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A study of the propagation of a mode-2 internal solitary wave over a slope-shelf topogra-
phy is presented. The methodology is based on a variable-coefficient Korteweg-de Vries
(vKdV) equation, using both analysis and numerical simulations, and simulations using
the MIT general circulation model (MITgcm). Two configurations are considered. One
is a mode-2 internal solitary wave propagating up the slope, from one three-layer system
to another three-layer system. Depending on the height of the shelf, which determines
the variation of the nonlinear coefficient of the vKdV equation, this can be classified into
two cases. First, the case of a polarity change, in which the coefficient of the quadratic
nonlinear term changes sign at a certain critical point on the slope, and second, the case
with no such polarity change. In both these cases there is a small transfer of energy from
the mode-2 wave to mode-1 waves. The other configuration is when the lower layer in
the three-layer system goes to zero at a transition point on the slope, and beyond that
point, there is a two-layer fluid system. A mode-2 internal solitary wave propagating up
the slope cannot exist past this transition point. Instead it is extinguished and replaced
by a mode-1 bore and trailing wave packet which moves onto the shelf.
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1. Introduction

Internal solitary waves are ubiquitous features in the coastal ocean, often having large
amplitudes and strong currents. One of the strongest internal solitary waves on record has
an amplitude of 240m, and a peak current velocity of 2.55ms−1, captured at a mooring
site deployed in the northern South China Sea at the bottom depth of 3847m, see Huang
et al. (2016). These waves are important as their energy and mass transport can produce a
substantial impact on coastal marine engineering, marine biology and geology. Although
mode-1 waves are those most commonly found in the ocean, there have been several
recent observations and numerical simulations suggesting that mode-2 waves can also
be present in some circumstances, see Farmer & Smith (1980); Konyaev et al. (1995);
Stastna & Peltier (2005); Moum et al. (2008); Yang et al. (2009, 2010); Shroyer et al.
(2010); Liu et al. (2013). Mode-2 internal waves are usually not as energetic as mode-1
waves, but they can be significant for mixing shelf waters especially as their location is
usually in the middle of the pycnocline, and hence they can be effective in eroding the
barrier between the upper mixed layer and the deep water below. Mode-2 internal solitary
waves first came to notice in the laboratory experiments of Davis & Acrivos (1967) who
examined the propagation of internal solitary waves in thin pycnocline embedded between
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two deep fluid layers. Like their mode-1 counterparts, mode-2 waves can be classified as
elevation or depression, related theoretically to whether the nonlinear coefficient in the
underlying Korteweg-de Vries equation is positive or negative. For mode-2 waves, an
elevation wave is often called a “convex wave” as the upper (lower) pycnocline interface
is displaced upwards (downwards). In contrast a mode-2 depression wave is a “concave”
wave, with an hourglass-shaped structure, as the upper (lower) pycnocline interface is
displaced downwards (upwards).

The deformation and possible disintegration of an oceanic internal solitary wave as
it propagates over topography, typically from deep to shallow water, has been heavily
studied and is now well understood, see the reviews by Grimshaw (2006); Grimshaw et al.
(2007, 2010). However, nearly all previous work has been for mode-1 internal solitary
waves, and there is an insufficient understanding of the shoaling process of the mode-2
waves, although we note the recent numerical studies by Guo & Chen (2012) of a mode-2
internal solitary wave shoaling on a slope in a model configuration close to the situation
in the South China Sea, and by Terletska et al. (2016) of the impact of a mode-2 internal
solitary wave onto a vertical step in a three-layer fluid configuration. We also note the
numerical simulations of Stastna & Peltier (2005) who showed that mode-2 waves could
be generated in some circumstances by trans-critical flow over topography. Hence in this
paper we examine the analogous problem for a mode-2 internal solitary wave propagating
from deep to shallow water up the continental slope, where the water depth h is slowly
varying, in contrast to the abrupt step considered in Terletska et al. (2016).

We use two complementary methodologies, both with a two-dimensional three-layer
fluid model, which can support mode-2 waves. Initially a variable-coefficient Korteweg-de
Vries (vKdV) equation is implemented to simulate the propagation of a mode-2 internal
solitary wave from a flat deep ocean onto a slope, leading to a flat shallow ocean. Such
vKdV equations have been commonly used to model mode-1 waves, and the structure
of the equation is of course the same for mode-2 waves. Crucially the coefficients in
the mode-2 case depend in a quite different way on the fluid depth than in the mode-1
case. Nevertheless, in the vKdV context the behaviour of an internal solitary wave in
this mode-2 case can be inferred from the known results from the analogous mode-1
case, see Grimshaw (2006); Grimshaw et al. (2007, 2010). Suppose that, as the waves
propagate from deep to shallow water up the continental slope, there is no polarity
change, that is the nonlinear coefficient α does not change sign over the slope. Then due
to the conservation of wave action flux, an adiabatic law a3 ∝ α relates the solitary wave
amplitude a with the coefficient α. At the same time, to conserve mass, the deforming
solitary wave is accompanied by a trailing shelf. But if there is a polarity change on
the slope, which means α reaches zero at a certain critical point on the slope, then the
adiabatic law breaks down as the wave approaches this critical point. After that the whole
wave system transits this critical point, and the original incident wave develops into a
leading rarefaction wave of the same polarity, on which rides a solitary wave train of
the opposite polarity. As the vKdV equation is based on the weakly nonlinear long-wave
regime, a complementary fully nonlinear non-hydrostatic MIT general circulation model
(MITgcm) is also used here. Importantly, unlike the vKdV model, these simulations are
not restricted to a single vertical mode, and can detect the possible generation of mode-1
waves during the propagation up the slope, as found by Terletska et al. (2016) when a
mode-2 wave impacts a vertical step. In particular the MITgcm model can be used to
study the case when the three-layer stratification terminates on the slope and thereafter
there is only a two-layer stratification. In this scenario, the mode-2 cannot exist on the
shelf anymore, and any wave disturbance reaching the shelf must be a mode-1 wave.

