
Research Article
Reconfigurable Network Stream Processing on
Virtualized FPGA Resources

Qianqiao Chen ,1 VaibhawaMishra,2 Jose Nunez-Yanez ,1 and Georgios Zervas2

1University of Bristol, Bristol, UK
2University College London, London, UK

Correspondence should be addressed to Qianqiao Chen; qianqiao.chen@bristol.ac.uk

Received 27 September 2017; Accepted 30 January 2018; Published 25 February 2018

Academic Editor: Michael Hübner

Copyright © 2018 Qianqiao Chen et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The software defined network and network function virtualization are proposed to address the network ossification issue
in current Internet infrastructure. Network functions and services are implemented as software applications to increase the
programmability of network. However, involving general purpose processors in data plane restricts the bandwidth of network
services. Therefore, to keep both the bandwidth and flexibility, a FPGA platform is suggested as a reconfigurable platform to
deliver high bandwidth virtual network functions on data plane. In this paper, the FPGA resource has been virtualized by
interconnecting partial reconfigurable regions to deliver high bandwidth reconfigurable processing on network streams. With the
help of partial reconfiguration technology, network functions on our platform can be configured without affecting other functions
on the same FPGA device. The on-chip interconnect system is further evaluated by comparing with existing network-on-chip
system. A reconfiguration process is also proposed and demonstrated that it can be performed on our platform. The process can
happen in the real time of network services and it is able to keep the original function working during the download of partial
bitstream.

1. Introduction

The Internet lays the foundation of our modern world. Com-
puter networks are supporting modern commerce, industry,
and the social networks. With the development of computer
network, people find it hard to deploy new network tech-
nology, services, and protocols in the Internet environment,
as the current Internet infrastructure is hard to manage,
upgrade, and evolve. In this situation the software defined
network (SDN) is suggested to explore the innovation in
network design and operation [1].

The SDN proposes to centralize the network control and
introduce the ability to program the network. As the network
is defined by software applications that is designed and
executed in operating systems on general purpose processors,
the capital and operational expenditures to manage and
upgrade network can be reduced. As complement to SDN,
instead of running network applications in real operating sys-
tem, network function virtualization (NFV) suggests to run

these applications in virtual machines [2]. So the hardware
resources of network can be isolated and shared.

Although running software network applications in oper-
ating system increases the flexibility and programmability of
network services, the general purpose processors can limit
the bandwidth of these network applications especially on
data plane. To maintain both the programmability and band-
width of network services, FPGA as a reconfigurable device
is another outstanding reconfigurable hardware platform for
NFV especially in the virtualization of network data plane.
To keep the advantage of NFV that share hardware resources
to multiple network services, the FPGA hardware platform
needs to be virtualized before delivering network functions.
However, the virtualization of FPGA resources is not as
mature as the virtualization of general purpose processors.

This paper explores the virtualization technology of
FPGA resources to deliver high bandwidth virtual network
functions. A NFV platform is implemented in this paper to
deliver network data plane stream processing on virtualized

Hindawi
International Journal of Reconfigurable Computing
Volume 2018, Article ID 8785903, 11 pages
https://doi.org/10.1155/2018/8785903

http://orcid.org/0000-0003-3716-7974
http://orcid.org/0000-0002-5153-5481
https://doi.org/10.1155/2018/8785903

2 International Journal of Reconfigurable Computing

FPGA resources. The contribution of this paper includes the
following:

(i) An architecture is implemented to virtualize FPGA
resource. In the proposed architecture, the technology
of partial reconfiguration and on-chip interconnect
is adopted to isolate FPGA resource. The FPGA
resource can also be directly attached to the 10G
Ethernet without involving processing unit in the
network data plane.

(ii) The on-chip interconnect system in the proposed
architecture is evaluated and compared with existing
interconnect system.

(iii) A reconfiguration process that is able to switch partial
reconfigurable network functions in real time and in
a packet loss free manner is proposed and demon-
strated.

The rest of the paper is organized as follows: Section 2
introduces the background. The overview architecture of the
proposed platform for reconfigurable network stream pro-
cessing is explained in Section 3.The on-chip interconnect in
the proposed system is evaluated in Section 4. The proposed
reconfiguration process is compared with typical partial
reconfiguration process in Section 5. Section 6 demonstrates
the experiment to validate the platform and demonstrate the
proposed reconfiguration process. Section 7 concludes this
paper.

2. Background

The SDN is a network paradigm that aims to decouple the
control plane and data plane of the network.The SDN enables
centralized control and management on the distributed data
plane of a network [3]. The SDN also suggests a standard
software control plane which can be independent from its
hardware [4]. Although the SDN only suggests a software
control plane, software data plane is often adopted as a
complement of the SDN concept. Especially, in data cen-
ters, software network switch is often used between virtual
machines that is deployed on the same server [5].

