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Abstract

This paper investigates the use of the hierarchical mixture of linear regressions (HMLR)
and variational inference for multivariate spectroscopic calibration. The performance of
HMLR is compared to the classical methods: partial least squares regression (PLSR), and
PLS embedded locally weighted regression (LWR) on three di�erent NIR datasets, including
a publicly accessible one. In these tests, HMLR outperformed the other two benchmark
methods. Compared to LWR, HMLR is parametric, which makes it interpretable and easy
to use. In addition, HMLR provides a novel calibration scheme to build a two-tier PLS
regression model automatically. This is especially useful when the investigated constituent
covers a large range.
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1 Background

Partial least squares regression (PLSR) [1] and principal component regression (PCR) [2] have
been applied to NIR calibration for decades. The beauty of these methods is that noisy and
mutually dependent NIR spectra are �rst dimensionally reduced to a few factors, which ensures
the following multiple linear regression (MLR) [3] process is properly regularized. However, the
limitations of these regression schemes are also obvious: both the dimension reduction and the
regression are linear, which means the �nal derived model is a linear combination of all input
variables. This means neither of them can tackle non-linear e�ects. Lack of non-linearity is
critical especially when the target constituent covers a large range. When a single linear model
is forced to �t over a wide range, signi�cant biases often appear in the two tails.

Non-linear regression methods were introduced to save prediction models from such heavy bi-
ases. Popular examples are support vector machine (SVM) [4] and Gaussian process regression
(GPR) [5]. Some recent studies have proven these methods can be used to improve prediction
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accuracy [6] [7] [8]. Very similar to kernel-based regression schemes, local linear regression meth-
ods such as locally weighted regression (LWR) were also proposed to give accurate and unbiased
prediction across the range [9]. These methods indeed break the limitations of linear regression.
However, they are not always practically applicable. First of all, to build such kinds of models,
a large data set is required. The methods fail if there are not adequate training instances in the
neighborhood of the unknown observation. Secondly, using these methods for out-of-sample pre-
diction requires information of the whole training set, including the spectra (or equivalently, the
gram matrix in the kernel methods) and corresponding reference values. The size of the model
grows with the size of the training set (i.e., these methods are all non-parametric). Even if the
storage of the system is not a limitation, computational cost for making a prediction might be an
intolerable issue. Computational cost also makes it extremely di�cult to implement these meth-
ods in a high-speed on-line system. Finally, these models are complicated for training. Training
an LWR, for example, requires prior knowledge of the number of neighbors, distance measure-
ment, and weight function. Even can be tuned by cross-validation, these hyper-parameters are
sensitive to the training set variation, which makes them less robust and stable than PLSR and
more di�cult to scale.

Another good solution is to build a two-tier PLSR model. In this kind of scheme, the training
set will be divided into two groups: high or low in target value. Two PLSR models are �tted
on each subset separately. This regression method can also remove the bias in the two tails.
However, it is unclear how to split the data set, and how to choose the correct component model
for making the prediction. Improper segmentation (in the calibration) and selection of model (in
the prediction) will a�ect prediction accuracy, especially for the samples near the segmentation
boundary

The method proposed in this study, hierarchical mixture of linear regressions (HMLR) [10] solves
these issues. The calibration method assumes there are two or more underlying linear models
behind the dataset. By using the expectation maximisation (EM) and the variational inference,
the algorithm will �nd the most sensible component models automatically through an iterative
optimisation process. A set of gating functions will also be trained simultaneously to assign
individual observation into the correct component model. In the end, the trained model contains
several independent linear models (e.g. PLSR or PCR) for di�erent subsets of the training set
and a set of gating functions. Compared to GPR and LWR, it is entirely parametric, which
makes it possible to interpret and easy to use. It is also simple for training, only the number of
PLS factors and spectral preprocessing methods need to be determined.

2 Methodology

2.1 Dimension reduction

For all calibration methods, the target is to train a regression model from a set of N training
instances {xn, yn}, where xn is the original NIR spectrum and yn is the lab measurement of
the target constituent. Since NIR spectra are mostly high dimensional and mutually dependent,
dimension reduction is applied to the original space. Partial least squares (PLS) and principal
component analysis (PCA) are the most popular data shrinkage methods [11] [12]. In this re-
search PLS with NIPALS decomposition was used to transform original space xn into a selection
of latent variables φn [13]. PLSR is a result of direct MLR of φn on yn. HMLR and the other
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benchmark method LWR were also learned on the transformed training set {φn, yn}.

2.2 Hierarchical mixture of linear regression

2.2.1 Overview of the graphical model

The structure of HMLR can be illustrated by �g.1. Red nodes in the graph represent a set of
sequential gating functions, and black nodes are component linear regression models. When the
new observation xn+ 1 is obtained, it �ows through the decision tree, each gating node vi can
decide whether the corresponding component modelMi should be used to predict the observation.

