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Abstract
In most HIV-positive individuals, infection time is only known to lie between the time
an individual started being at risk for HIV and diagnosis time. However, a more
accurate estimate of infection time is very important in certain cases. For example,
one of the objectives of the aMASE study was to determine if HIV-positive migrants,
diagnosed in Europe, were infected pre- or post-migration. We propose a method
to derive subject-specific estimates of unknown infection times using information
from HIV biomarkers’ measurements, demographic, clinical and behavioral data. We
assume that CD4 cell count (CD4) and HIV-RNA viral load (VL) trends after HIV
infection follow a bivariate linear mixed model. Using post-diagnosis CD4 and VL
measurements and applying the Bayes’ rule, we derived the posterior distribution of
the HIV infection time, whereas the prior distribution was informed by AIDS status at
diagnosis and behavioral data. Parameters of the CD4-VL and time-to-AIDS models
were estimated using data from a large study of individuals with known HIV infection
times (CASCADE). Simulations showed substantial predictive ability (e.g. 84% of
the infections were correctly classified as pre- or post-migration). Application to the
aMASE study (n=2,009) showed that 47% of African migrants and 67% to 72% of
migrants from other regions were most likely infected post-migration. Applying a
Bayesian method based on bivariate modeling of CD4 and VL, and subject-specific
information, we found that the majority of HIV-positive migrants in aMASE were most
likely infected after their migration to Europe.
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1 Introduction
Infection with the Human Immunodeficiency Virus (HIV) causes a slow deterioration
of the immune system which progressively increases the risk of opportunistic infections
and specific malignancies. These typically occur years after HIV acquisition and are
referred to as AIDS defining conditions. Due to the long and relatively asymptomatic
period between HIV acquisition and AIDS onset, many HIV-positive individuals remain
unaware of their infection for many years. In the absence of previous negative HIV tests,
a positive test carries little information regarding the timing of the infection. However,
knowing the time of infection is important, as it can inform prevention strategies.
Prolonged periods of undiagnosed (and thus untreated) HIV infection are associated with
high risk of HIV transmission and poorer prognosis.

Knowledge of infection time is of particular importance for HIV-positive migrants as,
by comparing it with migration timing, one could infer if an HIV diagnosed migrant
was infected pre- or post- migration. Determining the likely place of HIV infection for
migrants in Europe is key for designing adequate HIV prevention and testing strategies.
The aMASE (Advancing Migrant Access to Health Services in Europe) study1 was
the first European level study which focused on the identification of barriers in HIV
prevention, diagnosis and treatment along with the determination of the likely country of
HIV acquisition in multiple migrant populations.

The issue of estimating HIV infection time has been already addressed by many
researchers but in most cases the focus was on estimating population average parameters
(i.e. HIV incidence curves) rather than on making individual level estimation.2–7. There
are though a few studies that have proposed methods through which the gap between
HIV infection and diagnosis can be estimated at the individual level8–13. However,
the application setting in most of these studies was not only a cohort comprising
individuals with unknown HIV infection time (seroprevalent cases) but also a proportion
of individuals with known infection times (seroincident cases). The availability of raw
data from seroincident cases is crucial for such methods thus they cannot be applied in
more general situations.
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Motivated by the need to estimate the unknown HIV infection times of aMASE
participants and given the lack of appropriate methods which could be optimally used
in this setting, we developed a new procedure for individual-level estimation of HIV
infection time in seroprevalent cases. The proposed method uses information on a wide
range of subject-specific characteristics, including migration history, and from routine
measurements of HIV disease biomarkers. These data are used in conjunction with
information on the time trends of such biomarkers after HIV infection, along with
their relation with subject-specific covariates. In our application, this information is
derived from CASCADE14, a large multi-cohort study comprising individuals with well
estimated dates of infection, in the form of a set of estimated parameters which can be
re-used in a large variety of other settings. Thus, the main idea behind the method we
propose, is to use results from a model on the distribution of such markers given the
time elapsed since HIV infection and reverse the conditioning through Bayes theorem
to derive the distribution of the elapsed time given a set of markers’ measurements.
The required prior distribution of the unknown infection time can be informed by the
diagnosis time (i.e. infection must have happened before diagnosis), knowledge about
the onset of the HIV epidemic (i.e. infection must have happened after the onset of the
epidemic) and the nature of possible routes of transmission (sexual contact or intravenous
drug use). Refinements of this prior distribution can be made by taking into account
experts’ knowledge on the effects of risky behaviors. Our method is partly related to
the method proposed by Berman8 but it also has some similarities with the method
proposed by Rice et al.13 as that method also uses external information on the evolution
of routinely measured biomarkers during untreated HIV infection. However, our method
handles estimation in a formal way, is more flexible, can be extended to accommodate
additional information and explicitly quantifies the uncertainty around the estimated HIV
infection times.

In Section 2 we briefly describe the aMASE and CASCADE studies while the
proposed method and the estimating procedure are presented in Section 3. Results from
the application of the method to simulated and real data from aMASE are presented in
Sections 4 and 5, respectively. Finally, in Section 6 we summarize our results and we
compare our method with other previously proposed ones discussing its advantages and
limitations.

2 Motivating studies

2.1 The aMASE study
The protocol of the aMASE study has been described in detail elsewhere1. Briefly,
two multi-country cross-sectional studies were carried out, one in the general migrant
population and one in migrants diagnosed with HIV (clinical aMASE). In this work we
focus on the latter in which HIV-positive migrants were recruited from HIV clinics across
9 European countries from July 2013-July 2015. Patients’ inclusion criteria were to be
diagnosed with HIV in the last five years, to be over 18 years old, to be living outside
the country of birth and residing in one of the nine participating countries for at least
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6 months and to be able to complete the questionnaire in one of the 14 languages the
questionnaire was available in. aMASE was part of the European network of excellence
on HIV research, (www.eurocoord.net). Ethical approval for the aMASE study was
received separately in each participating country.

One of the primary goals of the clinical aMASE study was to determine whether
HIV acquisition occurred pre- or post-migration by estimating the likely time of
HIV infection. A questionnaire was designed together with the community to gather
information on risky behaviors and other critical epidemiological variables, along with
the migration paths including the dates of arrival in the host country. Using such
information one can increase the likelihood of a correct guess regarding the place of
HIV infection: for example if an individual, without other high risk behaviors, started
injecting drugs at the destination country, it is more likely that infection happened after
migration.

A second questionnaire including clinical data was also completed by the research
team. This included among others, the date of last negative HIV test when available,
whether an AIDS occurrence had happened within 3 months of HIV diagnosis as well
as data on the two most relevant biomarkers of HIV infection: the CD4 cell count and
the HIV-RNA viral load. CD4 cell count reflects the immunological status of the patient
whereas HIV-RNA quantifies the amount of the virus in the blood. Both biomarkers show
consistent trends since HIV infection, in the sense that their rate of change is usually
smooth over time, and have been subjected to extensive research.

