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Abstract. In this work, we propose a generalized multiscale inversion algorithm for heteroge-
neous problems that aims at solving an inverse problem on a computational coarse grid. Pre-
vious inversion techniques for multiscale problems seek a coarse-grid medium properties, e.g.,
permeability and conductivity, and by doing so, they assume that there exists a homogenized
representation of the underlying fine-scale permeability field on a coarse grid. Generally such
assumptions do not hold for highly heterogeneous fields, e.g., fracture media or channelized
fields, where the width of channels are very small compared to the scale of coarse grids. In these
cases, grid refinement can lead to many degrees of freedom, and thus numerically unattractive
to apply. The proposed algorithm is based on the Generalized Multiscale Finite Element Method
(GMsFEM), which uses local spectral problems to identify non-localized features, i.e., channels
(high-conductivity inclusions that connect the boundaries of the coarse-grid block). The inclu-
sion of these features in the coarse space enables one to achieve a good accuracy. The approach is
valid under the assumption that the solution can be well represented in a reduced-dimensional
space spanned by multiscale basis functions. In practice, these basis functions are non-obervable
as we do not identify the fine-scale features of the permeability field. Our inversion algorithm
finds the discretization parameters of the resulting system on the coarse grid. By doing so, we
identify the appropriate coarse-grid parameters representing the permeability field instead of
fine-grid permeability field. We illustrate the potential of the approach by numerical results for
fractured media.
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1 Introduction

In many applications, one has to deal with medium properties of multiple scales and high contrast.
For example, in subsurface applications, high-conductivity channels or fractures can appear in
multiple locations and have complex geometries. Such features typically have multiple scales,
e.g., very small widths and multiple (long) length scales. The related inverse problems include
finding permeability (or channel distribution) from noisy and sparse pressure or concentration
measurements, and they can be posed either as a regularized least squares formulation and/or
within a Bayesian formulation.

There are several challenges when performing inversion using standard approaches (see the
monographs [15, 26, 31, 39, 40] and references therein for details) for heterogeneous problems. Be-
cause of the presence of small scales, one needs to resolve multiple scales properly, which can lead
to huge ill-posed systems that are difficult to solve. However, one cannot perform inversion on a
coarse grid using standard approaches directly, since the latter implicitly assumes that there is a
homogenized model (see, e.g., [16,18,37] for related inverse problems for homogenization). It was
shown in [7,11,17] that this assumption is not valid for many practical multiscale problems, even at
a low-order approximation. Indeed, because of the presence of high-contrast channels, one cannot
use a single permeability or conductivity to represent a coarse-grid block. To remedy these draw-
backs, multiple continuum approaches [2,3,32,38,41,42] can be employed instead; however, these
approaches require multiple assumptions [8]. Meanwhile, using fine-grid discretizations can lead
to many degrees of freedom without a priori knowledge of the locations of these thin features. In
this paper, we present a novel generalized multiscale inversion algorithm, which employs our re-
cent multiscale methods and solves inverse problem for discretization parameters rather than for
fine-grid permeability fields. Thus by construction, it provides a low-dimensional inverse prob-
lem on the coarse grid and avoids many prior assumptions on the fine-grid geometry in order to
regularize the inverse problem. The approach is in the spirit of regularization by discretization.

Next, we briefly discuss generalized multiscale methods in the context of inverse problems.
We conceptually sketch it in Fig. 1, where we emphasize that one needs appropriate coarse-grid
models (with multiple basis functions) for the inversion in order to achieve an accuracy within the
error tolerance of the data. For simplicity, we consider a multiscale parabolic equation

∂u
∂t
−div(κ∇u)= f , in Ω×(0,T], (1.1)

with a homogeneous Dirichlet boundary condition and a suitable initial condition, where Ω⊂Rn

is an open bounded domain, T > 0 is a fixed a final time, and κ0 ≤ κ≤ κ1 is the unknown per-
meability field that varies over multiple scales with high contrast. Our approach begins with a
computational grid, called the coarse grid, which, as usual, does not resolve all the features of the
permeability κ(x). One standard approach is to seek κ∗(x) on a coarse grid directly. However,
it automatically assumes that one has a homogenization within a set of admissible permeability
fields that we seek. The latter assumption is violated in many important practical applications,
including, e.g., identifying fractures (thin high-conductivity features) or channels with extremely
low or high conductivities. In these cases, when the thin features are subgrid with respect to the
coarse-grid block, homogenization can only provide very inaccurate solutions. Some alternative
approaches include multi-continuum, where multiple homogenized coefficients are assigned in
each block, which, however, need certain modeling assumptions. In this work, we shall employ
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generalized multiscale approaches, where one constructs multiple physically-relevant basis func-
tions in each coarse block from the observational data (in an adaptive manner).