These software applications on network control and data
plane enlighten the concept of NFV. Network functions are
no longer treated as functions of an ASIC based hardware
platform built with specific purpose. Instead, they are now
software applications running on the operating system of
general purpose processors. Therefore, the virtualization
technology in computer system can be adopted to isolate
and share network resource to multiple tenants [6].The NFV
first proposed to virtualize the control plane by using the
SDN technology. Then both the control and data plane of a
network function are virtualized to deliver various network
services such as firewalls and load balancers. Furthermore,
services beyond the OSI application layer (such as video
processing services) are suggested as a complement of NFV
especially in data center environment [7]. The NFV inherent
many features and advantages from the SDN. For example,
network services can be fast and easily deployed by using
NFV technology [8]. The network can be adjusted based on

H
yp

er
vi

so
r

Server

V
N

FC Service 1

Service 2

D
at

a c
en

te
r n

et
w

or
k

H
yp

er
vi

so
r

Server

Service 3

Service 4

H
yp

er
vi

so
r

Server

Service 5

Service 6

Service
1

Service
3

Service
5

A
 se

rv
ic

e c
ha

in

V
N

FC
V

N
FC

V
N

FC
V

N
FC

V
N

FC

Figure 1: A typical infrastructure of NFV and the service chain.

real-time traffic and the requirement of the network services.
But the NFV also has its unique advantages such as sharing
the physical network resources to multiple tenants [6].

Figure 1 shows a typical infrastructure ofNFV in data cen-
ters. Servers are the common hardware platform of NFV in
data centers [9]. The software that enables the virtualization
of servers is called hypervisor (also known as virtual machine
monitor) [10]. The hypervisor is responsible to isolate and
allocate physical resources on the computing platform to
individual virtual machines (also known as virtual network
function container in the terminology of NFV).The hypervi-
sor inNFV is often specialized for network virtualization. For
example, the hypervisor is often equipped with a hardware
or software network switch. Services deployed in virtual
machines can be connected on the demand of users to build
a chain of services as marked in the red line of Figure 1 [11].

Although moving network functions from hardware to
software decouple functions from its physical platform, it
reduces the performance of network functions. Therefore,
additional hardware accelerators are often required in the
network to meet the performance requirement. Moving back
to ASIC accelerators increases the coupling degree of control
and data planes which go against the design philosophy of
NFV. So FPGA as a reconfigurable but high performance
platform is adopted in this paper [12].

Similar to the NFV on general purpose processors,
NFV on FPGA should also be built on the virtualization
technology of FPGAs to share physical resources to mul-
tiple tenants. Partial reconfiguration has become the key
technology to enable the virtualization of FPGA resource.
Reference [13] explores the integration of partial bitstream
download process with the operating system. The hardware
environment of the FPGA virtualization is implemented in
[14], especially, PCIe interface has been set up as the interface
between processing unit and programmable logic. Reference

International Journal of Reconfigurable Computing 3

R

PRR

NI

R

PRR

NI

R

PRR

NI

R

PRR

NI

R

PRR

NI

R

PRR

NI

R

PRR

NI

R

PRR

NI

R

PRR

NI

R

NI

R

NI

R

NI

I/O blocks

R

NI

R

NI

R

NI

R

NI

I/O
 b

lo
ck

s

Figure 2: A typical NoC based architecture for FPGA virtualization.

[15] improves the virtualization by enhancing the software
support especially for the data center environment.

Both the data and control plane are coordinate by the
processing unit in above researches. However, to virtualize
FPGA for network functions, involving general purpose
processors in data plane can reduce the performance espe-
cially the bandwidth. Therefore, instead of using processing
unit, FPGA based interconnect architectures are taken into
consideration in the virtualization of FPGA resources. The
research in [16] proposes a network-on-chip based design to
share FPGA resources. The research in [17] extends the NoC
based FPGA virtualization in the cloud computing. A typical
NoC based FPGA virtualization architecture is shown in
Figure 2. It is often composed of several partial reconfigurable
regions where accelerators can be deployed. Data commu-
nication between the deployed accelerators are transferred
through an interconnect system. I/Os are often attached to the
interconnect as well to communicate with off-chip network.
In this paper, following the concept of FPGA virtualization,
a FPGA virtualization platform is implemented to deliver
reconfigurable high bandwidth network stream processing
on the data plane of NFV.

3. Overview Architecture

In this paper, the aim of FPGA virtualization is to support
NFV. In other words, the physical FPGA platform should be
shared bymultiple network services requested bymany users.
In addition, the adoption of FPGA is to virtualize the network

FPGA

Interconnect

PRR PRR PRR

Dynamic crossbarI/F I/F

I/F I/F I/F

Controller

f1(x) f2(x) fn(x)· · ·

· · ·

ET
H

ET
H

10
G

10
G

Figure 3: The overview of the proposed FPGA virtualization
architecture for NFV platform.

function on data plane. So the virtualized network functions
should support high bandwidth. Therefore, the virtualized
FPGA platform should support the following features: (a)
network functions should be configured independently, (b)
network functions should have high performance interfaces,
and (c) network functions should share the network inter-
faces of FPGA board.

