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ABSTRACT 

We propose a measure of the effects of monetary policy based on the distribution of ex-post 
inflation forecast uncertainty. We argue that the difference between the distributions of the 
ex-ante and ex-post uncertainties reflects the impact of monetary policy decisions. Using the 
New Keynesian model with imperfect information and a monetary policy rule, we derive a 
proxy for ex-ante inflation uncertainty called quasi ex-ante forecast uncertainty, which is to 
an extent free of the effects of monetary policy decisions. Further, we introduce the 
compound strength measure of monetary policy and the uncertainty ratio, which 
approximates the impact that monetary policy has on reducing inflation forecast uncertainty. 
Empirical results show that the compound strength is non-linearly related to measures of 
bank independence and the greatest policy effect in reducing inflation forecast uncertainty 
occurs for countries which conduct either strict or clandestine inflation targeting. 
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1. INTRODUCTION  
The concept of forecast uncertainty is usually understood in either an ex-ante or an ex-post 
sense (see Clements, 2014; Clements and Galvão, 2014). Ex-ante uncertainty is the variance 
of an unpredictable error in a forecast formulated at a given time, say t h  for time t, or 
alternatively it is an explicitly formulated statement by expert forecasters about such 
uncertainty. The ex-post uncertainty is measurable at time t by the variance of forecast errors, 
where the forecast was made at time t h . Under conditions of (a) stationarity, (b) ergodicity 
of the forecast errors, (c) perfect model specification, (d) the absence of structural breaks in 
the period of the forecast, and (e) independence, unbiasedness and confidence neutrality in 
the experts’ forecasts, the ex-post and ex-ante uncertainties should be identical. However, it 
has often been observed that they are not the same in practice, even when conditions (a)-(d) 
are likely to hold (see e.g. Dowd, 2007). Condition (e) is particularly easy to question. The 
criticism concentrates mainly on the outcomes of various surveys of forecasters, like the 
Surveys of Professional Forecasters in Europe and the US, various consensus forecasts, and 
others. Indeed it is often noted that the experts participating in such pools can be inattentive 
and fail to update their forecasts, may disagree when updating, and do not always learn from 
past experience (Andrade and Le Bihan, 2013). Furthermore, forecasts in a panel may be 
highly correlated (Makarova, 2014), and the constitution of panels of forecasters can 
frequently change, depending on the phase of the business cycle (López-Pérez, 2016). 
Additionally, psychological bias, overconfidence and underconfidence may play a role when 
probabilistic and interval forecasts are being formulated (Soll and Klayman, 2004; Hansson, 
Juslin and Winman, 2008; Clements, 2014). In a cross-country comparison, an additional 
important drawback seems to be that panels of forecasts across countries are often 
incomplete, unavailable or not comparable because the definitions of the aggregates are 
different, the timing of forecasts may differ, and so on (for a critique and development see 
Lahiri and Sheng, 2010; Lahiri, Peng and Sheng, 2014; and Ozturk and Sheng, forthcoming).  

It is evidently easier and less expensive to compute ex-post uncertainty rather than ex-ante 
uncertainty. Inference in ex-post uncertainty does not require access to a panel of unbiased, 
independently formulated forecasts. Similar forecasting models can be applied to different 
countries, making international comparison feasible. 

Under conditions (a)-(d), ex-post uncertainty could be a reasonable proxy for ex-ante 
uncertainty, but only if it is not affected by monetary policy. We assume here that monetary 
decisions follow a policy rule. If the application of a monetary policy rule in an imperfect 
information economy is to result in expectational stability, the agents must know this rule 
(see Orphanides and Williams, 2005; and Preston, 2006). However, they might not 
necessarily know the values of the forecasts used as instruments by the central bankers, who 
have access to some additional information. Consequently, if such a monetary policy is 
successful in minimising the observed volatility of inflation, it might well be successful in 
reducing forecast uncertainty. In this case, the distributions of the uncertainty originally 
expected by the agents and the evaluated ex-post uncertainty will be different, with the ex-
post uncertainty having a smaller dispersion.  
In fact the empirical distribution of the ex-post uncertainty might be affected by numerous 
other factors which are not related to monetary policy. In order to clean the distribution of the 
influence of such factors to make part of the uncertainty predictable from the past, we 
introduce the concept of policy-prone ex-post forecast uncertainty of inflation. This is based 
on ex-post forecast errors (similar to those in Clements, 2014) where the predictable element 
of variability has been removed. 
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The effects of monetary policy can be identified by fitting the weighted skew-normal 
distribution (WSN) introduced in Section 3, to observations on the policy-prone uncertainty. 
The parameters of this distribution can be interpreted in terms of an outcome of monetary 
policy. This can then be used to formulate a measure of the compound strength of a policy 
resulting in reducing inflation uncertainty. Next, we derive an approximation of ex-ante 
uncertainty by partially removing the expected average effects of the monetary policy on the 
distribution of forecast errors. We call this the quasi ex-ante uncertainty.  
The further structure of the paper is as follows. In Section 2 we outline the New Keynesian 
model with imperfect information and a monetary policy rule based on the forecasts of 
central bankers (CB). Section 3 explains why we treat CB forecasts as unobservable and 
described by a random variable, which, in turn, constitutes a core part of the skew-normal 
distribution described later in this section. Section 4 discusses the settings of the estimation. 
Section 5 introduces the concept of quasi ex-ante forecast uncertainty and applies it to 
construct a measure of the monetary policy effects named the uncertainty ratio. Details and 
derivations are given in the Supplementary Material, Part 1. In Section 6 the main empirical 
results are given. It is shown that for 38 countries the compound strength relates to the 
independence and transparency of the central bank in a nonlinear way, as it relates positively 
if the compound strength is smaller than it is for the maximum level of the uncertainty ratio, 
and negatively otherwise. The concept of quasi ex-ante uncertainty is used to evaluate the 
monetary policy effects for the BRICS countries (Brazil, Russia, India, China and South 
Africa), the UK and the US. Section 7 gives the summary of the stability and robustness 
analysis, based on the detailed results given in the Supplementary Material, Part 2, and 
Section 8 concludes. The paper contains Appendix with the description of data. 
 

2. THEORETICAL BACKGROUND 
We have grounded our approach within the settings of the New Keynesian supply and 
demand model with imperfect information. In the description below, we closely follow the 
discussion by Preston (2006) of the efficiency of a monetary policy based on information 
available to central bankers and not the agents (see also Eusepi and Preston, 2016). The 
aggregate structural supply/demand equations which constitute the monetary transmission 
mechanism, are:  

 1 1 1,(1 ) ( )T t
t t T T T T

T t
g E b b g s i  




 


          ;     (1) 

 1 1 2,( ) (1 )T t
t t t T T T

T t
g E ab abg a b    




 


          ,    (2) 

where tg  denotes log-deviations from the steady state, 0 1b   is a discount factor, 0s   is 
the intertemporal elasticity of substitution, Ti  is nominal interest rate, 1T   is the inflation 
rate at time 1T  , 0   is the slope of a generalised New-Keynesian Phillips curve, (1 )a  
is the Calvo probability, which is the probability that a firm will be able to revise its prices at 
time t, and 1,T  and 2,T  are exogenous disturbances. The notation tE  stands for the averaged 
expectations of agents based on possibly imperfect information, taken at time t. The model 
results from the aggregation of the approximation of the optimal decision rules for 
households and firms described in Woodford (2003) among others; for the derivation see 
Preston (2005). 
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The intertemporal loss function minimised by the central bank is given by: 

  0

0
0

t t
t t

t t

W E b L






   , 

where 
0t

E  is rational expectations at time 0t , and the period loss function tL  is defined as: 

  2 2
t t tL g   ,   0     . 

We assume that the following main assumptions hold: 
[1] the central bank aims to stabilise the variation of inflation in the time-invariant 

policy (see Woodford, 2003, chapter 7); 
[2] following Preston (2006), the policy rule is: 

*
1 1 1 2 1 1( ) ( )CB CB

t t t t t t t t t ti i E E E g E g    
           ,    (3) 

where CB
tE  is a forecast the central bank responds to, and ti

 , *
t  and tg   denote 

the optimal time-invariant paths of ti , t  and tg ; 
[3] agents know the policy rule (3); 
[4] agents conduct adaptive linear least-squares learning, as in Evans and 

Honkapohja (1994); 

[5] the Taylor principle: 1 2( 1) (1 )b      holds. 

Preston (2006) shows in Proposition 3 that under assumptions [1]-[4], [5] constitutes the 
necessary and sufficient condition for expectational stability (E-Stability). For a similar 
approach and result see Orphanides and Williams (2005).  

In the stochastic model derived further in Section 3 we are assuming that the economy is 
described by (1)-(2) and the assumptions [1]-[5] hold. In particular, our settings will be 
directly related to the implementation of the policy rule (3) as a fundamental for the statistical 
distribution explaining the development of the policy-prone uncertainty. 

 
3. EX-POST INFLATION FORECAST UNCERTAINTY AND ITS DISTRIBUTION  

In this section we consider how monetary policy conducted using policy rule (3) affects the 
distribution of inflation forecast uncertainty. As we limit our interest to a univariate problem 
of inflation uncertainty, we ignore the effect of the second component of the right-hand side 
of (3), which is related to output. We call the forecast uncertainty for a particular horizon 
policy-prone if it is unforecastable in the first and second moments using public imperfect 
knowledge. It might, however, be partly forecastable by the CB forecasters. For each forecast 
horizon, the policy-prone uncertainty is a random variable denoted by U . 

Let us initially consider the case where monetary policy is either absent or is fully ineffective. 
In such case, U  coincides with a random variable X . Assuming normality, we have 

2~ ( , )X XU X N      .        (4) 

However, if the conditions [1]-[5] hold, monetary policy is conducted in accordance with rule 
(3), and might be effective, at least to some extent. There is some evidence that this rule is 
often implemented in practice by central banks. Hubert (2015) uses data for the US to show 
that the Federal Open Market Committee (FOMC) bases its decisions on different 
information from that used for forming the baseline forecast. He also argues that the forecast 
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information used by FOMC might be orthogonal to that used by other, independent, 
forecasters. Supporting theory can be found in Baeriswyl and Cornand (2010) and an 
anthropological discussion in Holmes (2014). Similar conclusions can be drawn from Nunes 
(2013). However, it does not appear that the official forecasts supplied by the forecasting 
divisions of central banks to the monetary policy committees constitute a good approximation 
of 1

CB
t tE   . In fact, the decision makers consider various additional quantitative and 

qualitative factors or forecasts of various sources and strengths, possibly including some 
anecdotal and random evidence. Moreover, Charemza and Ladley (2016) show empirically 
that the official CB forecasts are often significantly biased towards the target and, as such, do 
not constitute valid warning signals, particularly for longer forecast periods.  
As the CB official forecasts are not useful here, we treat the first component in (3), 

*
1 1

CB
t t t tE E   , as not observable. To incorporate the effects of the monetary policy into the 

distribution of U , we assume that *
1 1

CB
t t t tE E    is a realisation of a normally distributed 

random variable Y  with mean Y  and variance 2
Y :  

2~ ( , )Y YY N     .        (5) 

If the CB forecasters are not completely ignorant, they might have some relevant knowledge 
of X  in (4). In this case, there should be a positive correlation between Y  and X . The 
higher this correlation is, the more competent the CB forecasters are, as it means they can 
explain more of the variability of X .  

