well as a proxy for HIV incidence (2, 11-13).   

Notwithstanding the above, the PVL concept as a measure of both transmission potential 

and ART programme effectiveness has been critiqued (14). One key issue raised by the authors 

is the degree to which the in-care or facility-based viral load measures are reflective of the true 

underlying population viral load. Other issues raised include the interpretation of various 

population viral load metrics and their relationship to ongoing HIV transmissions, ecologic bias 

due to aggregation over large geographic regions or heterogeneous populations, and the failure of 

some PVL measures to account for the underlying HIV prevalence within the community. To 

date no study has tested the relationship between these PVL measures and directly-measured 

HIV incidence in a hyper-endemic sub-Saharan African setting.   

Here we make use of one of Africa’s largest population-based prospective cohorts, which 

is located in the rural KwaZulu-Natal province of South Africa, to empirically quantify the 

relationship between the true population viral load (among all HIV-infected participants 

irrespective of whether these participants have accessed care or know their HIV status) and the 

prospective risk of HIV acquisition for over 8,700 participants who were HIV-uninfected at 

baseline (HIV incidence). We use novel geospatial techniques to analyse the micro-level spatial 

variation in three key PVL measures—called the geometric mean viral load (MVL), prevalence 

of detectable viremia (PDV), and the community transmission index (CTI)—derived from all 

HIV-positive participants. We then extend these three measures to consider not just HIV positive 

participants but to evaluate the entire population (irrespective of HIV status).  



Results  

 

Population-based viral load survey 

This study uses data from one of the most comprehensive demographic and HIV 

surveillance sites in Africa—the Africa Centre Demographic Information System.(15) The site 

has collected socio-demographic information on a population of 87,000 participants within a 

circumscribed geographic area (438 km2) for over a decade. Within the study site, ongoing 

population-based HIV surveillance and sexual behaviour surveys take place annually among all 

adults ≥15 years of age. Of those contacted during the 2011 survey, 78.6% agreed to be tested in 

the survey and provide a dried blood spot (DBS) sample.(3) We performed viral load 

measurements on the blood-spots of all 2,456 participants who tested HIV-positive in the 

population-based HIV surveillance round of 2011. Using the Generic HIV Viral Load kit 

(Biocentric), we successfully obtained 2,420 (98%) viral load measurements after nucleic acid 

extraction with NucliSENS® EayMag® (Bordeaux, France). The methodology for quantifying the 

HIV-1 RNA viral loads has a lower limit of detection of 1550 copies per mL and is described in 

greater detail elsewhere.(16)  

The geometric mean population-based viral load (95% CI) among HIV-infected people 

was 8,259 (7,507–9,087) copies/mL (Table 1). Of the 2,420 HIV-positive participants in the 

population-based cohort, 30% had undetectable viral loads (n=726) and 26% (n=629) had a viral 

load >50,000 copies/mL. Males had overall higher geometric mean viral loads and a higher 

proportion of males were characterised by viral loads of >50,000 copies/ml (Figures 1A, 1B). 

 

 



Spatial variation in population viral load indices 

We used the viral load measurements of all HIV-positive participants (N = 2,420) from 

the 2011 survey to construct the following PVL indices across the study area: 1) The mean viral 

load (MVL), which is the geometric mean of the viral loads among all HIV-positive participants 

in the population-based survey. 2) The prevalence of detectable viremia (PDV), which represents 

the proportion of the HIV-positive population that have a detectable viral load (>1550 

copies/mL).(16)  3) The Community Transmission Index (CTI), which is a potentially more 

sensitive biological measure than 1) and 2), and represents the relation between the viral load and 

the risk of HIV transmission per unprotected sexual contact.(17) To derive this measure, we used 

the result from Quinn et al.(8), who showed that each log10 increment in viral load was 

associated with 2.45 fold increase in the rate ratio for HIV transmission risk. Following the 

notation of Wilson et al.(17), the risk of HIV transmission per sexual act is therefore given by 

𝛽1 = 2.45log10(𝑉1/𝑉0)𝛽
0
, where 𝑉1 is the viral load level associated with the participant, 𝑉0 =

log10(150) is a baseline viral load level, and 𝛽0 = 0.003 is the probability of HIV transmission 

from a person with the baseline viral load level (𝑉0).(17) The 𝛽0 value is based on prior research 

undertaken in the sub-Saharan African context.(18) Using the standard binomial formula, we 

then calculated 𝐶𝑇𝐼 = (1 − [1 − 𝛽1]
100

) × 100 to obtain the estimated number of transmission 

events that occur in 100 sexual contacts between persons at risk of infection and HIV-positive 

members of a particular community. We standardised all of the PVL measures against the age 

(10-year bands) and sex characteristics of the eligible population in 2011.  