2.2 The CASCADE collaboration
CASCADE is a collaboration of individual HIV cohorts that include subjects with well-
estimated dates of HIV seroconversion (i.e. the time in which a person first develops
antibodies for HIV). It should be noted that seroconversion usually occurs about 10 days
after infection thus hereafter both events will be referred to as HIV infection. In brief,
its aim was to combine data from different seroincident HIV cohorts in order to deal
with scientific questions that cannot be fully addressed by the individual cohorts. For
the majority (85.1%) of the CASCADE subjects, the infection date was estimated by the
midpoint between the last documented negative and first positive HIV test date, with the
time in between being less than 3 years (Median: 0.91; IQR: 0.45-1.58 years), whereas
for the remaining 14.9% of patients other methods, of higher accuracy (e.g. based on
laboratory test results), were used14.

Demographic data such as sex, age, region of origin and mode of infection, along with
repeated measurements of CD4 cell count and viral load are available in the CASCADE
database. These two markers have been shown to be the most important predictors of
disease progression and have been routinely used by clinicians. Since the infection dates
are known for the CASCADE patients, we can estimate the biomarkers’ trajectories since
infection by using appropriate statistical models. In the absence of antiretroviral therapy
(ART) and before the AIDS onset, the number of CD4 cells decreases, since CD4 cells
constitute the main target of the virus. This decrease has been shown to be approximately
linear on the square root or fourth root scale15. On the other hand, viral load trends are
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not linear over time and are characterized by an exponential-like decay for approximately
the first year after infection followed by a slow subsequent increase on the log10 scale16.
It should be noted that since we focus on estimating markers’ evolution during natural
history (i.e. the disease evolution from infection to AIDS or death), measurements taken
after ART initiation or AIDS onset need to be excluded. Post-ART measurements have
to be excluded as ART successfully increases the number of CD4 cells up to almost
normal levels, whereas measurements after AIDS onset are excluded since the CD4
decline may accelerate after that point17. To appropriately model CD4 cell counts and
viral load measurements, one should use methods that account for the correlation in
repeated measurements, e.g. linear mixed models (LMM)18,19. Also, as these markers
are usually moderately correlated, they should ideally be modeled together.

3 Proposed method

3.1 Estimating infection time through Bayes Theorem
Let Yc

i = (Y ci1, . . . , Y
c
inc

i
)> and Yr

i = (Y ri1, . . . , Y
r
inr

i
)> be the CD4 cell count and

viral load measurements during the HIV natural history collected at times tci =
(tci1, . . . , t

c
inc

i
)> and tri = (tri1, . . . , t

c
inr

i
)> since HIV infection, respectively, on a subject

i. Markers’ values are only observed after the HIV diagnosis, thus the time intervals
tci and tri are generally unknown in seroprevalent cohorts. Let dci = (dci1, . . . , d

c
inc

i
)>

and dri = (dri1, . . . , d
c
inr

i
)> denote the time intervals from the HIV diagnosis to the date

on which the two biomerkers are measured, and wi denote the time gap between HIV
infection and diagnosis. Then it follows that tcij = dcij + wi and trij = drij + wi, with wi
being unknown but dci and dri being always observed. We assume that a bivariate model
f(yci ,y

r
i |tci , tri ) correctly characterizes the evolution over time of both markers, with its

parameters being known. This model will be described in detail later on in this paper.
Given that our ultimate goal is to estimate wi and dci and dri are observed, we express

the distribution of the biomarkers conditionally on wi by simply replacing tcij and trij
with dcij + wi and drij + wi, respectively. Considering wi as another unknown quantity
within a Bayesian framework, we need to assign a prior distribution for wi. As it does
not make much sense to define wi on the whole real line, we need to define a date after
which subjects start being at risk for HIV infection. Based on prior knowledge on the HIV
epidemic, we assumed that the onset of risk for HIV is the maximum of (a) the date of a
documented previous HIV negative test, (b) the age of 10 years (since we exclude mother
to child transmissions) and (c) the presumed date of the start of the epidemic (i.e. January
1, 1980). Defining ui as the time interval from risk onset to HIV diagnosis, we assume a
uniform prior distribution for wi over the interval (0, ui). Markers’ measurements, times
and their relations are visually depicted in Figure 1.

Given the observed measurements (yci ,y
r
i ), we reverse the problem deriving the

posterior distribution of the unknown wi conditionally on (yci ,y
r
i ). This can be

easily carried out through Bayes Theorem. Letting y>i = (yci ,y
r
i ) be the observed
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Figure 1. An artificial example for an HIV-positive individual showing the sequence of
important relevant events (birth, beginning of being at risk for acquiring HIV, and HIV infection
and diagnosis), along with the corresponding average evolution of the two HIV biomarkers
(CD4 cell count in black and HIV-RNA viral load in gray) and their measurements after the
HIV diagnosis.

measurement of both markers, the posterior distribution of wi becomes

f(wi|yi) =
f(yi|wi)f(wi)∫ ui

0
f(yi|wi)f(wi)dwi

, 0 < wi < ui, (1)

where the dependence on the parameters of the measurement model is suppressed
for ease of notation and f(yi) =

∫ ui

0
f(yi|wi)f(wi)dwi is a normalizing constant. To

estimate the infection date, we can use any measure of central tendency such as the
posterior mode, the posterior mean and the posterior median.

The posterior mode is defined as argmaxw f(wi|yi) = argmaxw f(yi|wi)f(wi), as
the normalizing constant does not depend on wi. We used the general-purpose optimizer
optim in R20 to maximize the logarithm of the posterior distribution. More specifically,
we used the BFGS algorithm with lower and upper bounds, with the bounds reflecting the
fact that infection must have occurred after the assumed date of starting being at risk for
HIV and the HIV diagnosis which corresponds to the “L-BFGS-B” method in optim.

The posterior mean is defined as∫ ui

0

wif(wi|yi)dwi =
∫ ui

0
wif(yi|wi)f(wi)dwi∫ ui

0
f(yi|wi)f(wi)dwi

.
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Note that the posterior mean is the ratio of two integrals, where, unlike the posterior
mode, the normalizing constant needs to be computed. To calculate these integrals we
used quadrature methods that have been implemented within the function integrate
in R20.

The posterior median Mi is defined as the solution to∫ Mi

0

f(wi|yi)dwi = 0.5. (2)

We numerically solved (2) by using the root solver uniroot in R combined with the
integrate function to calculate the integrals involved20.

Besides measures of central tendency, the proposed method allows for the estimation
of probabilities of infection occurring before or after a specific point in time. For
example, for the purposes of the aMASE study, this time point corresponds to an
individual’s migration date. Thus, let mi be the time from migration to diagnosis. The
objective is to infer whether infection happened in the country of origin (wi > mi)
or in the country of destination (wi < mi). To quantify such statements in terms of
probabilities, we need to derive the posterior probabilities of infection pre- or post-
migration; for example, the pre-migration posterior probability is

πi = P(wi > mi) =

∫ ui

mi

f(wi|yi)dwi, (3)

whereas the probability of infection post migration is 1− πi. To calculate these
probabilities we again used the integrate function in R20.

