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Abstract 

Apolipoprotein E (APOE) is a lipid-transport protein expressed in almost all tissues, including the brain. In 

addition to lipid delivery, brain APOE also regulates amyloid beta clearance and aggregation. In humans, 

there are three main isoforms, APOE2, APOE3 and APOE4, with structural differences that influence protein 

function. APOE4 is the most important genetic risk factor for Alzheimer’s disease and Dementia with Lewy 

bodies.  

In this review, we will focus on the genetic variability of APOE and its association with different diseases 

(mainly neurodegenerative, psychiatric and lipid-related). Despite the increasing number of studies, the 

association of APOE genetic variants with other neurological conditions beyond Alzheimer’s disease and 

Dementia with Lewy bodies is still far from clear.  

We will also discuss the association of different structural and functional aspects of APOE with different 

diseases, particularly the amyloid beta-dependent and -independent mechanisms, such as tau-mediated 

neurodegeneration, associated with Alzheimer’s disease pathogenesis.  

As the most significant genetic risk factor for Alzheimer's disease, APOE has a central role in the risk 

assessment of this disease. Consequently, a better understanding of the impact of common and rare APOE 

variants will not only contribute to a more accurate risk management of these patients, but it will also clarify 

the potential of APOE as a therapeutic target. 
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Resumo       

A apolipoproteína E, usualmente denominada como APOE, é uma proteína essencial no transporte de 

lípidos com expressão na maioria dos tecidos. No cérebro, para além do seu envolvimento no metabolismo 

dos lípidos, contribui também para a eliminação e agregação da proteína beta amilóide. No organismo 

humano existem várias isoformas da APOE, sendo as isoformas APOE2, APOE3 e APOE4 as mais 

frequentes. As diversas isoformas apresentam diferenças estruturais com consequência na função proteica. 

A isoforma APOE4 tem sido identificada por consecutivos estudos como o principal factor de risco genético 

para a doença de Alzheimer e para a demência com corpos de Lewy.  

Neste estudo iremos focar-nos na variabilidade genética do gene APOE e na sua associação com diferentes 

doenças: doenças neurodegenerativas, psiquiátricas e associadas ao metabolismo lipídico. Apesar do 

crescente número de estudos realizados, a influência das variantes genéticas do gene APOE na maioria 

destas doenças ainda não é totalmente conhecida, com excepção da doença de Alzheimer e da demência 

com corpos de Lewy. 

Será também destacada a relação entre as diferenças estruturais e os aspectos funcionais da APOE em 

diferentes patologias, em particular nos mecanismos dependentes e independentes de beta amilóide, como 

a neurodegeneração associada à proteína tau, envolvidos na patogénese da doença de Alzheimer.  

Como factor de risco genético mais significativo para a doença de Alzheimer, o APOE tem potencialmente 

um papel na avaliação do risco desta doença. Consequentemente, uma melhor compreensão do impacto 

das variantes neste gene não só contribuirá para uma avaliação de risco de doença mais assertiva, como 

também ajudará a esclarecer o potencial da APOE como alvo terapêutico. 
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Introduction 

Apolipoprotein E (APOE) was first described in 1973 by Shore and Shore (1), but it was only in 1975 that 

Utermann and collaborators decided to denominate this glycoprotein as APOE (2). APOE is an amphipathic 

protein that belongs to the family of apolipoproteins (3). In humans, three major APOE isoforms exist with 

different properties (4). In the early 90s, the association between the APOE4 isoform and Alzheimer’s 

disease (AD) was discovered (5) and since then multiple studies have been performed to understand the 

impact of APOE in AD pathogenesis. In addition, the impact of APOE genotype has also been shown in 

other neurological conditions (6). In this article we review the genetics of APOE, its relation with protein 

structure and function and association with diseases. We focus essentially on neurological conditions, 

particularly in AD and how the information obtained from the genetic study of APOE can improve the risk 

assessment of these patients. 

