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Abstract 

Astrocytes form an anatomical bridge between the vasculature and neuronal synapses. Recent work 

suggests that they play a key role in regulating brain energy supply by increasing blood flow to regions 

where neurons are active, and setting the baseline level of blood flow. Controversy persists over whether 

lactate derived from astrocyte glycolysis is used to power oxidative phosphorylation in neurons, but 

astrocytes sustain neuronal ATP production by recycling neurotransmitter glutamate that would 

otherwise need to be resynthesized from glucose, and by providing a short term energy store in the form 

of glycogen that can be mobilised when neurons are active. 

Introduction 

The human brain is critically dependent on a constant supply of energy (almost exclusively in 

the form of glucose) to meet its high metabolic demands. Despite comprising only 2% of the body’s 

mass, the brain consumes approximately 20% of its resting energy, mainly to reverse ion fluxes that 

underlie synaptic potentials and action potentials [1, 2, 3], and if the energy supply of brain cells is 

compromised they quickly become injured or die. To ensure that the fluctuating activity-dependent 

energy requirements of neurons are met, the brain has evolved ‘neurovascular coupling’ mechanisms 

to regulate energy supply, which increase the blood flow to regions where neurons are active - a 

response termed ‘functional hyperaemia’ [4]. Once delivered to an active area, glucose must then be 

successfully transferred from the blood to brain cells, where it is used to generate ATP, converted to 

other forms of energy substrate (such as lactate or glutamate) or converted to the storable energy reserve 

glycogen [5, 6].  

Astrocytes, with ‘endfoot’ processes abutting blood vessels supplying glucose, and finer 

processes surrounding the synapses that are the brain’s major energy consumers, are potentially 

important regulators of brain energy supply. Surprisingly, however, there has been intense debate about 

the role of astrocytes, both in regulating local blood flow to power active neurons, and in transforming 

glucose to other molecules that are the immediate substrate for ATP production. In this review we 

discuss the pivotal roles that astrocytes may play in the ‘flow’ of energy from the circulation to brain 

cells. 
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The role of astrocyte [Ca2+]i transients in adjusting brain energy supply 

Astrocytes, which are present in the brain at similar numbers to neurons [7*], are ideally 

positioned between the vasculature and neurons to fulfil several key roles in regulating the flow of 

energy to neurons, including mediation of neurovascular coupling. Astrocytes extend fine processes 

that ensheath neuronal synapses and more substantial ‘endfeet’ that wrap much of the surface of the 

brain vasculature. For example, astrocyte processes cover ~63% of capillaries, with most of the rest of 

the endothelial tube being covered by pericytes (the role of which we discuss below), and <1% of the 

endothelium facing clefts between these cells [8]. This topographical arrangement allows astrocytes to  

detect changes in neuronal activity (and hence metabolic demand) by sensing neurotransmitter release, 

and to relay this information to the vasculature to alter the energy supply. Classically, regulation of 

blood flow is achieved by vascular smooth muscle cells altering their tone to adjust the diameter of 

arterioles, and thus alter blood flow. 

The first evidence that astrocytes can regulate arteriole diameter came from brain slices, where 

the Carmignoto group showed that raising astrocyte [Ca2+]i with metabotropic glutamate receptor 

(mGluR) agonists dilated arterioles by generating a cyclooxygenase derivative of arachidonic acid [9], 

and the MacVicar group showed that raising astrocyte [Ca2+]i by uncaging Ca2+ led to arteriole 

constriction (later found to become a dilation at physiological oxygen levels [10, 11]). Similarly, 

Nedergaard’s group reported that in vivo a similar mGluR-evoked arteriole dilation occurred in response 

to neuronal activity and was mediated by a cyclooxygenase derivative [12]. Subsequently, debate has 

raged over whether the astrocyte [Ca2+]i transients evoked by neuronal activity are too small, too slow, 

or too infrequent to have a causative role in neurovascular coupling [13, 14, 15], and whether [Ca2+]i-

raising mGluRs exist in adult astrocytes [16]. These arguments partly reflected the fact that conclusions 

were based on measuring Ca2+ signals within astrocyte cell bodies rather than in the fine processes of 

astrocytes near synapses which are presumably the first responders to neuronal activity, and on using 

bulk loading of Ca2+-sensing dyes which may go into both astrocytes and neurons thus making it hard 

to be certain which cell type is generating the observed Ca2+ signal [17, 18*, reviewed in depth by 19]. 