There are two di�erent prediction strategies: hard split and soft mix. Hard split means one and
only one end model will be used to make the prediction. In the soft mix scheme, gating nodes
are probabilistic. Outputs of gating nodes are not binary decisions, but a set of probabilities of
using the corresponding component models. In the end, predictions from all component models
will be weighted averaged out by the likelihood. In this study, soft mix of the component models
was used to make the prediction.

xn+ 1

v1

v2

...

vk

MK+1 Mk

...

M2

M1

Figure 1: Nested structure for integrating linear regression models. Red nodes: gating nodes, deter-
mining weights of component linear models; Black nodes: component models, each end model is an
independent linear expert

The critical part is how to learn the gating functions V and component linear modelsM from a
given training set. For a total number of N training instances {φn, yn}, assume there are K + 1
underlying linear regression functions wi, i = 1, 2, . . . ,K + 1. Gating functions V indicate the
correct component model (or the weight of each component model) for input φn. A labeling
variable zn is assigned to each of the training instances. In this study, zn is binary in training
(i.e., either 0 or 1 depending on whether the corresponding end model is used). zn is a vector of
length K+ 1, corresponding to K+ 1 component models. The goal of the whole training process
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is to �nd a set of parameters of {V ,W } that can explain the training set. It is helpful to put
appropriate regularization on these parameters to avoid over-�t.

Here Bayesian directed acyclic graph (DAG) [14] can be introduced to describe dependency of
di�erent parameters and variables in the calibration process. The DAG is shown in �g.2. The
rectangular box represents N training instances. The connection from the black dot Xn to φn
is deterministic transformation, which is a PLS data shrinkage process. {α,β} are parameters
of the regularization on coe�cients {W ,V }. τ is a vector of length of K + 1, indicates the
precision of reference for each Bayesian linear regression.

β V

zn

φn xn

τ yn

α

WN

Figure 2: Directed graphical model for mixture of linear experts.

2.2.2 Loss function: complete data log-likelihood

As introduced, the goal of training is to �nd a set of parameters that can explain the training
set. The complete data log-likelihood (CDLL) is introduced as the loss function. According to
the graphical model in �g.2, CDLL can be described by the following equation:

p({φn, zn, yn}n=1,...,N ,W ,V ,α,β, τ ) =
N∏
n

{p(yn|W , zn,φn, τ )p(zn|V ,φn)}

× p(V |β)p(W |α)p(α)p(β)p(τ )

(1)

where p(yn|zn,φn, τ ,W ) is a Gaussian distribution centered at the prediction mean with a
precision vector of τ . p(zn|V ,φn) is a Sigmoid distribution, which realizes the soft gating
scheme. The following equations formulate the conditional probability:

p(yn|zn,φn, τ ,W ) =

K+1∏
i=1

N (yn|wT
i φn, τ

−1
i I)zni (2)
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p(zn|V ,φn) =

K∏
i=1

{σ(vTi φn)zni [1− σ(vTi φn)]1−zni}t(i,zn)

=

K∏
i=1

{exp(zniv
T
i φn)σ(−vTi φn)}t(i,zn)

(3)

The logistic function σ(x) is de�ned as:

σ(x) =
1

1 + exp(−x)
(4)

Here a binary gating indicator function t(i, zn) is introduced. t(i, zn) indicates whether the ith

node is active. For example, if gating node 1 determines that the �rst end model is the reached,
then the rest of the regression tree will not be activated. t(i, zn) can be formulated as:

t(i, zn) =

{
1 i = 1

1−
∑j<i

j=1 znj i ≥ 2
(5)

Notice that eq.3 just gives the distribution of zn1 to znk. Since one and only one digit of zn is
1, the following condition should be satis�ed:

p(zn(K+1) = 1) =
K∏
i=1

p(zni = 0) (6)

The distributions of the regression coe�cients and the gating coe�cients are all Gaussian, and
their precisions all have Gamma distributions:

p(V |β) =

K∏
i=1

N (vi|0, β
−1
i I) (7)

p(W |α) =

K+1∏
i=1

N (wi|0, α
−1
i I) (8)

p(α) =
K+1∏
i=1

Gam(αi|aα, bα) (9)

p(β) =
K∏
i=1

Gam(βi|aβ, bβ) (10)

p(τ ) =
K∏
i=1

Gam(τi|aτ , bτ ) (11)

Now the target is to �nd a set of Z,V ,W ,α,β, τ to maximize CDLL de�ned by eq.1, given a
�xed training set {φn, yn}. The optimisation can be achieved by using the EM algorithm and
variational inference.
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2.2.3 Expectation maximization and variational inference