Next, we assume that monetary policy is costly, so that it pays to issue a monetary policy 
signal only if the forecast signal to the central bank from (3) is clear as it is sufficiently large; 
otherwise the policy may be too expensive, ineffective or even counter-efficient (see e.g. 
Morris and Shin, 2002; Charemza and Ladley, 2016). In our settings, it is not necessary to 
define monetary policy signals solely as changes in the CB interest rate. Following Hubert 
(2015) we accept that the policy effects are transmitted to the economy not only through 
changes in the nominal interest rate, but also by various formal and informal communication 
and signalling of the intentions and expectations of the policy decision makers. Hence we 
assume that a policy action is undertaken if the value of such a forecast signal is above or 
below certain thresholds at which the marginal cost of issuing a signal equals its expected 
benefit. As (3) makes these thresholds binding for *

1 1
CB
t t t tE E   , they should not be 

confused with inflation targeting bands or other published quantitative indicators for the level 
of inflation.  

Finally, using (4) and (5) and the policy rule with clear signals we formulate the following 
process for explaining the distribution of the policy-prone uncertainty U  under the 
assumptions [1]-[5]:  

Y m Y kU X Y I Y I          ,       (6) 

2

2
( , ) ~ ,X X X Y

Y X Y Y

X Y N
   
   

   
        

 ,      (7) 

where components X  and Y  are introduced in (4) and (5),  I   is the indicator function of a 

set   , , , , ,X Y k m      , 2 2,X Y   , and 0 1  . We call the distribution of U  

the weighted skew-normal and denote it as  ,
,~ WSN ( , , , , )X Y

X Y
U m k 

     .  
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The parameter   is the correlation coefficient between X  and Y  and represents the ability 
of the CB forecasters in explaining X . The variance of Y  cannot practically be greater than 
the variance of X , as the overall expertise of CB forecasters cannot exceed the overall 
uncertainty. So in order to simplify the model it is reasonable to analyse (6)-(7) for the 
marginal case assuming that the variances of X and Y are identical, meaning 2 2 2

X Y    . 
Additionally, we can set 0X Y   , which results from the assumption that the forecasts 

*
1t tE    are ex-ante unbiased. 

According to (6) and (7) and under the additional assumptions about the equality of variances 
of X and Y, 20~ ( , )U X N   if 0   . This suggests the interpretation of   and   in 
the light of actions and outcomes of some policy that affects inflation. If the policy is to be 
effective in reducing inflation uncertainty, the parameters   and   should be negative.  

The parameters m  and k  denote the upper and lower signal thresholds. A breach of these 
thresholds means that a CB forecast signal is clear and that a monetary policy decision needs 
to be taken: an anti-inflationary decision if m  is breached from below or a pro-inflationary 
one if k  is breached from above.  

For 0X Y    and X Y    , we have six unknown parameters in the WSN: 
 0,0

,~ WSN ( , , , , )U m k     . The probability density function (pdf) of a random variable that 
follows this distribution with 1   is given by: 

 

   0,0
1,1WSN ( , , , , ) 2 2

2 2

1 1
(1 ) (1 )

( ) ,
1 1

m k

B t kAB t mAt tf t
A A A AA A

m t k tt

  
  

    

 
 

 
 

                             
            

         
             (8) 

where  and  denote the density and cumulative distribution functions of the standard 
normal distribution respectively, 21 2A     , and B    . The derivation of the pdf 
in (8) is shown in the Supplementary Material, Part 1.1, alongside the derivation of the 
moment generating function and other properties. 

It can be shown that if 2    and 0m    in (6)-(7), the distribution of U coincides 
with the Azzalini (1985, 1986) skew-normal SN( )  distribution with a pdf of 

SN ( ; ) 2 ( ) ( )f t t t    , where 
21










. It is shown in the Supplementary Material, 

Part 1.1, that the pdf of the weighted skew-normal distribution  0,0
1,1WSN ( , , , , )m k    can be 

interpreted as a weighted sum of the pdf’s of two Azzalini-type skew-normal densities with 

different 's  and a pdf of the conditional distribution X Yk m
 

  ; hence the name for the 

distribution. It immediately follows from (6) and (7) that the WSN distribution is symmetric 
only if 0    or if k m   and   ; otherwise, it is asymmetric.  
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4. SETTINGS FOR ESTIMATION 

In order to obtain observations on U  it is necessary to estimate the expected optimal time-
invariant path of inflation *

1t tE   , compute ex-post forecast errors and then adjust them using 
forecasts of past-dependent second moments. The experience of inflation forecasting in the 
US suggests single-equation models have some predictive advantage over multivariate 
models, with evidence usually favouring autoregressive models (Aron and Muellbauer, 2013; 
Clark and Ravazzolo, 2015) and unobserved components models (Stock and Watson, 2007, 
2010). The advantage in using simple univariate models rather than more complex models in 
forecasting for sample sizes smaller than 500 has been confirmed by Constantini and Kunst 
(2011) and Mitchell, Robertson, and Wright (2015). The additional complication here is in 
deciding about the type of volatility. Results obtained for the US by Groen, Paap and 
Ravazzolo (2013), Clark (2011) and Eisenstat and Strachan (2015) show that stochastic 
volatility models are slightly superior to the more conventional autoregressive integrated 
moving average models with generalised autoregressive conditional heteroscedasticity 
(ARIMA-GARCH). However, there is some evidence for European countries, though it is 
weak, that ARIMA-GARCH models are superior to other models (see e.g. Bjørnland et al., 
2012; Buelens, 2012). The forecasts of all these models can most probably be beaten by the 
forecasts derived through model averaging (Koop and Korobilis, 2012). Given such vastly 
different conclusions, we have decided for the sake of simplicity and transparency to resort to 
simple ARIMA-GARCH predictions. 

Consequently, we recover observations on U  by estimating the ARIMA-GARCH model in 
the pseudo out-of-sample way (see Stock and Watson, 2007), that is by computing 
predictions recursively within the observed sample, adding one observation at a time (see 
Appendix for details), re-estimating the model, and then computing forecast errors and 
forecast conditional standard deviations: 

| | |ˆ ˆ ˆ( ) ( / )t t h t t t h h t t hu          , 0 0, 1 , ... ,t t t T h   , min min, 1...,h h h H   , (9) 

where h  is the forecast horizon, |ˆt t h   is the ARIMA-GARCH baseline point forecast of 
inflation recorded at time t , obtained by using information available at time t h , and |ˆ t t h   
and ˆh  are respectively the conditional and unconditional standard deviations of the h-step 
ahead forecast error |ˆt t t h   . In first recursion the sample is from 1 to 0t ; T  is the total 
sample size, so that the last sample for which the estimation is performed for a particular 
horizon h  is from 1 to  T h ; minh  is the minimal forecast horizon for identification of the 
policy-prone uncertainty and H  is the maximal forecast horizon. In order to retrieve 
observations on the policy-prone uncertainty, we need to remove the uncertainty which is 
forecastable using agent’s historical knowledge. This is the reason for scaling forecast errors 
in (9) by |ˆ ˆ/h t t h   . 

After observations on the policy-prone uncertainty |t t hu   are recovered as in (9), they are used 
for estimating the WSN parameters. It is known that the maximum likelihood estimation 
(MLE) of the parameters of various types of skew-normal distribution is often numerically 
awkward, even though the closed form expression of the density functions makes it formally 
straightforward since there are possible bias and convergence problems (see e.g. Pewsey, 
2000; Monti, 2003). As we also encountered such problems while trying to use the MLE for 
estimating WSN, we have decided to apply minimum distance estimators (MDEs) rather than 
the MLE. Under some general conditions, the MDE is asymptotically efficient and 



8 
 

asymptotically equivalent to the maximum likelihood estimators (see Basu, Shioya and Park, 
2011).  

The minimum distance criteria can be defined in different ways. To estimate the WSN 
parameters 6{ , , , , , }m k         (some of which are later fixed and restricted in 
order to reduce dimensionality; see Section 6.1) we have used the Hellinger twice squared 
distance criterion (see Basu, Shioya and Park, 2011): 

1/2 1/2 2

1
( , ) 2 [ ( ) ( ) ]

m

n n
i

HD d f d i f i 


    ,     (10) 

where n is the sample size, m is the number of disjoint intervals, ( )nd i  is the empirical 
frequency of data falling into the ith interval and ( )f i  is the corresponding theoretical 
probability for this interval. The properties of estimators based on Hellinger distances have 
been well researched in the context of other skew-normal distributions (see Greco, 2011), and 
it is known that the estimates are reasonably robust to the presence of outliers.  

We approximate ( )f i  by simulation. Details of this procedure, called the simulated 
minimum distance estimator, SMDE, are given in Charemza et al. (2012); a similar approach 
is used by Dominicy and Veredas (2013). The SMDE estimator of   applied here can be 
defined as: 

  , , 1
ˆ arg min ( ,

NneplSMDE
n n N r r

M HD d f





   , 

where: 
nd   the empirical density of a sample of size n , as in (10); 

, ,N rf  an approximation of theoretical pdf, f , obtained by generating a large 
random sample of size N (N was set to 10,001 in the empirical analysis 
described in Section 6). In order to avoid the problem of the ‘noisy’ criterion 
function, empirical approximation of the theoretical pdf is replicated Nrepl 
times, where 1,2,...,r Nrepl ;  

M   the aggregation operator, which is the median from Nrepl  runs. 

The entire estimation process is numerically quite expensive. As the computations have to be 
made recursively, for a large number of countries and for different specifications of the 
model in the stability and robustness analysis (see Section 7) the computational burden can be 
cumbersome. Because of that we have decided to fix some of the parameters (discussed in 
Section 6.1). 
 

5. MEASURES OF MONETARY POLICY EFFECTS 
In order to formulate a measure which reflects the impact of the monetary policy on inflation 
forecast uncertainty, we introduce the concept of quasi ex-ante uncertainty as an 
approximation of the ex-ante uncertainty. It is defined as:  

( | )V U E X Y U Y       . 