In addition to releasing enzyme-derived chemical messengers, neuronal activity-driven 

astrocyte [Ca2+]i transients may also signal to blood vessels by releasing K+ ions onto vessels, through 
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Ca2+-activated K+ (BK) channels in astrocyte endfeet [20]. In the physiological voltage range increasing 

[K+]o hyperpolarises vascular smooth muscle, by increasing the conductance of, and thus increasing 

outward current through, inward rectifier K+ channels. This hyperpolarisation reduces Ca2+ influx 

through voltage-gated channels, and leads to vessel dilation. A similar mechanism has been suggested 

to initiate a propagating hyperpolarization along capillary endothelial cells, to send a signal instructing 

arterioles to dilate [21]. 

Astrocytes mediate neurovascular coupling at the capillary level 

Despite a general focus on neurovascular coupling at the arteriole level, it was recently 

demonstrated that the majority of the hydraulic resistance which can be reduced to increase blood flow 

in the cortical vasculature is located in capillaries rather than arterioles [22]. This has shifted attention 

to the role of pericytes - spatially isolated contractile cells on capillaries - in controlling cerebral blood 

flow. Indeed, in vivo data suggest that a major fraction of the increase in blood flow evoked by neuronal 

activity reflects active relaxation of capillary pericytes [23, 24*].  

Dialysing astrocytes in brain slices with a high concentration of the rapid calcium buffer 

BAPTA was found to inhibit pericyte-mediated capillary dilation, while having no effect on arteriole 

dilation [25] (perhaps surprisingly, given previous reports [11, 12] of astrocyte [Ca2+] regulating 

arteriole dilation), establishing a role for astrocyte [Ca2+]i transients in regulating brain energy supply 

at the capillary level. Further pharmacological analysis demonstrated that the signalling evoked by 

neuronal activity to dilate the two types of vessel in the brain slices used for these experiments was 

different, with arterioles being dilated by nitric oxide release (presumably from interneurons), and 

capillaries being dilated by prostaglandin E2 which was generated from arachidonic acid derived from 

the sequential action (in astrocytes) of phospholipase D2, diacylglycerol lipase and cyclooxygenase 1. 

(We note however that other studies [11, 12] have reported that arachidonic acid metabolites such as 

PgE2 can also dilate arterioles, suggesting that different neurovascular coupling mechanisms may occur 

in different circumstances). The astrocyte [Ca2+]i transients evoked by neuronal activity to initiate 

capillary dilation were surprisingly shown to be produced, not by mGluRs as discussed above, but by 

postsynaptically released ATP activating P2X1 receptors on astrocytes [25] (Fig. 1). Similarly, in the 

retina, astrocyte (Müller cell) [Ca2+]i transients were found to dilate intermediate layer capillaries but 
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not arterioles [26*]. It has been suggested that a low level of neuronal activity can evoke arteriole 

dilation in the absence of astrocyte endfoot [Ca2+]i transients, which are only detectable when a higher 

level of neuronal activity occurs [27] and it will be interesting to determine whether this dilation is 

mediated by NO, as found in [25]. If so this might imply that low levels of neuronal activity increase 

blood flow solely by dilating arterioles, while higher activity also dilates capillaries via astrocytes and 

pericytes.  