Next, we constructed population-based versions of the three PVL indices described above 

based on the population in each community irrespective of HIV-status. In effect, all HIV-

negative participants in a particular community are included by assigning a viral load value of 



zero (to construct the MVLP
* and PDVP indices) or a transmission probability of zero (to 

construct the CTIP index). Thus for these analyses, we included 7,919 individuals who tested 

HIV-negative in 2011 (total tested = 10,375).  Hence, the denominator of these modified indices 

becomes the entire population rather than only those who have tested HIV-positive. By including 

information on the number of HIV-negative participants in a particular community, these 

modified PVL measures inherently account for the underlying spatial variation in HIV 

prevalence.  

Marked spatial heterogeneity in all of the PVL measures were observed across the 

surveillance area. There was clear evidence of spatial clustering of participants with high 

geometric mean viral loads (Figure 2A), participants with detectable viral loads (Figure 2B) and 

estimated number of transmission events per 100 sexual contacts between individuals at risk of 

infection and HIV-infected members of a particular community (Figure 2C). Likewise, clear 

evidence for spatial clustering of these modified PVL measures were observed when we 

considered the entire adult population (Figure 2D – F) in the calculation. Remarkably, in some of 

the high-incidence communities, whilst 65% of the HIV positive individuals had unsuppressed 

viral loads (Figure 2B), > 20% of the entire population (irrespective of HIV status - i.e. PDVP) 

were viremic for HIV (Figure 2E), underscoring the scale of the epidemic in these areas.   

 

Relationship between the population viral load measures and the risk of HIV acquisition 

We followed up all 8,732 repeat-testers who were resident within the surveillance area 

between January 2011 and December 2015. During this period we observed 859 sero-

                                                           
* We use the subscript P to denote the fact that these modified versions of the PVL indices utilize information on the 

full population (irrespective of HIV-status) rather than only including those who have tested HIV-positive  



conversions and 26,219 person-years of observation in the 8,732 repeat-testers who were HIV 

uninfected at baseline (crude incidence = 3.28 events per 100 person-years [Table 2]).  Our aim 

was to quantify the relationship between the PVL measures which are derived from the HIV 

positive population and the prospective risk of HIV acquisition using a Cox proportional hazards 

model. We then compared these results against the set of PVL indices derived from the entire 

adult population (irrespective of HIV status).   

At an ecological level, communities with the overall highest viral loads and highest levels 

of unsuppressed viral loads were not characterised by the highest prospective crude HIV 

incidence (Figure 3 A-C). However, with respect to the measures constructed on the basis of 

those who were HIV-infected as well as those who were HIV-uninfected, there was a clear dose-

response pattern evident with communities with the highest overall viral loads across the whole 

population (irrespective of HIV status) having the highest crude HIV incidence (Figure 3 D-F).  

Results for the individual-level Cox proportional hazard models demonstrated that none 

of PVL measures derived from the HIV-positive population predicted individual HIV acquisition 

risk, both before and after controlling for key socio-economic and behavioural factors as well as 

HIV prevalence in the surrounding local community (aHR=1.000–1.048, p-values ranged from 

0.057–0.97) as shown in Table 3 (Models A1–A3). Addition of the PVL indices to the base 

model did not improve the model fit, as determined by the Akaike information criterion.  

By contrast, our results show that all of the modified PVL indices based on the entire 

adult population (irrespective of HIV status) were all highly predictive of future HIV acquisition 

risk both before and after controlling for key socio-economic and behavioural factors and were 

robust to the addition of HIV prevalence in the model (Models B1–B3 of Table 3).  A one unit 

increase in geometric mean population viral load (MVLP) was independently associated with a 



9.1% increase in the risk of HIV acquisition, (aHR=1.091, p<0.001; Model B3 of Table 3). 

Every 1% increase in the population prevalence of detectable viremia (PDVP) was independently 

associated with a 6.3% increase in the risk of a HIV acquisition (aHR= 1.063, p=0.001; Model 

B3 of Table 3). Finally, every additional unit increase in the community transmission index 

(CTIP) was independently associated with a 19.3% increase in the risk of HIV acquisition, 

(aHR= 1.193, p=0.001; Model B3 of Table 3).  