This paper is organised as follows. In section 2, we present the vKdV theory and a mode
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decomposition technique, used to analyze the output from the MITgcm, together with
an analysis of the energy budget. Then in section 3 we discuss a three-layer configuration
and derive the coefficients of the vKdV equation. Next the result of the shoaling process
from a three-layer to a three-layer system, and from a three-layer to a two-layer system
are presented in sections 4 and 5 respectively. We conclude in section 6.

2. Formulation

The vKdV equation commonly used to describe internal waves in the coastal ocean
is, in the usual physical variables, see the reviews by Grimshaw (2006); Grimshaw et al.
(2007, 2010) and the references therein,

At + cAx +
cQx
2Q

A+ µAAx + λAxxx = 0 . (2.1)

Here A(x, t) is the amplitude of the wave, x , t are space and time variables, and subscripts
denote derivatives. The coefficient c is the relevant linear long wave speed, and Q is the
linear magnification factor, explicitly defined below in (2.14) so that QA2 is the linear
long-wave wave-action flux. The coefficients µ and λ of the nonlinear and dispersive terms
are determined by the waveguide properties of the specific physical system, and for the
present oceanic application, are defined below. For a variable medium, each of these is a
slowly-varying function of x. The derivation of the vKdV equation (2.1) assumes the usual
KdV balance that the nonlinear term AAx has the same order as the linear dispersive
term Axxx, so that formally the amplitude A is the same order as ∂2/∂x2. In addition
the derivation assumes that the waveguide properties (that is, the coefficients c ,Q , µ , λ)
vary slowly so that Qx/Q for instance is of the same order as the linear dispersive term.
In this scenario, the first two terms in (2.1) are the dominant terms, and it is convenient
and useful to make a transformation

X =

∫ x dx

c
− t , T =

∫ x dx

c
. (2.2)

Then, to the same order of asymptotic approximation as in the derivation of (2.1),

AT +
QT
2Q

A+ νAAX + δAXXX = 0 , (2.3)

ν =
µ

c
, δ =

λ

c3
. (2.4)

A further simplification is

U = A
√
Q , UT + βUUX + δUXXX = 0 . (2.5)

β =
ν√
Q
, δ =

λ

c3
. (2.6)

Here the coefficients β , δ are functions of T alone. Note that although T is a variable
along the spatial path of the wave, we shall subsequently refer to it as the “time”.
Similarly, although X is a temporal variable, in a reference frame moving with speed c,
we shall subsequently refer to it as a “space” variable. To simplify the calculation, a final
transformation yields the canonical form,

Uτ + αUUX + UXXX = 0 , (2.7)

where τ =

∫ T

δ dT , α =
β

δ
. (2.8)
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The coefficient α varies with τ , that is α = α(τ) in general.
For the application to the coastal ocean, we consider only a two-dimensional configu-

ration, where the depth varies slowly in the propagation direction x, that is, the ocean
depth h = h(x). In this present application, we assume that the background density
field ρ0(z) and the background horizontal current u0(z) do not vary with x. If they
did then an extra term is needed in the vKdV equation, see Grimshaw (1981); Zhou
& Grimshaw (1989). Then, to the leading order in an asymptotic expansion, based on
the joint parameters measuring small wave amplitudes and weak linear dispersion, the
vertical particle displacement relative to the basic state is given by

ζ(x, z, t) = A(x, t)φ(z;x) , (2.9)

where φ(z;x) is the modal function, defined by{
ρ0(c− u0)2φz

}
z

+ ρ0N
2φ = 0 for − h < z < 0 , (2.10)

φ = 0 at z = −h ; (c− u0)2φz = gφ at z = 0 . (2.11)

Here φ(z;x) is chosen as one of the possibly infinite number of vertical modes, see the
discussion below, and the system (2.10, 2.11) also serves to define the corresponding linear
long wave phase speed c(x). The buoyancy frequency N is defined by ρ0N

2 = −gρ0z.
Importantly, the modal function φ(z;x) and the speed c(x) inherit a slow variation with
x due to the slow horizontal variation on the ocean depth h(x) and in the basic state
hydrology. Since the modal equations are homogeneous, a normalization condition can
be imposed. Here we choose φ(zm) = 1 where |φ(z)| achieves a maximum value at z = zm
with respect to z. In this case the amplitude A is uniquely defined as the amplitude of ζ
(to the leading order) at zm. The coefficients µ, λ,Q in (2.1) are given by

I µ = 3

∫ 0

−h
ρ0 (c− u0)

2
φ3z dz , (2.12)

I λ =

∫ 0

−h
ρ0 (c− u0)

2
φ2 dz , (2.13)

I = 2

∫ 0

−h
ρ0 (c− u0)φ2z dz , Q = c2I . (2.14)

Like c, these also vary slowly with x. Taking the Boussinesq and rigid lid approximation,
commonly used in oceanography, and as we will assume here, in the absence of a
background current u0 = 0, the modal equation (2.10) and boundary conditions (2.11)
reduce to

c2φzz +N2φ = 0 for − h < z < 0 , (2.15)

φ = 0 at z = −h, 0 . (2.16)

As a result, the expressions for µ, λ reduce to

I µ = 3

∫ 0

−h
c2φ3z dz , (2.17)

I λ =

∫ 0

−h
c2φ2 dz , (2.18)

I = 2

∫ 0

−h
c φ2z dz . (2.19)
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Since we will be projecting the output from the MITgcm onto the complete set of vertical
modes, it is now necessary to outline how this will be achieved. In general the modal
system (2.15, 2.16) defines an infinite set of internal modes φn, n = 1, 2, 3 , . . . and
speeds cn, where c1 > c2 > · · · . Mode-1 has n = 1 with no internal zeros and mode-2
has n = 2 with just one internal zero. These modes are complete and orthogonal with
respect to the weight function N2, that is∫ 0

−h
N2φn φm dz = Snδnm , Sn =

∫ 0

−h
N2φ2n dz , (2.20)

where the subscript n and m represent mode number, and δnm is the Kronecker delta.
Using (2.15, 2.16), we can further obtain

Sn = c2n

∫ 0

−h

(
∂φn
∂z

)2

dz , (2.21)

and an equivalent orthogonality condition,

c2n

∫ 0

−h

∂φn
∂z

∂φm
∂z

dz = Snδnm . (2.22)