The quasi ex-ante uncertainty, V , approximates the ex-post uncertainty; it does not contain 
the elements known to CB forecasters which might be the cause of a monetary policy action. 
In the absence of such elements, it is equal to U .  
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If  (0,0)
( , )~ WSN , , , ,U m k     , the distribution of V also belongs to the WSN family as 

   (0,0)
(1,1)2 2 2

1 ~ WSN , , , ,0
1 1 1

m kV  
    

 
 
    

   . 

The standard deviation of V, denoted further as V , can be interpreted as a proxy measure for 
the uncertainty which is fully unpredictable from the past and by the CB forecasters. 
Comparison between the root mean square error of U, 2var( ) ( )URMSE U E U  , and V  
could provide an idea of the influence that policy decisions might have on the distribution of 
inflation forecast errors. 

Although V is not observable, it is possible to compute the ratio of 2
V  to the squares of 

URMSE  by evaluating the uncertainty ratio UR using the estimated parameters of WSN, as:  

*

2*2

2 2

/ 2 ( )
UR 1 2

def m kV

U U

D D E U
RMSE RMSE

  


           , 

where /m m  , /k k  and 1U U


   so that  0,0*
1,1~ WSN ( , , / , / , )U m k     , with 

( ) ( ) ( )E U m k        , and  

2 ( ) 1 ( ) ( )a
a

D t t dt a a a 


     .      (11) 

In an unbiased case, which is where    and k m  , UR is equal to unity if 0   or 
 2 ( )m kD D     . For the derivation see the Supplementary Material, Part 1.2. Note that 

UR does not depend on  , but rather on the ratios /m m   and /k k  .  

Deviations of UR from unity can be interpreted as the effects of CB forecasts (through  ) 
and the strength of monetary policy (through m kD D  ), where   and   reflect the 
marginal intensity of monetary policy actions, and mD  and kD  defined in (11) reflect the 
frequency of such actions. Let us define the compound strength of monetary policy as: 

| | | |m kS D D   .       (12) 

Figure 1 plots UR for the fully symmetric case, where 0   , 2 1  , 1m k   , and 
there are different values of  , against 1/S D   , representing the normalised strength 
of the policy. When the monetary policy has very low strength, the UR is smaller than one 
(the yellow area on the plot) and it decreases as   increases. In this case, the variance of U 
increases relative to the variance of V, meaning the policy action actually increases 
uncertainty. Alternatively, if the strength of the monetary policy increases to the point where 
UR peaks, inflation uncertainty represented by URMSE  decreases relative to the variance of 
V. In this case, the monetary policy is effective in the sense that it results in reduced inflation 
uncertainty.  

It is shown in the Supplementary Material, Part 1.2, that the maximum of UR for a given   
and m k   is  
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max 2 2 2

4UR ( ) 1
(1 4 ) / 2 2(1 ) / / (4 )D D D D


  

 
   

   , 

where m kD D D  , achieved when  2 28 (1 ) / (4 )D D          . Therefore, the 

compound strength S defined by (12) that maximises the ratio of the ex-post to ex-ante 
uncertainty is  

 2 2
max ( ) 8 (1 ) / 2S D        . 

 

Figure 1: UR for the case where 2 1  ,   , 1m k    and for different values of  . Values of 
UR smaller than one are in a lighter shade (yellow). 

 

 

The ratio of UR to maxUR , called the normalised uncertainty ratio, NUR, can be interpreted 
as a compound, albeit symptomatic, measure of the effects of monetary policy. If NUR=1, 
then maxUR UR  and the parameters   and   are set at such levels that the ex-post 
uncertainty expressed by 2

URMSE  cannot be reduced any further by changing   and  . The 
smaller NUR is, the greater the potential room for improvement might be in using the 
forecastable elements in X to reduce the uncertainty. 
 

6. EMPIRICAL RESULTS 
To assess the practical relevance of UR and confirm the rationale of the assumptions 
imposed, we use data on inflation forecast errors for 38 countries, which are 32 OECD 
countries, 5 BRICS countries (Brazil, Russia, India, China and South Africa), and Indonesia. 
The series for CPI inflation are of different lengths for the different countries and all end in 
March 2017. The longest series, starting in January 1949, is for Canada with 807 
observations, and the two shortest are for Estonia with 231 observations, and for China with 
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255 observations.1 It is conjectured that if these countries conducted an effective monetary 
policy of some sort, it might affect the distribution of their policy-prone uncertainties. 
Although members of the European Monetary Union have not had autonomous monetary 
policies since the creation of the Eurozone, the decisions of the European Central Bank still 
influence inflation uncertainty in individual countries. In our approach, it is not relevant how 
the monetary policy decisions are made, as their effect on uncertainties is what matters. 

Since 2013, the long-lasting downward trend in inflation in most of the countries in the group 
analysed here has also been accompanied by a decline in the dispersion in inflation rates. This 
might affect the statistical properties of the estimates. Therefore, to account for the effects of 
the recent stabilisation of global inflation, the computations have also been performed on a 
shorter sample, ending for all the countries in February 2013.  
The aims of the empirical part are to: 

(i) compute and interpret URs and NURs; 
(ii) test the rationale of URs and the compound strength by showing their relationships 

with measures of central bank independence and transparency; 
(iii) evaluate and discuss the aggregated forecast uncertainty measures. 

 
 6.1. Data on policy-prone uncertainty  

Observations on U  have been recovered by computing the uncertainties defined by (9) 
recursively using as |ˆt t h   the ARIMA-GARCH(1,1) h-steps ahead point forecasts of the 
mean of inflation, and forecasts of the conditional and unconditional standard deviations of 
the ex-post forecast errors.2  
The orders of integration of the series have initially been identified using a battery of 28 tests, 
which are the traditional GLS-detrended and optimal point unit root tests (see Ng and Perron, 
2001, and Perron and Qu, 2007), and tests allowing for the presence of structural breaks 
under the null and alternative (see Carrion-i-Silvestre, Kim and Perron, 2009). These tests 
gave results that are overwhelmingly consistent with the automated differencing and the 
selection of lag polynomials, which is based on minimisation of the Bayesian Information 
Criteria (BIC). Models have been estimated by the quasi-maximum likelihood (QML) 
method.3 Forecasts have been made for up to 24 periods ahead, meaning 24 months. For each 
country, we have started the recursions using the first 20% of observations if this totals more 
than 80 observations. Otherwise, we have used the first 80 observations. These forecasts have 
not been adjusted or manipulated. As a result, we have obtained a reasonably long series of 
forecasts for different forecast horizons, and then forecast errors, with the maximum number 
of sample observations for Canada at 663, and the smallest for Estonia at 231.  

Next, we have used |t t hu   to estimate the parameters of the WSN distribution defined by 
equations (6) and (7) for each forecast horizon. To reduce the computational burden we have 

                                                             
1 The raw CPI data can be downloaded from http://stats.oecd.org/. A full list of countries together with the 
details of data spans for individual countries is given in Appendix.  
2 For the sake of comparison, we have also repeated the computations for the forecast errors not scaled by the 

conditional standard errors. The results are similar to those reported here. 
3 For consistency and robustness of the QML method with asymmetric and non-normally distributed errors see 

e.g. Francq and Zakoïan (2012). The computations were made in GAUSS, mainly using the ALICE High 
Performance Computing Facility at the University of Leicester. The FANPAC package, by Ronald 
Schoenberg, has been adopted for estimation and forecasting of the GARCH model.  

http://stats.oecd.org/.
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assumed that the decision thresholds are fixed relative to  and are identical for all countries 
so that / / 1m m k k       , meaning the thresholds are equal to one standard 
deviation of X  and Y , and that the correlation coefficient  = 0.75, so that the level of 
knowledge of the CB forecasters is reasonably high. This leaves us with three parameters to 
be estimated: , β and . The computations have also been repeated for different thresholds 
and correlation coefficients and the results seem to be relatively robust to changes in these 
parameters. 

 
6.2. Uncertainty ratios and central bank efficiency 

The rationale of the concepts of UR and compound strength defined in Section 5 can be 
confirmed if there is indeed a nonlinear relationship between them and some externally 
developed measures of the efficiency of central banks. If the findings illustrated in Figure 1 
are to be supported by data, there should be a positive relationship between strength and the 
efficiency of the central banks as expressed by the indicators for independence and 
transparency, but only up to the optimal point given by max ( )S  . Beyond this point, the 
compound strength is too big, and has an adverse influence on the policy effects (for a 
theoretical background see Amato, Morris and Shin, 2002; for empirical observations see 
Blinder et al., 2008).  
We have used four measures of central bank independence introduced by Dincer and 
Eichengreen (2014) and have tested for possible relationships between them and URs and the 
compound strength of policy. These measures are LVAU, LVAW, CBIU and CBIW, and are 
based on the methodology by Cukierman, Webb and Neyapti (1992)4. They are the weighted 
and unweighted averages of a range of independence indicators computed from disaggregated 
data up to 2010 (see also Bodea and Hicks, 2015). 
Additionally, we have used the Dincer and Eichengreen measure of the transparency of 
central banks, denoted here as TRM, which is not correlated with the measures of 
independence. To maintain approximate time correspondence, we have decided to use the 
URs and compound strengths computed with a shorter data series finishing in February 2013 
rather than with the data up to March 2017. The Spearman’s rank correlation coefficient 
between the measures of independence for the banks and the URs for the 23 countries with 
independent central banks, taking Germany as the main euro country, computed separately 
for each forecast horizon, are predominantly negative and insignificant.5 However, we have 
found some mild evidence of a nonlinear relationship between the URs and the measures of 
central bank independence, illustrated by Figure 2.  
Figure 2 plots the Dincer and Eichengreen (2014) LVAW against the compound strengths on 
the right vertical axis, and against the theoretical URs (that is, a slice of Figure 1 at 0.75  ) 
on the left vertical axis.  

In the settings used, maxUR  corresponds to max (0.75) 1.08S  , as in Figure 1. There are 13 
empirical URs with a compound strength greater than 1.08, and only 10 URs with smaller 
strength. Below the point of 1.08, the URs increase with the increase in the compound 

                                                             
4 LVAU and LVAW are central bank independence measures computed by Dincer and Eichengreen (2014), 
using the original Cukierman, Webb and Neyapti (1992) methodology. They are, respectively, unweighted and 
weighted, averages over a number of aggregates describing bank independence. CBIU and CBIV are analogous 
measures, also obtained by Dincer and Eichengreen (2014), using a modified methodology. For a critique and 
analysis of drawbacks of measures of the independence of central banks see Cargill (2013). 
5 In Appendix, countries with independent central banks are in boldface.  
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strength, and they decrease after that point, in line with the theoretical findings depicted in 
Figure 1. As expected, there is a clear positive correlation between the measures of central 
bank independence and the compound strength for the points below the threshold of 1.08 and 
a negative correlation for the points above this threshold. 