HIV prevalence in the surrounding local community was a highly significant predictor of 

risk of new infection before and after controlling for other multiple independent risk factors 

(Table S2, Supplementary Materials).  However, as expected the HIV prevalence effect was 

rendered insignificant by the addition of any of the modified PVL metrics that were calculated 

on the entire population irrespective of HIV-status (Table S5, Supplementary Materials).   This is 

because these modified PVL indices already inherently account for variations in HIV prevalence 

as they incorporate information on the spatial distribution of both HIV-negative and HIV-

positive cases. In line with our previous work, across all the models, being older (>35 years), 

reporting no sexual partners in the last 12 months (versus one or more), and living in a household 

with higher wealth was protective against HIV acquisition (3).  

 

Sex-specific population viral load patterns and risk of acquisition of infection in the opposite sex 

As a further robustness check of our findings, we constructed sex-specific PVL indices in 

the same manner.   We then conducted a set of parallel analyses to ascertain the degree to which 

a female’s HIV acquisition hazard was related to viral load patterns (and HIV prevalence) of 

men in the surrounding local community and vice-versa. The ability to detect any PVL effect is 

markedly attenuated in these analyses (due to smaller overall observation time and numbers of 



events) and the fact that the PVL measures are subject to more random noise given the smaller 

number of observations used in their construction.  Nevertheless, this suite of analyses also 

confirmed the same pattern described in the mixed sex analyses above.  In these models, the PVL 

measures of the HIV-positive population was similarly not associated with HIV acquisition risk 

in the opposite sex both before and after adjustment for key socio-economic, behavioural risk 

factors as well as HIV prevalence in the surrounding local community (p-values ranged from 

0.18 to 0.99; Table 4A and 4B).  By contrast, all of the modified PVL measures which included 

information on the HIV negative population were strongly predictive of acquisition risk in the 

opposite sex (p-values ranged from <0.001 to 0.048). 

 

Population viral load measures derived from routine data collected at health facilities 

Since facility-based viral load data are typically used to derive community viral load 

metrics in many settings, we also wanted to establish the degree to which facility-based viral 

load measurements corresponded with their population-based counterparts and whether such data 

could be harnessed to infer transmission potential. We used the viral load measurements from 

routine clinical data collected at the facility level for 3,196 patients living in the surveillance 

population who visited one of the 17 health-care clinics in 2011 to compute the facility-based VL 

versions of the measures described above (19). We were able to link these patients to the Africa 

Centre population database. All participants from the population- and facility-based viral load 

surveys were geo-located to their exact homestead of residence (3).  

Results show that the overall geometric mean (95% CI) viral load for the facility-based 

data was 819 (771–870) copies/mL (Table S1 of the Supplement). Of the 3,196 HIV-positive 

participants in the facility-based cohort, 4% (128) had a viral load >50,000 copies/mL. Males 



had overall higher geometric mean viral loads and a higher proportion of males were 

characterised by viral loads of >50,000 copies/ml (Figure S1 of the Supplement). 

Use of routine facility-based viral load data (19)  to construct the viral load indices, 

demonstrated that there was little or no correlation between these indices and those derived using 

the equivalent population-based viral load data (correlation coefficient = –0.089, –0.32 and    –

0.28 for MVL, PDV and CTI respectively). Empirically, there was no relationship between any 

of the facility-based viral load measures and future risk of acquisition of HIV infection both 

before and after adjustment for key risk factors as well as HIV prevalence in the surrounding 

local community (Table S8 of the Supplementary Materials). 



Discussion  

 

Our study has empirically tested the relationship between various population viral load 

metrics and the risk of HIV acquisition in a typical hyper-endemic rural African setting. Despite 

identifying remarkable spatial variation in viral load patterns across the study area (with clear 

evidence of clustering of high viral loads in some communities), we found no relationship 

between any of the PVL indices derived solely from HIV-infected participants and HIV 

incidence. Our findings occurred in the context of using population-based viral load 

measurements that were largely free from the biases typically associated with health facility-

based viral load data. Only when we evaluated the viral load information as a function of the 

entire population (both HIV-positive and HIV-negative participants), were the resulting 

measures highly predictive of new HIV infections. This pattern also held in a series of parallel 

analyses in which we tested the relationship between the sex-specific population viral load 

patterns and the HIV acquisition risk in the opposite sex. Furthermore, our results demonstrate 

that in this rural African setting, facility-based viral load measures do not correlate well with 

their population-based counterparts and were not predictive of HIV incidence. On the basis of 

these findings we would therefore caution against using such data to infer transmission potential 

in similar settings.   