The vertical particle displacement ζ(x, z, t) can be projected onto these modes,

ζ(x, z, t) =

∞∑
1

Λn(x, t)φn(z;x) , (2.23)

where Λn(x, t) is the amplitude of mode n. Note that once a mode has been has been
selected, Λn is just the amplitude A in the vKdV equation (2.1). Then we have∫ 0

−h
N2ζφn dz = ΛnSn . (2.24)

This can also usefully be written in an alternative form

c2n

∫ 0

−h

∂φn
∂z

∂ζ

∂z
dz = ΛnSn . (2.25)

When using the MITgcm, one of the outputs readily available is the velocity field (u,w).
To find an expression for ζ, and noting that taking a z-derivative is not convenient, possi-
bly introducing new errors, we proceed as follows. In the linear long wave approximation

ζt ≈ w , (2.26)

which can be combined with the conservation of mass equation

ux + wz = 0 , (2.27)

to yield

ux ≈ −ζtz . (2.28)

Then, also noting that to the leading linear long wave order, for each mode n, the vertical
displacement ζn has

∂ζn
∂t

+ cn
∂ζn
∂x
≈ 0 , (2.29)

the final approximate expression for Λn is

ΛnSn ≈ cn
∫ 0

−h
u
∂φn
∂z

dz . (2.30)
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With the aid of this mode decomposition technique (2.30), the amplitude Λn of each
mode can be easily obtained from the output of the MITgcm. Futher the energy budget of
each can also be obtained. Confining attention to linear long wave theory, see Gill (1982)
for instance, the domain-integrated available potential energy (APE) in each mode is

Pn =

∫ ∫
1

2
ρ0N

2ζ2n dxdz . (2.31)

Again invoking the Boussinesq approximation, and also considering (2.20, 2.21, 2.23),
this can be rewritten in an alternative and more convenient form,

Pn = Jn

∫
Λ2
n dx , Jn =

c2n
2

∫ 0

−h
ρ0

(
∂φn
∂z

)2

dz . (2.32)

Note that the modal functions φn and speed cn also contain a slow x-dependence, but
that is suppressed here at the leading order. In the same slowly-varying environment, the
velocities in each internal wave mode can be obtained as follows,

un(x, z, t) = cn
∂φn(z)

∂z
Λn(x, t) , (2.33)

wn(x, z, t) = −cnφn(z)
∂Λn(x, t)

∂x
. (2.34)

Then the domain-integrated kinetic energy (KE) in each mode is

Kn =

∫ ∫
1

2
ρ0(u2n + w2

n) dxdz ≈
∫ ∫

1

2
ρ0u

2
n dxdz = Jn

∫
Λ2
n dx , (2.35)

as in the long wave limit used here wn � un. As expected, “equipartition of energy”
holds here and the total energy can be found as En = 2Kn = 2Pn. Hence it is sufficient
to calculate either Kn or Pn. Further, It is clear that due to the orthogonality of the
modes the total kinetic energy and total potential energy are

K =
∑
n

Kn , P =
∑
n

Pn . (2.36)

3. Three-layer fluid system

It is well known that a three-layer fluid system is the simplest model that can support
mode-2 waves, see Yih (1960). Indeed, three-layer density structures have been observed
in the ocean, see Yang et al. (2010) for instance. Hence a three-layer ocean model is used
here to investigate the dynamics of mode-2 internal solitary waves. We assume that

ρ0(z) = (ρ2+∆ρ)Θ(−z−h1−h2)+ρ2Θ(−z−h1)Θ(z+h1+h2)+(ρ2−∆ρ)Θ(z+h1) , (3.1)

where ρ2 is the density of the middle layer, and the density difference ∆ρ > 0; h1, h2 and
h3 are the thicknesses of the three layers from top to bottom respectively, and Θ(·) is the
Heaviside function. Note that with this piece-wise constant density field only two of the
infinite set of modes can be found, namely mode-1 and mode-2; the remaining modes are
confined to the two interfaces, and cannot be found explicitly with this density profile.
In principle the densities of these three layers can take any reasonable values depending
on the specific circumstances, but here to illustrate the dynamics, we choose one special
case in which the density of the middle layer is exactly the mean value of that in the
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upper layer and bottom layer. From (2.15, 2.16) the modal function is given by

φ = −A1
z

h1
, −h1 6 z 6 0 ,

φ = A1
z + h1 + h2

h2
−A2

z + h1
h2

, −h1 − h2 < z < −h1 ,

φ = A2
z + h

h3
, −h 6 z 6 −h1 − h2 .

(3.2)

Note that φ = A1 at the upper interface z = −h1, and φ = A2 at the lower interface
z = −h1 − h2. The solution is normalized by max[|φ|] = 1, so that max[|A1|, |A2|] = 1,
and without loss of generality, we require that 0 < A1 6 1. The speed c is now found by
noting that at z = −h1,−h1−h2, φz is discontinuous and ρ0z consists of two δ-functions.
Integrating the modal equation (2.15) across each interface leads to

c2[φz]
+
− + g′ φ = 0 , g′ = g

∆ρ

ρ2
, (3.3)

where [·]+− is the difference between above and below each interface. Note that these jump
conditions represent continuity of total pressure across each interface. Hence the speed c
is found from the 2× 2 eigenvalue problem,

c2{A1(
1

h1
+

1

h2
)− A2

h2
} − g′A1 = 0 ,

c2{A2(
1

h2
+

1

h3
)− A1

h2
} − g′A2 = 0 ,

(3.4)

2g′

c2
= (

1

h1
+

2

h2
+

1

h3
)∓ {( 1

h1
− 1

h3
)2 +

4

h22
}1/2 . (3.5)

The signs ∓ correspond to mode-1 and mode-2 respectively, so that, as expected c1 > c2.
It then follows that

A1

A2
= R = H±(H2+1)1/2 ,

A2

A1
=

1

R
= −H±(H2+1)1/2 , H =

h2
2

(
1

h3
− 1

h1
) . (3.6)