The control of capillary diameter by astrocytes and pericytes may be relevant to developing 

strategies for preventing deleterious decreases of blood flow that occur in pathology. Both after 

ischaemia [23] and in epilepsy models [28] localised constrictions of capillaries produced by pericytes 

reduce local blood flow, which will contribute to neurodegeneration. An important issue for the future 

will be whether the normal control of pericyte tone by astrocytes can be harnessed therapeutically to 

maintain a normal energy supply to the tissue in such situations. 

Tonic regulation of cerebral blood flow by astrocytes 

Changes of blood flow evoked by neuronal activity, in part generated through astrocytes as 

discussed above, initiate the signals detected by the widely used BOLD fMRI (blood oxygen level 

dependent functional magnetic resonance imaging) technique. However, a tonic regulation of cerebral 

blood flow by astrocytes may be of equal importance for brain function. Introducing the calcium 

chelator BAPTA into astrocytes in brain slices was found to produce a constriction of arterioles that 

was prevented by blocking cyclooxygenase 1, but was unaffected by blocking neuronal activity with 

TTX [29]. Thus, either the mean resting level of astrocyte [Ca2+]i or [Ca2+]i transients generated 

independently of action potentials may tonically activate the prostaglandin-mediated pathway described 

above [25], although it is surprising that in this case it is affecting arterioles rather than capillary 

pericytes. Recently, astrocyte [Ca2+]i transients generated independently of action potential evoked 

transmitter release were characterised as resulting from bursts of Ca2+ efflux through the mitochondrial 

permeability transition pore [30**]. Although these transients occur in TTX, their rate was raised when 

neuronal activity was increased by blocking synaptic inhibition with picrotoxin. This may occur because 

the mitochondrial permeability transition pore opens more when demand for oxidative phosphorylation 

is greater during neuronal activity [30**]. If so, this would provide another astrocyte-mediated 
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mechanism to increase the supply of glucose and oxygen substrates to oxidative phosphorylation when 

needed. 

Another possible way in which astrocytes may play a key role in regulating cerebral blood flow 

tonically is in response to changes of CO2 level [31*]. When [CO2] rises, astrocyte [Ca2+]i rises (possibly 

as a result of activation of Na+/HCO3
-- co-transport into the cell followed by a slowing or reversal of 

Na/Ca2+ exchange [32]), and this activates cyclooxygenase 1 (COX1)  to generate vasodilating 

prostaglandin E2. The enzyme downstream of COX1 that synthesizes prostaglandin E2 depends for its 

activity on glutathione, which can fall in concentration in disease or old age, suggesting a possible 

mechanism by which cerebral blood flow and energy supply might be reduced in these conditions [31*]. 

Signalling from the vasculature to neurons via astrocytes  

Remarkably, communication between neurons and the vasculature via astrocytes may be 

bidirectional. Increasing the flow and pressure within arterioles in brain slices has been found to 

constrict the arterioles and raise [Ca2+]i in astrocyte processes via activation of TRPV4 channels [33]. 

This astrocyte [Ca2+]i rise leads, perhaps via release of the gliotransmitter ATP which is converted 

extracellularly into adenosine, to increased spiking activity of inhibitory interneurons and a 

hyperpolarization and decreased spiking activity of pyramidal neurons [33]. At present the functional 

significance of this pathway for matching neuronal activity to supply of energy substrates is uncertain. 

Astrocyte control of neuronal energy use? 

After arriving in the blood, glucose crosses cerebral vascular endothelial cells via facilitative 

(sodium-independent) GLUT1 glucose transporters, before uptake mainly via GLUT1 and GLUT3 into 

glial cells and neurons, respectively (Fig. 1). Here, it undergoes conversion to glucose-6-phosphate by 

hexokinase, before being processed by the glycolysis pathway to generate ATP and pyruvate, by the 

pentose phosphate pathway to generate NADPH, or (in astrocytes only) being converted to the energy 

store glycogen [34]. Pyruvate generated by glycolysis can either be used directly (in the same cell) by 

oxidative phosphorylation to generate a much larger amount of ATP per glucose than glycolysis 

provides, or can be converted to lactate and exported from the cell, either to be lost from the brain or to 

be taken up into another cell and converted back to pyruvate to be used in oxidative phosphorylation 