Another important finding to emerge from the research is large differences in HIV viral 

load by sex at a population level.  Overall males had a higher geometric mean viral load in 

comparison to females. For example, the geometric mean viral load of males in the 20–24 year 

age group was 1.21 times higher than in the corresponding female age group. This finding likely 

reflects the fact that men are less likely to diagnose HIV positive and successfully link to care, as 



well as being less likely to successfully adhere to treatment supporting earlier findings in this 

setting as well as others (20-22).  

Community viral load has been viewed a proxy for HIV transmission potential and/or 

programme effectiveness in many developed (2, 11, 23, 24) and developing country contexts 

(13).  However, such studies are based on ecological (correlations between group-level variables 

and group-level out-comes) and as such provide a weak basis for causal inference (25). Most 

recently, Solomon and colleagues conducted a cross-sectional, study in India which estimated the 

site-level correlations between four CVL measures and an estimate of HIV incidence (derived 

from a multi-assay algorithm) in people who inject drugs and men who have sex with men (13).  

In this high-risk population grouping, the authors demonstrate site-level correlations between 

three community viral load measures and the assay-derived estimate of HIV incidence. The 

“prevalence of viremia,” measure (defined as the local prevalence of HIV-infected individuals 

with HIV viral loads >150 copies/mL) showed the strongest correlation to the incidence estimate. 

Similar to the findings in this study, the “in-care viral load” measure was not correlated with the 

HIV incidence estimate among the high-risk groups, despite being a commonly used community 

viral load measure (2) (26). 

Existing methods of calculating the community viral load have been critiqued for a 

number of reasons related to: 1) the use of non-representative samples in facility-based (or in-

care) data, 2) the failure to incorporate information on population HIV prevalence, and 3) 

improper aggregation across wide geographic regions or heterogeneous populations that make 

ecological biases unavoidable.(14) We constructed PVL measures that address criticism 1) by 

using information from all HIV-infected participants from a full population cohort (irrespective 

of their linkage to care or knowledge of HIV status) and address criticism 2) by modifying the 



recommended PVL measures to incorporate information on the underlying variations in HIV 

prevalence (by including information on the distribution of HIV sero-negative individuals in the 

derivation of the PVL indices). We have addressed criticism 3) by creating a sensitive and 

relevant PVL estimate derived from the unique community around each HIV-uninfected member 

of the population-based, sero-incidence cohort and directly measuring the time to HIV sero-

conversion in each individual in the cohort. Using this approach, we were able to control for a 

wide range of individual-level confounders in the analysis and avoid ecological fallacies in 

interpretation of the results. 

Nevertheless, our work has some limitations.  Most notably, the link between the PVL in 

the surrounding local population and HIV acquisition risk is dependent on a reasonable 

proportion of the population preferentially selecting partners from the surrounding local 

community. However, if this were not the case, we would not expect any of the community-level 

PVL indices used in the analyses to significantly influence risk of HIV acquisition.  As indicated 

above, we find strong independent relationships between all of the modified PVL measures that 

analyse the entire population (irrespective of HIV status) and risk of HIV acquisition.  Moreover, 

in our previous work we reported that partner choice is strongly affected by geography with 61% 

of women reporting at least one partnership with a man in the same immediate local Zulu 

community over a 5-year period (27).  A potential second limitation is that we treat the PVL 

exposure as being time-invariant.  Whilst unlikely, it is theoretically possible that there could be 

large systematic geographic shifts in viral load patterns over time that could bias the result 

(particularly in a more sensitive PVL measure such as the CTI). However, such a “measurement 

error” would likely bias the finding towards the null hypothesis and would not account for the 



significant positive associations identified between both community-level HIV prevalence as 

well as all of the modified PVL measures and future risk of HIV acquisition.  