The multiscale method that we employ for the inversion is based on the Generalized Multi-
scale Finite Element Method (GMsFEM) [7, 11, 12, 17, 23]. We remark that many other multiscale
methods have been developed in the literature [4, 9, 13, 19–22, 24, 25, 28, 30, 34–36]. The main idea
of the GMsFEM is to construct multiscale basis functions in each coarse block, by solving suitable
local spectral problems. The multiscale basis functions are selected based on dominant modes
of local spectral problems. The dominant modes can be identified through a spectral gap and the
dominant modes correspond to channelized features, i.e., the high-conductivity channels that con-
nect the boundaries of the coarse block. These features cannot be localized and require separate
basis functions. If these features are not represented by separate basis functions or represented by
fewer basis functions, one can only get very inaccurate numerical solutions. Hence, if one uses
only an upscaled permeability (which corresponds to one basis function), the inversion algorithm
can only yield an inaccurate estimate.

Our generalized multiscale inversion algorithm formulates the inverse problem for the dis-
cretization parameters on a coarse grid directly. The solution to the direct problem is assumed to
be represented/captured by several basis functions in each coarse block, where basis functions are
not known a priori, but to be inferred from the observational data simultaneously. Next, we rep-
resent the measurements in terms of coarse-grid parameters, e.g., entries of the stiffness and mass
matrices. The latter is feasible under certain assumptions on physical nature of measurements.
For example, if the measured quantities can be written on a coarse grid, one can easily represent
the observed data via coarse-grid parameters. Note that in our inversion algorithm, we do not
identify detailed basis functions, but only some average information that these basis functions
will provide. We call these multiscale basis functions unobservable and introduce observable coun-
terpart, which allows extracting some average information about the solution. Naturally, in the
proposed algorithm, one needs certain physical constraints (on the permeabilities etc.) in order
to be able to recover useful information, e.g., some elements of stiffness and mass matrices. The
proposed inversion method can also be formulated within a Bayesian framework, by imposing a
prior on the stiffness and mass matrices generated from a known fine-grid permeability field, and
then to sample the resulting posterior probability distribution with Markov chain Monte Carlo
(MCMC) in order to quantify the associated uncertainties [14].

In the last part of the paper, we present several numerical examples for flows in fractured
media, using a setup for shale gas applications [1], where the true model has fracture distribu-
tions that differ from the initial model and the data are coarse-grid pressures. Because of fracture
networks, we assume that the model has at most two basis functions in each coarse block and
perform inversion. We test the sensitivity of our approach with respect to data noise and mea-
surement location. Moreover, we present adaptive approaches, where multiscale basis functions
are used only in selected regions for the purpose of updating.

The rest of the paper is organized as follows. In Section 2, we give some preliminaries about
grids, multiscale method, and the setup of the inverse problem. In Section 3, we present our
generalized inversion algorithm. Numerical results are presented in Section 4.
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Figure 1: A schematic illustration of the concept of multiscale inversion: The plot shows that one needs appropriate
coarse-grid models (with multiple basis functions) for the inversion in order to achieve an accuracy within the data error.

2 Preliminaries

In this section, we describe preliminaries about generalized multiscale finite element methods
(GMsFEM), and the setup for the inverse problem.

2.1 Coarse and fine grids

First we introduce the notion of fine- and coarse-grids. Let T H be a conforming partition of the
domain Ω into finite elements, called coarse grid, with H being the coarse-mesh size. Let Nc be the
number of vertices, and N the number of elements in the coarse mesh. Then each coarse element
is further partitioned into a connected union of fine-grid blocks, denoted by T h. The partition T h

is a refinement of the coarse grid T H with the mesh size h. Throughout, it is always assumed that
the fine grid is sufficiently fine to resolve the solution. We refer to Fig. 2 for an illustration.