The typical configuration of FPGA needs to reprogram
entire FPGA device. However, when a FPGA is shared
by multiple network functions, reprogramming one of the
functions needs to turn off all the other functions on the
board, which affect functions belonging to other services and
users. Therefore, the partial reconfiguration technology is
adopted. It partitions the FPGA into one static region and
several dynamic partial reconfigurable regions. The program
of partial reconfigurable regions will not affect the function
in static region and other partial reconfigurable regions.

The design feature of partial reconfiguration requires
static interface between dynamic regions and the static
region. So all the deployed network functions should be
attached with a standard interface to enable the partial
reconfiguration technology. The standard AXI4-stream is
utilized as the interface in this paper. To support high
bandwidth network function, an on-chip interconnect system
is also implemented in the static region to establish data
communication between dynamic regions.

FPGA devices often include limited number of network
interfaces. So the network interfaces should also be shared by
network functions when a FPGA platform is built to support
NFV. Therefore, the 10Gbps Ethernet interface is attached to
the interconnect and makes the interconnect forward data
at the Ethernet packet level. So all the dynamic regions are
able to have access to the off-chip network through the
interconnect.

The structure of the proposed FPGA virtualization for
NFV is suggested in [18] and is shown in Figure 3. It includes
a number of partial reconfigurable regions (PRR) and an
interconnect system. The 10Gbps Ethernet systems are also
attached to the interconnect system to transfer data with off-
chip network directly. A controller is also included to control
the interconnect system and orchestrate the reconfiguration
process of virtual functions (introduced in Section 5). All the

4 International Journal of Reconfigurable Computing

FIFO

Controller

A
XI

4-
str

ea
m

Addr
translate

PRR or

Forwarding
table

Interface Crossbar

Bu
ffe

r t
ra

ffi
c

Et
h

Ad
dr

Local Addr

10G ETH

10
G

 E
TH

O
th

er
 P

RR
s o

r

Figure 4: The detailed structure of the interface and dynamic crossbar of the interconnect.

modules are running at 156.25MHz, which is the frequency
of the 10G Ethernet system with 64-bit data width.

A dynamic interconnect system is implemented and
forwards data between PRRs in the proposed platform. It
is composed of a dynamic crossbar and interfaces to PRRs.
The data are forwarded based on the local address signal in
parallel with the data signal (as the USER channel in AXI4-
stream standard). Each PRR is identified by a unique address.
The local destination address of a packet is added in the
interface. And the crossbar forwards packets according to
the attached local address. The architecture of the crossbar
and interface will be further introduced in next paragraph.
The 10Gbps network ports are also connected with the
interconnect system. All PRRs are decoupled from physical
interfaces and are directly attached to interconnect system
as pluggable independently accessible regions. This enables
reconfigurable processing on network streams. The whole
FPGA virtualization system is managed from the central
controller. Update information is transferred through the
central controller to set the value of memory-mapped control
registers and change the port map of the dynamic crossbar.
The central controller is also responsible to perform the
function reconfiguration process.Thedetailed information of
the process is given in Section 5.

The implementation detail of the dynamic crossbar and
interface is shown in Figure 4.The interface locates at the edge
of the interconnect system to bridge PRRs and PHYs with the
crossbar.The crossbar and interfaces are connected following
the AXI4-stream handshake standard.

The Ethernet address is translated into local address
according to the table in the interface. This table can be
updated from the controller through AXI4-lite interface to
enable real-time control on the interconnect system. The
local address is transferred in parallel with the data (as the
USER channel of AXI4-stream) until reaching its required
PRR. The interface is also responsible to buffer or release the
traffic. FIFO is added to temporarily store the data during
the reconfiguration of the interconnect. The FIFO can be
controlled from the central controller.

A forwarding table storing the map information between
local address and output port is stored in dynamic crossbar.

When a packet is received by the crossbar, its local address
(attached by the interface) is checked and the packet is
forwarded to the related output port by looking up the
forwarding table. The forwarding table is dynamic and can
be updated from the central controller through an AXI4-lite
interface.

Since all network functions are only attached to the inter-
connect system and are clearly decoupled from the high speed
I/Os, the flexible FPGA virtualization platform can deploy
and involve network functions where and when required.
Network streamprocessing unit can be reconfigured on PRRs
on per port, per independent flow, or per virtual network
basis. PRRs can also be reconfigured into requested functions
at run time without service disruption of or loss of data
(introduced in Section 5).