 

 

 

Gene and locus 

The APOE gene is located on chromosome 19q13.32, it includes 4 exons separated by three introns and 

comprises 3646 bp (7). Exon 1 and the beginning of exon 2 correspond to the 5’ untranslated region (UTR), 

while the last portion of exon 4 encodes the 3’-UTR (Figure 1). The APOE gene is in close proximity to other 

apolipoproteins genes, such as APOC1, APOC4, and APOC2. Strong linkage disequilibrium (LD) was 

observed between variants located in APOE and those in surrounding genes spanning 50 Kb (8). Using 21 

APOE single nucleotide polymorphisms (SNPs), Yu and collaborators identified 35 different haplotypes in 

Caucasian individuals, with five haplotypes corresponding to over 75% of the haplotypic distribution, and 13 

haplotypes corresponding to over 95%. Furthermore, different ethnic groups showed distinct LD patterns (8). 

Regarding methylation status, APOE has a CpG island located in the 3’ coding region (exon 4) and CpG 

sites are hypo or hypermethylated according to the genomic location (9). CpG sites in the promoter and in 

exon 4 were shown to be hypermethylated, while CpG sites in the first two exons and introns exhibited 

hypomethylation. The genotype of specific variants influences the methylation level. The allele A of the 

promoter variant -219T/G (rs405509) increases the methylation in some CpG sites reducing gene expression 

and the three main APOE alleles (APOE ε2, APOE ε3 and APOE ε4) have different methylation levels with 

the presence of CpG sites in APOE ε4 allele (10). 

 

 

 

Expression 

APOE production and secretion occurs in most human tissues. Plasmatic APOE is mainly synthesised by 

hepatocytes (up to 75%). Moreover, other cells and tissues such as macrophages, adipocytes, spleen, and 

kidney are also important sources of APOE (11). In the brain, APOE is mainly produced by astrocytes , but 

also by neurons and microglia in stress situations (12), and cerebrovascular pericytes (13). 

Proximal and distal regulatory binding sites are involved in the complex process of regulation of APOE 

transcription that takes place in a cell-specific manner. Several transcription factors bind to APOE promoter, 

such as AP2, LXRα/RXRα and LXRβ/RXRα (14). In hepatic cells two enhancers were identified, HCR.1 and 

HCR.2, that control the apoE/apoCI/apoCIV/apoCII gene cluster expression (15); while in macrophages and 

adipose tissue two multi-enhancer regions have been identified: ME.1 and ME.2 (16). 

 

 

 

Protein  
The translated APOE product is a 36.2 KDa protein composed of 317 amino acids. This precursor protein 

has a signal peptide of 18 amino acids on the N-terminal that is removed cotranslationally. Subsequently, in 

the Golgi apparatus, APOE suffers O-linked glycosylation and sialylation and finally the 34 KDa glycoprotein 

is secreted (17).  

In 2011, Chen and collaborators revealed, for the first time, the full structure of APOE. Using nuclear 

magnetic resonance (NMR), the authors reported an helix-bundle structure with three domains: an N-

terminal domain (residues 1-167) containing antiparallel four-helix-bundle, a hinge domain (residues 168-

205) with two helices that regulates the interaction between N- and C-terminals, and a C-terminal domain 
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(residues 206-299) composed by three helices. A salt-bridge between Lys95 and Glu255 and an H-bond 

between Arg61 and Thr194 promote the interaction of both terminals (18). 

 

 

 

Functions 

APOE is a glycoprotein mainly involved in the transport of lipids and cholesterol throughout the body. APOE 

is an important constituent of lipoproteins such as very low density lipoproteins (VLDL) synthesized by the 

liver and chylomicrons generated in the intestine from dietary fat and cholesterol (11). The lipid ligation 

occurs through the lipid binding domain located in the C-terminal (residues 244-272). Moreover, APOE also 

has a receptor binding region located in the N-terminal (residues 136-150), allowing this protein to function 

as a ligand in receptor-mediated endocytosis of lipoprotein particles (Figure 1). APOE binds to cell surface 

receptors culminating in the internalization of transported lipids by hepatic and extrahepatic cells. Low 

density lipoprotein receptor (LDLR), LDLR-related protein 1 (LRP1), VLDL receptor (VLDLR), and APOEE 

receptor 2 (APOER2) are the major APOE receptors. The binding affinity to these receptors depends on 

APOE lipidation status and isoform. In addition, APOE can also bind to cell surface heparan sulfate 

proteoglycan (HSPG) (19). APOE secreted by macrophages and present in HDL particles participates in 

reverse transport of cholesterol, redirecting excess cholesterol produced by peripheral tissues to the liver for 

elimination (20). 