Figure 2: Illustration of the coarse grid T H , coarse cell K, domain ω (the union of a few coarse cells) and fine grid T h.
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2.2 Multiscale basis functions

The GMsFEM consists of two stages: offline and online. First we describe the online stage. Let
V=H1

0(Ω). Then the solution u of problem (1.1) satisfies

(
∂u
∂t

,v)+a(u,v)=( f ,v) for all v∈V, (2.1)

where a(u,v) =
∫

Ω κ∇u·∇vdx, and (·,·) denotes the L2-inner product on Ω. Let Vms⊂V be the
space spanned by all multiscale basis functions, whose construction is to be described in detail
below. Then the multiscale solution ums is defined as: find ums∈Vms such that

a(ums,v)=( f ,v) for all v∈Vms. (2.2)

Next we describe the construction of multiscale basis functions, which is performed on the
fine mesh, even though it is not used in our inversion algorithm. In the offline stage, a small
dimensional finite element space is constructed to solve the global problem for any input param-
eter, e.g., right-hand side or boundary condition, on a coarse grid. The snapshot space V(i)

H,snap is
first constructed for each generic subregion ωi⊂Ω, which involves solving multiple local prob-
lems on the fine grid, and each local solution is called a snapshot. The snapshot solutions are
then used to compute multiscale basis functions. The ideal snapshot space should provide a fast
convergence (i.e., good approximation property in suitable norms) and capture essential problem-
relevant constraints on the coarse spaces (e.g., divergence free solutions), while can reduce the
cost associated with constructing the offline spaces. One can generate snapshot spaces in several
different ways [7], and here we employ harmonic snapshots in an oversampling domain (cf. Fig.
2 for a sketch).

In the harmonic snapshot approach, the snapshot space V(i)
H,snap consists of harmonic extensions

of fine-grid functions that are defined on the boundary ∂ωi. For each fine-grid function δh
l (x), we

define δh
l (xk)=δl,k,∀xk∈ Jh(ωi) (δl,k is the Kronecker symbol, i.e., δl,k =1 if l=k and δl,k =0 if l 6=k),

where the notation Jh(ωi) denotes the set of fine-grid boundary nodes on the boundary ∂ωi of the
subregion ωi. Then we obtain a snapshot function η

(i)
l by

L(η(i)
l )=0 in ωi, η

(i)
l =δh

l (x) on ∂ωi.

The snapshot functions can be computed in an oversampling region ω+
i in order to enhance the

convergence rate, and further, one can use randomized boundary conditions to further reduce the
associated cost [5], in the spirit of randomized singular value decomposition.

The offline space V(i)
ms is computed for each subregion ωi (with elements of the space denoted

ψ
(i)
l ) from the snapshot space V(i)

H,snap. Specifically, we perform a spectral decomposition in the
snapshot space and select the dominant modes (corresponding to the smallest eigenvalues) to
construct the offline (multiscale) space V(i)

ms . The convergence rate of the resulting method is de-
termined by 1/Λ∗, where Λ∗ is the smallest eigenvalue that the corresponding eigenvector is not
included in the multiscale space V(i)

ms [12, 33]. The concrete formulation of the local spectral prob-
lem can be motivated from the following error analysis. Note that the global energy error can be
decomposed into coarse subdomains. With the energy functional on the subdomain ω denoted by
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aω(u,u), i.e., aω(u,u)=
∫

ω κ∇u·∇udx, we have

aΩ(u−uH,u−uH)�∑
ω

aω(uω−uω
H,uω−uω

H), (2.3)

where ω are coarse regions (ωi), and uω is the localization of the solution. The local spectral
problem is chosen to bound the local energy error aω(uω−uω

H,uω−uω
H). Ideally, we look for the

subspace Vω
ms such that for any η∈Vω

H,snap, there exists a function η0∈Vω
ms such that

aω(η−η0,η−η0)�δsω(η−η0,η−η0), (2.4)

where δ > 0 is a small number and sω(·,·) is an auxiliary bilinear form, which has to be chosen
properly to ensure the desired approximation property [12]. The main empirical observation is
that with the snapshot spaces chosen suitably, the smallest eigenvalues correspond to the chan-
nelized features characteristic of the forward solution [10, 12], and thus it enables our multiscale
inversion technique.

2.3 Setup of inverse problem

In the paper, our goal is to find some average information about the fine-scale solution uh(x)
and the permeability field κ(x) given measured data, denoted by d. Since our multiscale inver-
sion technique does not identify κ(x) and the solution uh(x) directly, we denote the integrated
responses by κms(x) and ums(x), where the subscript ms denotes the multiscale inversion. In a
Bayesian framework, we can formulate the inverse problem as

P(κms(x),ums(x)|d)∝ P(d|κms(x),ums(x))π(κms(x))π(ums(x)),

where P(d|κms(x),ums(x)) is the likelihood function, π(κms(x)) is the prior on multiscale dis-
cretization parameters related to the coarse-grid T H, and π(ums(x)) is the prior on the coarse-grid
solution. We will describe the likelihood function and these priors more precisely later on. For the
data d, we will assume that we measure average pressure over some coarse-grid blocks, for which
the special structure allows developing a simple iterative update formula.