The methods described up to now deal with estimation of HIV infection times or
related probabilities at the individual level. However, there are certain cases in which the
interest lies in deriving and comparing population-average parameters such as the mean
time gap between HIV infection and diagnosis or the proportion of migrants acquiring
HIV post migration. Ignoring the uncertainty of point estimates derived from the
posterior distribution f(wi|yi) (e.g. the posterior mean) and carrying out all subsequent
analyses treating these estimates as known, is highly likely to lead to over-precise
inferences. To account for the uncertainty of point estimates, we propose a multiple
imputation approach. That is, for each individual, we simulate K random infection times
from his/her posterior distribution, ωki ∼ f(wi|yi). As the posterior distribution of ωi is
defined on a finite interval, random draws from this distribution can be easily obtained
through rejection sampling. In this way, K pseudo-complete data set are constructed.
Results from any model fitted to each pseudo-complete data set (e.g. a simple normal
model to estimate the mean time from infection to diagnosis) can be combined using
Rubin’s rules21.

Particularly for the purposes of the aMASE study, the goal is to estimate the probability
of post-migration HIV acquisition (overall or by specific characteristics) while taking
into account the uncertainty of HIV infection times at the individual level. In the specific
example there is a subset of individuals that can be certainly classified as infected pre- or
post-migration based on their HIV testing history data. For the remaining individuals, for
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whom the posterior distribution of the infection time is derived, we treat infection times
as “missing data”. Let δi be the indicator of a post-migration infection. For those known
to have been infected pre or post-migration this is either 0 or 1, respectively. For the
remaining, we followed the procedure described above, that is, we simulated K random
draws from their posterior distributions, ωki ∼ f(wi|yi). Given the simulated ωki , the
indicator variable of post-migration infection can be defined as δki = I(ωki < mi), based
on the kth imputation. Then, a logistic model was fitted to each pseudo-complete data
set, with the results combined using Rubin’s rules21.

3.2 A model for the evolution of CD4 and viral load
In the previous subsection we assumed a model for the evolution of CD4 cell counts and
HIV-RNA viral load during the HIV natural history (i.e. before the initiation of ART or
AIDS onset). More specifically, this model was assumed to be a bivariate linear mixed
model (BLMM) for the forth root CD4 counts and the viral load on the log10 scale of the
form (

Yc
i

Yr
i

)
=

(
Xc
i 0

0 Xr
i

)(
βc

βr

)
+

(
Zci 0
0 Zri

)(
bci
bri

)
+

(
εci
εri

)
, (4)

where Xc
i and Xr

i are the nci × pc and nri × pr design matrices associated with the fixed
effects (βc,βr) of the two markers, respectively, and Zci and Zri are the nci × qc and
nri × qr design matrices associated with the random effects (bci ,b

r
i ) of the two markers

for the ith subject. Also, εci and εri are the within-subject residuals for both markers
respectively, assumed to be normally distributed with zero mean and covariance matrices
σ2
cInc

i
and σ2

rInr
i
, where In denotes the n× n identity matrix. To allow for correlation

between the two biomarkers, we assume that the random effects bci and bci jointly follow
the multivariate normal distribution with zero mean and covariance matrix

D =

(
Dc Dcr

Drc Dr

)
,

with the submatrices Dc and Dr denoting the covariance matrices of the random effects
for the CD4 cell count and viral load levels respectively, and Drc the covariances between
the random effects of each marker. The above assumptions imply that the marginal
distribution of the observed measurements over time since HIV infection is the following
multivariate normal: (

Yc
i (t

c
i )

Yr
i (t

r
i )

)
∼ N(µi(ti),Vi(ti)), (5)

where the mean vector µi(ti) and the variance-covariance matrix Vi(ti) are equal to

µi(ti) =

(
Xc
i (t

c
i ) 0

0 Xr
i (t

r
i )
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)
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c
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Zci (t
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+
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,
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respectively. To estimate the parameters of this model, we used the CASCADE data in
which infection dates are well estimated. In order to make the specific model applicable
to the aMASE study participants, we included all covariates which were available in
both datasets and could have confounding effects. More specifically the model included
adjustments for sex, age at infection evaluated through linear splines with knots at 25, 35
and 45 years, region of birth (Africa, Europe, Asia, America), mode of infection (through
sex between men, injection of drugs, heterosexual contact, and through other routes),
and calendar year of infection modelled via linear splines with knots on 1/1/1996 and
1/1/2002. Calendar times of infection were incorporated in the model as some studies
have shown that CD4 cell count at baseline may decrease over time, while viral load at
baseline may increase over time22,23. We assumed that the mean CD4 cell count evolution
is linear over time on the fourth root scale, with a random intercept and slope to capture
the correlation of repeated CD4 measurements. It should be noted that the fourth root
transformation resulted in a better fit to the data compared to the more frequently used
square root transformation. For the mean viral load evolution, we worked on the log10
scale using a time term along with a log(trij + c) term. Three random effects were used: a
random intercept accounting for variability in baseline viral load measurements and two
other random effects associated with the time terms accounting for the variability and
correlation in subsequent viral load measurements. The parameter c was estimated after
fitting the model over a grid set of values of c. The best model had c = 0.013 and turned
out to be superior to a model with natural cubic splines. The inclusion of the log(trij + c)
term allowed us to capture the non-linear evolution of HIV-RNA viral load during natural
history as viral load tends to reach very high levels soon after the infection, then it drops
to some minimum levels after almost a year increasing subsequently but at a much slower
rate (see also Figure 1). It needs to be emphasized that the model describes the markers’
evolution during the HIV natural history, thus measurements taken after AIDS onset or
ART initiation are irrelevant.

As part of a sensitivity analysis, when applying the proposed method to the aMASE
study data, the parameters of model (4), were re-estimated after excluding data from
CASCADE participants whose infection date was determined by the midpoint method
and had relatively wide (i.e. ≥1 year) HIV test intervals.

We used the lme function of the nlme package in R to fit the biomarkers model.

3.3 Incorporating additional information on AIDS status
It is well known that HIV infection, in the absence of treatment, leads to development
of AIDS within 8-10 years on median10. Thus, the presence or absence of AIDS-
defining symptoms at HIV diagnosis carries additional information regarding the time
gap between HIV infection and diagnosis. For example, a person diagnosed without
AIDS symptoms would be more likely to have been infected recently compared to a
similar person diagnosed while having already progressed to AIDS. Thus, we can refine
our method in order to take into account an individual’s AIDS status, given the available
epidemiological information on the distribution of time between HIV infection and AIDS
onset. We used the CASCADE data truncated on 1/1/1996 to derive this distribution
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given sex, region of birth, risk group and age at infection. We truncated data after
1/1/1996, since after that point, effective antiretroviral therapy substantially reducing
the probability of developing clinical AIDS became widely available. We used a Weibull
proportional hazards model of the form

λ(t|Xs
i ) = κ exp

{
Xs
i
>βs

}
tκ−1,

with t denoting the time since HIV infection, Xs
i the implied design matrix and κ a

parameter controlling the shape of the Weibull distribution. As a result, the survival
function induced by this model is S(t|Xs

i ) = exp {−λitκ}, with λi = exp
{
Xs
i
>βs

}
.