The findings above can be summarised in Table 2 for all forecast horizons in the form of a 
simple split test. In this test, we claim that we have a weak confirmation of the split 
relationship between the compound strength and the measures of central bank independence 
if, for a given forecast horizon, the coefficient of regression of a particular measure of 
independence or transparency on the compound strength is positive for compound strength 
below  and negative otherwise. We claim to have a semi-strong confirmation if one of these 
coefficients is significant at the 10% significance level, and a strong confirmation if both 
regression coefficients are significant. We have applied it for the LVAU, LVAW, CBIU, 
CBIV and TRM measures. 
 

Figure 2 URs, compound strength and central bank efficiency 

  
Legend: Continuous line represent UR’s for 0.75   (see Figure 1), measured at the left-hand side vertical 
axis. Dots represent values of LVAW index, measured on the right-hand side vertical axis, against the 
compound strength. The dotted lines represent least-squares regression lines, fitted separately to points to the 
left and to the right of the compound strength which corresponds to the maximal UR. 

 
Table 2 shows the number of forecast horizons, out of 24, where there is a positive result for 
the weak, semi-strong and strong tests. The tests have been computed in three versions: for 
the full sample of 38 countries; for 23 countries with independent central banks, so excluding 
the euro countries; and for 22 countries, where South Africa has been additionally removed 
as an outlier, as it is possible that some data for South Africa might have been misrecorded. 
The results confirm to an extent the existence of the relationship, as the signs of the 
regression coefficients are consistent with those expected in 17 forecast horizons out of 24 for 
all the measures of independence and transparency if the sample of all 38 countries is used, 
for 19-21 cases for LVAU, LVAW CBIU and CBIW, and for 15 cases for TRM for samples 
of 23 and 22 countries. As most of the regression coefficients are statistically insignificant 
and the data sample is small, this confirmation is, however, quite weak. Nevertheless, it 
provides some evidence that the independence of the central bank contributes positively 
towards a reduction in forecast uncertainty if the strength of the monetary policy is not more 
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than the optimal; otherwise, the policy is too strong, and the contribution is negative. This is 
in line with current findings that a high degree of independence for central banks can 
sometimes be sub-optimal (see e.g. Hefeker and Zimmer, 2012; Hielscher and Markwardt, 
2012). 
 

Table 2: Split test results for the compound strength and measures of central bank independence and 
transparency for 24 forecast horizons. 

 Independence measures Transparency 
measure  

LVAU LVAW CBIU CBIW TRM 
      

Weak test, 
38 countries 17 17 17 17 17 

Weak test,  
23 countries 19 19 19 19 15 

Weak test,  
22 countries 21 21 21 21 15 

Semi-strong test, 
38  countries 2 2 2 2 4 

Semi-strong test 
23 countries 2 3 2 2 5 

Semi-strong test 
22 countries 2 3 2 2 6 

Strong test, 
38 countries 0 0 0 0 0 

Strong test 
22 & 23 countries 0 0 0 0 1 

 
Note: Tests have been computed separately for each forecast horizon from 1 to 24, using samples of 38, 23 and 

22 countries. The numbers in the main body of the table indicate the number of forecast horizons out of a 
maximum of 24 for which a particular test result is positive. 

 
The relationship with the transparency of banks, if discovered, is more strongly confirmed 
than that with the independence of banks. One of two split regressions is significant for six 
forecast horizons, and the sign is consistent with expectations if the sample of 22 countries is 
used. For the relationship with measures of bank independence (TRM), this is the case for 
only two or three horizons. It can also be noted that including the euro countries, which do 
not have their own central banks, in the sample increases the significance and frequency of 
the relationship between compound strength and transparency very substantially, but it acted 
adversely for the relationship with the independence of the banks. This was also an attempt to 
relate strength and the UR to the measures of the conservatism of the central banks in a linear 
and a nonlinear way (see Levieuge, Lucotte, and Pradines-Jobert, 2017). However, no such 
relationship has been found. 

 
6.3. Aggregated forecast uncertainty measures 

To summarise the empirical estimates of policy effects, we present the uncertainty 
characteristics introduced in Section 5, in aggregated form for the UK, the US and the BRICS 
countries. These countries conduct some sorts of monetary policy systematically, but apart 
from that there is not much in common between them for how policy is implemented in 
practice. The UK, Brazil and South Africa were among the first countries to adopt transparent 
inflation targeting, with the UK doing so in 1992, Brazil in 1999, and South Africa in 2000, 
and though the US explicitly adopted inflation targeting only in 2012, in practice it had been 
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implemented much earlier in a clandestine way (see e.g. Goodfriend, 2003). Inflation 
targeting in Brazil has been contaminated to some extent by systematic efforts to stabilise 
exchange rate fluctuations and occasional administrative decisions to freeze wages and prices 
(see e.g. Garcia, Gullén, and Kehoe, 2015). India adopted targeting much later, in 2016, while 
China and Russia, although officially targeting inflation, were effectively trying to control the 
exchange rate for most of the time under study. Moreover, the BRICS countries have not 
coordinated their monetary policies, as their aims have mainly been political and strategic. 
What they have in common is their desire to conduct monetary policy without involving the 
International Monetary Fund. 
Although there is a relatively large body of empirical evidence on the dynamic effects of 
monetary policy on inflation, we were not able to find convincing results for such effects on 
inflation forecast uncertainty. There must surely be a time delay between a monetary policy 
action and its eventual effect on inflation forecast uncertainty, but the length of any such 
delay has not so far been investigated. Consequently, it is difficult to identify values of the 
minimum and maximum forecast horizons for which the monetary policy effects might be 
visible in the policy-prone uncertainty on an empirical basis. To minimise the arbitrariness of 
choice and, at the same time, present the results in a more compact way, we have aggregated 
the uncertainty characteristics across forecast horizons using Samuelson time weights (for the 
behavioural interpretation of the Samuelson concept of temporal aggregation, properties and 
alternatives, see al-Nowaihi and Dhami, 2014). We also use the reversed weights. More 
precisely, we use weights which decay exponentially with the increase in forecast horizon 
then reverse their order, that is we assign the highest weight to the longest forecast horizon. 
We call the former short aggregation and the latter long aggregation. The reason for using 
two different ways of weighting is a consequence of the fact that we are unsure of the time 
lag between the policy action and its effect on uncertainty. The comparison of short- and 
long-aggregated results shows whether the response of the uncertainty to a policy shock is 
stronger in shorter, or longer periods. If, for a given country, the short-aggregated is greater 
than the long-aggregated one, it can be seen that the policy effects for short forecast horizons 
are, on average, greater, than for the longer.  
Tables 3a and 3b give the characteristics of the quasi ex-ante uncertainties for the same group 
of countries aggregated over the forecast horizons. Table 3a shows that for the shorter span of 
data ending in February 2013, China, as represented by its URMSE , has the second smallest 
short-aggregated inflation forecast errors after the US. However, China’s short-aggregated 
UR is smaller than those of other countries. This shows that such low uncertainty was due to 
external factors rather than to successful policy interventions. China’s short-aggregated NUR 
is also small, indicating potential room for improvement as an increase in the policy strength 
would, in this case, be likely to lead to a decrease in uncertainty. Indeed, for the longer span 
of data until March 2017 (Table 3b), China’s short-aggregated UR increased. A similar 
phenomenon can be observed for Russia, where low values of short-aggregated UR for the 
data up to February 2013 are accompanied by low NUR. The low NUR demonstrates that a 
subsequent improvement is possible in the effects of monetary policy shown by the increased 
short-aggregated UR for the data up to March 2017. Such an improvement resulted in a 
significant decrease in inflation forecast uncertainty, as expressed by a reduction in URMSE . 
 
 
 

Table 3a: Forecast uncertainty measures for the BRICS countries, the UK and the US, aggregated across 
forecast horizons (data until Feb 2013) 

 Short aggregation Long aggregation 
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Country URMSE  V  UR NUR ̂  URMSE  V  UR NUR ̂  
BRA 4.14 5.05 1.45 0.86 0.82 21.7 24.4 1.02 0.82 3.29 
CHN 1.69 2.02 1.24 0.76 1.53 8.88 10.2 1.05 0.84 3.98 
IND 5.28 7.13 1.49 0.91 1.40 23.4 27.4 1.17 0.94 3.78 
RUS 3.70 4.62 1.30 0.79 1.92 22.4 25.0 0.98 0.79 3.99 
SAF 3.69 5.11 1.41 0.87 1.10 5.51 6.71 1.20 0.96 3.76 
UK 2.79 3.49 1.41 0.88 0.68 14.6 16.8 1.15 0.92 1.84 
US 1.32 1.76 1.45 0.87 0.60 7.26 8.67 1.19 0.95 1.62 

Table 3b: Forecast uncertainty measures for the BRICS countries, the UK and the US, aggregated across 
forecast horizons (data until March 2017) 

 Short aggregation Long aggregation 

Country URMSE  V  UR NUR ̂  URMSE  V  UR NUR ̂  
BRA 0.45 0.60 1.34 0.84 0.27 1.26 1.45 1.07 0.85 0.69 
CHN 0.81 1.00 1.33 0.82 0.66 8.34 9.95 1.19 0.95 1.94 
IND 1.19 1.46 1.28 0.78 0.78 7.06 8.14 1.06 0.85 3.81 
RUS 0.82 1.03 1.42 0.88 0.66 5.12 6.17 1.20 0.96 1.61 
SAF 1.06 1.33 1.32 0.82 0.82 5.57 6.37 1.21 0.87 1.79 
UK 1.06 1.29 1.37 0.84 0.56 13.4 15.4 1.15 0.92 1.69 
US 0.52 0.63 1.38 0.85 0.43 6.56 7.84 1.18 0.94 1.78 

Legend: ̂  is the estimated   parameter in the WSN distribution (6)-(7).  
 
It can also be noted that for the period up to February 2013, the long-run aggregated URs and 
NURs are the highest for India, South Africa, the US and the UK. India did not introduce 
inflation targeting until 2016, and the other three countries have long-established and 
reasonably strong inflation targeting policies, official or clandestine. This is less evident for 
the longer data period, as URs and NURs do not differ much between countries. 
Consequently, it indicates that once monetary policy targets inflation, the monetary 
authorities should not allow the policies of inflation targeting and exchange rate stabilisation 
to be mixed, as they were in China and Russia before 2013.  
 