Hence R > 0(< 0) for mode-1 and mode-2 respectively, so that, as expected, mode-1 has
no internal zeros, and mode-2 has just one internal zero. Thus both the phase speed and
internal zero criteria for distinguishing between mode-1 and mode-2 are valid here. Also,
for mode-1, R > 1(< 1) according as H > 0(< 0), that is h1/h3 > 1(< 1), while for
mode-2 |R| < 1(> 1) according as H > 0(< 0). Note that

g′h2
c2

=
h2
h1

+ 1 +H ∓ (H2 + 1)1/2 =
h2
h3

+ 1−H ∓ (H2 + 1)1/2 . (3.7)

Then the coefficient µ (2.17) is given by

Iµ = 3c2{−A
3
1

h21
+
A3

2

h23
+

(A1 −A2)3

h22
} , I = 2c{A

2
1

h1
+
A2

2

h3
+

(A1 −A2)2

h2
} . (3.8)

Substituting the expressions (3.6) into (3.8) we get that

µ =
3cA2

2h2

Ω

Π
, Ω = −h

2
2

h21
R3 +

h22
h23

+ (R− 1)3 , Π =
h2
h1
R2 +

h2
h3

+ (R− 1)2 . (3.9)

Our main concern is how these expressions vary as the lower layer depth h3 decreases.
Since for all the cases we consider, in the deep water h1 = h3, we can assume that
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h1 > h3 as the waves propagate up the slope. In this case H > 0, R > 1 for mode-1 and
−1 < R < 0 for mode-2, so that recalling the convention that A1 > 0, A1 = 1, 0 < A2 < 1
for mode-1, and 0 < A1 < 1, A2 = −1 for mode-2. A useful approximation is h2 � h1,3
when H → 0 and so

mode-1 : c2 = 2g′h1h3/(h1 + h3) , A1 = A2 = 1 , µ =
3c(h1 − h3)

2h1h3
,

mode-2 : c2 = g′h2/2 , A1 = −A2 = 1 , µ =
3c

2h2
.

(3.10)

Another useful limit is h3 → 0 when H → +∞, and so

mode-1 : c2 = g′h1h2/(h1 + h2) , A1 = 1 , A2 = 0 , µ =
3c(h1 − h2)

2h1h2
,

mode-2 : c2 ≈ g′h3 , A1 = 0 , A2 = −1 , µ = − 3c

2h3
.

(3.11)

Note that in the deep water, h1 = h3, H = 0, R = ±1, A1 = A2 = 1 for mode-1,
A1 = −A2 = 1 for mode-2, and

mode-1 : c2 = g′h1 , µ = 0 ,

mode-2 : c2 =
g′h1h2

(2h1 + h2)
, µ =

3c(2h1 − h2)

2h1h2
.

(3.12)

These expressions show that for mode-1 µ > 0 when h1 > h3 in the limit h2 � h1,3,
µ > 0 when h1 > h2 in the limit h3 → 0, and µ = 0 when h1 = h3. For mode-2, µ > 0 in
the limit h2 � h1,3, while µ < 0 in the limit h3 → 0, but µ > 0 when 2h1 > h2 for the
case h1 = h3. In general the sign of µ is determined by the sign of A2Ω, which is defined
in equation (3.9), and in particular µ = 0 when

h2
h1

(1−R3) = −2H ± {4H2R3 + (1−R3)(1−R)3}1/2 , (3.13)

which defines the curves in the h2/h1, h2/h3 plane where µ = 0. Recalling that h1 > h3,
H > 0, for mode-1 R > 1, the discriminant is positive and only the lower sign can be
taken. In the limit h1 → h3, this yields h2/h1 → 4/3, so that there is a change of sign at
this point just above the line h2/h1 = h2/h3. For mode-2, −1 < R < 0, the discriminant
is positive only when H is large enough, and then the upper sign must be chosen. In the
limit h1 → h3, this yields h2/h1 → 2. The outcome for the sign of µ is shown in figure 1.
In practice, h1 and h2 are constants, and so H1 = h2/h1 is constant when the internal
solitary wave propagates shoreward, while H3 = h2/h3 is the only variable to change
as h3 changes. Hence we consider two cases: a polarity change and no polarity change,
which will be shown in the next section.

4. From three-layer to three-layer system

As discussed in section 1 the vKdV equation (2.1) and various extensions have been
extensively used to model the evolution of internal waves over topography in the coastal
oceans. For instance, Grimshaw et al. (2004) used an extended vKdV equation to
study the transformation of a mode-1 internal solitary wave as it evolves over three
representative continental shelves; Holloway et al. (1999) studied the evolution of internal
tides when they propagate shoreward with a generalised KdV equation, which considers
the combined effect of both quadratic and cubic nonlinearity, the Earth’s rotation, and
frictional dissipation. However, the investigation of the evolution and propagation of
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Figure 1. Plot of the nonlinear coefficient µ (3.9) for mode-1 (left) and mode-2 (right).
Shaded areas show negative value, µ < 0. Labels are H1 = h2/h1, H3 = h2/h3.

mode-2 internal solitary waves over a slope seems to be very rare. Indeed, the only
comparable studies we are aware of are those by Guo & Chen (2012) and Terletska et al.
(2016), and we will make comparisons and discussions of these works in the Summary,
section 6.

We consider a three-layer system, in which the background current is zero and the
density variations across each interface are the same, that is, the density is ρ2 − ∆ρ,
ρ2 and ρ2 + ∆ρ respectively from top to bottom, where ∆ρ > 0, exactly as listed in
Section 3. Two configurations are investigated, both of which keep the thicknesses of the
upper and middle layer as constants, that is, h1 = 200m and h2 = 100m, and only
the bottom layer h3 varies as the waves move into shallow water. To model a realistic
ocean situation, the idealised bathymetry used here has a typical slope-shelf structure,
see figure 2. Initially in the deep water, the bottom layer h3 = 200m, then decreases along
the linear-varying slope to h3 = 50m (labelled as EXP1) or h3 = 60m (labelled as EXP2)
respectively onto the shelf. As a consequence, the thickness ratio H1 = h2/h1 = 0.5 is
a constant, while H3 = h2/h3 adjusts from H3 = 0.5 in the deep water to H3 = 2 and
H3 = 1.67 respectively on the shelf. Although in these two cases EXP1 and EXP2, this
10m thickness difference on the shelf may seem small, especially when compared with the
total water depth (500m), the corresponding dynamics can be completely distinguished
from each other. When h3 = 50m (H3 = 2) on the shelf, referring to figure 1, the
nonlinear coefficient µ in equation (2.1) (and so also α in equation (2.7)) is negative,
opposite from the positive value in the deep water, which indicates there must be a
critical point on the slope, where α = 0, and passing through that point, the initial
convex wave (µ > 0) inverses its polarity and turns into a concave wave (µ < 0), that is,
there is a polarity change. In contrast, the other case EXP2 is in a different regime, since
µ preserves its sign, µ > 0, so there is no polarity change. Our numerical simulations are
performed in the transformed space on (2.7), using a pseudo-spectral method based on
a Fourier interpolant, see Boyd (2001) and Weideman & Reddy (2000) for details. The
“spatial” resolution is 0.5 s in X, while the “temporal” resolution is 0.08 s3 in τ , and
finally the outcome is transformed back to the physical space.

