therapeutic proteins 2 3 Yuliya M. Dyo^{1,2} and Saul Purton^{3*} 4 5 ¹Molecular Research of Microalgae Laboratory, M. A. Ajtkhozhin Institute of 6 7 Molecular Biology and Biochemistry, Almaty, Kazakhstan 8 ²Department of Biotechnology, Kazakh National Research Technology University, 9 Almaty, Kazakhstan 10 ³Algal Research Group, Institute of Structural and Molecular Biology, University 11 College London, Gower Street, London, WC1E 6BT, United Kingdom 12 13 14 *Corresponding author 15 Saul Purton 16 s.purton@ucl.ac.uk 17 tel. +44 (0)20 76792675 18 19 20 **Keywords:** algal chloroplast; *Chlamydomonas*; synthetic biology; therapeutic proteins 21 22 Abbreviations: GRAS: Generally Recognized As Safe. Synbio: synthetic biology. 23 CTB: cholera toxin beta-subunit. mAb: monoclonal antibody. TSP: total soluble 24 protein

The algal chloroplast as a synthetic biology platform for production of

25 Abstract

26 The chloroplast of *Chlamydomonas reinhardtii* and other microalgae represents an 27 attractive new platform for the synthesis of recombinant therapeutics using synthetic 28 biology (synbio) approaches. Transgenes can be designed in silico, assembled from 29 validated DNA parts, and inserted at precise and predetermined locations within the 30 chloroplast genome to give stable synthesis of a desired recombinant protein. 31 Numerous recent examples of different therapeutic proteins produced successfully in 32 the C. reinhardtii chloroplast highlight the potential of this green alga as a simple, low-cost and benign host. Furthermore, features of the alga may offer additional 33 34 advantages over more-established microbial, mammalian or plant-based systems. 35 These include efficient folding and accumulation of the product in the chloroplast; a 36 lack of contaminating toxins or infectious agents; reduced downstream processing 37 requirements; the possibility to make complex therapeutics such as immunotoxins, 38 and the opportunity to use the whole alga as a low-cost oral vaccine. In this article we 39 review the current status of algal chloroplast engineering with respect to therapeutic 40 proteins. We also consider future advances in synbio tools, together with 41 improvements to recipient strains, which will allow the design of bespoke strains with 42 high levels of productivity.

Introduction

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Currently, the industrial biotechnology sector is almost exclusively based around the use of heterotrophic platforms (bacteria, yeasts, mammalian and insect cells) for the biosynthesis of pharmaceutical proteins, bioactive metabolites or other high-value products [1]. Nevertheless, the ever-increasing growth of the global bioeconomy and the need for sustainable alternatives to petrochemical based products is catalyzing interest in the exploitation of alternative cell factories, including photosynthetic microalgae and cyanobacteria [2]. Microalgae represent significant untapped potential for bio-manufacturing because of the extreme biodiversity of the more than 70,000 extant species spread over the eukaryotic tree of life [3, 4]. However, exploitation of all but a handful of algal species is severely hindered by a paucity of molecular tools for efficient genetic engineering [2, 5]. Of these species, the freshwater chlorophyte *Chlamydomonas reinhardtii* is perhaps the most advanced microalgal platform, with a suite of molecular tools for both nuclear and chloroplast transformation, and the on-going development of synthetic biology strategies for strain engineering [6]. The chloroplast genetic system lends itself particularly well to synthetic biology since the genome is small (205 kb) and of low complexity (99 genes) [7], and the precise integration of foreign DNA into any predetermined loci is readily achieved via homologous recombination [8]. Recently, there have been a number of reports describing the genetic engineering of the C. reinhardtii chloroplast to produce therapeutic proteins, with many shown to be active and effective in lab-based trials. In this short review we outline the current status and merits of algal chloroplast transgenics, and survey the different classes of therapeutics being produced for either human or livestock applications. We also consider the future development of synthetic biology tools to accelerate the predictive design and creation of bespoke strains. A more detailed discussion of the history and wider applications of algal chloroplast engineering is given in several recent reviews [9-12].

71

72

73

74

1. The algal chloroplast as a new bio-factory

The chloroplasts of plants and algal cells possess a small polyploid genome (termed the plastome) derived from the cyanobacterial progenitor of this organelle. The algal