Expectation maximization (EM) algorithm [15] is often used to �nd maximum likelihood esti-
mates of the parameters in a statistical model. It runs iteratively to optimize the parameters
and latent variables in the model, where the latent variables are often unobserved. As a result,
in EM algorithm the model is segmented into three di�erent parts: observed data set (X ), latent
variables (Y) and the parameters to inference (θ). EM algorithm has two steps: E-step and
M-step. In E-step, latent variables (Y) are estimated according to observed data (X ) and �xed
parameter set (θ), i.e. maximize the free energy term [16] w.r.t the latent variables F(q, θ):

F(q, θ) =

∫
q(Y) log

p(Y,X|θ)
q(Y)

dY (12)

Where q(Y) represents any possible distribution of the latent variables. This is proven to be
equivalent to minimizing the Kullback-Leibler divergence term [16] KL[q(Y)||p(Y|X , θ)]. In the
M-step, the latent variables are �xed at the results from E-step as if they are not hidden, and
then the likelihood is maximized w.r.t the parameters. E-step and M-step are iterated until a
self-consistent result is obtained.

However, in this study, EM algorithm cannot be directly applied to optimize the model. The main
spoiler is the fact that the logistic function de�ned by eq.4 does not belong to the exponential
family, which means in E-step, the integral of marginal likelihood is not analytically tractable. At
this point, variational inference is introduced to �nd a proxy solution [17]. The logistic sigmoid
function has a lower bound:

σ(x) ≥ σ(ε) exp{(x− ε)/2− λ(ε)(x2 − ε2)} (13)

where

λ(ε) =
1

2ε

[
σ(ε)− 1

2

]
(14)

ε is a new parameter(variational parameter) introduced, which also needs to be optimized in the
training process.

In the variation E-step, the logistic function is substituted by its lower bound, which is from
the exponential family. M-step is unchanged. Theoretically, variational inference is not ensured
to bring up the likelihood in every iteration, especially when the lower bound proxy is not very
tight. In this study, it is not a severe problem. This will be proved later in the result.

In this study, the variational inference was con�gured as follows: the model was �rst segmented
into three parts:observed data set: X = {φn, yn}; latent variables: Y = {α,β, τ ,W ,V ,Z};
variational parameter: θ = {ε}. All the variables in the graphical model were taken as la-
tent variables and the additional parameter ε was referred as the parameter to inference. EM
algorithm was then invoked:

Factored variational E-step: since there are 6 latent variables, they are partitioned into
disjoint sets Ys as follows:

q(Y) =

6∏
s=1

qs(Ys) (15)
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In correspondence, the E-step is also partitioned into iterations: maximizes free energy F(q, θ)
w.r.t qs(Ys) with the other latent variable qj 6=s(Yj 6=s) and the parameter θ �xed, which can be
described as:

qnews (Ys) := argmax
qs(Ys)

F(qs(Ys)
∏
j 6=s

qj(Yj), θold) (16)

The result of the E-step is:

qs(Ys) ∝ exp〈log p(X ,Y|θold)〉∏
j 6=s qj(Yj) (17)

where notation <> represents the expectation. Notice here it might be a bit di�cult to ex-
plicitly show the distribution of qs(Ys), but it is not necessary. The only necessary result is its
expectation. Besides, the above formulation only depends on the su�cient statistics of qs(Ys),
which signi�cantly facilitates the computational process.

M-Step the M-step is unchanged, Free energy F(q, θ) was optimized w.r.t the parameter set
θ = {ε}, with �xed latent variable distributions (results from the E-Step). This can be described
by:

θnew = argmax
θ
F(qnew(Y), θ) (18)

which is equivalent [16] to

θnew = argmax
θ
〈log p(X ,Y|θ)〉qnew(Y) (19)

Similarly, it only depends on the su�cient statistics of θ.

All variables in the graphical model were optimized iteratively until a self-consistent result is
obtained, i.e., either the CDLL or the parameters themselves converge. Due to the limitation of
space, derivations of all the formulations are attached in Appendix A.

2.2.4 Making the prediciton

In this study, a soft mixture of the component models was used to make the predictions. For
an unknown observation, each component model produced a prediction, and the outputs of the
gating functions indicate the weights for each model. Predictions from K+ 1 component models
were then weighted averaged out to give a single prediction. For all the datasets tested in
this study, it has been observed that when 2 component models were used, the best prediction
accuracy can be achieved. As a result, K was set to 1 for all the HMLR calibrations.

2.3 Locally weighted regression

Locally weighted regression (LWR) is not the primary focus of this study, but just a benchmark
method. In LWR, the whole transformed training set {φn, yn} is recorded as a searching library
for the model. When making predictions on new observations, raw spectra are �rst preprocessed
and then PLS transformed. Several nearest neighbors to the new observation in the training set
are picked up to build a local linear regression [9] [18]. Then the local linear regression is used to
predict the unknown observation. The calibration and prediction process are repeated for every
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individual sample in the test set. In this study, cross-validation was used to decide the number
of neighbors in the model, with a Euclidean distance measurement and distance-based weighting
mechanism.