7. FURTHER RESULTS ON ESTIMATION, ROBUSTNESS AND STABILITY  
In this section we outline more detailed results related to testing the rationale of the 
estimation approach we applied, the robustness to changing data definition and estimation 
periods and the stability of the results over time. To provide a rationale for the choice of 
distribution, we compare fit of the WSN to that of other distributions used for modelling 
inflation forecast errors and uncertainty. To check, to what extent the type of autoregressive 
volatility used for scaling forecast errors in (9) affects the outcomes, we compare the results 
obtained using symmetric and asymmetric GARCH respectively. To check whether our 
results are robust to the way inflation is measured, and to the choice of estimation period, we 
use different types of inflation data and estimate the model using windows of different length. 
We also comment on the development in time and stability of the estimated URs. Below we 
provide a summary of this investigation, with the supporting data given in the Supplementary 
Material, Part 2.  

7.1 Model estimation, validation and comparison 
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We provide an ad-hoc validation of our estimation approach by counting the frequency of 
positive signs of the estimated  ’s and  ’s in (6), that is, the cases where there is an 
inconsistency with the policy rule described in Section 2. In order for the monetary policy to 
be consistent with the goal of minimisation the intertemporal policy rule, signs of  ’s and 
 ’s should be negative, that is, an anti-inflationary policy should result in reducing inflation, 
and pro-inflationary policy in its increase. Tables S1.1-S1.2 in the Supplementary Material, 
Part 2, give the frequencies of wrong, that is, positive, signs of  ’s and  ’s, aggregated for 
forecast horizons from 1 to 24. The results are reported for countries carrying out, at some 
stage, active inflation targeting (that is, excluding China and Russian Federation, as these 
countries conducted, in reality, a mixed targeting policy). The estimates were made in rolling 
windows of the length of 60, with forecast errors in (9) respectively scaled by the predicted 
conditional standard deviations of the symmetric and asymmetric GARCH processes. The 
results have been obtained for windows covering the entire span of data, and also, separately, 
for periods prior and after the introduction of inflation targeting, prior and during the period 
of geopolitical instability defined by the beginning of the Libyan crisis (February 2011) and 
for the period of Great Moderation (June 1985-June 2007) and after. 
The results given in Tables S1.1-S1.2 in the Supplementary Material, Part 2, show that, for 
most countries, the frequency of wrong (positive) signs of the estimated  ’s and  ’s is 
negligible, that is, smaller than 0.1. The exceptions are India, Israel and, to a lesser extent, 
Korea. Disaggregated results (available on request) reveal a tendency of an increase in the 
frequency of wrong signs with the increase in forecast horizon. For all countries, there are no 
wrong signed estimates for the forecast horizons below 6. The results are remarkably robust 
to a change of geopolitical (Libyan crisis) and economic (Great Moderation) regimes. Also, 
they do not seem to be strongly affected by an introduction of inflation targeting. For most 
countries, the results for the case where asymmetric GARCH was used for scaling do not 
differ much from that of the symmetric GARCH. The exceptions here are Korea, for which 
numerical problems appeared in computing the asymmetric GARCH results, and Indonesia, 
where the frequency of wrong signs is markedly higher in the asymmetric case.  

We have also compared the fit of WSN to data with that of two other distributions are often 
used for modelling inflation forecast errors, these being the two-piece skew-normal 
distribution, TPN, and the generalised three-parameters beta distribution, GB. TPN has often 
been used for representing uncertainty in fan charts of inflation (for the statistical properties 
of TPN see John, 1982, and Kimber, 1985; for wider discussion and its use in the context of 
fan-chart modelling see e.g. Tay and Wallis, 2000). Three-parameters GB has been used for 
the US by Engelberg, Manski and Williams (2009) to approximate the empirical distribution 
of a panel of forecasts, and by Clements (2014) to interpolate the histograms representing 
probabilistic forecasts, or ex-ante uncertainty; for other economic applications and 
generalisations see McDonald and Xu (1995).  
In order to fare WSN against these two competing distributions, we analyse the relative (that 
is, divided by that of WSN) Hellinger distance measures averaged over 60-months windows, 
presented in Tables S1.3-S1.4 in the Supplementary Material, Part 2. The TPN or GB 
distribution has a better (worse) fit that that of WSN if the relative Hellinger distance is 
smaller (greater) than one. Overall, the fit of GB is worse than that of WSN and TPN in most 
cases, though it gains some advantage for longer forecast horizons. For data ending in 
February 2013 and shorter forecast horizons, WSN fits the data best more often than the other 
distributions do. The fit of WSN is also the best for the UK and the US, except with the 
forecast horizon of one. It loses its advantage for data ending in March 2017, but the 
differences in fit between WSN and TPN are not substantial.  
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For the samples ending in March 2017, TPN has a clear advantage over WSN, though it is 
small in absolute terms (see Tables S1.3-S1.4 in the Supplementary Material, Part 2). It is 
most likely that the stabilisation of the inflation dispersion after 2013 resulted in some 
fuzziness in the identification of policy effects in the uncertainty. It should be noted that the 
fit of all distributions to data for such samples is much better than it is for the shorter 
samples. Similar results have been obtained for other countries.  

 
7.2 Use of different inflation indicators 

We have repeated the computations for the US and the UK using data for core and HICP 
inflation rather than CPI. For the US, we also investigated the robustness of our findings by 
using the Personal Consumption Expenditures price index (PCE). The PCE is the price index 
for which the Federal Reserve sets its inflation target. The results are given in Table S2.4, 
with data described in Tables S2.1-S2.3 in the Supplementary Material, Part 2. 
Core inflation results for both countries and both short and long aggregations exhibit 
markedly smaller ex-post and pseudo ex-ante uncertainties than that for CPI, HICP and, in 
case of the US, PCE. It is understandable as, in core inflation, unlike in other inflation 
measures, the transitory elements of inflation are removed, which makes it easier to predict. 
There is not much difference between the aggregated URs for CPI and core inflation in the 
UK. For the US, PCE has the smallest aggregated uncertainty among all compared, but only 
for relatively long forecast horizons. However, its UR and NUR are below that for CPI and 
core inflation. This indicates that there is some room for a further reduction in PCE 
uncertainty. It is quite difficult to interpret differences between uncertainties based on HICP 
and those from other inflation measures. This might be because the theoretical foundations of 
HICP are not usually regarded as sound (e.g. Wynne, 2008). 

 
7.3 Time stability  

Time stability of the parameters’ estimates has been already discussed in Section 7.1 above, 
where the estimates for different geopolitical and economic regimes have been discussed. For 
further checks, the computations of URs have been repeated for the UK, US and the BRICS 
countries in time-moving windows. The windows are of two types: rolling windows with a 
width of 48 observations, so moving by one observation at a time, and windows of expanding 
size, with subsequent observations added one by one. Time paths of these measures are given 
in the Supplementary Material, Part 2, at Figures S3.1-S3.2. 
The series of URs presented at Figures S3.1-S3.2 generally show a relative stability over 
time. There is a clear upward shift of the short-aggregated URs for the US in the second half 
of 1996, after which the short-run policy effects constantly prevail over the long-run effects, 
as the short-aggregated UR is greater than the long-aggregated UR. This could be attributed 
to the relaxation of monetary policy in 1996 (see e.g. Goodfriend, 2015). The period of the 
Great Moderation of 1985, -2007 does not leave a mark on the time series of the URs in the 
UK and the US. Relaxing exchange rate controls in 2014-15 gave China and Russia a marked 
increase in the short-aggregated UR, indicating monetary policy was more effective in the 
short run than in the long run., 

7. CONCLUSIONS 
The ex-post forecast uncertainty measured simply by the variance of past forecast errors is 
usually of interest to economic agents who do not have any influence on economic policy and 
who do not really care about what is known to the central bankers and what is not. However, 
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inflation forecast errors can tell us more. In particular, if the weighted skew-normal 
distribution is fitted to data on policy-prone uncertainty, that is, to inflation forecast errors 
adjusted for the forecast of the historical volatility, the footprints of this policy can, at least 
partly, be revealed. Consequently, we suggest a measure that uses a comparison of the 
dispersion characteristics of the quasi ex-ante and ex-post distributions of the uncertainty to 
reveal such footprints. It can be applied as an alternative or as a substitute for a purely ex-ante 
uncertainty obtained from surveys of forecasters, particularly given that this is often either 
not available or not reliable. Our proposed measure is really a back to the future one, as it 
requires knowledge of ex-post forecast errors and the parameters of the weighted skew-
normal distribution fitted to them. This measure is, to an extent, free of the elements known 
to central bank forecasters and consequently of the effects of the monetary policy decisions. 
Because of that, it might be of interest to policy makers who do not want the picture of 
uncertainty to be blurred by the outcomes of their own decisions. Instead, they may be more 
interested in learning what the uncertainty would have been if they had not carried out the 
policy. Empirical results obtained for the BRICS countries, the US and the UK, suggest that 
better effects in reducing inflation forecast uncertainty may be achieved if there is no 
inflation targeting at all rather than if an inflation targeting policy is mixed with exchange 
rate stabilisation. 

We also explained that indicators for the independence and transparency of central banks do 
not seem to be correlated with the policy outcomes. We showed that such a relationship is, in 
fact, nonlinear, and that policy strength is positively related to the independence and 
transparency of the central bank only if that strength is not too big; otherwise, the relation is 
negative. However, our evidence is statistically not very strong, and so it calls for further 
investigation.  
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Appendix: Country codes and data description 

Data and estimation periods, CPI. Countries with independent central banks are in boldface. 
Legend: h- forecast horizon 

Country Code 
First recursion Total 

sample 
size 

Size first 
estimation 
window 

No. of 
observations 
for WSN for 

h=1 

No. of 
observations 
for WSN for 

h=24 Start End 

Austria AUT Jan-59 Aug-70 699 140 559 536 
Belgium BEL Jan-56 Mar-68 735 147 588 565 
Brazil BRA Jan-00 Aug-06 207 80 127 104 

Canada CAN Jan-50 Jun-63 807 162 645 622 
Chile CHL Jan-71 Mar-80 555 111 444 421 
China CHN Jan-96 Aug-02 255 80 175 152 

Czech Republic CZE Jan-92 Aug-98 303 80 223 200 
Denmark DNK Jan-67 Jan-77 603 121 482 459 
Estonia EST Jan-98 Aug-04 231 80 151 128 
Finland FIN Jan-56 Mar-68 735 147 588 565 
France FRA Jan-56 Mar-68 735 147 588 565 

Germany GER Jan-56 Mar-68 735 147 588 565 
Greece GRC Jan-56 Mar-68 735 147 588 565 

Hungary HUN Jan-99 Aug-05 219 80 139 116 
Iceland ICE Jan-87 Aug-93 363 80 283 260 
India IND Jan-99 Aug-05 219 80 139 116 

Indonesia IDS Jan-00 Aug-06 207 80 127 104 
Ireland IRE Nov-75 Feb-84 497 100 397 374 
Israel ISR Jan-87 Aug-93 363 80 283 260 
Italy ITA Jan-56 Mar-68 735 147 588 565 