In the brain, APOE has an important role in neuroplasticity. It is the predominant apolipoprotein of HDL in the 

central nervous system (21). Lipidated APOE binds to LDL receptor family members and is endocytosed. 

The released cholesterol is used in synaptogenesis and maintenance of synaptic connections, while APOE 

can be recycled back to cell surface or be degraded (22). APOE also acts as a chaperone protein required in 

amyloid β (Aβ) clearance (23). According to the classical view, when lipidated, APOE binds to Aβ and the 

Aβ-APOE complex is internalized by LRP1 in the blood brain barrier (BBB) and brain cells (22). It also 

influences the aggregation and deposition of Aβ (22). However, Verghese and collaborators argue that the 

physical interaction between soluble Aβ and APOE observed in previous studies just occurred due an 

overload of soluble Aβ compared to APOE lipoprotein. The authors concluded that in physiological ratios 

soluble Aβ does not bind to lipidated APOE. The alternative model proposes that soluble Aβ and APOE 

compete for the receptor LRP1, and consequently APOE impairs soluble Aβ clearance (24). Supporting this 

theory, it was observed an increase in Aβ clearance in the presence of reduced APOE levels (25) and a 

direct clearance of Aβ through LRP1 (26). Despite these evidences, the direct binding of APOE to Aβ can not 

be completely ruled out, since APOE is present in plaques (27). Furthermore, APOE was also shown to be 

involved in the regulation of inflammation, tau phosphorylation, actin polymerization and long-term 

potentiation (LTP), as described later in this review.  

 

 

 

Isoforms and genetic variants 

Three major isoforms are described for APOE: APOE2, APOE3 and APOE4. The three isoforms differ at 

positions 112 and 158 of the protein. APOE4 is the ancestral isoform and has the amino acid arginine in 

positions 112 and 158 of the protein. The APOE3 isoform is derived from APOE4 and presents a cysteine in 

position 112 and an arginine in residue 158 of the protein. APOE2 contains cysteines in both positions (4). At 

the gene level, these isoforms correspond to three alleles: APOE ε2, APOE ε3 and APOE ε4 that are 

associated with two SNPs, rs429358 and rs7412, corresponding to the previously described amino acid 

changes at positions 112 and 158, respectively. 

APOE ε3 is the most frequent allele (77.9% in Caucasians) followed by APOE ε4 (13.7%) and APOE ε2 

(8.4%) with slight differences between distinct ethnic groups (28). In Portugal, the allele frequencies fit within 

the range of values obtained for other European populations: 83.6%-88.2% for APOE ε3, 7.4%-10.0% for 

APOE ε4 and 4.4%-6.4% for APOE ε2 (29–31). A study performed with 126 healthy unrelated individuals 

born in the Azores also obtained similar allele frequencies: 83.7%, 9.5% and 6.8% for alleles APOE ε3,  

APOE ε4 and  APOE ε2, respectively (32). Eisenberg and collaborators found a lower APOE ε4 frequency in 

populations living in regions with moderate latitude and temperatures compared to populations that live in 

extreme environments. This difference may be related to higher metabolic rates in the individuals living in 
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extreme environments, which requires higher cholesterol levels. In accordance, APOE ε4 carriers were 

found to have higher cholesterol levels (33).  

The two polymorphisms confer different properties to the three isoforms. A higher molecular stability was 

found for APOE2, while APOE4 is the isoform with the lowest stability (34). Consequently APOE2 is the most 

abundant isoform in plasma and CSF (35,36). Also, due to the presence of two cytosine nucleotides in the 

variants rs429358 and rs7412, APOE ε4 has more CpG sites and was found to be hypermethylated 

comparatively to APOE ε2 (10). APOE4 has more affinity to VLDL particles, but APOE2 and APOE3 

preferentially associate with small HDL particles (37). Affinity to the receptors is also influenced by the 

isoform: both APOE3 and APOE4 have similar affinity to the LDL receptor, but the affinity to this receptor is 

less than 2% for APOE2 (38,39). These variations are associated with structural differences between the 

isoforms. In APOE2 the cysteine residue at position 158 alters the conformation of the receptor binding 

region, between residues 136 and 150, leading to a defective binding to the LDL receptor. APOE4 has a 

closed conformation (a molten globule state) due to Arg112 residue. This arginine leads to the formation of a 

salt bridge between Arg61 and Glu255 residues, culminating in a different C-terminal with an increased 

affinity to lipids (40–42). 