2.4 Comparing prediction methods

Suppose two di�erent prediction methods have been calibrated to predict target values y from
spectral data X. Usually, biases and root mean squared errors of predictions (RMSEP) of the
prediction errors are compared to evaluate the performance of the two methods. However, since
the errors in the lab measurements for the test samples contribute to both sets of predictions
errors, biases and standard deviations are correlated. The following calculation �nds the actual
di�erence on the biases and the true ratio of the RMSEP [19] [20]:

Let ei donate the prediction error for the ith sample in the test set, the bias, standard deviation
and RMSEP can be written by:

m =
1

n

n∑
i=1

ei (20)

s =

√∑n
i=1(ei −m)2

n− 1
(21)

RMSEP =

√∑n
i=1 e

2
i

n
(22)

the di�erence between the means m1 −m2 of the two methods has a standard deviation of:

sd =

√∑n
i=1(di − d̄)2

n× (n− 1)
(23)

where di = ei1 − ei2 is the di�erence on errors of the two methods for the ith sample. The 95%
T con�dence interval in biases is :

((m1 −m2)− tn−1.0.025 × sd, (m1 −m2) + tn−1.0.025 × sd) (24)

where tn−1.0.025 is the upper 2.5% point of a T distribution on n− 1 degrees of freedom.

Normally the critical comparison is between the RMSEP (or standard deviations). Similarly, the
lower and upper limits of a 95% con�dence interval for the ratio of the RMSEP is given by:

(
RMSEP1

RMSEP2
× 1

L
,
RMSEP1

RMSEP2
× L) (25)

where L is de�ned by:

L =

√
K +

√
(K2 − 1) (26)

K = 1 +
2(1− r2)t2n−2.0.025

n− 2
(27)
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and r is the correlation coe�cient between the two sets of prediction errors, tn−2.0.025 is the
upper 2.5% point of a T distribution on n− 2 degrees of freedom.

3 Dataset

Dataset1 Dataset1 is on ash contents of some wheat �our samples. Products come from
di�erent origins and consist of multiple varieties. The training set contains 5007 pairs of NIR
spectra and corresponding lab ash measurements. The test set has a sample size of 1980. Spectral
range is from 850nm to 1650nm, with an interval of 5nm. Raw spectra were processed with
second-order detrend followed by SNV. 7-factor PLS was applied to the training set to reduce
the number of attributes in X.

Dataset2 Dataset2 contains NIR spectra and corresponding moisture contents of wheat �our.
Samples also have di�erent origins and varieties. The spectral range is from 850nm to 1650nm.
Spectral resolution is 5nm. The training set contains 700 samples; the test set has 388 instances.
Raw spectra were preprocessed by Savitzky-Golay �lter (2 side points, 2nd order derivative on
2nd order polynomial �tting) followed by SNV. Preprocessed spectra in the training set were
then reduced to 2 PLS factors for calibration.

Dataset3 Dataset3 is a publicly dataset [21] [22].The training set contains 415 NIR spectra
and corresponding protein concentration of single wheat kernels from di�erent locations in Den-
mark, while the test set contains 108 samples.Raw spectra were preprocessed by second-order
detrend followed by SNV. 6 PLS factors were used to reduce the dimensionality before calibration.

Dataset 1 and dataset 2 are original to this paper. The datasets were collected and organized
by Bühler AG. Origins of the samples span the globe. Wheat �our was completely homogenised
before measured. Multiple measurements were repeated on the same sample under di�erent en-
vironmental conditions. The training and the test datasets were collected separately on di�erent
samples with the same spectroscopic and lab measurement system. There is no apparent outlier
on training or test sets (i.e. mislabelling or very noisy spectrum). The training sets and the test
sets have very similar structures. The only di�erence is that they were collected from separate
measurements, on di�erent samples. The training and the test datasets are genuinely indepen-
dent, for all the calibration methods the models are solely supervised by the training set. Any
over�tting e�ect on the training set be be spotted when evaluated on the test set, except the
factors introduced by the spectroscopic and lab system.

For all the datasets, preprocessing methods and numbers of PLS factors were picked up by
cross-validation on the training set, with a target of minimizing the root mean squared error of
cross-validation (RMSECV) on PLSR. This guarantees optimized results from PLSR.

The primary study and analysis are focused on dataset1 because it has the most signi�cant size.
Results from dataset2 and dataset3 will be brie�y discussed and illustrated, to provide insights
into how HMLR performs on di�erent commodities and constituents.
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4 Software

All the simulations were done in Python 3.6.1. Matrix arithmetic was realized with numpy
package [23] and partial least squares decomposition was achieved with scikit-learn package [24].
The HMLR part was coded from scratch by the authors.