Japan JAP Jan-71 Mar-80 555 111 444 421 
Korea KOR Jan-56 Mar-68 735 147 588 565 

Luxembourg LUX Jan-56 Mar-68 735 147 588 565 
Mexico MEX Jan-00 Aug-06 207 80 127 104 

Netherlands NLD Apr-60 Aug-71 684 137 547 524 
Norway NOR Jan-56 Mar-68 735 147 588 565 
Poland POL Jan-99 Aug-05 219 80 139 116 
Portugal PRT Jan-56 Mar-68 735 147 588 565 

Russian Federation RUS Jan-97 Aug-03 243 80 163 140 
Slovak Republic SLK Jan-92 Aug-98 303 80 223 200 

Slovenia SLV Jan-95 Aug-01 267 80 187 164 
South Africa SAF Jan-58 Nov-69 711 143 568 545 

Spain SPA Mar-55 Jul-67 745 149 596 573 
Sweden SWE Jan-56 Mar-68 735 147 588 565 

Switzerland SWZ Jan-56 Mar-68 735 147 588 565 
Turkey TUR Jan-04 Aug-10 159 80 79 56 

United Kingdom UK Jan-56 Mar-68 735 147 588 565 
United States US Jan-56 Mar-68 735 147 588 565 
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Part 1: WEIGHTED SKEW-NORMAL DISTRIBUTION AND THE UNCERTAINTY 
RATIO: PROPERTIES AND DERIVATIONS 

1.1. WEIGHTED SKEW-NORMAL DISTRIBUTION 

For a random variable Y  and a real number a , notation Y aI   (or Y aI  ) denotes an indicator 

of the event  Y a  (or  Y a ), which is equal to unity if Y a  and zero otherwise. 

Definition A1.1. Let X and Y constitute a bivariate normal random variable such as: 
2

2( , ) ~ ,X X X Y

Y X Y Y

X Y N
   
   

   
        

, with 1  . (A1.1) 

Let random variable U  be defined as 

Y m Y kU X Y I Y I          , where , , k m     . (A1.2) 

We call the distribution of U  defined by (A1.1)-(A1.2) weighted skew-normal and denote it 
as  ,

,WSN ( , , , , )X Y

X Y
U m k 

     . 

Definition A1.2. A weighted skew-normal variable U   with 0X Y    and 1X Y     
is called standard weighted skew-normal. To simplify notation we use 

1~ WSN ( , , , , )U m k   , instead of  0,0*
1,1WSN ( , , , , )U m k   . 

Proposition A1.1. The probability density function (pdf) of the standard weighted skew-
normal distribution *

1~ WSN ( , , , , )U m k    is given by:  

 
1WSN 2 2

2 2

1 1
(1 ) (1 )

( ) ,
1 1

B t kAB t mAt tf t
A A A AA A

m t k tt

  

    

 
 

 


 

                             
            

         

 (A1.3) 

where  and  denote respectively the density and cumulative distribution functions of the 
standard normal distribution, 21 2A     ,  and B    . 

Proof. The cumulative distribution function (cdf) 
1WSNF  of *U  can be obtained by integrating 

a normal bivariate pdf with zero means, unit variances, and the correlation coefficient of   

over three disjoint areas as follows: 
1

( )/

( )/

( )
t x t kt m k t m

WSN
m t x k

F t dx dx dx
 



 

   

        . Taking 

the first derivative 
1
( ) /WSNdF t dt  completes the proof. 

It immediately follows from Proposition A1.1 that 
1WSNf  can be interpreted as a weighted sum 

of three pdf’s as 
1WSN 1 1 2 2 3 3( ) ( ) ( ) ( )f t f t f t f t     , where 1 ( )m    , 2 ( )k   , and 

3 ( ) ( )m k     , if  ( 1,2,3i  ) are the three corresponding consecutive components of pdf 

(A1.3). The pdf 3f  is a pdf of the conditional variable  X k Y m  . The relations between 
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1f , 2f  and skew-normal distribution are as follows. A simple Azzalini (1985, 1986) skew-

normal distribution ( , )SN    can be defined by its pdf as 
2( ; , ) ( / ) ( / )SNf t t x     


  . 

Hence, for 0m k   and 2    the functions 1f  and 2f  reduce to pdf’s of 1( , )SN  

and 2( , )SN   with 2
1,2 / 1     and A    ( ,   ). This representation allows 

for another interpretation of the Azzalini distribution, as 1~ WSN ( 2 ,0,0,0, )SNU   , or 

02SN
YU X Y I    , where , ~ (0,1)X Y N and ( , )corr X Y  . 

The representation 
1WSN 1 1 2 2 3 3( ) ( ) ( ) ( )f t f t f t f t      can now be interpreted as a weighted 

sum of the conditional pdf of  X k Y m   and the two pdf’s that, under some restrictions 
on parameters, coincide with that of the Azzalini skew-normal (hence the name of the WSN 
distribution). 

Proposition A1.2. The moment generating function (MGF) of *
1~ WSN ( , , , , )U m k    is 

given by: 

 
2 2 2

1

2 2 2
WSN ( ) ( ) ( ) ( ) ( )

u u uA A
R u e k B u e m u k u e B u m 

               (A1.4) 

Proof. By definition,  

     
2 2

* 2

1

2
2(1 )

2

1( )
2 1

x xy yk m
u x y u x yu U ux

WSN
k m

R u E e dx e e e e dy


  

 

   
    

 

 
     

  
    .   

Changing the order of integration in each of the integrals above and noting that the MGF of 
the standard normal distribution is 2 /2ue  completes the proof. 

Corollary. The moment generating function W SNR  of  ,
,WSN ( , , , , )X Y

X Y
U m k 

      is given 
by:  

   

 

2 2

2

2 2

WSN

2

( ) ( ) ( )

( ) ( )

X X
Y YY Y

X X X

Y Y

X X

X

u u
u A u A

u Y Y
X X

Y Y

u
Y Y

X X
Y Y

m kR u e e B u e B u

m ke u u

 
 
 

 
 


 

 
 



 
 

 

 
   

 

 
      


          

 
  

Proof. It follows from the representation of  ,
,WSN ( , , , , )X Y

X Y
U m k 

      via 

1WSN , , , ,Y Y Y Y

X X Y Y

m kU    
  
   

   
 
 

  as  0 0X X Y Y m Y kU U I I    
      , 

where 0Y  is standard normal. ■ 

Proposition A1.3. Let 
1WSNR  be an MGF given by (A1.4), then 

1WSN' (0) ( ) ( )R m k       ; 
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 
1

2 2 2 2
WSN'' (0) 1 ( ) ( ) 1 ( ) ( )R A A m B m m A k B k k                          ; 

    
    

1

(3) 2 2 2 2
WSN

2 2 2 2

(0) ( ) 3 1 3 1

( ) 3 1 3 1 ;

R m B A B m m

k B A B k k

  

  

  

  

               

              

 

        
      

1

(4) 2 2 2 4 4 2 2
WSN

2 2 4 4 2 2

3 ( ) 1 ( ) 3 6

3 ( ) 1 ( ) 3 6 .

R A m A m m m B A B

k A k k k B A B

    

   

  

  

               

             
 

Proof. Substituting Taylor expansions of 
2

2
au

e  and ( )bu c   into 
2

2
, , ( ) ( )

au

a b cg u e bu c  
yields: 

2 2 2 2 3
, ,

2 2 4 2 4

1 1( ) ( ) ( ) ( ) ( ) 3 ( 1) ( )
2 3!

1 3 ( ) 6 ( ) (3 ) ( ) ...
4!

a b cg u c b c u a c b c c u a b c b c u

a c ab c c b c c c u

  

 

                  

        

. 

Bearing in mind that the MGF in (A1.4) can be expressed via , ,a b cg  as:  

1WSN , ,( ) ,( ), 1,( ), 1,( ),( ) ( ) ( ) ( ) ( )A B m A B k m kR u g u g u g u g u
            , (A1.5) 

taking the derivative of both sides of (A1.5) and substituting the corresponding derivatives of 
, ,a b cg  at zero completes the proof.  

Note. For 0m  and it is convenient to simplify the expression for 
1WSN'' (0)R  as: 

1

2 2
WSN'' (0) 1 1 2m k m kR C D C D S D D            , (A1.6) 

where  

( 2 )C     , 21 ( ) ( ) ( )a
a

D a a a t t dt 


      and m kS D D    . (A1.7) 

It immediately follows from the properties of MGF, Proposition A1.3 and (A1.6)-(A1.7) that 
the first and second moments of 1* WSN ( , , , , )U m k    can be given as 

* ( ) ( )EU m k        and * 2 2 2( ) 1 2 m kE U S D D      . 

1.2. UNCERTAINTY RATIO 

Definition A2.1. Let W SN ( , , , , )U m k     be defined by (A1.1)-(A1.2) and 

 V U E X Y U Y    . Let also 2var( ) ( )URMSE U E U   and var( )V V  . 

We will define the uncertainty ratio of U and V as 
2

2UR V

URMSE


    . 
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The properties of the uncertainty ratio UR and its useful re-parameterisations are summarised 
in the following proposition. 

Proposition A2.1. Properties of UR. 

1) Noting that  * ( ) ( )EU EU m k       and  

 
 

2 2 2 * 2 2

2

var( ) var( ) 2 var( )

2
Y m Y k

m k

V U E X Y I Y I Y U

D D

       

  
           

 
, 

where 
1*U U


 , /m m  , /k k  . 

This yields the following representation: 
2*

2* *

/ 2
UR 1 2

var( )
m kD D EU

U EU

  


      
   

 , 

where 21 ( ) ( ) ( )a
a

D a a a t t dt 


     . 

2) For 0m   and 0k  , by applying Proposition A1.1 we get another convenient 
expression for UR: 

 2

2 2

/ 2 ( ) ( )
UR 1 2

1 2 m k

S m k
S D D

  


  
  

 
  

     .      (A2.1) 

3) Derivation of the maximum UR (for fixed  ) in a symmetric case of m k  . 

Denote: m kD D D  , ( ) ( )m k    ,  / 2 / ( )
2

t S D
D


        . Hence (A2.1) 

reduces to 

 2 2

2 2

2
UR 1

1 2 ( / 2) ( )
Dt

Dt D
   

   
 

 
   

.     (A2.2) 

Let     , then 
2 2 2

2 2 2 2
2

1 ( ) ( )
2 2 2 8 2

t t
D D
  

                .   (A2.3) 

Substituting (A2.3) into (A2.2) we get 
2 24UR 1

( ) ( )F t F t
  

           (A2.4) 

where  
2

2 2
2

2(1 )
4( ) (1 4 )D DF t t D

t D

    
    .    (A2.5) 
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Note, that the maximum UR, maxUR , is achieved for minimum F  when t>0. Consider the 

function ( ) AG t t
t

  , where t, A>0. Hence: 0argmin ( )G t t A   and min 0( ) 2G G t A  . 