The survival estimates from the Weibull model were compared with the Kaplan-Meier
estimates yielding very similar results suggesting adequate model fit.

Thus, for a subject known to be alive, AIDS-free and not on therapy until some time
di since HIV diagnosis, the posterior distribution of wi becomes

f(wi|yi, Ti > di + wi) =
f(yi|wi)S(di + wi|Xs

i )f(wi)∫ ui

0
f(yi|wi)S(di + wi|Xs

i )f(wi)dwi
, (6)

where Ti is a latent variable representing the time from HIV diagnosis to AIDS onset.
Suppose now that a subject diagnosed with HIV developed AIDS at some time di after

HIV diagnosis, while not on therapy within that period of time. For that individual, we
know that the time between HIV infection and progression to AIDS is di + wi, which
means that the posterior distribution of wi becomes

f(wi|yi, Ti = di + wi) =
f(yi|wi)λ(di + wi|Xs

i )S(di + wi|Xs
i )f(wi)∫ ui

0
f(yi|wi)λ(di + wi|Xs

i )S(di + wi|Xs
i )f(wi)dwi

. (7)

If the subjects had AIDS at HIV diagnosis, there were no markers’ measurements
taken during the natural history, that is prior to clinical AIDS development, and thus the
distribution of wi becomes

f(wi|Ti = wi) =
λ(wi|Xs

i )S(wi|Xs
i )f(wi)∫ ui

0
λ(wi|Xs

i )S(wi|Xs
i )f(wi)dwi

, (8)

We used the survreg function of the survival package in R to fit the model for
time-to-AIDS.

3.4 Using behavioral data to refine the prior distribution based on
experts’ opinions

Behavioral data collected through a questionnaire in the aMASE study can in principle
carry information on the likely place of HIV acquisition be it before or after migration.
We incorporated such data based on 6 combinations of questions: 3 in favor of pre-
migration infection and 3 in favor of post-migration infection. Prior probabilities of
infection pre- or post-migration were assigned to these questions by 5 members of the

Prepared using sagej.cls



Determining the likely place of HIV acquisition 11

research team who have extensive experience in the HIV epidemiology in Europe and
in migrant populations. These probabilities are based on epidemiological facts on the
natural history of the disease and the possible routes of transmission allowing though
for a degree of response bias. Let odds(Qi) be the odds of post-migration infection
assigned to a positive answer to Qi and 1 otherwise. Then the prior odds of infection
post-migration are assigned as

∏6
i=1 odds(Qi). Thus, the prior distribution of wi, as

defined in Subsections 3.1-3.3, becomes proportional to a step function of the form

f(wi) ∝

{∏6
i=1 odds(Qi), if wi < mi

1, if wi > mi

Note that if there was not any positive answer to any of the 6 combinations of questions,
no prior odds were assigned and the prior distribution remained the same. The questions
and the corresponding prior probabilities of post migration infection are presented in
Table 1. In case of a discrepancy between the HIV experts, the probability that was
closest to 50% was chosen as the prior probability of post migration infection. To visually
illustrate each stage the posterior distribution passes through until reaching the final form,
we present an example from a hypothetical HIV-positive migrant in Figure 2. In this
example we start by assuming a uniform prior distribution over the whole period at risk
for HIV. This leads to a 64% prior probability of pre-migration infection. Accounting
for the fact that the subject was AIDS-free at diagnosis, the probability of pre-migration
infection reduces to 35%. Incorporating also the data from both biomarkers, the shape
of the posterior distribution changes drastically, with the posterior probability of pre-
migration infection becoming 43%. Finally, if we assume that the prior odds of infection
pre-migration are 0.7 based on subject’s behavioral data, a gap will appear on the
migration date and the probability of pre-migration infection reduces to 35%.

To investigate the influence of HIV experts’ beliefs on the results, in a sensitivity
analysis, behavioral data were ignored when constructing the prior distribution of wi.

4 Simulation study

4.1 Design
The performance of the proposed method was evaluated in a simulation study. The study
was designed to closely mimic the migrant population included in the aMASE study
with respect to certain characteristics such as the date of birth, sex, mode of infection,
region of birth, date of diagnosis and migration date. Before starting simulating data, we
excluded from the aMASE study all individuals that had external information based on
which they could be classified as infected pre- or post-migration. (i.e. a positive HIV test
pre-migration or a negative HIV test post-migration).

We simulated 10 000 subjects with their characteristics derived from the joint
probability distribution of the above factors in the aMASE study, using the chain rule
of probability. More specifically, the dates of birth were simulated using the normal
distribution truncated on the minimum and maximum dates observed in the aMASE
study; sex was simulated conditionally on the date of birth using a logistic regression
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Table 1. Assigned prior probabilities of post-migration HIV infection based on behavioural
data as evaluated by 5 members of the study group. In bold the prior probabilities used when
applying the method to the aMASE data.

Question Probability of infection post-migration
Has an AIDS diagnosis within 3 months of HIV diagnosis and 30%
arrived in the same year of diagnosis and has no evidence of 20%
seroconversion 20%

30%
20%

Has not had sex in the country of destination and has never 35%
injected drugs 40%

20%
15%
15%

Has only injected drugs in country of origin 20%
20%
20%
20%
20%

Patient with negative self-reported HIV test 80%
after year of arrival 80%

80%
70%
80%

Has only injected drugs in country of destination 80%
80%
80%
75%
75%

Has had unprotected sex only in country of destination and has 65%
never injected drugs 60%

60%
70%
60%

model; mode of infection through a multinomial regression model given sex and age;
region of birth from a multinomial regression model given age, sex and mode of infection;
dates of diagnosis, transformed into a value in the interval (0,1), were modelled using
beta regression24, with the mean depending on age, sex, mode of infection and region of
birth through a logit link function and assuming a constant dispersion parameter. Finally,
migration dates were simulated from a beta regression model also using the logit link
function given the remaining covariates.

Parameters regarding all the above-mentioned distributions were derived by applying
the corresponding models to the aMASE study data. The time intervals between infection
and diagnosis, which are not observable and thus had to be specified beforehand, were
simulated from a beta distribution, with its parameters found by trial and error in order
for the simulated subjects to be similar to those from the aMASE study with respect to
all relevant characteristics.