In the shoaling process, as the depth decreases the linear magnification factor Q
increases, while the linear dispersive coefficient δ decreases, see figure 2. In particular,
the decrease in δ consequently enhances the effect of nonlinearity as the wave propagates
shoreward, which can subsequently change the waveform.

The deformation scenarios of the EXP1 and EXP2 are depicted in figure 3. In the
EXP1, a single convex wave with an initial amplitude of 18m propagates shoreward,
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Figure 2. Coefficients of the vKdV equation (2.3) for mode-2, together with the corresponding
bathymetry and density layers. Left panel is the EXP1, in which there is a polarity change
(h3 = 50m in the shallow water); right panel is the EXP2, in which there is no polarity change
(h3 = 60m in the shallow water). The dark dash-dotted line indicates where ν = 0, while the grey
dashed lines denote the two interfaces. Note that in the EXP1, the critical point (ν = 0) locates
at approximately x = 1.8×105m, just in the vicinity of the end of the slope at x = 1.82×105m.

and as expected, the evolution is adiabatic without significant change until it reaches the
critical point. Prior to the critical point, the vKdV theory predicts that the amplitude
decreases as α1/3 reduces, where α is the nonlinear coefficient in equation (2.7). Then,
approaching the critical point, this slowly-varying solitary wave generates a trailing shelf
of the opposite polarity, and this combination passes through the critical point. Thereafter
as α becomes negative, this disturbance forms into a leading positive rarefaction wave
at whose trailing edge an incipient jump is resolved by an undular bore whose leading
component is a solitary wave train of negative polarity, see Grimshaw & Yuan (2016). The
case with no polarity change EXP2 is distinct, as α decreases, the mass of the solitary
wave increases as α−1/3, and this generates a negative trailing pedestal to conserve the
total mass. But then instead of passing through a critical point, α approaches a constant
value on the shelf, and hence the leading convex wave continues steadily, while new
internal solitary waves of small amplitude and negative polarity form from the trailing
pedestal.

Next, we compare these results to simulations using a primitive equation model, the
MIT general circulation model (MITgcm), with zero horizontal and vertical laplacian
frictional dissipation, so that formally it solves the incompressible Boussinesq equations
with fully nonlinear and non-hydrostatic terms, employed here in a two-dimensional
configuration. This model uses a finite-volume method and has been successfully used to
study internal waves in the ocean, such as Vlasenko et al. (2010) and Guo & Chen (2012).
For details of the MITgcm model, refer to Marshall et al. (1997). Our model domain and
bathymetry are the same as those in the vKdV equation. The spatial steps are 1m and
50m in the vertical and horizontal direction respectively, and using a similar method
to that introduced in Guo & Chen (2012), two boundary layers, where the resolution
exponentially decreases from 50m to 2.5 × 105m, are added at the ends of domain to
suppress any reflections. In addition, considering the time scale of the waves, we set
the time step to be 4 seconds. The background temperature is uniform in this model,
25◦C, while the salinity is 5, 20 and 35 PSU respectively for the three layers. Neglecting
the pressure deviation in the fluid, the corresponding densities can be achieved by the
equation of state at atmospheric pressure with values of 1000.8, 1012.0 and 1023.3 kgm−3.
In addition, to ensure that the model runs smoothly, we invoke a Leith Scheme, see Leith
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Figure 3. The amplitudes of the mode-2 internal solitary waves in simulations of the
vKdV equation (2.7). Note that the results are transformed back to the physical space from
the calculation space. Left panel is the EXP1, and the critical point is at approximately
x = 1.8 × 105m; right panel is the EXP2. One point worth mentioning is that in order to
emphasise the waveform, the horizontal scale changes, especially from the top to the middle
panel.

(1996), to introduce some viscosity. The KdV-type mode-2 solitary wave is not an exact
solution of the Boussinesq equations solved by the MITgcm model, but nevertheless,
essentially only some slight modulations are needed. Thus to obtain the initial wave, a
preliminary MITgcm model run with the KdV wave as the initial condition is performed.
As expected, the final usable stable incident mode-2 waves are followed by some small
trailing waves.

Using the modal system (2.15, 2.16), it is found the fluctuation of the interface between
the upper and middle layer in the MITgcm model is just the amplitude A in the
vKdV equation (2.1). Figure 4 shows a comparison between the vKdV and the MITgcm
simulations. Here for brevity, only the result of the EXP1 is exhibited. Note that all the
coefficients c, Q, µ, λ in (2.1) have to be solved by numerical methods, and as a result,
an interpolation is implemented in the transformation from U in (2.7) to A in (2.3 or
2.1). Nevertheless, considering the very fine resolution (X : 0.5 s, τ : 0.08 s3) used in the
calculation of (2.7), this transformation can still reach a high accuracy. Despite the fact
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that the amplitude of the MITgcm result is smaller than that from the vKdV equation,
these two have a good agreement. The MITgcm model solves the primitive equation,
which can support solutions for all modes, including the mode-1 and mode-2 waves,
while the vKdV equation by construction is not able to support mode-1 and mode-2
simultaneously. Hence, in the MITgcm simulations there is a possibility for a generation
of mode-1 and higher modes, and energy exchange between modes, which is possibly the
reason why a smaller amplitude occurs. In addition, the viscosity and numerical wave
breaking and turbulent mixing can be another sink for the energy. Indeed, as analysed
in the following results for the energy budget, these may represent a large portion of the
lost energy.