5 Results and analysis

For all datasets, the raw NIR spectra were preprocessed and then dimensionally reduced by PLS
as described above. PLS scores were then passed to MLR, HMLR, and LWR.

In the HMLR model, two submodels were trained on the training set. The initial values of
{Z,α,β, τ , ε} were randomly assigned, then the parameters were updated in order of V →
W → {α,β, τ} → Z → ε. The last step (update on ε) corresponds to the M-step, and the
others are the factorized variational E-step in the variational inference algorithm. Notice that
α,β should take small initial values (0.1 for example) and a, b in eq.9, eq.10 and eq.11 should
be very small numbers (10−4 for example) to make regularization on the regression coe�cients
weak. In the HMLR model, the raw data were already regularized by PLS shrinkage. It is not
necessary to penalize too much on the coe�cients (In fact, there is no penalty on the regression
coe�cients in PLSR, but they are still robust).

The parameter update process was iterated 100 times for each calibration. It is recommended
to check whether some optimisation indicators (i.e., CDLL, RMSEC, etc.) are consistent after
the optimisation. Since the optimisation started at some random values, it is possible the �nal
result is just a local optimum, so the whole optimisation process was repeated at several random
start values (in this study 80 random initialisation were used) to ensure a global optimum for
each calibration.

5.1 Ash calibration

5.1.1 Monitoring the training process

The main uncertainty of the HMLR method is that variational inference is only an approximation
to the log-likelihood. In theory after a whole EM iteration, the log-likelihood may not increase.
It is recommended to monitor the optimisation process, especially the changes in the CDLL
after each update, to make sure the optimisation is in the correct direction. In addition to
the CDLL, �tting ability of the model is also of interest. It is essential that after each update
�tting power of the model is also increased (otherwise the improvement on CDLL only comes
from the regularization terms), to reject some over-regularized models. Referring to eq.1, only
p(yn|W , zn,φn, τ ) and p(zn|V ,φn) are relevant to the �tting, the logarithm of the sums of
products of these two terms can be taken as the "�tting score" of the model. Fig.3 shows a
typical case of the changes in the CDLL and the �tting scores after each update.
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Figure 3: Trends on CDLL and �tting scores after each whole EM iteration. Blue solid line: trend on
�tting scores. Red dotted line: CDLL

It can be observed that the overall trends on both �tting scores and CDLL were increased during
the optimisation. Fitting score converged after around 20 iterations, while CDLL took more
than 80 iterations to reach self-consistency.

5.1.2 Interpretation of the model

As explained, every single sample in the training set was assigned a label zn, which indicated the
clustering of the training samples. This labeling variable was also optimized automatically by
the variation inference algorithm. It is useful to see have the automatic segmentation is done by
the algorithm. Fig.4 shows the distribution of ash content in the two component models trained
by variation inference.
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Figure 4: Composition of the training samples for the two component models.

It can be observed that class 1 (blue face colour) comprises the training samples low in ash
content, whereas class 2 (orange face color) consists of the ones high in ash content. There is a
small overlap, but the two clusters of the training samples mainly represent two clusters of the
reference values.

In the end, the HMLR model is equivalent to a two-tier PLSR model, according to the ash con-
tent. However, the attraction of this approach is this segmentation process was done automati-
cally by the EM and variational inference optimisation, which means it also meet the optimum
requirements of the data likelihood. Besides, a gating function was obtained simultaneously,
optimizing the segmentation alongside with the component regressions. Refer to eq.3, the out-
puts of the logistic gating function represent the probabilities of the two models, which makes it
clear how to average out the prediction results from the two models when making the predictions.

It is also useful to plot the regression coe�cients. Fig.5 shows the regression coe�cients from the
PLSR (red dash-dot line) and the two component models of the HMLR (green line and the blue
dashed line). The trends of the three coe�cients are very similar, except the signal strengths at
some peaks vary slightly. The coe�cients from PLSR are closer to that of the component model
1 in HMLR. The result is expected because most of the training samples were assigned to the
component model 1.
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Figure 5: Regression coe�cients for the PLSR, the two component models of HMLR.

Fig.6 shows the coe�cients for the gating function. The trend is very similar to those in �g.5.
In fact, the segmentation was based on the ash contents so it is not surprising that the gating
function expresses the similar message to the ash concentration.

Figure 6: Coe�cients for the gating function

It may be confusing why the segmentation is based on the concentration of the target constituent.
First of all, from a mathematical standpoint, the initial values of the free parameters in the model
were randomly assigned. The target of variation inference is to maximise data log-likelihood.
There is no chance that any prior preference on segmentation can be applied to the training
process. Considering that the sample for this study, wheat �our, are thoroughly homogenised
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before measured, the signal from the same sample is strong and highly reproducible. So the
segmentation is based on the intrinsic correlation between input spectrumX and target property
y. The correlation is slightly di�erent when y varies. The e�ect is found, by the EM and
variational inference, to be the most in�uential criteria for segmentation. Later in another
dataset, it can be observed how segmentation is changed on whole grain samples.