The CD4 and VL measurements were simulated according to the bivariate model (4),
with its parameters derived by applying the model to CASCADE data, as described
above. Then we excluded the data prior to HIV diagnosis, as such data cannot be
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Figure 2. Illustration of the steps followed by the proposed method. Top left: prior distribution
of infection date; top right: shape of the posterior distribution using the absence of AIDS;
bottom left: shape of the posterior distribution using the absence of AIDS and biomarkers’
data; bottom right: final form of the posterior distribution taking into account the absence of
AIDS, biomarkers’ data and behavioral data.

seen in practice. We simulated a latent time to AIDS or death using a joint model
that assumes that the risk for AIDS onset or death depends on the current “true” but
unobserved CD4 count25. As in the absence of ART it is known that progression to
AIDS is mainly influenced by CD4 count, such a model may be a plausible one. The
longitudinal submodel of the joint model takes the form of a linear mixed model, i.e.

Yi(ti) = mi(ti) + εi(ti),

where Yi(ti) is the vector of the observed CD4 counts on the forth-root scale, and
mi(t) = Xi(t)β

joint + Zi(t)bi is assumed to correspond to the “true” outcome value
at the time point t, i.e. the value of the process that would have been observed had the
measurement error been eliminated. The survival submodel can then be written as

λ(t|Mi(t),ωi) = λ0(t) exp
{
γ>ωi + αmi(t)

}
, t > 0,

with Mi(t) = {mi(s), 0 ≤ s < t} denoting the history of the unobserved longitudinal
process up to the time point t, the parameter α reflecting the association between
the two submodels, λ0(·) the baseline hazard function and ωi the vector of baseline
covariates (sex, region of origin, risk group and age at infection) with a corresponding
vector of regression coefficients γ. The baseline hazard function was assumed to
follow the Weibull distribution. To estimate the parameters of the model we again used
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the CASCADE data truncated on 1/1/1996, the date effective ART became available.
Maximization of the joint likelihood was carried out through the pseudo adaptive
quadrature method26 which is provided in the package JM in R27. The survival function
implied by the joint model is equal to

S(t|Mi(t),ωi) = exp

{
−
∫ t

0

λ0(s) exp
{
γ>ωi + αmi(s)ds

}}
, (9)

which cannot be evaluated analytically. To simulate random times from this joint model,
one can use inverse transform sampling, which requires solving the equation

S(t|Mi(t),ωi) = u (10)

in t, where u is a random draw from the uniform distribution in (0,1). To solve (10), we
used the uniroot function in R, along with the integrate function to approximate
the integrals. It should be noted that when simulating the AIDS or death times, the
parameter β used in evaluating the survival function (9) was obtained from the bivariate
linear mixed model (4) and not from the joint model. Administrative censoring of AIDS
or death times was made on December 31, 2015.

After the introduction of ART, the probability of developing AIDS have been
substantially reduced since the majority of HIV-positive patients initiate ART prior to
AIDS onset. The probability of ART initiation was largely driven by the observed current
CD4 count, based on the World Health Organization (WHO) recommendations until
2015. To mimic that mechanism, we applied a discrete survival model to the CASCADE
data, regressing the hazard of initiating ART on current CD4 count (on the forth-root
scale), sex, region of birth, risk group, age at diagnosis, calendar time of diagnosis and
time since diagnosis, using a logit link function. Based on this model, for each simulated
participant, we simulated the ART initiation date. AIDS or death times were censored
at the ART initiation date, i.e. AIDS or death times occurring after ART initiation were
ignored. Similarly, all CD4 and VL measurements were censored at the earliest of the
date of ART initiation and the date of AIDS or death.

The simulated patients who developed AIDS prior to migration times were excluded as
such patients were also not included in the aMASE study. For the patients who developed
AIDS prior to diagnosis but after the migration date and 1/1/2008 (the date after which
the aMASE study started collecting data), we set the date of diagnosis equal to the date of
progression to AIDS. To summarize the procedures we followed to estimate the infection
dates:

• when a subject was AIDS-free up to ART initiation or administrative censoring,
we applied equation (6) to estimate the infection date.

• when AIDS occurred prior to ART initiation but there were some CD4 and VL
measurements prior to AIDS onset, infection dates were estimated using (7).

• if a subject turned out to have AIDS at diagnosis, we used equation (8) as there
were no biomarkers measurements available prior to AIDS development.

We classified patients as infected post migration when the posterior probability of post-
migration infection using all available data was above 50%. The performance of the
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proposed method was evaluated through the kappa coefficient of agreement between
the true infection status (pre- or post-migration) and the one estimated by the proposed
method. The Lin’s concordance correlation coefficients28 between the true times from
infection to diagnosis and the corresponding ones based on the posterior mode, mean
and median were also estimated. We also evaluated the sensitivity of our method, defined
as the probability of suggesting a post-migration infection when the truth was that the
subject had been infected in the country of destination, along with the specificity, defined
as the probability of suggesting a pre-migration infection when the true infection status
was pre-migration.

4.2 Results from the simulated study
Out of the 10 000 subjects, 1800 (18%) were dropped since they developed AIDS or
died pre-migration. Results from the application of the proposed method to the simulated
study are presented in Table 2. Demographic characteristics of the simulated subjects
were similar to those of the aMASE participants, as expected. The proportion of subjects
who had developed AIDS at HIV diagnosis was 15.51%, very close to the 15.28%, the
corresponding proportion in the aMASE participants that were not definitely classified
as infected pre- or post-migration. In addition, the median CD4 counts at diagnosis in the
simulated study were 311 cells/µL, again very similar to the median of 288 cells/µL in
the aMASE subjects. These data suggest that our simulated study succeeded to closely
mimic the subjects included in the aMASE study.

The kappa coefficient of agreement between the true infection status and the
one derived by the posterior distribution of the unknown infection date was 0.69,
demonstrating substantial agreement. This result was similar when the posterior
distribution was based on biomarkers measurements (with or without AIDS onset),
whereas estimates based only on the distribution of time from HIV infection to AIDS
produced a lower kappa coefficient. The estimated sensitivity and specificity suggest that
our method was able to correctly identify a post-migration and pre-migration infection,
respectively, in about 85% percent of the cases. The correlation coefficients between
the true time gap from HIV infection and diagnosis and the estimated one based on the
posterior mode, mean and median were 0.49, 0.55 and 0.56, respectively. However, the
correlation was much lower when using the time-to-AIDS distribution only, suggesting
that the time from HIV infection to AIDS has large inherent variability and thus cannot
be adequately used for estimation purposes in our case. Comparing the results from the
posterior mode, mean and median showed that the posterior median provided the most
accurate estimates (Table 2). Overall, and using the median of the posterior distribution
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of the infection time, the difference between estimated and true time of infection was
0.21 years.