[34].  
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Neurons are the principal consumers of brain energy (~80%), which they use mainly to reverse 

the ion entry generating synaptic and action potentials [2, 3]. The vasculature-wrapping morphology of 

astrocytes described above might suggest that glucose may be initially transferred from blood vessels 

into astrocytes before being distributed to neurons through the astrocyte cytoplasm (although modelling 

based on transporter data [35] has indicated that most glucose could in fact reach neurons by diffusion 

through the extracellular space: Fig. 1), and even through astrocyte-astrocyte gap junctions to more 

distant regions [36]. The influential astrocyte-neuron lactate shuttle (ANLS) hypothesis [37] proposed 

an appealing mechanism by which neuronal activity could thus be linked to energy supply. When 

neurons are active and releasing glutamate, uptake of the glutamate into astrocytes and its subsequent 

conversion to glutamine were postulated to trigger glycolysis in the astrocytes, generating lactate (made 

from pyruvate via astrocytic lactate dehydrogenase (LDH): Fig. 1) that could then be exported to 

neurons and used as fuel for oxidative phosphorylation (after conversion by neuronal LDH back to 

pyruvate). Export of the lactate would occur via monocarboxylate transporters (MCTs) or perhaps a 

channel-based mechanism [38]. 

The ANLS hypothesis was based partly on the affinities of the LDH and MCT isoforms present 

in neurons and astrocytes being suited to transfer lactate from astrocytes to neurons, however the overall 

direction of the lactate flux is determined by concentrations of the reactants involved in the reactions 

catalysed by LDH and not by the MCT and LDH affinities [39]. The ANLS hypothesis was also based 

on the notion that astrocytes are much more glycolytic than neurons, which were hypothesised to 

generate ATP by oxidative phosphorylation using astrocyte-derived lactate as a substrate. Indeed, 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3), which promotes glycolysis by 

converting fructose-6-phosphate to fructose-2,6-bisphosphate which allosterically activates the rate-

limiting glycolytic enzyme phosphofructokinase, is more highly expressed in astrocytes than in neurons 

[40, 41*]. Further downstream in glycolysis, astrocytes and neurons differ in the splice variant they 

express of the enzyme pyruvate kinase, which generates pyruvate from phosphoenolpyruvate, as a result 

of which it has been suggested that astrocytes are more able than neurons to regulate their glycolytic 

rate to match the prevailing energetic conditions [42]. Furthermore, in cultured cells, the activity of 

pyruvate dehydrogenase (PDH), which regulates entry of pyruvate into the TCA cycle, is more inhibited 
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by phosphorylation in astrocytes than in neurons, thus diverting pyruvate from the TCA cycle and 

promoting lactate formation [42, 43].  

Despite these data suggesting that astrocytes use glycolysis more than neurons, it certainly is 

not the case that all astrocyte ATP generation is via glycolysis, while all neuronal ATP is produced by 

lactate-fuelled oxidative phosphorylation in mitochondria. Tracing a fluorescent glucose analogue has 

suggested that neuronal activity promotes its uptake mainly into neurons rather than astrocytes, 

consistent with neurons being important users of glycolysis [44]. Astrocytes have mitochondria even in 

their fine processes [45], and indeed neuronal activity localises mitochondria at positions in astrocyte 

processes that are near synapses [46, 47], presumably in order to power glutamate uptake that occurs 

there. Furthermore, if neuronal ATP were made using oxidative phosphorylation fuelled by astrocyte-

derived lactate under all circumstances, then blocking LDH would inhibit the rise in oxygen 

consumption evoked by stimulating neuronal activity, but in brain slices blocking LDH has no such 

effect [48]. One might ask why the effect of an astrocyte-selective inducible deletion or knock-down of 

MCTs or LDH has not yet been reported (as has been performed for oligodendrocyte-axon energetic 

interactions [49]), as an incisive test of the idea that lactate trafficking from astrocytes to neurons is 

crucial for neuronal function. In fact when this was done for MCT1 in astrocytes or MCT2 in neurons 

[50], although it inhibited long-term memory, it had no effect on memory acquisition or short-term 

memory, arguing against an obligatory role for lactate transport via MCT1 and MCT2 to power neuronal 

function on a rapid time scale (but see below). 