Therefore, a reconfigurable NFV platform with the fol-
lowing features is established: (a) independent virtual FPGA
resource or regions; (b) shared network interfaces by network
functions; (c) network developers being able to enhance the
already deployed functions in real time and in packet loss free
manner.

4. Evaluation of the Interconnect

The interconnect system plays a significant role in the
FPGA virtualization system, as all the received traffic needs
to go through the interconnect system before reaching its
destination. A low performance interconnect structure will
limit the performance of all the deployed network functions.
Therefore, the interconnect system of the proposed FPGA
virtualization platform is evaluated.

To put the resource utilization and network performance
of our interconnect system into perspective, the interconnect
system is compared with the public available CONNECT
[19, 20] and SOTA [21] network on chip. The SOTA mainly
targets the ASIC design. When mapping FPGA platform, the
SOTA needs large number of resources.TheCONNECT tries
to solve this problem at the cost of reducingmaximum router
frequency [22, 23]. In the following presentation, the resource
utilization in synthesis result of all the interconnect system

International Journal of Reconfigurable Computing 5

8873

54259

3158

33158

2014

16214

0

10000

20000

30000

40000

50000

60000

5 ports 16 ports

SOTA
CONNECT
Implemented interconnect

Figure 5: The LUT resource utilization of CONNECT, SOTA, and
the interconnect system implemented in this paper.

will be compared. Then the cycle accurate simulation result
will be collected to evaluate the network performance.

Routers with 5 and 16 ports of all the three interconnect
systems are set up, respectively. The data width of both
CONNECTand our interconnect system is 64 bits.The SOTA
only supports 32-bit data width. And the resource utilization
in terms of LUTs is shown in the bar graph in Figure 5.
The implemented interconnect system uses the least resource
among all the three interconnect systems.

To compare the network performance, two traffic patterns
are set up and the load-delay curves are measured. The
first traffic pattern is uniform random traffic, where the
destination of each packet is set randomly. The second traffic
pattern is a hybrid traffic of two patterns. 90% of the hybrid
traffic is a static traffic pattern. The map of input and output
ports of the generated flows is fixed as shown in Figure 6.
And the loads of receive ports are equal to each other. 10%
of the hybrid traffic is uniform random traffic, which is the
same as the first traffic. The second traffic depicts a traffic
pattern where deployed functions heavily transfer data with
several other functions in the system and also talk to the rest
functions occasionally.

The result is shown in Figure 7. When all the three
interconnect systems are running at the same frequency, our
interconnect system can support maximum 4.3Gbps under
uniform random traffic and 5.8 at hybrid traffic, followed by
CONNECT with data width of 64 bits as shown in Figures
7(a) and 7(b). However, the higher maximum bandwidth is
at the cost of delay. Our interconnect system needs additional
40 ns at the situation of random traffic and 20–35 ns under
hybrid traffic. The three interconnect systems are compared
at their design frequency. Under both traffic patterns, the
delay of our interconnect system is similar to the 64-bit
CONNECT. But our interconnect can is still able to support
higher bandwidth as shown in Figures 7(c) and 7(d).

The SOTA system has the lowest performance under
all the circumstances. This is because SOTA only supports
32-bit data width, which limits the performance extremely.
Different from our interconnect system and CONNECT, in
the SOTA system, the control information including address
is transferred in band with the DATA. This also introduces

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 6: The pattern for the static part of the hybrid traffic.

overheads. The CONNECT system has lower latency, espe-
cially when the system is not heavily loaded. This is because
CONNECT is designed for a computing system, where delay
is more important than bandwidth. Our system can support
higher bandwidth which is important in a network system.
Apart from bandwidth, 10G Ethernet interface and Ethernet
address translation are also attached tomake our systemwork
more directly with off-chip network.

5. Reconfiguration Process

The download process of partial bitstream takes time when
performing partial reconfiguration. As the PRR cannot
perform any function during this period, the adoption of
partial reconfiguration can introduce loss of service. To avoid
service loss, a function reconfiguration process is proposed
which can be free of packet loss on our NFV platform. This
reconfiguration process is introduced in this section.

Instead of occupying all PRRs by network functions, a
backup (empty) PRR is reserved only for the reconfiguration
process. As the empty backup PRR does not receive and
send any traffic, the bitstream for this backup PRR can be
downloaded without disturbing the existing traffic in the
system.When a function reconfiguration (i.e., from IP parser
to UDP parser in this example) is requested, partial bitstream
of the requested function will be firstly loaded on the backup
PRR. During the deployment of the partial bitstream on the
backup PRR, the rest of the platform including all the active
PRRs will not be affected or interrupted. The backup PRR
with the requested function will not be set into use until the
reconfiguration is finished. When the deployment of partial
bit stream on the backup PRR is finished (the requested
function is ready), the port map of the interconnect system
will be updated to forward the related data flows to the backup
PRR and stop forwarding data to the previous active PRR.The
previous backup PRR becomes active and the previous active
PRR takes the role of the new backup PRR for future function
reconfiguration.