Table 2. Results from a simulated study including 10000 subjects

All Biomarkers Biomarkers AIDS
+ Absence of AIDS + AIDS at diagnosis

n=8200; 100% n=6692; 81.61% n=236; 2.88% n=1272; 15.51%
Lin’s coef. of agreement between
true and estimated infection time
based on posterior

Mode 0.49 0.51 0.47 0.03
Mean 0.55 0.62 0.47 0.15
Median 0.56 0.61 0.46 0.15

Mean diff. between estimated and
true infection time based on posterior
(estimated-true)

Mode -1.44 -1.93 -1.31 1.11
Mean 1.02 0.47 1.25 3.88
Median 0.21 -0.32 -1.15 3.27

Kappa coefficient 0.69 0.71 0.74 0.56
Sensitivity1 0.84 0.87 0.86 0.71
Specificity2 0.85 0.84 0.88 0.93
Proportion
correctly specified 0.84 0.86 0.87 0.78

1 Defined as the proportion of the simulated subjects for whom the proposed method suggests
post-migration infection when the true infection status is post-migration.

2 Defined as the proportion of the simulated subjects for whom the proposed method suggests
pre-migration infection when the true infection status is pre-migration.

5 Application to the aMASE study
Out of 2,249 aMASE participants, 2,009 with complete information on critical variables
were included in this analysis. Table 3 includes absolute (N) and relative(%) frequencies
for the main demographic and clinical characteristics of the aMASE study population.
The proportion of women (30.1%) and of those infected through heterosexual contact
(45.6%) was higher than those observed in most European cohorts which are usually
dominated by men infected through homosexual contact. The mean (SD) age of the study
participants was 35.6 (9.7) years and most of them were born in either Africa or South
America. Almost half (48.1%) were diagnosed with less than 350 CD4 cells/microL
and 12.3% had already developed AIDS or progressed to AIDS soon after diagnosis.
For 624 (31.1%) and 129 (6.4%) there was definite evidence for post- or pre-migration
HIV infection, respectively based on the timing of their available negative and positive
HIV tests. Of the remaining 1,256 individuals 1,056 (84.1%) had CD4 and/or HIV-RNA
viral load measurements (1.5 and 1.3 on average) available before ART initiation or
AIDS development. Thus, the proposed method was applied to 1,056 individuals using
biomarkers’ data, AIDS status and behavioral data and 200 individuals using AIDS
status and behavioral data whereas for the remaining 753 individuals the timing of HIV
infection (pre- or post-migration) was already known and treated as observed data in the
relevant multiple imputation analyses. All subsequent results refer to the full sample of
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2,009 individuals except for the case of time gaps from HIV infection to diagnosis where
they refer to the subset of patients to which we applied the proposed method (n=1,256).

Estimated median time gaps from HIV infection to diagnosis and probabilities of post-
migration infection are presented in Table 3. All estimates and 95% CIs shown in this
table along with the corresponding tests are based on a multiple imputation approach
with K = 50 random draws from the posterior distribution of the time gap between HIV
infection and diagnosis, as described at the end of section 3.1. Estimates of median times
were derived from median regression for clustered data29 whereas mixed effects logistic
regression models were used to derive the probabilities of post-migration infection. In all
models, clustering of individuals in the collaborating clinics was taken into account. It is
also noteworthy that the distribution of time between HIV infection and diagnosis was
positively skewed, in all imputed datasets, thus medians are provided rather than means.

For individuals without definite evidence for pre- or post-migration HIV acquisition
(n=1,256), the estimated median (95% CI) time gap between HIV acquisition and
diagnosis was 4.58 (3.99, 5.17) years and differed significantly (p = 0.001) across
migrants from different regions. The corresponding estimated medians (95% CIs) were
4.20 (3.18, 5.22), 5.60 (4.75, 6.45), 5.73 (3.94, 7.52) and 3.52 (2.75, 4.30) for migrants
from Europe, Africa, Asia and South America, respectively (Table 3). Differences in the
median gap between HIV acquisition and diagnosis were also statistically significant for
all factors presented in Table 3 (p < 0.05) except for age at diagnosis (p = 0.060) and
destination country (p = 0.385).

Regarding the most likely place of HIV acquisition, there was strong evidence of post-
migration infection for 1,110 (55.3%) individuals for whom the corresponding estimated
probability was >0.75. For 180 (9.0%) the evidence of post-migration infection was
weaker with the corresponding probabilities ranging from 0.5 to 0.75. For the remaining
167 (8.3%) and 552 (27.5%) individuals there was either weak or strong evidence of
pre-migration HIV acquisition as the corresponding probabilities were 0.5 to 0.75 or
>0.75, respectively. In Table 3 probabilities of post-migration infection are estimated
across levels of important demographic and clinical factors and overall. The estimated
probabilities of post-migration infection ranged from 0.67 to 0.72 for all migrants
except for those born in Africa for whom the corresponding probability was 0.47.
Infections through injecting drug use or sexual contact between men were also associated
with higher probabilities of post-migration infection compared to those attributed to
heterosexual contact. As expected, those who were diagnosed having already progressed
to clinical AIDS (or developed AIDS soon after diagnosis) were more likely to be
infected for longer times thus their probability of post-migration infection was lower
(0.43) compared to the corresponding probability among those who were AIDS free at
diagnosis (0.66). Finally, the probability of post migration HIV acquisition increased
with higher CD4 cell counts at diagnosis and ranged from 0.43 for those diagnosed with
<100 CD4 cells/microL to 0.75 for those with >500 CD4 cells/microL. Differences in
these probabilities were statistically significant (p < 0.001) for all factors presented in
Table 3.

All analyses presented in this section were repeated a) using a subset of the CASCADE
data (i.e. excluding participants whose infection date was determined using the midpoint
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method and had an HIV test interval of 1 year or more) to estimate the parameters of
the bivariate mixed model (4) of Section 3.2 and b) omitting the contribution of the
available aMASE behavioral data to the prior distribution of wi (see Section 3.4). In
the first case all main estimates remained practically unaffected. In the second case, the
overall median (95% CI) estimated time from infection to diagnosis was slightly higher
being 4.82 (4.24, 5.39) vs. 4.58 (3.99, 5.17) years in the main analysis and consequently
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the overall probability (95% CI) of post-migration infection became slightly lower being
0.61 (0.56, 0.65) vs. 0.63 (0.57, 0.67) years in the main analysis.

Table 3. Demographic-clinical characteristics of the sample from the aMASE
study, estimated median time from HIV infection to diagnosis and estimated
probabilities of post-migration HIV infection. Estimates and 95% CIs based on
a multiple imputations (K = 50) approach.