There are other genetic variants located in the promoter, exons and introns, but almost all of these are rare 

(minor allele frequency (MAF) <1%). In fact, in the large gnomAD database 

(http://gnomad.broadinstitute.org/) containing variants from over 123,000 exomes and 15,000 genomes there 

are only 6 SNPs reported with a MAF > 1%: the two SNPs associated with alleles ε2, ε3 and ε4, and four 

intronic variants (Table I). 

 

 

 

APOE and disease 

 

APOE and Alzheimer’s disease 

Alzheimer’s disease is the most common form of dementia and is neuropathologically defined by the 

combined presence of extracellular amyloid-beta (Aβ) plaques and intracellular neurofibrillary tangles of 

phosphorylated tau protein (43) in the brain of patients. APOE ε4 is the main genetic risk factor for AD, being 

associated with a semi-dominant inheritance of late onset AD (LOAD) (44,45). The impact of APOE ε4 in AD 

was reported for the first time in 1993 (5) and since then APOE has been a constant hit in genome wide 

association studies (GWAS) when studying AD samples from different populations (44–49). In the 

Portuguese population, Fernandes and collaborators (50) as well as Rocha and collaborators (51) also 

demonstrated that APOE ε4 is more frequent in AD patients when compared to controls. The last study 

obtained an odds ratio of 5.93 for the association of APOE ε4 with the risk of developing AD (51).  

The risk for LOAD is dose related: it is 2-3-fold higher in individuals carrying one APOE ε4 allele and 

increases to 12-fold if carrying two copies of APOE ε4 (52). APOE ε4 also reduces the age of onset in a 

dose dependent manner (53). Contrary to APOE ε4, the APOE ε2 allele has been shown to be associated 

with a reduced risk and increased age at onset of AD (28,54,55).  

The exact mechanism through which APOE ε4 influences AD pathogenesis is still not fully known. APOE 

and Aβ were found co-localised in senile plaques, in amyloid deposits found in vessel walls and in 

neurofibrillary tangles of AD patients (56). APOE ε4 carriers have a higher amyloid load in their brains than 

non-carriers (57). Several studies have associated APOE with Aβ metabolism, aggregation and deposition. 

Recently, Huang and collaborators showed that APOE binding to APOE receptors activates the DLK-MKK7-

ERK1/2 cascade, followed by cFos phosphorylation and stimulation of transcription factor AP-1, culminating 

in APP transcription and Aβ production (Figure 2). Activation of this pathway was stronger for APOE4 than 

for APOE3 or APOE2 (58). It has also been shown that lipidated APOE binds to soluble Aβ in an isoform-

dependent manner (APOE2 > APOE3 >> APOE4) (59). It also promotes Aβ clearance by different 

mechanisms, such as uptake and degradation by astrocyte, microglia and neurons (60), clearance through 

the BBB (61) and extracellular proteolytic degradation (62), in the same isoform-dependent manner, which 

leads to a reduced clearance in the presence of APOE4 isoform (63). APOE is known to promote Aβ 

fibrillization, aggregation and deposition in an opposite isoform-dependent manner (APOE4 >> APOE3 > 

APOE2) to that mentioned for Aβ clearance (63–65). 

APOE4 also contributes to AD pathogenesis independently of Aβ (Figure 2). It has been shown to: increase 

tau phosphorylation and neurofibrillary tangle formation (66,67); disrupt mitochondrial function due to lower 
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levels and activity of mitochondrial respiratory enzymes (68); reduce cerebral glucose metabolism (69,70); 

be associated with a less efficient transport of lipids and cholesterol, required for membrane repair and 

synaptic plasticity (71); increase the levels of iron in the brain (72); reduce the anti-inflammatory properties of 

APOE (73) and compromise vascular integrity and function, related with the accelerated pericyte loss (74).  

More specifically, APOE4 delays the recycling after endocytosis of APOE receptors back to the membrane. 