As shown in Figure 8, the PRRs, interconnect system,
and the interfaces should be orchestrated properly during
the reconfiguration process. The central controller takes the

6 International Journal of Reconfigurable Computing

1 2 3 4 50
Rate (Gbps)

0

50

100

150

200

250

Ti
m

e (
ns

)
Uniform random traffic at 100 MHz

Implemented interconnect

SOTA_32 bit
CONNECT_32 bit
CONNECT_64 bit

(a)

Uniform random traffic at typical frequency

0

50

100

150

200

250

Ti
m

e (
ns

)

1 2 3 4 50
Rate (Gbps)

Implemented interconnect_@156.25 MHz

SOTA_32 bit_@183 MHz

CONNECT_64 bit_@113 MHz
CONNECT_32 bit_@113 MHz

(b)

0

50

100

150

200

250

0 1 2 3 4 5 6 7

Ti
m

e (
ns

)

Rate (Gbps)

Hybrid traffic at 100 MHz

Implemented interconnect

SOTA_32 bit
CONNECT_32 bit
CONNECT_64 bit

(c)

Hybrid traffic at typical frequency

0

50

100

150

200

250

0 1 2 3 4 5 6 7

Ti
m

e (
ns

)

Rate (Gbps)

Implemented interconnect_@156.25 MHz

SOTA_32 bit_@183 MHz

CONNECT_64 bit_@113 MHz
CONNECT_32 bit_@113 MHz

(d)

Figure 7: The comparison between the implemented interconnect system and the existing SOTA and CONNECT interconnect.

responsibility of orchestrating the reconfiguration process.
Five steps need to be performed by the controller. Partial bit
streamof the requested function is downloaded from the host
PC to the backup PRR in the first step (a).The traffic needs to
be buffered in the second step. (b)The controller then updates
the port map of the interconnect in step (c). The traffic will
then be released from the interface and will be forwarded

through the PRR equipped with the new requested function
in step (d).

The proposed reconfiguration process can increase the
performance of the reconfiguration, since the platform is
still functioning during the download of partial bit stream.
The traffic only needs to be buffered when the port map of
the interconnect is being updated. The buffer time to enable

International Journal of Reconfigurable Computing 7

Table 1: Resource utilization and partial bit file size.

VNF processor Flip flop LUT Partial bit file size (KB) Download time (us)
Ethernet parser 493 290 714 1785
IP parser 1268 1001 792 1980
UDP parser 2072 1451 846 2115

Controller

Interconnect

IP parser Backup PRR

① Download bitstream

ETH
10 G

ETH
10 G

(a)

Controller

Interconnect

IP parser UDP parser

② Buffer traffic

ETH
10 G

ETH
10 G

(b)

Controller

Interconnect

IP parser UDP parser

③ Updata
interconnect

ETH
10 G

ETH
10 G

(c)

Controller

Interconnect

IP parser UDP parser

④ Release traffic

ETH
10 G

ETH
10 G

(d)

Figure 8: The proposed reconfiguration process that supports function reconfiguration in real time has the following four steps: (a)
downloading partial bitstream to the backup PRR; (b) buffering the traffic; (c) updating the interconnect; (d) releasing the traffic.

packet loss free for the common reconfiguration process
and the proposed process is compared in the following
paragraphs.

In the common process of partial reconfiguration, the
traffic needs to be buffered during the download of the bit
stream to enable packet loss free reconfigurable services,
since the PRR is not functioning during the period of
reconfiguration. The required download time of the partial
bit file according to their sizes are shown in Figure 9. The
partial reconfiguration is requested through Vivado using
the typical configuration of the reconfiguration controller
(ICAPE2 at 100MHz). As the partial bit file needs to be
sent to the reconfiguration controller, the size of the bit file
has a strong influence on the time of reconfiguration. The
resource utilization, size of partial bit file, and download
time of a set of 64-bit network functions are shown in
Table 1. The Ethernet parser which has minimum partial bit

file size needs 1785 microseconds to be downloaded. The
UDP parser takes the maximum download time which is
2115 microseconds. Following the common reconfiguration
process, these times translate to excessive buffering resources
as shown in Figure 9.

During our proposed reconfiguration process, data flows
need to be buffered only when the interconnect system is
being updated, since the previous function is still running
in the active PRR. The buffer time required in this process
is only the update time of the interconnect system. And the
size of the partial bit stream will not affect the buffer time.
As introduced in Section 3, the port map of interconnect
system is updated through AXI4-lite interface.The size of the
update data will influence the buffer time. The size of each
destination-output port pair of the forwarding table is 8 bytes.
The time and buffer needed to reconfigure the interconnect
system in packet loss free manner are shown in Figure 10.