5.1.3 Interpretation of τ

Referring to the graphical model described in Fig.2, τ is the precision on y, which means the
precision of the reference measurement. This value has physical meaning behind it, since it is
determined by the accuracy of lab measurement. When training the model, τ was �rst assigned
randomly, then automatically optimized until self-consistent. It is essential to check whether the
�nal value of τ is close to the reference value of lab measurement. If τ is too high, then the
model is very likely over-�tted; if it is too small, then the model is under-�tted.

Since there were two component models, separate τ values were tuned for each of them. Results
showed that τ1 = 313, τ2 = 172. The equivalent variances on reference y are 0.003 and 0.006.
These values coincide with the expectations based on lab measurement. Besides, τ2 is smaller
than τ1, which also makes sense because the error of lab measurement increases with the ash
concentration.

5.1.4 Comparison of the result

In this test, the root-mean-square errors of prediction (RMSEP) on the test sets for the three
models are PLSR-0.083%; LWR-0.084%; HMLR-0.070%. LWR was trained on 13 neighbours
(chosen by cross-validation on the training set). The performance of LWR and PLSR are very
close. The error obtained by HMLR is 16% smaller than the PLSR. To prove whether the di�er-
ence is signi�cant, a test for paired predictions was utilized to calculate the true ratio of RMSEP
for the two models. Detailed calculation was introduced in section 2.4. The test indicated that

the 95% con�dence intervals for the true ratio of RMSEP on ash is
PLSR

HMLR
∝ (1.167, 1.273).

Since this interval does not include 1, there is strong evidence that error of PLSR is signi�cantly
larger than the error of HMLR.

Fig.7 shows the prediction results from PLSR and HMLR on the test set on the same scale. It
is a bit messy on the left side, however, for the samples with an ash content above 1% is is quite
apparent that the predictions of HMLR are closer to the reference value.
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Figure 7: Prediction vs. reference on dataset1.Results from two calibration methods.

Some results from the scatter plots in �g.7 are summarized in �g.8. Fig.8(a) is a boxplot of the
prediction errors from the PLSR and the HMLR. Median, the �rst and the third quantile and
the inner fences are indicated. It is clear the HMLR outperformed the PLSR in the sense of
the global accuracy. Fig.8(b) illustrates the performance from a standpoint of regional accuracy.
The validation set was split into nine local regions with a bin width of 0.2%. The red dashed line
is the accuracy curve for the HMLR, and the solid blue line is for the PLSR. In most parts of
the population, RMSEP from the HMLR is smaller than that of the PLSR, except for the range
0.8% ∼ 1.2%, where the two methods have very similar performances. The �eld is also where
the training set got segmented in the HMLR model. So for the samples with ambiguous labels
(i.e., the output of the gating function is close to 0.5 for both the component models), there is
no improvement using the HMLR methods. When there is a dominating component model for
the prediction, using HMLR can bring signi�cant improvement.
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(a) Boxplot of the global errors. (b) Local RMSEP for the two models.

Figure 8: Comparison of the prediction accuracies of the two ash calibration models

5.2 Moisture and protein calibrations

Results on dataset2 are plotted in �g.9. Dataset 2 is on moisture of wheat �our. From the
results it can be observed, similar to the ash calibration, the data was automatically segmented
into two subsets according to the concentration on moisture content. The boundary of the two
classes is at around 12%. Fig.9 (b) shows the predictions on the test set from the two models.
Unfortunately, the test samples below 12% are not numerous enough to show the di�erence
between the two models in this region. The RMSEPs of the three models on the test sets are
PLSR:0.228%; LWR:0.222% (8 neighbours); HMLR: 0.212%. There is an improvement in the
prediction accuracy by using HMLR, but it is not signi�cant. In general, calibration on moisture
is not challenging. PLSR can produce an entirely satisfactory result (refer to �g.9, predictions
from PLSR on extreme samples were not heavily biased or distorted).
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(a) Dataset segmentation on the training set (b) Predictions vs. reference from the two models.

Figure 9: Segmentation and predictions on dataset2

Dateset2 is not a very challenging dataset. Moisture has a strong correlation with NIR spectrum,
especially for powder samples where signal is robust and reproducible. Results of the test indi-
cate that even for simple datasets like moisture in �our, HMLR does not over�t on the training
set. PLS shrinkage + CDLL is proven to be an appropriate, well-regularised training process.
Hence HMLR can be used as a routine calibration strategy.