These receptors interact with PSD95 and NMDAR leading to Ca2+ influx increasing long-term potentiation 

(LTP) (75,76). The Ca2+ influx also leads to ERK1/2 phosphorylation that activates CREB. CREB promotes 

transcription of AID and BDNF, which provide broad-spectrum neuroprotective effects (77). In addition, 

APOER2 and VLDLR are two reelin and APOE receptors also involved in tau phosphorylation and actin 

polymerization regulation. Reelin inhibits tau hyperphosphorylation through the DAB1-PI3K-AKT pathway 

that inactivates GSK3β, required for tau phosphorylation and LTP increase. PI3K activated by reelin also 

activates LIMK1 that inhibits cofilin, reducing cofilin actin-depolymerizing activity, which leads to actin 

polymerization and dendritic spine growth increase (78–80). However, Aβ oligomers have the opposite effect 

of reelin activation leading to GSK3β activation and LIMK1 blockage (81,82). As a consequence of APOER2 

and VLDLR retention due to APOE4, the reelin pathway is blunted and loses its capacity to inhibit tau 

phosphorylation, to promote LTP and actin polymerization and dendritic spine growth. These receptors also 

regulate JNK activation (83,84), through JIP1/2 (85). JIP1/2 inhibits JNK signalling, a protein that contributes 

to inflammation (85). In the presence of APOE4 this pathway is impaired leading to a lower APOE-mediated 

anti-inflammatory effect (73).  

More recently, it was also shown that APOE contributes to the changes in microglia phenotypes observed in 

neurodegenerative diseases. APOE present in lipoproteins or bound to apoptotic neurons binds to TREM2 

leading to their phagocytosis. After this, APOE mediates a switch from a homeostatic to a neurodegenerative 

microglia phenotype (86,87). No APOE isoform-dependent differences in binding affinity between TREM2 

and APOE were found (88,89) and further studies will be required to understand the impact of the different 

APOE isoforms in the changes of microglia phenotypes. However, TREM2 expression was found to be 

reduced in the presence of APOE4 comparatively to APOE3 (90). 

In addition to the role of APOE2, APOE3 and APOE4 isoforms in AD, the effect of other variants in the gene 

has also been studied. Three promoter polymorphisms, -491A/T (rs449647), -427T/C (rs769446), and -

219T/G (rs405509), have been extensively studied but the results regarding an association with AD risk have 

not been consistent. In 1998, Lambert and collaborators after studying 49 LOAD patients and 45 controls 

reported an increased risk of occurrence of AD associated with the T allele of -219T/G polymorphism, a 

decreased risk associated with T allele of -491A/T polymorphism and no association with AD for the -427T/C 

polymorphism (91). Limon-Sztencel and collaborators also found a protective effect of the G allele of -

219T/G polymorphism (82). However, in a more recent meta-analysis carried out by Xiao and collaborators 

the C allele of -427T/C was associated with an increased risk of AD, while the other two polymorphisms did 

not show association with the disease (92). The intronic polymorphism +113G/C (rs440446) was found in 

linkage with APOE ε4 allele (93), and further studies did not find an independent association with AD (82,94). 

The intronic SNP rs769449 was found associated with a reduction in Aβ42 levels and an increase in tau and 

ptau181 levels in CSF (95,96). 

In 2014, Medway and collaborators reported the impact of p.Leu28Pro, p.Arg145Cys and p.Val236Glu in 

LOAD risk. The authors concluded that p.Leu28Pro was in complete linkage disequilibrium with APOE ε4, 

not representing an independent association with LOAD risk; the p.Arg145Cys was too rare to be analysed, 

but p.Val236Glu was associated with a decreased risk of LOAD (OR = 0.10) independently of APOE ε2, 

APOE ε3 and APOE ε4 haplotypes (97). 

 

 

 

APOE and other neurological diseases 

The association between APOE and Dementia with Lewy bodies (DLB) has been repeatedly demonstrated. 