8 International Journal of Reconfigurable Computing

Table 2: Resource utilization.

Component Flip flop LUT BRAM
NoC interface 446 267 3
NoC router 10398 22268 0
Central controller 994 432 2

Partial bit file download time

0

0.5

1

1.5

2

2.5

3

Bu
ffe

r s
iz

e p
er

 p
or

t (
M

By
te

s)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

Ti
m

e (
m

s)

200 400 600 800 10000
Bit file size (Kbyte)

Figure 9: Time and buffer needed for packet loss free partial bitfile
download.

1

NoC update time

5 10 15 20 25 30 35 400
Number of ports updated

0

0.5

1.5

Bu
ffe

r s
iz

e p
er

 p
or

t (
KB

yt
es

)

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e (


s)

Figure 10: Time and buffer needed for packet loss free NoC update
time.

The result indicates that the time to update interconnect
system is at the level of microsecond (Figure 10) compared
to the common partial bit stream download time which is at
the level of hundreds of microseconds or even milliseconds
(Figure 9). As the proposed NFV platform is still able to
process data flows during the download time of the partial
bit stream, the proposed reconfiguration process can shorten
the time required to buffer the traffic.Therefore, the proposed

process enables a packet loss free reconfiguration between
network functions where no data or packets are lost during
the process. By adopting the proposed process, network
developers will be able to change network functions on
demand without stopping the traffic.

6. Experiment and Demonstration

Table 2 shows the resource requirement for an interconnect
system with 16 ports. The NFV platform is implemented
on the NetFPGA SUME board with Xilinx Virtex-7 690T
FPGA chip [24]. The Network Master Pro MT1000A from
Anritsu is used to generate and analyze the proposed NFV
platform.The accuracy of the latency of the traffic analyzer is
100 nanoseconds. The traffic analyzer also has a built-in 100-
nanosecond latency (measured in a loopback mode). This
built-in latency has been removed in the following result.
The network analyzer is connected with the 10Gbps SFP+
optical transceivers on the NetFPGA through one-meter
single mode fiber. As the accuracy of the traffic analyzer is
100 nanoseconds, the latency of the fiber (5 nanoseconds per
meter) is ignored.

To demonstrate the interconnect system on real hard-
ware, an Ethernet switch is set up. The interconnect system
firstly runs at the frequency of the 10G Ethernet system
(156.25MHz). Then the interconnect system also runs at
higher frequency (200MHz). As shown in Figure 11(a), in
the system at 156.2MHz, the 10G Ethernet system is directly
connected with our interconnect system. And in the system
at 200MHz (Figure 11(c)), the clock converters are inserted
between the 10G Ethernet system and the interconnect sys-
tem. The traffic on both configurations is the same: receiving
two data flows and forwarding to the same output 10G
Ethernet interface.

The influence of throughput on the latency is shown in
Figure 11(c). And the influence of packet size is shown in
Figure 11(d). The 156.25MHz system can achieve ultralow
latency (500 nanoseconds and 1 microsecond for minimum
and maximum throughput, resp.), for the 200MHz system,
1.2 microseconds and 1.9 microseconds for minimum and
maximum throughput, respectively. The clock converter in
200MHz system introduces more delays, because the clock
converter needs to insert invalid clock cycles (low tvalid clock
cycles in AXI4-stream) in a packet when it converts from a
clock domain with higher frequency (200MHz) to a clock
domain with lower frequency (156.25MHz). But the transmit
side of 10G Ethernet system always needs a complete packet
(no invalid clock cycles in the middle of a packet) from the
inner system of FPGA. So there must be a FIFO to store a

International Journal of Reconfigurable Computing 9

In
te

rc
on

ne
ct

ETH
10 G

ETH
10 G

ETH
10 G

(a)

Clock
converter

Clock
converter

Clock
converter

Store-forward
FIFO

10G
ETH

10G
ETH

10G
ETH

In
te

rc
on

ne
ct

(b)

Random packet size

0

0.5

1

1.5

2

2.5

La
te

nc
y

(
s)

2 4 6 8 100
Rate (Gbps)

Ethernet_system
NFV_platform_@200 MHz
NFV_platform_@156.25 MHz

(c)

Ethernet_system

0

0.5

1

1.5

2

La
te

nc
y

(
s)

500 1000 15000
Packet size

NFV_platform_@200 MHz
NFV_platform_@156.25 MHz

Traffic rate at 9 Gbps

(d)

Figure 11: The experiment was set up at 156.25MHz (a) and 200MHz (b). And the latency under different data rate (c) and Ethernet packet
size (d).

complete packet, eliminate invalid clock cycles introduced by
the clock converter, and then send the entire packet to the
10G Ethernet system. This store-forward FIFO increases the
latency.Therefore, the NFV platform runs at the frequency of
10G Ethernet system which is 156.25MHz.