In our previous work we demonstrated substantial space-time differences in ART 

coverage in this population as the ART programme had scaled up over eight years (2004-2011) 

and we found that these large differences in ART coverage independently predicted individual 

HIV acquisition risk (3).  By 2011, the heterogeneity in ART coverage had decreased because 

the scale-up of ART had been so rapid in all parts of the study area. In 2007, for example, only 

6.4% of the population lived in communities where ART coverage exceeded 30%, and by the 

middle of 2011 this figure had increased to 90.8% (3). Population viral load might be considered 

a more proximate measure of transmission potential and therefore one might expect that any of 

the PVL measures would be a stronger predictor of HIV acquisition risk than ART coverage 

alone. Aside from highlighting the importance of accounting for underlying HIV prevalence in 

the population, this null finding also illustrates the difficulty of extrapolating the biological 

differences seen within-host to the population in a meaningful way. Such difficulties are 

particularly salient for sexually transmitted infections which are dependent on highly selective 

sexual partnership patterns including the phenomenon of HIV “sero-sorting” (28).  

Thus, large differences in viral load patterns between two populations would be relatively 

meaningless from a transmission potential perspective if there is a high degree of sero-sorting in 

the populations or if high viral loads occurred mainly in the segment of the population that were 

no longer sexually active as a result of HIV-related illness.  Further, there are other possible 

pathways through which ART coverage might reduce the risk of new HIV infection that are in 

addition to the biological effect of reducing viral load and consequently HIV transmission 

potential (3). For example, a community with high levels of ART coverage, would necessarily 



have had high levels of exposure to HIV counselling. This in turn, could lead to changes in 

sexual behaviour in both HIV-uninfected and HIV-infected individuals. 

There has been much discussion and debate about the utility of PVL measures to infer 

HIV transmission potential (13, 14, 29). Our results demonstrate that HIV population viral load 

indices that explicitly account for variations in the relative size of the HIV uninfected population 

could play a key role in targeting prevention interventions to vulnerable communities in hyper-

endemic African populations. Recent work has revealed the existence of sub-epidemics in many 

generalized epidemic settings providing a clear rationale for targeting areas of high transmission 

(30). There has also been a recent shift towards a more locally-tailored epidemic response on the 

basis of differences in both the underlying epidemiology and characteristics of the population-at-

risk (31-33). In this regard, our findings show that even in a severely affected rural African 

population with a well-established HIV treatment programme, a PVL measure such as the 

proportion of the overall population having HIV viremia could play a role in targeting and 

monitoring the effectiveness of interventions in the most vulnerable communities where future 

levels of HIV incidence are likely to be highest.  



Materials and Methods 

Population-based HIV survey 

Since 2004, the Africa Health Research Institute has conducted annual population-based 

HIV testing of all consenting adults aged 15 years or older (15). After obtaining written informed 

consent, field workers collect blood by finger prick and prepare dried blood spots for HIV testing 

according to the UNAIDS and WHO Guidelines for Using HIV Testing Technologies in 

Surveillance. Overall 29% of the adult population are infected with HIV (34). The rate of new 

infections remains high and relatively constant over time at around 3 new infections per 100 

person-years (3, 35). The incidence of new HIV infection peaks in women at approximately 7.5 

per 100 person-years (at age 25) and in men at 5 per 100 person-years (at age 30). The 

population is characterised by low levels of marriage with only 31% of women and 23% of men 

ever having been married and 14% of those marriages being polygamous for men (36). 

 

Construction of the PVL measures 

We used the viral load measurements of the 2011 population-based survey to obtain 

sensitive and realistic PVL measures in the unique virtual community surrounding each 

homestead in the study area. These PVL measures were computed by means of a moving two-

dimensional Gaussian kernel of 3 km search radius (37). The size of the kernel was determined 

from the results of previous work (38). First, all participants were located to an exact homestead 

of residence and the viral load measurements are superimposed on a geographic representation of 

the study area consisting of a grid of 30m x 30m pixels. Next, the kernel moves systematically 

across the grid and calculates a Gaussian weighted estimate of the PVL measure for the unique 



neighbourhood around each and every pixel on the grid. The method is well suited to the 

scattered distribution of the population because it does not impose any static geographical 

boundaries on the data. Instead, it uses the precise location of each homestead to derive a PVL 

measure that is both responsive to local variations and robust to the effects of random noise. We 

used exactly the same methods to quantify spatial variations in the viral load indices obtained 

from routine clinical data. These data were collected at the facility level for 3,196 patients living 

in the surveillance population who visited one of the 17 health-care clinics in the sub-district in 

2011. Patients were geo-located to their exact homestead of residence through linkage to the 

population database (19).  

 

Statistical analysis 

We followed up all 8,732 repeat-testers who were resident within the surveillance area 

between January 2011 and December 2015. A repeat-tester is a study participant who was known 

to be HIV-negative on the 1st Jan 2011 and who was tested for HIV during the study period. 