In fact, APOE is the strongest genetic risk factor for DLB. APOE ε4 is associated with increased risk for DLB 

with an APOE ε4 allele frequency established within 24% and 32% in DLB patients in comparison to 7%-

15% in controls (98–102). Recent studies revealed that the APOE4 isoform confers a shorter disease 

duration and earlier age of death (99,103,104). Similarly to AD, the APOE ε2 allele reduces the risk for the 

development of DLB and delays the onset of disease (105). 
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In a recent study with patients with Parkinson’s disease (PD), Mengel and collaborators did not find APOE ε4 

affecting cognitive performance (106), contradicting previous results where this allele was associated with 

worse cognitive performance (107,108). In 2004, a meta-analysis showed a positive association between 

APOE ε2 and sporadic PD (109), which was not replicated in recent genome-wide association studies. 

The role of APOE in frontotemporal dementia (FTD) remains unclear too. Like for AD, APOE2 has been 

suggested to have a protective effect while APOE4 has been associated with an increase in risk (110–112). 

However, other studies presented APOE2 as a risk factor for FTD (113). Authors argued that the presence of 

an APOE association with clinical FTD cases is most likely due to the inclusion of cases misdiagnosed as 

FTD that are in fact AD cases (114). Small studies found APOE4 carriers to show a more severe brain 

atrophy in specific regions (115). 

Cerebrovascular disorders are influenced by APOE isoforms as APOE4 is known to disrupt the BBB by 

reducing the blood flow, increasing its leakiness and incorporating neurotoxic proteins (74,116). APOE 

polymorphisms are significantly associated with susceptibility to vascular dementia (117). For ischemic 

stroke, APOE4 is a risk factor as well, especially in Asian populations, but APOE2 does not seem to be 

protective (118–120). In an association study of hemorrhagic stroke cases, strong independent hits were 

found for both APOE2 and APOE4 (121). 

The role of APOE in schizophrenia is not completely clear. In 1995, Harrington and collaborators found an 

increased frequency of APOE ε4 allele in schizophrenic patients, considering this allele as a risk factor for 

schizophrenia (122). Another study demonstrated that female patients carriers of APOE ε4 alleles presented 

an earlier age of onset and a higher risk of suffering from the negative syndrome subtype of disease when 

compared to schizophrenic women non-carriers of APOE ε4 (123). However, subsequent studies did not 

replicate this association (124–127). The APOE ε2 allele and genotype ε3/ε2 were less frequent in patients 

with this disease, suggesting that the ε2 allele might have a protective effect (128), but other studies showed 

contradictory results. A recent study by Al-Asmary and collaborators found higher frequencies of APOE ε2 

allele and genotypes ε2/ε3 and ε2/ε4 in patients when compared to controls. Interestingly, the authors also 

found that the frequency of the ε4 allele was significantly higher in patients with positive symptoms. In this 

study lower frequencies were also obtained for APOE ε3 allele and ε3/ε3 genotype (129), which was found 

by others too (130). A study performed in 60 Mexican families found an increase of female carriers with 

APOE ε3, whereas APOE-219G was preferentially transmitted in males (131). These conflicting results may 

be associated with the number of samples, ethnicity of the studied cohorts or environmental factors. 

Increased APOE levels were also found in cerebral regions implicated in schizophrenia (132,133). 

The impact of APOE genotypes has also been studied in bipolar disorder. Early onset bipolar patients 

presented a higher APOE ε4 allele frequency compared to late onset patients or controls (134) and this allele 

was also associated with worse performance in executive tasks performed by young non-treated patients 

(135). Similar to schizophrenia conflicting results have also been seen for bipolar disease, with other authors 

not finding differences in APOE allele frequencies between bipolar disorder cases and controls (136,137). In 

this disease a decreased plasmatic expression of APOE was reported (138) and APOE expression in the 

brain was also found to be region specific in patients with this disease (139). 

The APOE ε2 allele was reported to have a protective effect in major depressive disorder in Taiwanese 

patients (140). A meta-analysis performed in 2008 confirmed the same result in Caucasians (141). However, 

no association between APOE and major depressive disorder was found in 17,507 British adults (142) and in 

Russian patients (143). Again, some studies have shown an association between late-life depression and 

APOE ε4 allele (144), while others did not show a significant association between APOE genotype and this 

disease (145). 