Therefore, for F  defined by (A2.5), 
2

2 2
2

2(1 )
4

A
D D


      and for fixed 0   we have: 

2
2 2

min, 2

22 (1 ) (1 4 )
4

F D
D D D

        .  

Obviously, min, min, 0F F   , and 

2
2

min, 0 2

22 (1 ) (1 4 )
4

F D
D D D

       , 

which means that F  achieves its minimum when 0  , that is for 0    , and  

 
2

2
0 2

2(1 )
4

t
D D

   . 

Noting that  / 2 / ( )
2

t S D
D


         gives 
2

2
0 2

1 2(1 )
4 2 4D D D
      . 

Note also that 
2 2

min 0
( )F t

  
 

 
 and is achieved at 0  , which, in combination with (A2.4), 

gives 

max 2
min 2

2

4 4UR ( ) 1 1
22 (1 ) (1 4 )

4
F

D
D D D

 


 
   

   
 

and is achieved at  2 2
0 0 8 (1 ) / (4 )D D          . 
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Part 2: DATA DESCRIPTION AND ADDITIONAL EMPIRICAL RESULTS 

2.1. MODELS ESTIMATION, VALIDATION AND COMPARISON 

Table S1.1: Frequency of positive (that is, wrong) signs of ̂  and ̂  for where ˆm k     
and 0.75  ; estimates made in rolling windows of the length 60, 1,...,24h  . 
Symmetric case: data for uncertainty is obtained from symmetric ARIMA-
GARCH models. 

Note: for forecast horizons h  from 1 to 5 all frequencies are zeros for all countries for the 
full sample and for all splits.  

 
  

Dates of 
IT1) 

 
Full sample 

 
Split by IT1) date 

Split by Libyan crisis Split by Great. Moderation. 
February 2011 June 1985 – June 2007 

before after before After during after 
BRA Jun-99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
CAN Feb-91 0.003 0.007 0.000 0.004 0.000 0.005 0.000 
CHL Sep-99 0.008 0.015 0.003 0.008 0.008 0.010 0.005 
CZE Dec-97 0.001 0.001 0.001 0.001 0.002 0.000 0.002 
IND Jul-99 0.204 0.209 0.167 0.299 0.206 0.205 0.204 
IDS Jun-05 0.095 0.092 0.095 0.092 0.095 0.092 0.095 
ISR Jul-97 0.251 0.252 0.251 0.266 0.224 0.262 0.242 
JAP Jan-13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
KOR Jan-99 0.128 0.179 0.059 0.149 0.001 0.142 0.001 
MEX Jan-01 0.012 0.012 0.012 0.012 0.012 0.012 0.012 
NOR Mar-01 0.004 0.007 0.000 0.005 0.000 0.004 0.000 
POL Sep-98 0.031 0.031 0.031 0.046 0.031 0.031 0.031 
SWE Jan-93 0.015 0.009 0.021 0.018 0.000 0.024 0.000 
UK Oct-92 0.041 0.081 0.011 0.047 0.006 0.039 0.004 
US Jan-12 0.022 0.025 0.000 0.025 0.000 0.018 0.000 

 
1) IT stands for Inflation Targeting 
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Table S1.2: Frequency of positive (that is, wrong) signs of ̂  and ̂  for where ˆm k     
and 0.75  ; estimates made in rolling windows of the length 60, 1,...,24h  . 
Asymmetric case: data for uncertainty is obtained from asymmetric ARIMA-
GARCH models. 

Note: for forecast horizons h  from 1 to 5 all frequencies are zeros for all countries for the 
full sample and for all splits.  

 

Country 
Code 

 
Dates of 

IT1) 

 
Full sample 

 
Split by IT1) date 

Split by Libyan crisis Split by Great. Moderation. 
February 2011 June 1985 – June 2007 

before after before after during after 
BRA Jun-99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
CAN Feb-91 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
CHL Sep-99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
CZE Dec-97 0.020 0.020 0.020 0.046 0.000 0.012 0.021 
IND Jul-99 0.004 0.003 0.005 0.005 0.004 0.004 0.004 
IDS Jun-05 0.209 0.206 0.209 0.206 0.209 0.206 0.209 
ISR Jul-97 0.150 0.150 0.150 0.199 0.057 0.199 0.111 
JAP Jan-13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

KOR2) Jan-99 NA NA NA NA NA NA NA 
MEX Jan-01 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
NOR Mar-01 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
POL Sep-98 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
SWE Jan-93 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
UK Oct-92 0.013 0.029 0.000 0.015 0.000 0.001 0.000 
US Jan-12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 
1) IT stands for Inflation Targeting 
2) Results not reported due to convergence problems 
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Table S1.3: Relative minimum distance characteristics of distributions fitted to U-
uncertainties for 38 countries. Data until February 2013. Full sample estimates for 
selected forecast horizons. Countries with independent central banks are in 
boldface. 

Legend: h- forecast horizon; TPN

WSNMD  - ratio of Hellinger Distance of TPN distribution to Hellinger Distance of 

WSN distribution fitted to U-uncertainties; GB

WSNMD  - ratio of Hellinger Distance of GB distribution to 
Hellinger Distance of WSN distribution fitted to U-uncertainties. In the body of the Table, DIV denotes 
the cases where there is a possible divergence in one of the estimates. 

Country 
Code 

h = 1 h = 3 h = 6 h = 12 h = 24 

TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  

AUT 2.23 25.05 1.14 9.98 1.90 3.86 0.95 1.93 0.82 1.25 

BEL 2.43 23.02 2.63 5.30 1.15 2.98 1.25 2.26 1.04 12.35 

BRA 1.60 1.76 9.76 9.99 4.11 1.78 1.39 0.32 1.27 0.25 

CAN 0.90 0.90 1.40 1.42 1.83 2.58 2.75 5.21 0.70 0.89 

CHL 1.62 1.03 0.41 0.88 0.22 1.36 0.27 0.25 0.02 0.05 

CHN 3.33 6.69 0.63 1.15 0.28 0.65 0.20 0.64 0.27 0.24 

CZE 1.35 7.65 0.96 1.58 0.66 1.06 1.76 2.57 0.65 1.65 

DNK 2.39 4.51 0.83 1.63 1.82 4.01 0.71 1.32 0.34 0.73 

EST 0.81 0.75 0.76 2.28 3.21 1.73 3.73 1.22 5.25 0.57 

FIN 1.01 1.49 0.70 1.82 0.89 1.45 0.48 1.52 0.76 4.36 

FRA 1.26 12.25 0.88 1.27 1.39 2.96 0.70 1.87 1.04 1.71 

GER 4.76 5.90 2.79 4.41 6.86 12.06 0.52 0.78 0.27 0.49 

GRC 1.36 0.67 1.56 1.52 1.52 1.97 1.15 1.83 0.36 3.72 

HUN 1.07 2.21 1.33 3.09 0.75 5.08 3.25 1.12 DIV 0.97 

ICE 3.22 6.35 0.76 2.48 0.20 1.07 1.36 0.51 DIV 0.06 

IND 1.17 2.18 1.06 6.17 1.51 5.95 3.72 1.77 DIV 1.09 

IDS 0.35 0.80 0.64 1.20 DIV 1.01 1.00 DIV 1.00 DIV 

IRE 0.53 1.30 0.35 0.68 0.77 0.89 0.85 0.87 0.33 0.51 

ISR 1.72 1.93 1.10 1.10 0.81 1.31 0.15 0.36 0.09 0.07 

ITA 0.47 0.86 1.53 2.19 2.65 2.44 1.76 1.41 1.05 2.83 

JAP 1.20 2.26 1.03 1.70 2.43 1.58 1.87 1.39 2.32 1.83 

KOR 0.56 1.13 0.49 1.58 1.24 1.32 0.84 2.76 0.79 2.16 

LUX 3.34 5.03 0.87 1.49 4.39 41.24 2.26 3.96 3.72 4.97 

MEX 1.52 1.03 2.05 2.10 1.00 0.00 1.00 0.00 1.00 0.00 

NLD 4.17 30.69 1.57 18.70 0.76 1.32 0.52 0.92 0.44 0.62 

NOR 0.74 1.51 1.86 3.58 2.82 1.21 0.68 3.98 1.66 6.86 

POL 0.63 1.34 0.17 0.48 0.15 0.16 0.07 0.11 0.06 0.08 

PRT 2.09 1.14 2.09 0.95 0.85 0.94 0.73 2.81 0.75 1.07 

RUS 0.56 1.26 1.23 0.93 0.14 0.08 0.12 0.19 0.02 0.03 
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Country 
Code 

h = 1 h = 3 h = 6 h = 12 h = 24 

TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  

SLK 1.09 4.26 1.71 1.49 0.56 1.47 0.70 1.54 0.69 0.50 

SLV 1.34 4.78 0.08 0.47 0.04 0.25 0.05 0.07 0.07 0.06 

SAF 0.81 1.65 2.14 4.27 3.05 5.03 1.25 6.61 1.52 2.53 

SPA 0.32 0.46 1.55 3.84 1.15 1.35 1.92 4.42 0.50 1.00 

SWE 0.71 1.30 2.52 6.88 1.57 2.52 1.81 23.06 0.42 12.63 

SWZ 2.96 2.96 1.36 2.06 0.69 1.58 1.93 3.03 0.85 0.76 

TUR 0.32 0.85 0.73 1.22 1.27 0.72 DIV 0.15 1.00 DIV 

UK 0.44 0.47 1.51 3.77 3.68 2.21 2.61 2.17 1.68 3.05 

USA 2.58 2.68 2.58 4.05 3.56 9.45 2.65 4.98 2.01 5.43 
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Table S1.4: Relative minimum distance characteristics of distributions fitted to U-
uncertainties for 38 countries. Data until March 2017. Full sample estimates for 
selected forecast horizons. Countries with independent central banks are in 
boldface. 

Legend: h- forecast horizon; TPN

WSNMD - ratio of Hellinger Distance of TPN distribution to Hellinger Distance of 

WSN distribution fitted to U-uncertainties; GB

WSNMD - ratio of Hellinger Distance of GB distribution to 
Hellinger Distance of WSN distribution fitted to U-uncertainties. 