Because the data are interval censored, we imputed a single random sero-conversion date (using 

a uniform distribution) between the repeat-tester’s latest HIV-negative and earliest HIV-positive 

dates as described in greater detail elsewhere.(39)  We evaluated each of the PVL measures 

separately in the analysis. We adjusted for well-established determinants of HIV acquisition 

identified in our previous work (3, 35); that is sex, age, area of residence (rural/urban), marital 

status, number of partners in the last 12 months, household socio-economic status (based on 

household assets) and HIV prevalence in the unique community surrounding each HIV-negative 

individual. We computed community-level HIV prevalence using the Gaussian kernel 

methodology described above based on data from 10,375 participants who participated in 



population-based HIV testing in 2011 (3). We treated the PVL measures and the covariates as 

time-invariant. In other words, a repeat-tester was exposed to the PVL of his or her surrounding 

local community for the duration of the study (i.e., until the right censoring date).   

Secondly, we investigated the relationship between the PVL measures based on the entire 

population (irrespective of HIV status) and future risk of acquisition of HIV acquisition to an 

HIV-uninfected individual using the same methodology. Thirdly, as a further robustness check of 

our findings we conducted a series of analyses to test whether the same patterns could be seen in 

the relationship between sex-specific population viral load patterns and risk of acquisition of 

infection in the opposite sex. Lastly, we performed a further set of parallel analyses to ascertain 

whether there was any relationship between the community viral load indices derived using the 

routine facility-based viral load data and future risk of HIV acquisition.  
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Table S7. Results of the multivariable analysis (Cox Proportional Hazard model) to examine the 

relationship between the risk of HIV acquisition for males and the three community viral load 

(PVL) measures. The PVL measures are constructed from the female HIV-positive and HIV-

negative cases of a population-based survey. 

Table S8. Results of the multivariable analysis (Cox Proportional Hazard model) to examine the 

relationship between risk of HIV acquisition and three community viral load measures 

constructed from the routine facility-based survey data.  

Table S9. Kuldorff spatial clustering results for the population viral load (PVL) measures 

displayed in Fig. 2.  
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Figures:  

 

Fig. 1A. Geometric mean viral load by sex for the population-based survey (2011). 

 

Males older than 20 years of age had higher geometric mean viral loads when 

compared with females in the same age range. For example, males in the 20–24 

and 25–29 age groups respectively had 3.0 and 2.5 times higher mean viral loads 

than woman in the same age groups. Estimates are shown with their 95% 

confidence intervals. 



Fig. 1B. Proportion of viral loads >50,000 copies/mL by sex for the population-based survey 

(2011). 

 

A higher proportion of men had viral loads >50,000 copies/mL when compared with 

woman (a ratio of 1.2–1.9). Estimates are shown with their 95% confidence intervals. 



  

 

  

Fig. 2. Geographical variations in the community viral load indices (HIV+ only; Figures A-C), and their population-based equivalents 

(HIV+ and HIV–; Figures D-F) in 2011.  

 

 

 

 

The figure shows the differences in the geographic distribution of the PVL measures when derived from population-based data which excludes (Figures 

A-C) and includes (Figure D-F) HIV prevalence information. These measures were obtained by using a two-dimensional standard Gaussian kernel of 

radius 3km. The Kulldorff spatial clusters of high viral loads are shown as black circles.  
 

 



  

 

  

 

Fig. 3. Incidence rates (95% CI) by quartile for the community viral load indices (HIV+ only A to 

C) and population-based versions (HIV+ and HIV- D to F) by sex for the year 2011.  

 

The figures show the incidence rates per 100 person-years (and interquartile range) for the age-standardised PVL 

indices by sex for the year 2011. 



Tables: 

 

 

 N (%) copies/mL (95% CI) Proportion (95% CI)

Overall 2420 8259 (7507–9087) 0.26 (0.24–0.27)

Male 506 (20.91) 12802 (10352–15832) 0.34 (0.3–0.38)

Female 1,914 (79.09) 7356 (6614–8181) 0.24 (0.22–0.26)

Age Group

  15– 98 (4.05) 25139 (15934–39660) 0.46 (0.36–0.56)

  20– 295 (12.19) 13508 (10376–17586) 0.29 (0.24–0.35)

  25– 405 (16.74) 10815 (8606–13592) 0.28 (0.24–0.33)

  30– 360 (14.88) 7766 (6026–10008) 0.26 (0.22–0.31)

  35– 353 (14.59) 8460 (6529–10963) 0.28 (0.23–0.32)

  40– 243 (10.04) 6823 (5026–9262) 0.23 (0.18–0.29)

  45+ 666 (27.52) 5238 (4397–6240) 0.19 (0.16–0.22)

>50,000 copies/mL:Samples: Geometric Mean: 

Table 1. Summary statistics: viral load measurements by sex and age for the 

population-based survey data (2011). 