Several studies have also been carried out to understand the impact of APOE in multiple sclerosis (MS) 

(146), but the conclusions remain controversial. Some studies have reported APOE ε4 as a risk factor for MS 

or associated with progression of cognitive deficits (147,148). However, absence of association was also 

found (149,150). Studies in the Portuguese population did not identify any correlation between APOE 

genotype and MS (151,152). 

 

 

 
APOE and other diseases 

The impact of APOE in non-neurological conditions has also been recognised decades ago. Due to APOE2 

reduced capacity to bind to LDL receptor, the presence of two APOE ε2 alleles is associated with the 
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recessive form of type III hyperlipoproteinemia. However, this allele does not have a complete penetrance: 

its presence is necessary but not always sufficient to induce the disease. Furthermore, several rare APOE 

mutations have been described as causative of a dominant form of type III hyperlipoproteinemia and the 

majority of these mutations involve substitutions of arginine or lysine residues located in the receptor-binding 

region (153,154). Other APOE mutations are causative of lipoprotein glomerulopathy, a dominant disorder 

with incomplete penetrance involving the kidney. In this disease, the most common APOE mutations are 

located in the LDL-receptor binding domain (154,155). APOE ε4 has been associated with increased LDL 

cholesterol levels and consequent increased cardiovascular risk, including in Portuguese individuals (31). 

APOE genotypes have also been associated with viral infections. Carriers of the APOE ε4 allele were shown 

to develop more recurrent cold sores caused by HSV-1 (156) and higher rate of oral herpetic lesions (157). 

The offspring of APOE4 mice female progenitors were found to have higher HSV-1 levels in the brain 

comparatively to those of APOE3 female progenitors (158). APOE ε4/ε4 genotype was also found to be 

associated with an accelerated HIV infection and progression to death when compared with the APOE ε3/ε3 

genotype (159). Other studies did not confirm the association between APOE genotype and time of death 

caused by HIV (160). APOE is also known to be necessary for HCV assembly and release (161). In this case 

and contrary to HSV-1 and HIV, studies suggest that APOE ε4 allele has a protective role in HCV infection 

(162,163).  

 

 

 

Clinical implications of APOE genotype in AD 

The genetic risk prediction of complex LOAD is not straightforward. Although APOE ε4 is the main LOAD 

genetic risk factor, it is neither necessary nor sufficient to cause LOAD and its testing is largely not 

recommended in a clinical setting due to the absence of current effective therapies or preventive options. 

Additionally, different studies have shown that different factors such as sex, ethnic group, environmental 

exposure and genetic modifier variants may influence APOE ε4 risk and complicate the interpretation of 

results (28,164). More recently it has been shown that the combination of non-APOE alleles significantly 

improves LOAD risk prediction over APOE alone.  These different genetic variants can be combined into a 

polygenic risk score to improve predictive ability. The results also improve when considering other 

characteristics such as family history of disease, age at onset and biomarkers. However, so far, this has not 

yet achieved the values of sensitivity and specificity required for clinical use (165–167). 

Clinical trials have been conducted to reduce Aβ production or aggregation, or to facilitate Aβ clearance. The 

genetic study of individuals included in these trials may contribute to better results. In the TOMORROW trial 

the risk prediction for LOAD includes APOE and TOMM40 genotypes (168). Furthermore, a clinical trial using 

an anti-Aβ antibody did not reveal a significant efficacy, but potential differences were found between APOE 

ε4-negative and APOE ε4-positive individuals, suggesting that individuals without the APOE ε4 allele had a 

better response to the antibody and, consequently, that this drug could be more useful for these patients 

(169). Together these data indicate that genetic information of cohorts included in clinical trials should be 

taken into account and suggest the utility of genetic stratification. 

Therapeutic options based on APOE have also been explored. Some examples are the modulation of the 

structure of APOE4 in order to make it similar to that of APOE3; regulation of APOE levels; inhibition of 

APOE aggregation and proteolysis; use of APOE-mimetic peptides; gene therapy directed towards APOE; 

blockage of the APOE/Aβ interaction; and modulation of the APOE lipidation state (19,63). 