Results from dataset3 are plotted in �g.10. It can be found there is more overlap in the two
subsets. The consequence is partly because the distribution of the protein in wheat kernels is more
symmetric than ash or moisture, i.e., the distribution pro�le has no outstanding tails. The other
reason is that the gating in this calibration is not entirely based on the protein concentration.
Fig.10 shows the regression coe�cients from the PLSR and the gating coe�cients of the HMLR.
It can be seen the two curves partially overlap, mainly on the right-hand side of the spectrum.
On the left-hand side, the gating and the regression functions show di�erent messages. Whole
grain samples have more complicated features than powder products, and there might be other
segmentation criteria of the samples. For example, the presentation of the grain (crease side or
the opposite side), color, shape and surface conditions.
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Figure 10: PLSR coe�cients (6 factors) and gating function coe�cients for protein calibration.

The RMSEPs of the three models on the test sets are PLSR:0.468%; LWR:0.753% (4 neighbors);
HMLR:%0.386. From �g.11 (b) it can be seen that the improvement is across the range.

(a) Dataset segmentation on the training set (b) Predictions vs. reference from the two models.

Figure 11: Segmentation and predictions on dataset3

Residual vs reference is plotted in �g.12. It can be observed that the bias of the HMLR model
is smaller than the PLSR model. The PLSR model has a global bias of -0.240, and that of the
HMLR model is 0.008. The method introduced in section 2.4 is used to �nd out the T con�dence
interval for the biases of the two models. Result indicates 95% con�dence interval for the actual
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di�erence in biases is (−0.0267,−0.0229). Since this interval does not include 1, there is strong
evidence to prove that the PLSR model has a signi�cantly larger negative bias than the HMLR
model.

Figure 12: Residual vs. reference on dataset3.

6 Conclusion

In this research, a new calibration method for NIR spectroscopy, hierarchical mixture of linear
regressions, was introduced. The technique automatically searches for a few component PLSR
models on the training set, along with a set of gating functions to determine the presence of
the component models when making the predictions. Compared to the traditional scheme of
ensemble modelling, HMLR uses the EM algorithm with variational inference, which makes it
entirely automated. No manual data segmentation is needed for the training. Besides, it keeps
the characteristics of a parametric model. Similar to PLSR, it is interpretable and very compact.
In practical, it is possible to understand the model and to monitor the optimisation process. It
can be implemented e�ciently on in-line measurement systems.

The introduced method was tested on predicting three di�erent constituents � ash, moisture
and protein, on wheat �our or whole wheat grains. HMLR showed superiority over PLSR and
LWR on prediction accuracy. In the other experiments not reported here, HMLR outperform
PLSR in most cases, while sometimes it has similar performance with PLSR. It is recommended
to use this calibration scheme as a routine method, especially when an interpretable, compact,
unbiased and accurate model is desired.
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Appendix A Variational distribution for each parameter

Using eq.17 and eq.19, we can write out the expectation of all latent variables and parameter
after each update.
Z:

log q∗Z(Z) =〈log{
∏
n

p(yn|φn, zn,W , τ )p(zn|V ,φn)}〉+ const

=〈
∑
n

log p(yn|φn,W , zn, τ ) +
∑
n

log p(zn|V ,φn)〉+ const

=〈
∑
n

(
K+1∑
i=1

zni(
1

2
log τi −

1

2
log 2π − 1

2
τi(yn −wT

i φn)2) +
K∑
i=1

t(i, zn)zniv
T
i φn)〉+ const

=〈
∑
n

(

K∑
i=1

zni(
1

2
log τi −

1

2
log 2π − 1

2
τi(yn −wT

i φn)2)

+ zn(K+1)(
1

2
log τK+1 −

1

2
log 2π − 1

2
τK+1(yn −wK + 1φn)2) +

K∑
i=1

t(i, zn)zniv
T
i φn)〉+ const

(28)
Where t(i, zn) is de�ned by eq.(5), and the following relationship is satis�ed:

t(i, zn) =

{
1 zni = 1

0 zni = 0
(29)

As a result we can replace t(i, zn)zni with zni and eliminate t(i, zn). eq.(20) can be rewritten
as:

log q∗Z(Z) =〈
∑
n

{
K∑
i=1

zni(
1

2
log τi −

1

2
log 2π − 1

2
τi(yn −wT

i φn)2 +

K∑
i=1

zniv
T
i φn)

+ zn(K+1)(
1

2
log τK+1 −

1

2
log 2π − 1

2
τK+1(yn −wK + 1φn)2)}〉+ const

=〈
∑
n

{
K∑
i=1

zni(
1

2
log τi −

1

2
τi(yn −wT

i φn)2 + vTi φn)

+ zn(K+1)(
1

2
log τK+1 −

1

2
τK+1(yn −wK + 1φn)2)}〉+ const

(30)

zn(K+1) = 1−
K∑
i=1

zni (31)