Table 2. Sero-incidence rates per 100 person-years for the HIV cohort of repeat-testers who were 

HIV-uninfected at baseline (2011). 

 

Person- Events 

years Rate 95% CI

Population HIV prevalence

  0–14.9% 935 18 1.92 (1.21-3.05)

  15–24.9% 15693 480 3.06 (2.8-3.34)

  25+ % 9590 361 3.76 (3.4-4.17)

Sex

  Male 9943 194 1.95 (1.69-2.25)

  Female 16276 665 4.09 (3.79-4.41)

Age strata 

  15– 9228 257 2.78 (2.46-3.15)

  20– 4998 287 5.74 (5.11-6.45)

  25– 2838 157 5.53 (4.73-6.47)

  30– 1727 66 3.82 (3-4.86)

  35– 1735 29 1.67 (1.16-2.4)

  40– 2015 30 1.49 (1.04-2.13)

  45+ 3675 33 0.9 (0.64-1.26)

Area of residence

  Rural 16817 510 3.03 (2.78-3.31)

  Peri-urban 8381 312 3.72 (3.33-4.16)

  Urban 1019 37 3.63 (2.63-5.01)

Marital status

  Single 15078 448 2.97 (2.71-3.26)

  Married monogamous 5898 196 3.32 (2.89-3.82)

  Married polygamous 5242 215 4.1 (3.59-4.69)

Number of partners in the last 12 months 

  Zero 11827 328 2.77 (2.49-3.09)

  One 10291 368 3.58 (3.23-3.96)

  More than one 4100 163 3.98 (3.41-4.64)

Household wealth quintile

  Poorest 5348 201 3.76 (3.27-4.31)

  2nd poorest 5428 163 3.00 (2.58-3.5)

  3rd poorest 5932 218 3.67 (3.22-4.2)

  4th poorest 5363 172 3.21 (2.76-3.72)

  Wealthiest 4146 105 2.53 (2.09-3.07)

N = 8,732

Incidence per 100 person-years 



  

 

  

Table 3. Results of the multivariable analysis (Cox Proportional Hazard model) to examine the relationship between the risk of HIV 

acquisition and three community viral load (PVL) measures. The PVL measures were derived from the HIV-positive cases (Models A) 

and the HIV-positive and HIV-negative cases (Models B) of a population-based survey. The full output is given in Tables S2 and S3 of 

the supplementary materials.  

 

 

 

 

  

Exponentiated coefficients. *For a one unit increase in geometric mean viral load. †For a one percent increase in the prevalence of detectable viremia. 
‡For a one transmission event increase per 100 sexual contacts.  Model 1 shows the unadjusted Hazard Ratios (HR) for the PVL measures; Model 2 

shows these HRs after adjusting for age, sex, urban status, marital status, number of sexual partners in the last year, and household wealth; Model 3 

shows these HRs after adjusting for the Model 2 covariates and HIV prevalence.        

HR  (95% CI) p-value HR  (95% CI) p-value HR  (95% CI) p-value

  Model A1:  Unadjusted HR 1.000 (1.000-1.000) 0.254 0.997 (0.987-1.007) 0.503 0.999 (0.957-1.043) 0.966

  Model A2:  Adjusted HR without HIV prevalence  1.000 (1.000-1.000)  0.817  1.005 (0.994-1.015)  0.401  1.037 (0.990-1.086)  0.130

  Model A3:  Adjusted HR with HIV prevalence  1.000 (1.000-1.000)  0.475  1.008 (0.996-1.019)  0.190  1.048 (0.999-1.100)  0.057

  Model B1:  Unadjusted HR 1.049 (1.029-1.069) <0.001 1.053 (1.030-1.078) <0.001 1.187 (1.103-1.277) <0.001

  Model B2:  Adjusted HR without HIV prevalence  1.079 (1.046-1.113)  <0.001  1.070 (1.039-1.103)  <0.001  1.224 (1.121-1.337)  <0.001