Astrocytes and long-term energy reserves 

 Conversion of glucose to glycogen in astrocytes provides a limited reserve of energy, which 

may be important for sustaining neuronal function in periods of intense energy use, which may perhaps 

occur during long-term term memory formation [50], since this is inhibited by preventing 

glycogenolysis or MCT-mediated transfer of lactate to neurons. However, estimates from experiments 

blocking ATP synthesis suggest that glycogen can sustain neuronal function for only a few minutes 

(even in brain slices where energy use is reduced compared to the in vivo situation) [51]. A more 

significant long-term contribution of astrocytes to brain energetics lies in the fact that they take up over 

90% of the glutamate released as a neurotransmitter - a molar amount comparable to the amount of 
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glucose used by the brain [52]. If this glutamate were lost to the blood, then it would be necessary to 

approximately double the glucose supply to the brain in order to provide carbon skeletons for glutamate 

synthesis, in addition to the glucose needed as a substrate for ATP production. 

Conclusions 

Although the jury is still out on the direction of lactate trafficking between neurons and 

astrocytes [34], an important energetic role for astrocytes is becoming clear at the level of blood flow 

regulation. Studying how pathology disrupts the astrocyte-based mechanisms regulating brain energy 

supply will be an important focus of future work. 
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Figure 1. The role of astrocytes in regulating brain energy supply. 

Astrocytes regulate both glucose supply in the blood and the use of that glucose to make ATP in 

different cell types. On the right a capillary provides glucose (and oxygen) in the blood. This nutrient 

supply can be regulated by changes in the tone of contractile pericytes (or smooth muscle around 

upstream arterioles). Pericytes dilate capillaries when astrocytes experience a rise in [Ca2+]i, for example 

when ATP released from postsynaptic neurons (stimulated by presynaptic glutamate release acting on 

AMPARs) activates astrocyte P2X1 receptors [25]. This activates an enzyme cascade that leads to the 

release of prostaglandin E2, which dilates pericytes. Glucose leaves the capillary by transport on 

GLUT1, and then diffuses extracellularly to neurons and astrocytes where it is taken up by GLUT3 or 

GLUT1, respectively, and then converted by hexokinase to G6P, a precursor for glycolysis and for 

glycogen formation. Glycolysis generates ATP, and either pyruvate to enter the tricarboxylic acid cycle 

and oxidative phosphorylation in mitochondria or lactate (via LDH), which can be exported from the 

cell by monocarboxylate transporters (MCT). It is often assumed that lactate passes from astrocytes to 

neurons, but this is controversial [34]. Once lactate is taken up into neurons by an MCT, it is converted 

back to pyruvate by LDH and is processed by the citric acid cycle and oxidative phosphorylation in 

mitochondria. The ATP thus generated is used mainly for powering the sodium/potassium pump. 

Abbreviations: Pre: presynaptic terminal; Post: postsynaptic terminal; Glu: glutamate; AMPAR: AMPA 

receptor; P2X1: a Ca2+-permeable receptor for ATP; PLD2: phospholipase D2; PA: phosphatidic acid; 

DAG: diacylglycerol; COX1: cyclooxygenase 1; PGH2: prostaglandin H2; PGE2: prostaglandin E2; EP4: 

receptor for PGE2; GLUT1: glucose transporter 1; GLUT3: glucose transporter 3; HK: hexokinase; 

G6P: glucose-6-phosphate; MCT: monocarboxylate transporter; LDH: lactate dehydrogenase; mito: 

mitochondrion. 
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