A reconfiguration between IP and UDP parser is also
demonstrated. The demonstrated process is shown in Fig-
ure 12. IP parser is initially deployed in an active PRR and
is processing the current data flow. Then the bit stream for
the UDP parser is downloaded in the backup PRR. After the
proposed reconfiguration process, the traffic is forwarded to
the backup PRR to make the deployed UDP parser process
the traffic. Then the previous active PRR into UDP parser is
configured and the traffic switches back to the active PRR by
using the proposed reconfiguration process.

The number of parsed packets in each PRR is recorded
as shown in Figure 13. The backup PRR starts parsing the
traffic in the 20th to 30th second. The packets are processed
in the backup PRR from 30th to 70th second. The previous
active PRR is then configured intoUDPparser and is then put
into use after 70 seconds. The backup PRR becomes available
again for reconfigurations in the future. The total number of
packets is recorded by the traffic analyzer which is 77518546.
The count of packets parsed in eachPRR is 42708766 (original
active PRR) and 34809780 (original backup PRR). No packet
is lost during the whole process as the total number of
counted packets in FPGA is the same as the total number

of transmit packets recorded by traffic analyzer (34809780 +
42708766 = 77518546).

7. Conclusion

To keep both the bandwidth and the flexibility of network
services, this paper suggests FPGA as the hardware platform
ofNFV to deliver network data plane functions. To isolate and
share FPGA resource tomultiple network services, this paper
proposed a NFV platform to deliver reconfigurable network
data plane stream processing based on the virtualization of
FPGA resource.

A FPGA virtualization architecture is implemented. It
includes several partial reconfigurable regions communicat-
ing through on-chip interconnect system. The performance
of our on-chip interconnect system is compared with existing
network-on-chip architecture. The result shows that our
interconnect can support higher bandwidth up to 4.3 Gbps
under random traffic at 156.25MHz. A reconfiguration pro-
cess to switch partial reconfigurable network functions in
real time is proposed and demonstrated. In this process,
network functions can keep running during the download
of partial bitstream. Experiment has been done to evaluate
the proposed platform in real traffic. In the experiment, the
platform is forwarding network stream from two input ports
to one output port. It is possible to run at maximum 9Gbps
with the latency of 1 microseconds.

10 International Journal of Reconfigurable Computing

FPGA
IP

parser

Interconnect

Backup
PRR

PRR PRR

Dynamic crossbarI/F I/F

I/F I/F

Controller

FPGA
IP

parser

Interconnect

UDP
parser

PRR PRR

Dynamic crossbarI/F I/F

I/F I/F

Controller

FPGA
UDP
parser

Interconnect

PRR PRR

Dynamic crossbarI/F I/F

I/F I/F

Controller

Initial stage: IP
parser is active

The UDP parser is
deployed and
becomes active

Switch back to the
original PRR

Backup
PRR

ET
H

10
G

ET
H

10
G

ET
H

10
G

ET
H

10
G

ET
H

10
G

ET
H

10
G

Figure 12: The demonstrated reconfiguration process.

10 20 30 40 50 60 70 80 90 100 110 120
Time (second)

Generated_flow
IP_Parser

IP + UDP_Parser
Received_flow

0
1
2
3
4
5
6
7
8
9

N
um

be
r o

f p
ac

ke
ts

(m
ill

io
n)

Packet count record during the switch-over at 9 G throughput

Figure 13: Network function virtualization in data centers.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is supported by the EC H2020 dReDBox Project
with Grant Agreement no. 687632.

References

[1] “Software-Defined Networking (SDN) Definition,” Open Net-
working Foundation. [Online]. Available: https://www.open-
networking.org/sdn-definition/. [Accessed: 26-Sep-2017].

[2] “Network Function Virtualization,” ETSI. [Online]. Available:
http://www.etsi.org/technologies-clusters/technologies/nfv.
[Accessed: 26-Sep-2017].

[3] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow:
enabling innovation in campus networks,” Computer Commu-
nication Review, vol. 38, no. 2, pp. 69–74, 2008.

[4] D. Kreutz, F. M. V. Ramos, P. E. Veŕıssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: a
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1,
pp. 14–76, 2015.

[5] B. Pfaff et al., “The Design and Implementation of Open
vSwitch,” in Proceedings of the 12th USENIX Conference on
Networked SystemsDesign and Implementation, pp. 117–130, CA,
USA, 2015.

[6] “Network Functions Virtualisation White Paper 1,” ETSI.
[Online]. Available: https://portal.etsi.org/NFV/NFV White
Paper.pdf. [Accessed: 13-Sep-2017].