Median (95% CI) Probability (95% CI)
years from of post-migration

infection to diagnosis1 infection2

Sex
Female (n=605; 30.1%) 5.26 (4.46, 6.06) 0.52 (0.45, 0.58)
Male (n=1404; 69.9%) 4.19 (3.51, 4.87) 0.68 (0.63, 0.72)
Age at diagonosis (years)
<25 (n=256; 12.7%) 3.46 (2.34, 4.58) 0.51 (0.43, 0.60)
25-34 (n=811; 40.4%) 4.26 (3.44, 5.07) 0.58 (0.51, 0.64)
35-44 (n=606; 30.2%) 5.12 (4.13, 6.12) 0.66 (0.60, 0.72)
45+ (n=336; 16.7%) 5.47 (4.19, 6.74) 0.75 (0.68, 0.81)
Mode of infection
Sex between men (n=994; 49.5%) 3.26 (2.61, 3.92) 0.71 (0.66, 0.76)
Injecting Drug Use (n=40; 2.0%) 5.47 (2.54, 8.40) 0.67 (0.47, 0.83)
Sex between men and women (n=917; 45.6%) 5.55 (4.84, 6.26) 0.55 (0.50, 0.61)
Other (n=58; 2.9%) 5.77 (2.90, 8.64) 0.57 (0.41, 0.71)
Destination country
Belgium (n=232; 11.5%) 4.23 (2.84, 5.62) 0.42 (0.30, 0.55)
Greece (n=175; 8.7%) 5.76 (4.35, 7.17) 0.63 (0.51, 0.74)
Germany (n=29; 1.4%) 8.03 (3.86, 12.20) 0.53 (0.30, 0.76)
Italy (n=55; 2.7%) 5.64 (3.33, 7.95) 0.27 (0.13, 0.48)
Netherlands (n=109; 5.4%) 4.15 (2.43, 5.88) 0.72 (0.57, 0.82)
Portugal (n=170; 8.5%) 4.86 (2.90, 6.82) 0.66 (0.54, 0.76)
Spain (n=685; 34.1%) 4.03 (3.08, 4.99) 0.71 (0.65, 0.77)
Switzerland (n=174; 8.7%) 4.57 (3.06, 6.08) 0.46 (0.35, 0.58)
United Kingdom (n=380; 18.9%) 4.96 (3.31, 6.60) 0.67 (0.58, 0.75)
Region of origin
Europe (n=469; 23.3%) 4.20 (3.18, 5.22) 0.71 (0.65, 0.76)
Africa (n=682; 33.9%) 5.60 (4.75, 6.45) 0.47 (0.41, 0.53)
Asia (n=181; 9.0%) 5.73 (3.94, 7.52) 0.67 (0.57, 0.75)
S. America (n=677; 33.7%) 3.52 (2.75, 4.30) 0.72 (0.66, 0.77)
AIDS within 3 months of diagnosis
No (n=1762; 87.7%) 3.89 (3.37, 4.41) 0.66 (0.61, 0.70)
Yes (n=247; 12.3%) 10.04 (8.22, 11.85) 0.43 (0.34, 0.52)
CD4 cell count at diagnosis (cells/microL)
<100 (n=301; 15.0%) 9.21 (7.95, 10.48) 0.43 (0.34, 0.52)
100-199 (n=243; 12.1%) 6.11 (4.95, 7.27) 0.55 (0.47, 0.64)
200-349 (n=422; 21.0%) 3.92 (3.10, 4.73) 0.63 (0.56, 0.70)
350-499 (n=379; 18.9%) 3.07 (2.28, 3.86) 0.70 (0.63, 0.76)
500+ (n=590; 29.4%) 2.43 (1.81, 3.06) 0.75 (0.69, 0.81)
NA (n=74; 3.7%) 4.90 (1.47, 8.33) 0.43 (0.30, 0.57)
HIV-RNA viral load at diagnosis (copies/mL)
<500 (n=146; 7.3%) 6.69 (4.09, 9.30) 0.40 (0.30, 0.51)
500-9,999 (n=297; 14.8%) 3.57 (2.55, 4.59) 0.67 (0.59, 0.74)
10,000-99,999 (n=774; 38.5%) 3.72 (3.06, 4.37) 0.69 (0.63, 0.74)
100,000-999,999 (n=539; 26.8%) 5.64 (4.64, 6.63) 0.61 (0.54, 0.68)
1,000,000+ (n=137; 6.8%) 8.09 (5.82, 10.36) 0.63 (0.51, 0.73)
NA (n=116; 5.8%) 5.20 (2.26, 8.13) 0.46 (0.34, 0.58)
Total (n=2009; 100.0%) 4.58 (3.99, 5.17) 0.63 (0.57, 0.67)

1 Estimates and 95% CIs based on median regression models for clustered data and provided only
for individuals without definite evidence for pre- or post-migration HIV infection based on timing of
positive and/or negative HIV tests.

2 Estimates and 95% CIs based on mixed effects logistic regression models.
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6 Conclusions
Motivated by the need to determine the most likely place of HIV acquisition among
migrants diagnosed with HIV in Europe, we developed a method which can provide
subject-specific estimates of the time gap between HIV infection and diagnosis. The
core of the method is based on applying the Bayes theorem in order to reverse the
conditioning of the distribution of biomarkers of HIV infection given the time since
HIV infection and derive the distribution of time since HIV infection given a set of
biomarkers’ measurements. More specifically, we first estimated the parameters of a
bivariate linear mixed model for the evolution of the CD4 cell count and HIV-RNA viral
load during untreated HIV infection and prior to the onset of clinical AIDS. To estimate
these parameters, as precisely as possible, we used data from the CASCADE study which
maintains the largest database of HIV infected individuals with well estimated dates of
infection. The data we used to fit the bivariate mixed model were derived from 19,788
individuals contributing 125,195 CD4 cell count measurements, 106,160 HIV-RNA viral
load measurements along with a very rich set of demographic and clinical characteristics.
Treating these parameters as known and having one or more measurements of one or both
biomarkers of interest (i.e. CD4 cell count and HIV-RNA viral load) of an AIDS free and
untreated individual we were able to derive the distribution of the time elapsed from HIV
infection to diagnosis. The prior distribution of this time gap was initially set to a uniform
one, ranging from a point in time corresponding to the onset of risk for acquiring HIV
up to the date of HIV diagnosis. This prior distribution was being updated by taking into
account the absence of AIDS symptoms and experts’ knowledge related to presence or
absence of risky behaviors while the individual was at the country of origin or at the
destination country.

The proposed method was initially assessed in a simulation study. The simulated data
were generated under realistic scenarios regarding the evolution of CD4 cell count and
HIV-RNA viral load and the risk of developing AIDS or dying. Times of infection,
migration and diagnosis were also simulated along with demographic-clinical covariates.
The simulation parameters were derived from the application of the relevant models to the
CASCADE and aMASE data with the ultimate goal being to mimic as close as possible
the data of the aMASE study. Results from the application of the proposed method
to the simulated data showed that although the correlation between the true infection
times and the estimated ones was moderate (Spearman’s ρ = 0.46) the overall rate of
correct classification of HIV infections as pre- or post migration was 84.4% with the
corresponding Cohen’s κ coefficient being 0.69. In addition, based on the median of
the posterior distribution of infection time, the mean difference between the true and
the estimated time of infection was as low as 0.21 years, indicating that the estimated
infection dates were very close to the true ones.