3 Multiscale inversion

In this section, we describe the inversion formulation, and the numerical algorithm.

3.1 Inversion formulation

Denote the fine-grid solution by uh and the coarse-grid solution by

uH =∑
i,j

cijφ
ωi
j ,

where φωi
j (x) are GMsFEM basis functions defined on the subregion ωi, and the indices i and

j refer to the subregion and the associated basis functions, respectively. These basis functions
can approximate the fine-grid solution uh accurately in the context of the inverse problem. We
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shall denote the vector of expansion coefficients cij by c, and identify the forward solution uh
with the coefficient vector c. Throughout, it is always assumed that the problem has a low-rank
reduced dimensional approximation, i.e., very few GMsFEM basis functions can provide a good
approximation of the fine-grid solution uh (in a suitable norm ‖·‖):

‖uh−uH‖≈small. (3.1)

Suppose that we measure the quantity Fobs defined by

Fobs=G(uh),

where G is a bounded linear mapping. In view of the relation (3.1), we directly have G(uh)≈
G(uH). Next, we formulate the inverse problem in terms of the discrete parameters (defined on
the coarse grid T H). Note that the coefficient vector c of the discrete coarse-grid solution uH takes
the following form

M
dc
dt

+Ac=b,

with unknown low dimensional matrices A and M (which depend on basis functions φωi
j (x) and

κ – both are unknown in the inverse context), and the time-dependent vector b is source term. By
the linearity of the operator G, we also have

Fobs≈G(uH)=∑
i,j

ci,jG(φωi
j ).

For the proposed multiscale inversion technique, the standing assumption on the measure-
ment operator G is that

G(φωi
j )=y(c,A,M), (3.2)

i.e., the observed response Fobs can be expressed in terms of the elements of the stiffness and mass
matrices A and M and the coefficient vector c. This assumption holds true for a wide variety of
observations, which are averaged quantities over coarse blocks, e.g., pressures or fluxes. In this
case, we have

Fobs=Y(c,A,M).

We illustrate this general formulation with two more concrete examples. For example, if we
observe the average pressure on a coarse block K away from the boundary:

yK =
∫

K
uHdx= cij

∫
K

φ
ωj
i dx.

To express the given data this in terms of c, A, and M, we recall the entry (M)ij,kl of the mass
matrix (M)ij,kl =

∫
ω φ

ωj
i φωl

k dx. In our numerical studies, we seek the element-wise components of
(M)ij,kl for each K (see Fig. 2), denote it by (M)K

ij,kl . Then, since the first basis functions form the
partition of unity, there holds

yK = cij ∑
k=1,l∈I

(M)K
ij,kl , G=G(c,M),
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where I is the set of indices for coarse vertices. Similarly, if we observe the average flux (for
simplicity, we denote it by yK) over a coarse block K

yK =
∫

K
κ∇uHdx= cij

∫
K

κ∇φ
ωj
i dx.

Note that (A)ij,kl =
∫

ω κ∇φ
ωj
i ·∇φωl

k dx. Then, one can solve for
∫

K κ∇uHdx from (A)K
ij,kl , the ele-

ments of the stiffness matrix in K corresponding to k = 1. To do so, we first note that (A)K
ij,1l =∫

K κ∇φ
ωj
i ·∇φωl

1 dx=
∫

K κ∇φ
ωj
i ·∇φ0

ωl
dx, where φ0

ωl
are linear basis functions. By solving the result-

ing 2×2 system, we can compute
∫

K κ∇φ
ωj
i dx.

Note that in this case, we cannot identify the solution u(x) explicitly, since we do not know
the basis functions. However, given the elements (or their estimates) of the stiffness matrix A,
we can find some properties of the fine-grid permeability κ(x). Upon writing the observation in
terms of coarse-grid discretization parameters, the multiscale inverse problem has the following
formulation

P(c,A,M|d)∝ P(d|c,A,M)π(A)π(M)π(c). (3.3)

The priors on A, M, and c can be specified in various ways, depending on the specific application.
In our simulations, we use Gaussian priors around a given state generated with a fixed permeabil-
ity field. In general, one can use a Gaussian mixture field based on several generated permeability
fields or priors generated using fine-grid permeability fields as in a Bayesian framework [6]; how-
ever, we stress that our objective is to recover coarse-grid parameters. Once we identify c, A, and
M, some solution averages can be obtained. To formalize this process, we assume that we can
construct a set of observable basis functions φ̃ωi

j such that

∑
i,j

ci,jG(φωi
j )≈∑

i,j
ci,jG(φ̃ωi

j ),

or equivalently G(φωi
j )≈G(φ̃ωi

j ). This latter assumption has to be verified case by case for each op-
erator G. Generally, it is necessary for performing inversion on a coarse grid in order to guarantee
that the observation can be observed on a coarse-grid solution.