  Model B3:  Adjusted HR with HIV prevalence  1.091 (1.045-1.138)  <0.001  1.063 (1.025-1.103)  0.001  1.193 (1.079-1.320)  0.001

N   8732   8732   8732

Geometric mean viral load* Percentage detectable viremia† Community transmission index‡

Population-based: HIV-positive and HIV-negative cases

Population-based: HIV-positive cases only



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Table 4A: Results of the multivariable analysis (Cox Proportional Hazard model) to examine the relationship between the risk of 

HIV acquisition for females and the three male community viral load (PVL) measures. The PVL measures were derived from the 

HIV-positive males (Models A) and the HIV-positive and HIV-negative males (Models B) of a population-based survey. The full 

output is given in Tables S4 and S5 of the supplementary materials. 

 

Exponentiated coefficients. *For a one unit increase in the geometric mean viral load. †For a one percent increase in the prevalence of detectable 

viremia. ‡ For a one transmission event increase per 100 sexual contacts. 

HR  (95% CI) p-value HR  (95% CI) p-value HR  (95% CI) p-value

  Model A1:  Unadjusted HR 1.000 (1.000-1.000) 0.393 1.000 (0.994-1.006) 0.983 0.999 (0.987-1.012) 0.922

  Model A2:  Adjusted HR without HIV prevalence  1.000 (1.000-1.000)  0.836  1.001 (0.995-1.008)  0.662  1.003 (0.991-1.016)  0.599

  Model A3:  Adjusted HR with HIV prevalence  1.000 (1.000-1.000)  0.487  1.003 (0.996-1.011)  0.393  1.004 (0.990-1.018)  0.563

  Model B1:  Unadjusted HR 1.066 (1.021-1.113) 0.004 1.039 (1.016-1.063) 0.001 1.100 (1.033-1.171) 0.003

  Model B2:  Adjusted HR without HIV prevalence  1.056 (1.006-1.108)  0.027  1.039 (1.013-1.066)  0.003  1.095 (1.025-1.171)  0.007

  Model B3:  Adjusted HR with HIV prevalence  1.160 (1.058-1.271)  0.001  1.061 (1.020-1.104)  0.004  1.110 (1.015-1.214)  0.022

N 5188 5188 5188

Geometric mean viral load* Percentage detectable viremia† Community transmission index‡

Population-based: HIV-positive males only

Population-based: HIV-positive and HIV-negative males

HIV acquisition risk for females



 

 

 

 

 

 

 

 

Table 4B: Results of the multivariable analysis (Cox Proportional Hazard model) to examine the relationship between the risk of 

HIV acquisition for males and the three female community viral load (PVL) measures. The PVL measures were derived from the 

HIV-positive females (Models A) and the HIV-positive and HIV-negative females (Models B) of a population-based survey. The full 

output is given in Tables S6 and S7 of the supplementary materials. 

 
 

 

HR  (95% CI) p-value HR  (95% CI) p-value HR  (95% CI) p-value

  Model A1:  Unadjusted HR 1.000 (1.000-1.000) 0.176 0.985 (0.965-1.007) 0.174 0.977 (0.920-1.037) 0.439

  Model A2:  Adjusted HR without HIV prevalence  1.000 (1.000-1.000)  0.989  0.997 (0.972-1.021)  0.782  1.010 (0.943-1.082)  0.773

  Model A3:  Adjusted HR with HIV prevalence  1.000 (1.000-1.000)  0.985  0.997 (0.971-1.024)  0.809  1.008 (0.933-1.088)  0.845

  Model B1:  Unadjusted HR 1.057 (1.030-1.084) <0.001 1.109 (1.052-1.170) <0.001 1.405 (1.174-1.683) <0.001

  Model B2:  Adjusted HR without HIV prevalence  1.053 (1.009-1.099)  0.018  1.077 (1.004-1.155)  0.039  1.270 (1.020-1.581)  0.032

  Model B3:  Adjusted HR with HIV prevalence  1.081 (1.009-1.158)  0.028  1.106 (1.001-1.221)  0.048  1.452 (1.057-1.997)  0.021

N 3544 3544 3544

Population-based: HIV-positive and HIV-negative females

HIV acquisition risk for males
Geometric mean viral load* Percentage detectable viremia† Community transmission index‡

Population-based: HIV-positive females only

Exponentiated coefficients. *For a one unit increase in the geometric mean viral load. †For a one percent increase in the prevalence of detectable 

viremia. ‡ For a one transmission event increase per 100 sexual contacts.  
 