Eliminate all terms irrelevant with zni, further we have:

log q∗zi6=K+1
(zi 6=K+1) =〈

∑
n

K∑
i=1

zni(
1

2
log τi −

1

2
log τK+1 −

1

2
τi(yn −wT

i φn)2

+
1

2
τK+1(yn −wT

K + 1φn)2 + t(i, zn)vTi φn)〉+ const

(32)
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It is quite di�cult to write out the distribution of zn, but it is relatively easier to �nd out a set
of binary varaibles zn which can maximize log qZ(Z). Set zni = 1 if and only if i maximize the
target function:

g(i) =argmax
i
{1

2
log τi −

1

2
log τK+1 −

1

2
τi(yn −wT

i φn)2

+
1

2
τK+1(yn −wT

K + 1φn)2 + t(i, zn)vTi φn}
(33)

If this maximum value is negative, then set zn(K+1) = 1 and all other terms are zeros.
V:

log q∗V (V ) =〈log{
∏
n

p(zn|V,φn)p(V |β)}〉+ const

=〈
∑
n

K∑
i=1

{t(i, zn)(zniv
T
i φn + log σ(−vTi φn))}+

K∑
i=1

log p(vi|β)〉+ const

(34)

logistic sigmoid function has a lower bound:

σ(x) ≥ σ(ε) exp{(x− ε)/2− λ(ε)(x2 − ε2)} (35)

where

λ(ε) =
1

2ε

[
σ(ε)− 1

2

]
(36)

Substitute σ(−vTi φn) with its lower bound in eq.(13), we have:

log q∗V (V ) ≥〈
∑
n

K∑
i=1

t(i, zn){(zni −
1

2
)iv

T
i φn − v

T
i λ(εni)φnφ

T
nvi} −

1

2

K∑
i=1

vTi βvi〉+ const

(37)
and then we can write down the lower bound of distribution for each qvi(vi) as follows:

log qvi(vi) ≥ 〈
∑
n

t(i, zn)(zni −
1

2
)vTi φn−

vTi (
∑
n

t(i, zn)λ(εni)(φnφ
T
n))vi − v

T
i (
β

2
)vi〉+ const

(38)

By completing the square, we can write down the lower bound of the posterior distribution of
each qvi(vi), which is a Gaussian distribution:

qvi(vi) ∼ N (vi|mvi ,Svi) (39)

where mvi ,Svi are given by:

mvi = Svi(
∑
n

t(i, zn)(zni −
1

2
)φn) (40)
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S−1vi = βI + 2
∑
n

t(i, zn)λ(εni)(φnφ
T
n) (41)

W :

log qwi(wi) = 〈 log
∏
n

{p(yn|wi, zni,φn, τi)}p(wi|α)〉+ const

= 〈
∑
n

zni(
1

2
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2
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2
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2
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zniτiynw
T
i φn −

1

2
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i (τi

∑
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zniφnφ
T
n)wi〉+ const

(42)

Similarly, wi follows a normal distribution:

q∗wi
(wi) ∼ N (wi|mwi ,Swi) (43)

where mwi ,Swi are given by:

mwi = Swiτi
∑
n

zniynφn (44)

S−1wi = αiI + τi
∑
n

zniφnφ
T
n (45)

α:

log q∗αi
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=〈log(
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(46)

where 〈wT
i wi〉 can be further presented by:

〈wT
i wi〉 =tr(〈wT

i wi〉)

=〈tr(wT
i wi)〉

=tr(Swi +mT
wimwi)

(47)

and αi follows a Gamma distribution:

αi ∼ Gam(αi|a+
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2
, b+

1

2
〈wT
i wi〉) (48)

and the expectation of αi is :
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24



τ :

log q∗τi(τi) =〈
∑
n

log p(yn|φn,wi, τi, zn)p(τ)〉+ const
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∑
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τi follows a Gamma distribution:
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β:

log q∗βi(βi) =〈log p(vi|βi)p(βi)〉+ const

=〈log(

√
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exp(−1
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vTi βivi) ·
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− 1) log βi − log Γ(βi) + const

(53)

Distribution and the expectation of βi can be presented by:

βi ∼ Gam(βi|a+
1

2
, b+

1

2
〈vTi vi〉) (54)

〈βi〉∗ =
a+

1

2

b+
1

2
tr(Svi +mT

vimvi)
(55)

ε:
ε is optimized by M-Step in the variational framework. Refer to conclusion in eq.(19), it requires
the expectation of posterior distribution p(X ,Y|θ) with all latent variable �xed. It only depends
on the su�cient statistics of θ = {ε}, ε after the update can be presented by:
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ε =argmax
ε
〈p(X ,Y|θ)〉
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set the derivative of above equation w.r.t ε to 0, we have:
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we have:
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