Remark 3.1. When the permeability field κ(x) is parameterized or samples of permeability fields
are known, we can compute the multiscale basis functions φ

ωj
i . Then one can compute the fine-

grid solution without explicitly finding κ.

Remark 3.2 (One basis function - numerical homogenization). In numerical homogenization, our
goal is to find κ∗ on a coarse grid. Then the coarse-grid solution uH satisfies

∂u∗H
∂t

+L(κ∗,u∗H)=0,

where L is an elliptic differential operator depending on κ∗. Assume that we can observe the
data Fobs based on a coarse-grid solution uH: G(u∗H) = Fobs. In analogy, we assume that one un-
observable basis function can be used to approximate the solution uH=∑i ciφ

ωi . Then we can take
φ̃ωi = φωi

0 , polynomial basis function that has the same linear boundary conditions as multiscale
basis functions.



9

Remark 3.3 (Multi-continuum approach). In the recent work [8], we have discussed the rela-
tion between the GMsFEM and multi-continuum approaches. For multi-continuum equations,
the generalized multiscale inversion technique reduces to finding parameters in multi-continuum
equations. For example, in a simplified case, the coarse-grid equations assume the form

∂u∗i,H
∂t
−div(κ∗i ∇u∗i,H)+Qij(u∗j,H−u∗i,H)=0,

where the index i refers to the continua and our goal is to identify κ∗i and Qij. The latter can be
done using standard inverse problem approaches. As a result, we compute the effective proper-
ties of each continua and they cannot be directly related to the fine-grid permeability field. Our
approach avoids assumptions of multi-continua approaches and, while as in multi-continua in-
version, identifies some average properties about the fine-scale permeability field.

3.2 Numerical algorithm

In practice, the inversion can be performed by solving the following minimization problem

J(M,A,u)=
1

σ2
M
||M−M0||2+

1
σ2

A
||A−A0||2+

1
σ2

F
||Fu−g||2L2(0,T), (3.4)

where M and A are global mass and stiffness matrices, respectively, and M0 and A0 are the cor-
responding given prior information. This optimization problem can be viewed as computing
only the maximum a posteriori estimator of the posterior distribution P(c,A,M|d) defined in
(3.3), which represents one computationally attractive way to explore the posterior distribution
P(c,A,M|d), by identifying uh with its coefficient vector c. The benefit of the formulation is that it
is deterministic, and can be efficiently minimized. Below, we use Gaussian priors around a state
generated with a fixed permeability field (however, in principle, other nonsmooth priors can be
employed as well). In general, one can use a Gaussian mixture model based on several generated
permeability fields or priors generated by fine-grid permeability fields as in Bayesian models, as
mentioned earlier. We remark that the positive scalars σM,σA and σF play the role of regularization
parameters, which are constructed to give relative weights of the terms. Choosing proper regular-
ization parameters is a notoriously challenging task in general and depends on the choice of the
prior and the specific application, and we refer to [26] for detailed discussions on various ways for
selecting a single regularization parameter. Moreover, one needs to select the norms appropriately
in (3.4) to guarantee the robustness with respect to the data perturbation [26]. In this work, for
simplicity, we employ the discrete quantities and l2 norms in (3.4), and leave the rigorous studies
to future work. In the functional, the operator F is the measurement operator, and g is the ob-
served data. In our numerical simulations, the observed data g is obtained by solving the forward
problem on the fine grid, and then apply the operator F to the solution uh. In particular, for each
coarse element K, we have

FKuh := ūK
h (t)≡

1
|K|

DOFK

∑
i=1

cK
i (t)

DOFK

∑
j=1

mK
ij ,

where the superscript K refers to the coarse element K, |K| denotes the Lebesgue measure of the
element K, and DOFK denotes the number of degree of freedom associated with the element K.
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We will solve the optimization problem (3.4) using an iterative procedure. First, we assume
that some initial approximations for the local mass and stiffness matrices AK

0 and MK
0 are given.