Applying the method to the aMASE study population, we were able to use additional
information from the questionnaire data (i.e. sexual behaviour, injecting drug use
and HIV testing history) in conjunction with experts’ opinion on their effects on the
probabilities of pre- or post-migration HIV acquisition. Results from this application
showed that the majority of migrants diagnosed in the participating European countries
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were more likely to have been infected in the destination rather than the originating
country. This trend was mostly apparent among migrants from Asia, America and Europe
while for those originating from Africa, the probabilities of post-migration infection
were slightly lower than those of pre-migration infection. It is interesting though that,
according to these results, post-migration infection is more frequent than it was believed
in many European countries30 and our results are more compatible with those reported by
Rice et al13. The overall estimated median time between HIV infection and diagnosis for
those without definite evidence for pre- or post-migration HIV infection based on their
HIV testing history was 4.6 years with the corresponding mean being 6.2 years. The
difference between the mean and median estimates was due to the right skewed shape
of the corresponding distribution which was obvious in all imputed datasets. Given this
asymmetry, the choice of the median as a measure of location is rather preferable. It is
also noteworthy, that when we used a subset of the CASCADE data, using more strict
criteria regarding the accuracy in the determination of HIV seroconversion, to estimate
the parameters of the model for the evolution of CD4 cell count and HIV-RNA viral
load, the main results remained unaffected. Additionally, omitting the contribution of
HIV experts to inform the prior using the available behavioral data, resulted in only
minor changes of the main estimates.

The proposed method provides a unified method to use all available sources of
information in order to optimise our estimation regarding the time between HIV infection
and diagnosis and consequently the most likely place of HIV acquisition for migrants.
In the absence of repeated HIV tests or HIV recency testing31, the only way to make
meaningful estimation of the timing of HIV infection is to rely on known aspects of the
natural history of the disease and behavioral data. The HIV natural history aspects that
we used in the proposed method are related to the gradual decline of the CD4 cell count
and the non-linear evolution of HIV-RNA with time after HIV infection. The behavioral
data used in our method are related to the possible modes of HIV infection among adults,
that is, unprotected sexual contacts and needle sharing among injecting drug users.

CD4 cell count decline during natural history of HIV infection has been used in all
previously proposed methods which provide subject-specific estimates of the unknown
infection time8–13 but the respective HIV-RNA evolution has only rarely been used11.
Unlike most of the aforementioned methods, the proposed method does not require data
from individuals with known infection times; it only requires the estimates of the fixed
and random parameters from the fit of the bivariate model on the CASCADE data, which
can be easily shared and are provided in the supplementary appendix. More importantly,
our method uses parameters for the CD4 cell count and HIV-RNA viral load evolution
which vary according to many crucial covariates. For example the method of Rice et
al.13 uses different equations for the CD4 cell count decline according to the age of an
individual at diagnosis and his/her race. However, besides age and race, the evolution of
CD4 cell count post HIV infection depends on many other factors including for example
sex, mode of infection32,33 and even calendar time of infection22,23. Similar findings
hold for the HIV-RNA viral load evolution thus, in order to improve the estimation
of an individual’s unknown infection time, one should ideally take into account both
his/her CD4 cell count and HIV-RNA viral load levels at diagnosis along with his/her
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demographic-clinical characteristics that are shown to be related with the evolution of
these markers during untreated HIV infection. We should note though, we did not have
the chance to use another important predictor of CD4 cell count and HIV-RNA viral load
in our method which is the HIV subtype34 as this information was available for only a
part of the CASCADE study participants.

Another advantage of the proposed method is that it can easily accommodate
information from multiple measurements of CD4 cell count and/or HIV-RNA viral load,
irrespectively of their timing, as long as they are taken while the individual is AIDS free
and untreated. This advantage is expected to be less important for new diagnoses though
as current guidelines recommend immediate initiation of treatment after diagnosis35,36

but is still relevant for individuals diagnosed in previous years which tended to have more
than one CD4 cell count and/or HIV-RNA viral load available before initiating treatment.

The proposed method is also flexible enough regarding the amount of evidence,
beyond biomarkers, one may want to use when estimating the time of HIV infection.
In our application of the proposed method to the aMASE study data, we took advantage
of the additional information on risk behaviors of the study participants, combined with
expert opinion, in order to refine the prior distribution of the time gap between HIV
acquisition and diagnosis. Another possible source of information that could be used in
conjunction with the proposed method stems from phylogenetic methods and the concept
of a molecular clock for HIV37.

However, there is an inherent drawback of our method which is a shared drawback
with all other methods that are using observed CD4 counts, which stems from the within-
subject variability of this marker. Even though, the population average of CD4 cell counts
has a well-defined decline during untreated HIV infection, individual measurements
tend to be noisy and this affects the individual level estimation of the unknown HIV
infection times. This was evident in the simulation study where although rates of
correct classification were high, the correlation between the true and estimated times
was moderate. Nevertheless, still the time difference between the true and estimated
time of infection was on average quite small (0.21 years). Similar arguments hold for
the HIV-RNA viral load values. However, our method takes into account all sources of
variability in markers’ values (i.e. between and within subjects) which are reflected to the
shape of the posterior distribution of the elapsed time between infection and diagnosis
quantifying thus the uncertainty of our estimates. Another limitation of our method is that
it is computationally intensive as it depends on numerical approximations of probability
and cumulative density functions in order to derive the posterior probabilities of pre-
and post-migration infection. This deterred us from taking into account the uncertainty
in the parameters estimated through the CASCADE data (through a Monte Carlo based
approach for example) as it would multiply the time required to estimate the unknown
infection time of each individual. At its current form, the algorithm required on average
7 seconds per individual on an PC using an AMD 3.4GHz CPU and 8 GBs of memory.
Finally, as in all similar methods, there is always a concern regarding the compatibility
of the population which was used to estimate the parameters of the model with the
target population where the model will be applied. For our specific case, the parameters
of the model were estimated using data from individuals with well known estimated
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dates of HIV infection (i.e. seroconverters) whereas the target population comprises
individuals with unknown infection times. However, a previous study by Lodi et al.38

showed that estimates of HIV progression derived from seroconverters are likely to hold
more generally for the HIV-positive population.

To conclude, we believe that although estimation of the time between HIV infection
and diagnosis and/or the determination of the likely place of HIV acquisition for migrants
is a difficult task, the method we propose provides a unified and formal but also practical
way to effectively utilise information from routinely measured biomarkers, demographic
and clinical characteristics and behavioral data in order to derive reliable estimates along
with a clear measure of their uncertainty.
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Martı́n-Pérez A, Martins L, Ması́a M, Mateu MG, Meireles P, Mendes A, Metallidis S, Mguni S,
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de la Recherche Médicale, France; Jan Albert, Karolinska Institute, Sweden; Silvia Asandi,
Romanian Angel Appeal Foundation, Romania; Geneviève Chêne, University of Bordeaux,
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