[7] H. Koumaras, C. Sakkas, M. A. Kourtis, C. Xilouris, V.
Koumaras, and G. Gardikis, “Enabling agile video transcoding
over SDN/NFV-enabled networks,” in Proceedings of the Inter-
national Conference on Telecommunications and Multimedia,
TEMU, pp. 1–5, Greece, July 2016.

[8] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: state-of-the-
art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[9] Y. Li and M. Chen, “Software-defined network function virtu-
alization: a survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[10] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey
on network virtualization hypervisors for software defined
networking,” IEEE Communications Surveys &Tutorials, vol. 18,
no. 1, pp. 655–685, 2016.

[11] “Network Functions Virtualisation White Paper 3,” ETSI.
[Online]. Available: https://portal.etsi.org/Portals/0/TBpages/NFV/
Docs/NFV White Paper3.pdf. [Accessed: 13-Sep-2017].

[12] N. Zilberman, P.M.Watts, C. Rotsos, andA.W.Moore, “Recon-
figurable network systems and software-defined networking,”
Proceedings of the IEEE, vol. 103, no. 7, pp. 1102–1124, 2015.

[13] C. H. Huang and P. A. Hsiung, “Hardware resource virtual-
ization for dynamically partially reconfigurable systems,” IEEE
Embedded Systems Letters, vol. 1, no. 1, pp. 19–23, 2009.

[14] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA
accelerators for efficient cloud computing,” in Proceedings of the
IEEE 7th International Conference on Cloud Computing Tech-
nology and Science (CloudCom ’15), pp. 430–435, Vancouver,
Canada, November 2015.

https://www.opennetworking.org/sdn-definition/
https://www.opennetworking.org/sdn-definition/
http://www.etsi.org/technologies-clusters/technologies/nfv
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf

International Journal of Reconfigurable Computing 11

[15] O. Knodel, P. Lehmann, and R. G. Spallek, “RC3E: Recon-
figurable accelerators in data centres and their provision by
adapted service models,” in Proceedings of the 9th International
Conference on Cloud Computing, CLOUD 2016, pp. 19–26, USA,
July 2016.

[16] J. Yang, L. Yan, L. Ju, Y. Wen, S. Zhang, and T. Chen, “Homo-
geneous NoC-based FPGA: The foundation for virtual FPGA,”
inThe Foundation for Virtual FPGA,” in 10th IEEE International
Conference on Computer and Information Technology, pp. 62–67,
UK, July 2010.

[17] H. L. Kidane, E.-B. Bourennane, and G. Ochoa-Ruiz, “NoC
Based Virtualized Accelerators for Cloud Computing,” in Pro-
ceedings of the 10th IEEE International Symposium on Embedded
Multicore/Many-Core Systems-on-Chip, MCSoC 2016, pp. 133–
137, France, September 2016.

[18] Q. Chen, V. Mishra, and G. Zervas, “Reconfigurable computing
for network function virtualization: A protocol independent
switch,” in Proceedings of the International Conference on
Reconfigurable Computing and FPGAs, ReConFig 2016, Mexico,
December 2016.

[19] M. K. Papamichael and J. C. Hoe, “CONNECT: re-examining
conventional wisdom for designing nocs in the context of
FPGAs,” in Proceedings of the ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays (FPGA ’12), pp. 37–
46, ACM, February 2012.

[20] M. Papamichael, “CONNECT:CONfigurableNEtworkCreation
Tool.” [Online]. Available: http://users.ece.cmu.edu/∼mpapamic/
connect/. [Accessed: 26-Sep-2017].

[21] StanfordConcurrentVLSIArchitectureGroup, “EnablingTech-
nology forOn-ChipNetworks.” [Online]. Available: http://nocs
.stanford.edu/cgi-bin/trac.cgi/wiki/WikiStart. [Accessed: 26-
Sep-2017].

[22] A. Monemi, C. Y. Ooi, and M. N. Marsono, “Low latency
Network-on-Chip router microarchitecture using request
masking technique,” International Journal of Reconfigurable
Computing, vol. 2015, Article ID 570836, 13 pages, 2015.

[23] A.Monemi, J.W.Tang,M. Palesi, andM.N.Marsono, “ProNoC:
A low latency network-on-chip based many-core system-on-
chip prototyping platform,” Microprocessors and Microsystems,
vol. 54, pp. 60–74, 2017.

[24] N. Zilberman, Y. Audzevich, G. A. Covington, andA.W.Moore,
“NetFPGA SUME: Toward 100 Gbps as research commodity,”
IEEE Micro, vol. 34, no. 5, article no. 61, pp. 32–41, 2014.

http://users.ece.cmu.edu/~mpapamic/connect/
http://users.ece.cmu.edu/~mpapamic/connect/
http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/WikiStart
http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/WikiStart

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