 

 

 

Conclusions 

Two common polymorphism in APOE produce three isoforms with structural differences. As a consequence 

the three isoforms have different functions in lipid transport, in brain homeostasis and neuronal plasticity. It is 

clear that the ε4 allele of APOE is the major genetic risk factor for AD and DLB. However, the exact 

mechanisms involved in the pathogenesis of these diseases are not known yet, but seem to include Aβ-

dependent and -independent pathways. Other neurological conditions have also been associated, in some 

studies, with APOE genotype. However, in these cases, the results have been inconsistent over the years 

and the role of APOE in these conditions remains largely inconclusive. The APOE ε2 allele and rare variants 

are associated with lipidic disorders, sometimes, with cardiovascular consequences.  

https://paperpile.com/c/rwnZQs/JVJy+Euy8
https://paperpile.com/c/rwnZQs/Euy8+zxae
https://paperpile.com/c/rwnZQs/rrzm
https://paperpile.com/c/rwnZQs/qOnb
https://paperpile.com/c/rwnZQs/WS0D
https://paperpile.com/c/rwnZQs/u4vl
https://paperpile.com/c/rwnZQs/Cjv2
https://paperpile.com/c/rwnZQs/q0x4
https://paperpile.com/c/rwnZQs/f6uP
https://paperpile.com/c/rwnZQs/FLz4+7P3A
https://paperpile.com/c/rwnZQs/Ow0bQ+8WDQv
https://paperpile.com/c/rwnZQs/68zqA+MWdLr+MmhbM
https://paperpile.com/c/rwnZQs/TvOYV
https://paperpile.com/c/rwnZQs/tLnEj
https://paperpile.com/c/rwnZQs/unNu+b08c


 

With the increase in the number of sequencing studies being performed, novel variants are being identified in 

known and new diseases. This will allow for a better understanding of the role of APOE in disease as well as 

the impact of the different variants in risk prediction and penetrance.  

In AD, the genetic study of APOE already allows for the identification of individuals with high risk for the 

development of the disease and can, in the future, permit early-life interventions. Given the important genetic 

role of APOE in this disease, it should not only be considered in clinical trials, but should also be the focus of 

new therapeutical strategies.  
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Tables 

 

Table I - APOE variants with alternative allele frequency > 1% present in the gnomAD database. Positions are given 

according to GRCh37/hg19. Protein positions are relative to the translated protein containing the peptide signal of 18 

amino acids. Global AAF represents alternative allele frequencies for the global population and were obtained from the 

gnomAD database (http://gnomad.broadinstitute.org/). Chr: Chromosome; AAF: alternative allele frequencies. 

 

 

 

Figures 

 

Figure 1 - APOE locus, gene and protein.  

In the middle panel (gene) the light blue areas represent untranslated regions 5’ and 3’, while the dark blue areas 

correspond to the coding region of the exons. The protein (bottom panel) is divided in three regions: N-terminal region 

(blue) containing the receptor-binding domain (red), the hinge region (between amino acids 168 and 205), and the C-

terminal region (green) with the lipid-binding domain (yellow). The two polymorphisms, in positions 112 and 158 of 

the protein, that distinguish the three more common APOE isoforms (APOE2, APOE3 and APOE4) are located in the 

N-terminal region. Adapted from ([6,11]). 

 

 

Figure 2 - Signaling pathways affected by APOE4.  

APOE binds to different receptors leading to the activation of several pathways and receptor endocytosis. The presence 

of APOE4 leads to lower levels of APOE receptors and NMDAR in the membrane. This results in more inflammation, 

tau hyperphosphorylation, actin depolymerization, increased LTP and reduced levels of neuroprotective molecules. In 

addition, APOE4 stimulates the production of APP, leading to higher levels of Aβ in the brain. All these factors 

contribute for the development of AD. 
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Table I 

 

 

Chr Position rsID Reference Alter

native 

Transcript 

Consequence 

Protein 

Consequence 

Type Global 

AAF 

European 

(Non-

Finnish) 

AAF 

19 45409579 rs769448 C T   intron 0.02034 0.03342 

19 45412079 rs7412 C T c.526C>T p.Arg176Cys missense 0.06538 0.07669 

19 45410002 rs769449 G A   intron 0.09179 0.1145 

19 45411941 rs429358 T C c.388T>C p.Cys130Arg missense 0.14254 0.14893 

19 45410444 rs769450 G A   intron 0.39341 0.40434 

19 45409167 rs440446 C G   intron 0.62118 0.63565 
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