These matrices are found by generating a priori realization and used as a regularization for the
low-dimensional inverse problem. Based on these initial conditions, we solve the global forward
problem and find an initial approximation u0(t)

(A0,M0)→u0(t),

and the corresponding simulated observational data gK
0 (t) is the average pressure in cell K

ūK
0 (t)=

1
|K|

DOFK

∑
i=1

cK
0,i(t)

DOFK

∑
j=1

mK
ij ,

The multiscale inversion algorithm proceeds as follows; see Algorithm 1 for the details. The
stopping criterion at Step 6 can be taken that the magnitude of the gradient or the change of
the value of the objective functional falls below a given tolerance. First, we seek the element-wise
components of the stiffness and mass matrices A and M. In this way, we can ensure the symmetry.
We iteratively (n=1,2,...) update the local mass matrix MK

n and local stiffness matrix AK
n (with the

subscript n indicating the iteration index)

MK
n =MK

n−1−εδJM and AK
n =AK

n−1−εδJA, (3.5)

using the previous iterates MK
n−1 and AK

n−1, where ε>0 is the step size, and δJA and δJM denote the
derivative of the functional J with respect to A and M, respectively. Further, we generate global
mass and stiffness matrices by local matrices and solve the global forward problem

(An, Mn)→un(t), (3.6)

and find average cell pressure

ūK
n (t)=

1
|K|

DOFK

∑
i=1

cK
n,i(t)

DOFK

∑
j=1

mK
ij . (3.7)

In the gradient descent iteration (3.5), we need the derivatives δJM and δJA of the functional J
with respect to the matrices M and A. To this end, we employ the standard adjoint state technique.
In the following, we only give the main steps since the derivation is rather standard [27]. Consider
the adjoint problem

∂w
∂t

+div(κ∇w)=−FT(Fu−g), w(T)=0

where FT is the adjoint of the operator F. Note that the adjoint problem is defined backward in
time, and can be solved numerically as usual by a change of variable t←T−t. Suppose that we
represent the adjoint solution w as {λn−1,i} in the multiscale basis φ

ωj
i . Then using the adjoint

solution w(t) and the forward solution un−1(t), the local component (δJM)K
ij of the derivative δJM

can be computed as

(δJM)K
ij =

2
σ2

M

(
(Mn−1)

K
ij−(M0)

K
ij

)
− 2

σ2
F
(Mn−1)

K
ij

∫ T

0

dλn−1,jg

dt
cn−1,ig , (3.8)
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where ig is the corresponding global index. That is, ig is the global index of the vertex correspond-
ing to the local index i. Similarly, we can compute the derivative δJA as

(δJA)
K
ij =

2
σ2

A

(
(An−1)

K
ij−(A0)

K
ij

)
− 2

σ2
F
(An−1)

K
ij

∫ T

0
λn−1,jg cn−1,ig . (3.9)

Algorithm 1 Multiscale inversion algorithm.
1: Give the initial guess (A0,M0), the maximum number K of iterations and the step size ε;
2: for k=1,.. .,K do
3: Solve for uk from (Ak−1,Mk−1) by solving the direct problem;
4: Compute the gradient δJA and δJM by the adjoint method, cf. (3.8) and (3.9);
5: Update (Ak,Mk) by the gradient descent (3.5);
6: Check the stopping criterion.
7: end for

4 Numerical results

Now we illustrate our multiscale inversion technique with flows in fractured media. First, we
emphasize that the proposed method is general and can be used for general heterogeneous high-
contrast problems. It is especially suitable for channelized and fractured media. In channelized
media problems, the locations of high-conductivity channels are unknown and the channels can
have very small thickness, which calls for very small fine grid everywhere if the inversion is di-
rectly performed on the fine grid and thus it can be very expensive. Meanwhile, channelized
media problems can be represented on the coarse grid using GMsFEM and multiple basis func-
tions. Using multiple basis functions within GMsFEM (un-observable basis functions), we can
perform inversion efficiently. For these problems, homogenization-based approaches (identifying
grid-block conductivities) does not work, as discussed earlier. Fractured media can be considered
as channelized media in the limit when channel thickness goes to zero, while the conductivity is
very high. In this case, the channels are written as low dimensional high-conductivity regions.
These models are written in a discrete formulation since the fractures have zero widths.

In our numerical experiment, we take the computational domain Ω = [0,1]2. Fractures have
high conductivities, very small width, and are modeled as high-conductivity lines; see [8] for
details. To describe the model problem, we divide the domain Ω into the fracture and the matrix
region Ω = Ωm⊕i diΩ f ,i, where the subscripts m and f denote the matrix and fracture regions,
respectively. The fracture regions Ω f ,i consist of lines in 2D (and low-dimensional objects in higher
dimensions). We denote by di the aperture of the i-th fracture, where i is the index of the fractures.
The aperture of the fracture determines its conductivity and we denote by κ f ,i the conductivity
(permeability) of the i-th fracture. The matrix domain Ωm is a two-dimensional domain.