A mode decomposition technique, see equation (2.30) in section 2, is implemented on
the MITgcm result, see figure 5. As expected, the mode-2 wave decomposition result
behaves very similar to the evolution based on the vKdV equation (2.7), see figure 3. In
the deep water there is a very small mode-1 feature slaved to the main mode-2 wave,
as the latter is not quite an exact mode-2 internal solitary wave as given in the KdV
theory. However after this mode-2 wave propagates onto the slope, this slaved feature
grows into a mode-1 wave train, as energy flows from mode-2 into mode-1. In addition
a very small free mode-1 wave is generated which propagates ahead of the main mode-1
wave. The slaved mode-1 wave train accumulates energy gradually during the evolution
of the mode-2 wave propagating up the slope, and a leading depression rarefaction forms
followed by trailing oscillatory wave trains. Ahead of this slaved component, there is a
small freely propagating mode-1 rarefaction. Note that the vKdV theory predicts that
nonlinear effects become more significant as the mode-1 wave moves up the slope, see
figure 6. Finally, on the flat shelf, the slaved mode-1 wave continues to develop but the
freely-propagating mode-1 wave can hardly be seen. Importantly, the amplitudes of these
mode-1 waves remain much smaller than that of the main mode-2 wave, so the energy
transfer is quite small. This can be confirmed from an analysis of the energy budget, see
figure 7. Here we use the expressions (2.32, 2.35) for the energy in each mode, consistent
with the vKdV theory. But we note that in the fully nonlinear MITgcm simulations,
for large amplitude waves this could lead to some significant errors, see Lamb (2007).
Nevertheless, mode-2 waves lose 0.68 TJ (×1012 joules) of energy over the continental
slope, of which 23.1 GJ (3.4%) is converted into mode-1 waves, and the rest of the
energy is presumably lost to the viscosity and the effects of numerical wave breaking and
turbulence.

5. From three-layer to two-layer system

The configurations in section 4 were set up so that the three-layer fluid system persisted
from deep to shallow water, onto the shelf. Thus a mode-2 wave can exist over the whole
fluid domain. Here we examine the case when the three-layer fluid system does not extend
onto the shelf, where there is instead only a two-layer fluid system. That is, the lower
layer depth h3 decreases to zero at a certain point on the slope. In this scenario a mode-2
wave cannot exist past this point and on the shelf. Hence the question examined here is
what happens to a mode-2 internal solitary wave as it propagates up the slope. The vKdV
theory cannot describe this situation beyond the point where h3 = 0 and consequently
we can only use the MITgcm results to investigate this issue.

In the deep water, following the set-up examined in section 4, we again build a three-
layer system, namely h1 = 200, h2 = 100 and h3 = 200m, but here the bottom layer
terminates on the slope, that is, there is a transition point where h3 = 0 and thereafter
it becomes a two-layer system on the remainder of the slope and further on the flat
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Figure 4. Three representative snapshots of the EXP1 at times t = 0, 22 and 30h (from top
to bottom) in a three-layer to three-layer system are illustrated. The grey line is the result from
the vKdV equation (2.7), but is transformed back to the physical space, while the dark line is
the isopycnal line ρ = ρ2 −∆ρ = 1000.8 kgm−3, which is also the interface between the upper
and middle layer, captured from the MITgcm model. As the origins of coordinates are not the
same, the MITgcm result is shifted in order to make the comparison.

shelf, which is labelled as EXP3. With this set-up, comparing with the EXP1 in section
4, the evolution scenario is similar on the slope before the bottom layer reaches 50m,
see figure 8 for the details. After that, the nonlinear coefficient µ in the vKdV equation
(2.1), see (3.9) and figure 2, which is initially positive, passes through zero, and then
keeps decreasing as the bottom layer depth h3 → 0, and finally µ → −∞, see (3.11),
where the KdV theory fails. The MITgcm results show that at first the behaviours on
the slope are similar to that in the EXP1 (figure 5) with a decay of the main mode-2
wave and generation of a small amplitude slaved mode-1 wave and an even smaller freely
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Figure 5. The MITgcm simulation of the EXP1 in a three-layer to three-layer system. The upper
panel is the mode decomposition result for mode-2 internal solitary waves at times t = 0, 10, 21
and 30h, which are shown by blue, orange, green and read solid lines respectively. The lower
four panels are results for mode-1 at the same times, and are represented by the same coloured
lines as that for mode-2. Dark dots indicate the start and the end of the linearly varying slope,
respectively. The lowest two panels are snapshots which are bounded by the corresponding dark
dashed rectangle.

propagating mode-1 wave. But now, as the transition point is approached, the mode-2
wave is extinguished, and replaced by a mode-1 wave with two components; a slowly
moving oscillatory wave train, and a small elevation bore propagating ahead up the
slope and onto the shelf. After the waves completely transmit to the two-layer system,
the mode-2 wave cannot technically exist and only mode-1 waves can survive. But note
that in the MITgcm simulations, the interfaces have a small but finite thickness, which
technically does allow mode-2 and higher modes to exist, and form an identifiable signal
in the perturbed density field of the pycnocline.