Country 
Code 

h = 1 h = 3 h = 6 h = 12 h = 24 

TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  

AUT 2.20 2.46 0.79 2.49 1.90 2.02 0.68 1.10 1.75 2.95 

BEL 1.17 2.87 1.15 2.60 0.72 1.48 0.92 1.63 1.64 15.01 

BRA 0.22 0.30 0.63 1.66 0.34 0.61 2.30 2.76 1.12 0.51 

CAN 1.76 1.84 1.06 1.53 1.20 1.22 1.82 3.03 1.53 4.51 

CHL 6.13 8.42 2.19 5.45 1.36 2.07 0.55 7.33 0.41 1.22 

CHN 0.33 0.38 0.80 1.25 0.65 1.52 0.87 1.26 1.39 2.35 

CZE 0.91 2.00 1.52 3.78 1.10 2.25 1.10 1.82 0.04 0.60 

DNK 0.66 1.15 0.40 0.68 0.38 0.61 0.34 0.75 0.61 0.97 

EST 1.12 0.90 0.85 2.98 0.66 0.45 0.80 0.36 4.49 0.90 

FIN 0.35 1.03 0.52 0.53 0.72 0.72 0.73 6.65 1.08 8.40 

FRA 0.95 11.26 1.29 1.76 0.42 1.74 0.29 0.78 0.24 0.74 

GER 0.97 14.76 0.87 1.75 1.00 1.47 0.97 1.25 0.75 1.10 

GRC 1.36 2.39 0.95 4.50 1.33 4.74 2.01 3.35 1.05 1.58 

HUN 0.75 0.85 0.67 1.63 0.60 1.45 0.24 0.55 0.53 0.29 

ICE 1.22 5.52 0.77 1.22 0.79 3.12 0.83 2.48 0.30 0.80 

IND 1.94 1.64 3.98 2.26 0.84 1.08 0.31 0.57 0.08 0.13 

IDS 0.63 2.86 0.54 1.01 0.36 0.66 0.93 0.74 0.97 1.89 

IRE 1.23 2.44 0.81 2.01 0.90 1.84 1.18 1.55 1.00 2.71 

ISR 1.71 2.25 1.01 2.03 0.81 1.80 0.27 1.16 0.10 0.47 

ITA 1.00 1.26 0.32 0.87 1.78 1.07 2.48 5.62 1.82 2.82 

JAP 0.96 2.01 0.45 0.51 0.58 1.08 0.41 0.80 0.43 0.37 

KOR 0.84 1.40 0.60 1.10 1.66 4.49 1.33 1.94 2.01 2.26 

LUX 1.00 1.72 0.95 1.50 0.62 1.65 1.14 2.06 1.50 10.95 

MEX 0.53 1.59 0.46 0.90 0.52 0.43 0.37 0.49 0.28 0.20 

NLD 1.19 12.86 1.82 23.92 1.06 1.72 0.74 0.95 0.71 1.33 

NOR 1.16 2.03 0.60 1.66 0.47 1.49 1.04 0.35 1.84 6.60 

POL 0.60 0.63 0.77 1.97 0.71 0.96 0.16 0.88 0.51 0.23 

PRT 1.06 1.87 1.65 3.75 2.14 6.07 2.08 2.48 0.79 1.21 

RUS 0.50 0.58 2.38 4.59 0.98 21.64 1.00 1.14 1.00 0.93 



11 
 

Country 
Code 

h = 1 h = 3 h = 6 h = 12 h = 24 

TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  TPN
WSNMD  GB

WSNMD  

SLK 1.34 9.86 0.23 0.51 0.71 0.54 0.25 0.99 0.22 0.24 

SLV 1.56 4.11 0.62 2.20 0.39 0.47 0.17 0.47 0.07 0.22 

SAF 0.69 1.50 1.70 1.92 0.93 12.29 0.70 21.80 2.54 35.38 

SPA 0.38 0.58 0.51 1.47 0.68 0.79 0.96 3.53 1.19 3.14 

SWE 0.69 1.34 0.56 1.31 0.81 1.58 1.72 18.92 0.99 14.99 

SWZ 1.18 1.71 0.77 1.00 0.50 1.22 1.61 2.48 0.98 6.68 

TUR 1.78 1.44 3.52 3.14 0.44 1.26 0.74 4.69 0.31 28.98 

UK 0.87 1.55 0.40 0.66 0.80 0.56 1.89 2.90 3.02 3.84 

USA 1.60 3.32 0.91 2.10 0.99 3.84 1.37 10.72 1.26 2.82 
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2.2. USE OF DIFFERENT INFLATION INDICATORS 

Table S2.1: Data and estimation periods, core inflation. 
Countries with independent central banks are in boldface.  

Legend: h- forecast horizon. 

Country Code 
First recursion Total 

sample 
size 

Size first 
estimation 
window 

No. of 
observations 
for WSN for 

h=1 

No. of 
observations 
for WSN for 

h=24 Start Start 

Austria AUT Jan-67 Jan-77 603 121 482 459 
Belgium BEL Jun-76 Jul-84 490 98 392 369 
Canada CAN Jan-62 Jan-73 663 133 530 507 

Chile CHL Jan-99 Aug-05 219 80 139 116 
Czech Republic CZE Jan-96 Aug-02 255 80 175 152 

Denmark DNK Jan-71 Mar-80 555 111 444 421 
Estonia EST Jan-98 Aug-04 231 80 151 128 
Finland FIN Jan-56 Mar-68 735 147 588 565 
France FRA Jan-71 Mar-80 555 111 444 421 

Germany GER Jan-63 Nov-73 651 131 520 497 
Greece GRC Jan-71 Mar-80 555 111 444 421 

Hungary HUN Jan-99 Aug-05 219 80 139 116 
Iceland ICE Nov-92 Jun-99 293 80 213 190 
Ireland IRE Nov-75 Feb-84 497 100 397 374 
Israel ISR Jan-87 Aug-93 363 80 283 260 
Italy ITA Jan-61 Mar-72 675 135 540 517 

Japan JAP Jan-56 Mar-68 735 147 588 565 
Korea KOR Jan-90 Aug-96 327 80 247 224 

Luxembourg LUX Jan-68 Nov-77 591 119 472 449 
Mexico MEX Feb-00 Aug-06 207 80 127 104 

Netherlands NLD Jan-61 Mar-72 675 135 540 517 
Norway NOR Jan-79 Aug-86 459 92 367 344 
Poland POL Jan-99 Aug-05 219 80 139 116 
Portugal PRT Jan-71 Mar-80 555 111 444 421 

Slovak Republic SLK Jan-96 Aug-02 255 80 175 152 
Slovenia SLV Jan-00 Aug-06 207 80 127 104 

South Africa SAF Jan-03 Aug-09 171 80 91 68 
Spain SPA Jan-76 Mar-84 495 99 396 373 

Sweden SWE Jan-71 Mar-80 555 111 444 421 
Switzerland SWZ Jan-56 Mar-68 735 147 588 565 

Turkey TUR Jan-04 Aug-10 159 80 79 56 
United Kingdom UK Jan-71 Mar-80 555 111 444 421 

United States US Jan-58 Nov-69 711 143 568 545 
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Table S2.2: Data and estimation periods, HICP inflation. 
Countries with independent central banks are in boldface. 

Legend: h- forecast horizon 

Country Code 
First recursion 

First 
recursion 

Size first 
estimation 
window 

No. of 
observations for 

WSN for h=1 

 No. of 
observations for 
WSN for h=24 Start Start 

Austria AUT Jan-97 Aug-03 243 80 163 140 
Belgium BEL Jan-97 Sep-03 243 80 163 140 

Czech Republic CZE Jan-97 Oct-03 243 80 163 140 
Denmark DNK Jan-97 Nov-03 243 80 163 140 
Estonia EST Jan-97 Dec-03 243 80 163 140 
Finland FIN Jan-97 Jan-04 243 80 163 140 
France FRA Jan-97 Feb-04 243 80 163 140 

Germany GER Jan-97 Mar-04 243 80 163 140 
Greece GRC Jan-97 Apr-04 243 80 163 140 

Hungary HUN Jan-97 May-04 243 80 163 140 
Iceland ICE Jan-97 Jun-04 243 80 163 140 
Ireland IRE Jan-97 Jul-04 243 80 163 140 

Italy ITA Jan-97 Aug-04 243 80 163 140 
Luxembourg LUX Jan-97 Oct-04 243 80 163 140 
Netherlands NLD Jan-97 Nov-04 243 80 163 140 

Norway NOR Jan-97 Dec-04 243 80 163 140 
Poland POL Jan-99 Jan-05 243 80 163 140 
Portugal PRT Jan-97 Feb-05 243 80 163 140 

Slovak Republic SLK Jan-97 Mar-05 243 80 163 140 
Slovenia SLV Jan-97 Apr-05 243 80 163 140 

Spain SPA Jan-97 May-05 243 80 163 140 
Sweden SWE Jan-97 Jun-05 243 80 163 140 

Switzerland SWZ Dec-05 Jul-12 136 80 56 33 
Turkey TUR Jan-97 Aug-05 243 80 163 140 

United Kingdom UK Jan-97 Sep-05 243 80 163 140 
United States US Dec-98 Jul-05 220 80 140 117 

 

Table S2.3: Data and estimation periods, PCE inflation. 
Legend: h- forecast horizon 

Country Code 
First recursion 

First 
recursion 

Size first 
estimation 
window 

No. of 
observations 
for WSN for 

h=1 

No. 
observations for 
WSN for h=24 Start Start 

United States US Jan-60 Jun-71 687 138 549 538 
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Table S2.4: Forecast uncertainty characteristics for the UK and the US aggregated across 

forecast horizons computed for different of measures of inflation (data until 
March 2017). 

Legend: ̂  is the estimated   parameter in the WSN distribution (6)-(7). For explanations of other symbols see 
the main body of the paper. 

 

 Short aggregation Long aggregation 
Infl. 

measure URMSE  V  UR NUR ̂  URMSE  V  UR NUR ̂  

UK 
CPI 1.06 1.29 1.37 0.84 0.56 13.4 15.4 1.15 0.92 1.69 

CORE 0.56 0.71 1.41 0.87 0.45 5.90 6.90 1.14 0.91 1.18 
HICP 0.28 0.35 1.35 0.84 0.27 1.18 1.39 1.15 0.92 0.93 

US 
CPI 0.52 0.65 1.38 0.85 0.43 6.56 7.84 1.18 0.94 1.78 

CORE 0.25 0.31 1.41 0.87 0.22 3.80 4.55 1.17 0.93 1.19 
HICP 1.03 1.21 1.07 0.71 0.71 4.11 4.92 1.19 0.95 1.88 
PCE 0.36 0.45 1.37 0.85 0.27 2.74 3.23 1.12 0.90 1.44 
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2.3. TIME STABILITY 

Figure S3.1: Aggregated URs computed in fixed size windows. 
Legend: solid lines indicate the long aggregation and the dashed line the short aggregation. 
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Figure S3.2: Aggregated URs computed in expanding size windows. 
Legend: solid lines indicate the long aggregation and the dashed line the short aggregation. 
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