The bilinear form for flow in fractured media is given by∫
Ωm

∂uh

∂t
vh dx+

∫
Ωm

κm∇uh ·∇vh dx+∑
i

∫
Ω f ,i

κ f ,i∇ f uh ·∇ f vh dx=
∫

Ω
f vh dx, (4.1)

where vh is the fine-grid finite element function, ∇ f is the derivative along the fracture lines,
and κm and κ f ,i are the matrix and fracture permeabilities (i= 1,...,N), respectively. The fracture
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permeability include the aperture information di. Problem (4.1) can be written into the variational
form (2.1).

We consider the coarse mesh that contains 121 vertices and 200 cells. We use the following
parameters

• km =10−3 and k f =102,

• u= 0 on the left boundary (x1 = 0), no flow on the remaining boundaries (κ∇u·n= 0), and
u(t=0,x)=1,

• f =0 and tmax =10 with 10 time steps.

To set the prior information, the initialization, and for the comparison with the fine-grid solu-
tions, we use the fine mesh, which contains 6297 vertices and 12352 cells for Case 1. For Case 2,
we have 7908 vertices and 15574 cells. For Case 3, fine mesh with 7891 vertices and 15540 cells.
The fine meshes for all three cases are depicted in Fig. 3. In Fig. 4, we show the adaptive regions,
where we perform updates to the matrices, and unless otherwise stated, these regions are used
in all the numerical experiments with the proposed inversion technique below. Further, unless
otherwise stated, the step length ε in the iteration (3.5) is fixed at ε=10−12.

Figure 3: Coarse and fine grids for Cases 1-3. In the figure, red color indicates exact fractures, and the green color is for
moved fractures. Case 1 has 3 rotated and 2 shifted fractures, Case 2 has 1 shifted fracture with large distance (second)
and Case 3 has 1 removed fracture (fifth).

To evaluate the proposed approach, we first present the following numerical results: the av-
erage fine-grid solution, the initial condition and the final solution. All the results are obtained
with the following parameter setting: σM =σA =1.0 and σF =104, which are determined in a trial
and error manner. In Figs. 5, 12 and 14 for the three cases, we present the numerical solutions.
It is observed that the recovered solutions are always fairly close to the exact one, indicating the
accuracy of the proposed approach.

In Figs. 6, 7, 13 and 15, we present the L2 errors with respect to the space variable as a function
of time t and the residual (functional value) J given in (3.4). In Fig. 6, the cell average solution
refers to the fine grid solution averaged on the coarse element K. The L2 error decreases with
the time t, and in the absence of data noise, it also decreases as the iteration proceeds. Further,
with more multiscale basis functions in the inversion, the L2 error is also smaller. We always
observe that the residual decreases as the number of iterations grows. The monotone decrease of
the residual indicates that the iteration (3.5) is indeed minimizing the functional J.

Next we illustrate the sensitivity of the numerical results by the multiscale inversion algorithm
with respect to various algorithmic parameters. In Fig. 8 we present the result for two different
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(a) case 1 (b) case 2 (c) case 3

Figure 4: The regions for (adaptive) inversion update for the three cases: The coarse cells in red indicate the corresponding
entries of the matrices to be updated.

(a) multiscale solution on fine grid (b) 4 multiscale basis functions, adaptive inverse

Figure 5: Numerical results Case 1: (a) multiscale solution for u0 (left) and exact (right), and (b) cell average solution for
initial condition M0, A0 (left) and solution after 100 iterations (right).

step lengths ε=10−12 and ε=10−13, where the mass and stiffness matrices are updated adaptively
in selected regions and also over the whole computational domain. One observes that the errors
and residuals are comparable when the iteration reaches convergence, but with a larger step size
can greatly speedup the convergence of the algorithm (whenever it does not violate the step size
restriction, as usual for gradient descent type algorithms). Further, the results for the adaptive
local update and all cells update of the mass matrices are comparable with each other. Thus the
inversion with only local update in the selected regions affects little the reconstruction results.
However, numerically, we observe that the local update is much more stable than the global up-
date, e.g., a larger step size ε, due to the fact that the local update involves much few unknowns.
In Fig. 9, we present the numerical results for the case of observational data contaminated with
different amount of noise. It is observed that the results are fairly stable with respect to the present
of data noise, up to 100 iterations, due to the priors we specified on the discrete parameters, clearly
indicating the stability of the regularized formulation. Naturally, the error and residual increases
with the noise level. Last, our inversion algorithm essentially employs local data to update the
local coarse grid directly, and thus it is expected that the algorithm can work well as long as the
related local data over the interested region is available. This is confirmed by the numerical results
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(a) L2 error v.s. time (b) J v.s. iteration