Figure 10 shows another simulation (labelled as EXP4) in which the thicknesses of
the layers are h1 = 100, h2 = 300 and h3 = 100m in the deep water, and again
the bottom layer terminates on the slope. In this case, the nonlinear coefficient µ in the
vKdV equation (2.1), see (3.9) and figure 2, is initially negative, opposite from the EXP3,
and keeps decreasing as the bottom layer depth h3 → 0, and finally µ → −∞, where
again the KdV theory fails. Note that here the initial mode-2 wave is a concave wave,



Mode-2 Internal solitary waves 15

0.0
0.4
0.8
1.2
1.6

ν,
m

−1

1e−2

1.5
2.5
3.5
4.5
5.5

δ,
s2

1e4

0.8
1.2
1.6
2.0

Q
,

kg m
s3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x, m 1e5

500
400
300
200
100

0

h,
m

Figure 6. Coefficients of the vKdV equation (2.3) for mode-1 in the EXP1. The lowest panel
is the corresponding bathymetry and density layers.
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Figure 7. The total energy En = Kn + Pn in the EXP1, calculated from the MITgcm result,
of which mode-1 (n = 1) is denoted by the blue dashed line, and mode-2 (n = 2) is represented
by the orange solid line, together with the corresponding bathymetry and density layers inset.
The dark rectangle represents the start and end of the slope respectively. Note that the time
cut-off point is selected at t = 32h, and beyond that point, the freely propagating mode-1 waves
radiate away from the calculation domain into the boundary layer, and finally vanish there.

and is not a perfect mode-2 wave in the MITgcm simulation, but has a trailing wave
train, as KdV theory predicts. Here no mode-1 waves are visible in the deep water, but
as the wave propagates up the slope, again mode-1 waves are generated, similar to those
shown in figures 5 and 8. In this case, after the termination of the three-layer system,
a mode-1 coherent wave packet forms, identifiable in the density signal of the thin, but
of finite thickness, pycnocline in the MITgcm simulation (not shown here). This wave
packet retains its structure on the shelf, but disperses, spreading out and decreasing in
amplitude. At the same time a small depression bore forms ahead of this packet, but also
disperses and decreases in amplitude as it propagates on the shelf.

These two cases, although different, show that when there is a transition from a three-
layer to a two-layer fluid system, the dynamics of the conversion of a mode-2 wave
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to mode-1 waves is overall similar. In both the EXP3 and EXP4 as the mode-2 wave
propagates up the slope it deforms and generates some small-amplitude mode-1 waves.
After the transition from a three-layer to a two-layer system, small-amplitude mode-1
waves continue and move up the slope and onto the shelf. . In the EXP3 (figure 8), when
there is a polarity change on the shelf prior to the transition to a two-layer system, the
initial mode-2 wave undergoes a polarity reversal before reaching the transition point,
and forms a system of a convex rarefaction wave on which rides a wave train of concave
waves. As the transition point is approached, this system disperses and decreases in
amplitude. Note that as h3 → 0, for the mode-2 wave R = A1/A2 → 0, see (3.6),
and the corresponding horizontal velocity field becomes concentrated in the middle and
lower layers, and is positive in the middle layer for the leading rarefaction wave, refer
to equation (2.33). Also as h3 → 0, for a mode-1 wave R → ∞, and so φ1z > 0 in the
middle layer. This implies, from the expression (2.30) with n = 1 for the generation of
a mode-1 wave from a velocity field u > 0 of a mode-2 wave that this will generate a
mode-1 wave of elevation. Thus, after the transition, the combination of a rarefaction
wave and following wave train forms into a mode-1 elevation bore, from the convex
rarefaction wave, followed by a dispersive wave train, both riding on the thin pycnocline.
As this system moves onto the shelf, the bore moves ahead of the dispersive wave train,
and evolves into a solitary wave, where we note that for this mode-1 wave µ > 0, see
(3.11). In the EXP4 (figure 10), there is no polarity reversal and the initial concave
wave decreases adiabatically in amplitude, with a trailing convex pedestal which grows
in amplitude. After the transition, this combination again forms into a mode-1 nonlinear
wave packet, but now with a leading depression bore. This is because in this case the
leading wave is concave, and the corresponding horizontal velocity field is negative in
the middle layer. Hence the mode-1 wave that is generated from this horizontal velocity
is now one of depression at its leading edge. As the system evolves onto the shelf, the
depression bore begins to break up into a nonlinear wave train, while the following wave
packet disperses and decreases in amplitude. Importantly we note that although the
leading small amplitude bore has a similar amplitude to the EXP3, compare figures 8
and 10, the following wave packet is noticeably larger in this latter case. We interpret this
difference as being due to the relatively larger amplitude and less dispersed structure of
the mode-2 wave as it approaches the transition point. The results of the energy budget
for these simulations are shown in figure 9. In EXP3, only 2.0% of the lost energy 0.92
TJ by the mode-2 waves flows into mode-1 waves, while in the EXP4, the conversion rate
can reach 15.9% (the mode-2 waves lose 4.14 TJ and 0.66 TJ is obtained by the mode-1
waves). Again, as in the EXP1, EXP2 there would seem to be a loss of energy to the
effects of wave breaking and turbulence.

6. Summary and discussion

As discussed above in the Introduction, section 1, second mode internal solitary waves
have been observed in the coastal ocean, see Liu et al. (2013); Shroyer et al. (2010);
Yang et al. (2009, 2010), and are now receiving more attention. However, in situ data of
mode-2 waves captured by a limited number of deployed moorings is not able to show
their comprehensive features, and so here we use analyses and simulations to study their
evolution. In the ocean, mode-2 waves, like their more common counterparts, mode-
1 waves, usually propagate from deep water to shallow water, and in this shoaling
process, the deformation, dispersive decay and energy exchange occurs, which may
play a significant role in mixing with biological implications. In this paper we have
presented a study on the shoaling of mode-2 internal solitary waves over a slope-shelf
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Figure 8. The MITgcm simulation of the EXP3 in a three-layer to two-layer fluid system.
The upper panel is the mode decomposition result for mode-2 internal solitary waves at times
t = 0, 10 and 21h. The lower four panels are results for mode-1 at times t = 0, 10, 21 and 30h,
and are represented by the same coloured coding as in figure 5. Dark dots indicate the start
and the end of the linearly varying slope, respectively. The last two panels are the same as the
two panels above them, that is, the results for mode-1 at times t = 21 and 30h, but with an
enhanced scale to accentuate the leading mode-1 waves.

topography, using two complementary methodologies, that is, the vKdV theory and
MITgcm simulations.