Figure 6: Numerical results for Case 1 with 2 (top) or 4 (bottom) multiscale basis functions: (a) the L2 error for cell
average v.s. time t at different iterations, and (b) the functional value J v.s. iteration index.

(a) L2 error v.s. time (b) J v.s. iteration

Figure 7: Numerical results for Case 1, using 2 or 4 multiscale basis functions: (a) L2 error for cell average v.s. time t,
and (b) the functional value J v.s. the iteration index.

in Figs. 10 and 11. However, with sparser data available, a stronger regularization is needed to
maintain the stability of the algorithm, and more informative priors, e.g., sparsity or total varia-
tion, may be imposed [26, 29, 39].
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(a) L2 error v.s. time (b) J v.s. iteration

Figure 8: Numerical results for Case 1, using 4 multiscale basis functions: (a) L2 error for cell average v.s. time t, and (b)

the functional value J v.s. iteration index. Different iteration parameter ε=10−12 and 10−13. Adaptive and all cells local
mass matrices updating.

(a) L2 error v.s. time (b) J v.s. iteration

Figure 9: Numerical results for Case 1 with noisy data g, gK(t)=(1+δr)gK(t) (r∈ [−1,1] is random number and δ=1%,

3% , 5% or 10%) with 2 (top) or 4 (bottom) multiscale basis functions: (a) the L2 error for cell average v.s. time, and
(b) the functional value J v.s. iteration index.

5 Conclusions

In this work, we have developed a generalized multiscale inversion algorithm for heterogeneous
problems. It is based on the generalized multiscale finite element method (GMsFEM), where one
constructs multiscale basis functions to capture the non-localizable features, and the algorithm
assumes that the problem admits a reduced-order model on a coarse grid. Then, instead of seek-
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Figure 10: The observation data gK for Case 1, given in some cells indicated in red.

(a) L2 error v.s. time (b) J v.s. iteration index

Figure 11: Numerical results for Case 1 using 4 multiscale basis functions, with different amount of observational data gK

in some cells shown in Fig. 10: (a) the L2 error for cell average v.s. time t, and (b) the functional value J v.s. the iteration
index.

(a) multiscale solution on fine grid (b) 4 multiscale basis functions, adaptive inverse

Figure 12: Numerical results for Case 2: (a) multiscale solution for u0 (left) and exact (right), and (b) cell average solution
for initial condition M0, A0 (left) and solution after 100 iterations (right).

ing coarse-grid permeabilities, we seek the discretization parameters that are obtained from the
GMsFEM formulation. Our approaches are especially suitable for problems with fractures or high-
conductivity channels, when upscaling the permeability can result in very large errors. Thus, it is
important to consider a more general multiscale approach. In our approach, we do not compute



17

(a) L2 error v.s. time (b) J v.s. iteration

Figure 13: Numerical results for Case 2, using 4 multiscale basis functions: (a) L2 error for cell average v.s. time t at
different iterations, and (b) the functional value J v.s. the iteration index.

(a) multiscale solution on fine grid (b) 4 multiscale basis functions, adaptive inverse

Figure 14: Numerical results for Case 3: (a) multiscale solution for u0 (left) and exact (right), and (b) cell average solution
for initial condition M0, A0 (left) and solution after 100 iterations (right).

(a) L2 error v.s. time (b) J v.s. iteration

Figure 15: Numerical results for Case 3 using 4 multiscale basis functions: (a) L2 error for cell average v.s. time t at
different iterations, and (b) the functional value J v.s. the iteration index.

multiscale basis functions and do not recover the fine-scale permeability field. Instead, we com-
pute the averaged coarse-grid discretization parameters, i.e., integrated responses corresponding
to unknown multiscale basis functions. We have discussed various regularizations and a Bayesian
framework, as well as the important ingredients of the inversion algorithm, and illustrated the ap-



18

proach with numerical results for fractured media. Our numerical experiments clearly illustrate
the feasibility and significant potential of the approach for inverse problems for heterogeneous
problems, and it motivates a rigorous mathematical analysis of the proposed approach.
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