We use the simplest configuration which can support a mode-2 wave, namely a three-
layer fluid system, as then the number of fluid parameters is quite small. Given the
density field, the topography determines two scenarios. In each an initial mode-2 internal
solitary wave propagates onto a slope. In the first case, a three-layer to a three-layer
fluid system is considered on a shelf-slope configuration. Depending on the variation
of the quadratic nonlinear coefficient µ (ν), this was further classified into two cases.
When µ changes sign from positive to negative at a certain critical point on the slope,
the amplitude of the mode-2 wave decreases as it propagates up the slope. Then in the
vicinity of the critical point, the wave generates a trailing shelf of the opposite polarity.
After passing through this critical point and further onto the shelf, the incident mode-2
wave is replaced by a concave solitary wave train, riding on a convex rarefaction wave.
This case is contrasted with that when µ does not pass through zero, and there is no such
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Figure 9. The total energy En = Kn + Pn of EXP3 (left panel) and EXP4 (right panel). The
layout is the same as in figure 7, except in EXP3, one extra inset of the mode-2 internal solitary
wave propagating to a critical depth h = 353m (where the nonlinear coefficient µ = 0) is drawn
at time t = 20.5h, and thereafter the mode-1 wave is subject to an adjustment with an increase
following a decrease in energy.
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Figure 10. The MITgcm simulation of the EXP4 in a three-layer to two-layer fluid system. The
layout and coloured coding are the same as in figure 8 except that two insets are added onto
the last two panels which are snapshots bounded by the corresponding dark dashed rectangle.



Mode-2 Internal solitary waves 19

critical point, instead the wave system can move onto the shelf with a reduced, but always
positive µ, and thereafter the leading convex solitary wave continues steadily, followed
by a small amplitude solitary wave train riding on a concave pedestal. Both these cases
are analogous to the case of a mode-1 internal solitary wave propagating up a slope, see
Grimshaw (2006); Grimshaw et al. (2007, 2010) for instance. The MITgcm simulations
have a good agreement with the vKdV theory, both qualitatively and quantitatively.
Importantly the MITgcm simulation can also capture the generation of mode-1 waves,
which is, by construction, beyond the capability of the vKdV theory. The implementation
of a mode decomposition technique facilitates the the identification of a small energy
transfer from the mode-2 wave to mode-1 waves, mostly slaved to the mode-2 wave, but
with a small component propagating ahead of the mode-2 wave.

The other set-up we have considered is when the bottom layer vanishes at a transition
point on the slope, where h3 = 0, thereby forming a three-layer to two-layer fluid system.
Since the vKdV theory eliminates the possibility of the coupling of mode-2 waves and
mode-1 waves, this problem can only be examined using the MITgcm simulations. As
expected, the behaviour of the mode-2 wave in the three-layer system is quite similar
to that described above, that is, characterised by a decreasing amplitude of the mode-2
wave, a train of the slaved mode-1 waves and some smaller freely propagating mode-1
waves ahead. Then after the transition from a three-layer to a two-layer system, only
small-amplitude mode-1 waves continue up the slope and onto the shelf. Nevertheless,
the configurations in a three-layer system have a key role in the evolution of the waves
even after they propagate into a two-layer system. If a polarity reversal occurs for the
mode-2 wave before the transition, then after passing through that critical point (where
µ = 0), a system of a convex rarefaction wave carrying a solitary wave train is formed,
see figure 3. Afterwards this combination transmits to a two-layer system, where mode-2
waves cannot technically be supported and only a mode-1 wave can exist. In the two-
layer system, the original leading convex wave fully breaks, and part of the energy goes
to a mode-1 bore, which further develops into a elevation mode-1 internal solitary wave,
followed by a dispersive wave train. For the case without a polarity change before the
transition, qualitatively there is similar dynamics. But, it is noticeable that, after the
transition from a three-layer system to a two-layer system, the consequent following
wave train is more organised, and has a relatively large amplitude, which indicates a
much higher energy transfer rate, 15.9% v.s 2.0% as revealed from the energy budget.

As we noted in the Introduction, section 1, Guo & Chen (2012) used the MITgcm
model to simulate a large amplitude second mode internal solitary wave propagating
over a slope-shelf topography, with a setup close to a realistic situation in the South
China Sea. Their model had a continuous stratification, and allowed mode-2 waves to
exist at all depths, and in that respect is comparable with our three-layer to three-
layer configuration. Also, their incident mode-2 wave was a concave wave with a polarity
change on the slope just before the shelf break. Nevertheless, there are some similarities
with the present results for our case of a three-layer to three-layer configuration with a
polarity change, although they did not perform, as here, a quantitative modal analysis
with a theoretical explanation. Their results show the incident mode-2 wave deforming
at the polarity change as expected into a mode-2 concave rarefaction wave and trailing
wave packet, together with the generation of a very small amplitude mode-1 wave, see
their figure 7 for instance. The only other related analytical work on shoaling mode-2
waves that we are aware of is the recent numerical study by Terletska et al. (2016) of the
impact of a mode-2 internal solitary wave onto a vertical step. As in the present study,
the fluid configuration was three-layer in the deep water before the step, and also in their
study was also three-layer after the step. But the essential difference from the present
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study in that there was no shoaling region over a slope, and so the transformation of the
incident mode-2 wave at the step is abrupt. Consequently, there is some reflection, but
otherwise there is some similarity with our study, in that it was found that on the shelf
the incident mode-2 internal solitary wave broke up into nonlinear mode-2 wave packets
and a mode-1 wave either slaved or propagating ahead. However, we note that in their
simulations the waves generated on the shelf were quite short relative to the lower layer
depth, and hence it was not clear that the long wave theory used here could be applied.

In conclusion, these studies and our present study suggest that mode-2 internal solitary
waves propagate up a slope in much the same manner as mode-1 internal solitary
waves, as one would expect since each can be described by a vKdV equation, and the
main difference is that in the process, some small but significant mode-1 waves can
be generated, presenting a rather complex wave field on the shelf. Importantly, this
topographic generation of long wavelength mode-1 waves is essentially different from the
generation of short wavelength mode-1 waves, which can occur on a constant depth and
is due to a long-short wave resonance, see Akylas & Grimshaw (1992). However, such co-
propagating mode-1 waves are typically exponentially small in the wave amplitude, and
we suggest that, unlike the present topographically generated mode-1 waves, are unlikely
to be readily observable. Finally, it is pertinent here to note that Stastna & Peltier
(2005) found in numerical simulations that mode-2 waves are more likely to decay to
wave breaking than by mode-1 radiation.
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