75 plastome is composed of ~100–200 genes, most of which encode core components of 76 the photosynthetic complexes and the chloroplast's transcription-translation apparatus. 77 The genetic system reflects its bacterial ancestry and is essentially prokaryotic in 78 nature, with a eubacterial-like RNA polymerase and 70S ribosome, and many genes 79 arranged into co-transcribed units [13]. However, introns are present in some 80 chloroplast genes, and the regulation of gene expression occurs largely at post-81 transcriptional steps (rather than at the transcriptional level) with numerous nuclear-82 encoded protein factors imported into the chloroplast to mediate RNA processing, 83 splicing and stabilization, and translation initiation [14]. 84 DNA transformation of the chloroplast was first reported in 1988 using the single-85 celled green alga, Chlamydomonas reinhardtii [15]. Since that time the tools and 86 techniques for chloroplast genetic engineering of C. reinhardtii have advanced 87 significantly [8, 16]. More recently, chloroplast transformation has been achieved for 88 other microalgal species including the green algae Haematococcus pluvialis and 89 Dunaliella tertiolecta [17, 18], the red alga Cyanidioschyzon merolae [19], and the diatom Phaeodactylum tricornutum [20]. However, progress to-date in the 90 91 development of the algal chloroplast as a platform has almost exclusively focused on 92 C. reinhardtii with over 100 reports in the literature of production of recombinant 93 proteins in this species. Chloroplast transformation is also feasible for a number of 94 plant species, with advanced genetic engineering technologies available for tobacco 95 (*Nicotiana tabacum*) and several other plants such as tomato, potato and petunia [21]. 96 Although plant chloroplasts represent an attractive low-cost and easily scalable 97 platform for synthesis of biopharmaceuticals [22], there are fundamental challenges 98 associated with the use of crop plants for drug production. These include the 99 difficulties of ensuring rigorous good manufacturing practice during glasshouse of 100 field cultivation, and concerns of escape and contamination of food crops [23]. In 101 contrast, a microalgal platform circumvents many of these issues since these 102 microorganisms can be grown under tightly controlled, sterile and contained 103 conditions in closed fermenter or photobioreactor systems. Furthermore, several 104 microalgal species including C. reinhardtii have GRAS (Generally Recognized As 105 Safe) status and are therefore considered free of harmful viral, prion or endotoxin 106 contaminants, thereby simplifying procedures for product purification. The safety of 107 these species also offers the possibility of topical application of a biopharmaceutical

108 such as an anti-microbial protein using a crude cell lysate of the alga (e.g. formulated 109 into a spray or cream), which would avoid costly investment in purification. 110 Alternatively, it might be possible to use the whole alga for oral delivery (to animals, 111 if not to humans) of vaccines, enzymes, or hormones – with the dried cells exploited 112 as a natural method of encapsulation and storage at room temperature that overcomes 113 the need for a cold chain [24]. 114 Typically, transgenic DNA is introduced into the chloroplast by bombardment of an 115 algal lawn or plant tissue with DNA-coated gold microparticles. Alternative DNA 116 delivery strategies include electroporation [25] or agitation of a DNA/cell suspension 117 in the presence of glass beads [26]. DNA integration into the plastome occurs almost 118 exclusively via homologous recombination between matching sequence on the 119 incoming DNA and plastome sequence [8]. Consequently, transgenes can be precisely 120 targeted to any locus by flanking the DNA with chloroplast sequences upstream and 121 downstream of the target locus as shown in Figure 1. Several selection strategies have 122 been developed based on the use of bacterial antibiotic-resistance genes such as aadA 123 and aphA6 [8], however a superior selection strategy involves the rescue of a 124 chloroplast mutant to phototrophy. As illustrated in Figure 1, this results in marker-125 free transformants in which the only foreign DNA in the plastome is the gene-of-126 interest [27, 28]. Expression of the gene is achieved by fusing the coding sequence to 127 promoters and untranslated regions from highly expressed endogenous genes such as 128 the photosynthesis genes psaA and psbA. The efficiency of translation can be 129 significantly improved by using synthetic coding sequence that is optimized to match 130 the AT-rich codon bias seen in chloroplast genes [9]. Additionally, biocontainment 131 can be built into the transgene by replacing several tryptophan codons (UGG) with the 132 UGA stop codon and using an orthogonal tryptophan tRNA to recognize these 133 internal stop codons in the chloroplast [29]. Although almost all transgenes inserted 134 into the C. reinhardtii chloroplast to-date have been constituently expressed, 135 regulation of transgene expression can be achieved using a vitamin-based system. 136 Here, the expression of a nuclear gene encoding a factor essential for translation of 137 the chloroplast psbD gene is repressed by addition of vitamin B_{12} and thiamine to the 138 medium. Any transgene fused to the psbD 5'UTR is therefore translated only in the 139 absence of the vitamins [30].

Using these molecular tools, over 100 different recombinant proteins have been successfully produced in the algal chloroplast. Reported yields are generally in the range of 0.1% to 5% total soluble protein (TSP), although caution should be exercised when making comparisons since the preparation of soluble extracts and the assay used for quantification differs between groups. A better measure is perhaps protein yield per gram of dried biomass [31]. Whilst such levels are below that of established recombinant platforms, new synthetic biology approaches (see below) and molecular-genetics strategies based on our understanding of chloroplast gene regulation in *C. reinhardtii* are now leading to significant improvements in yield.

2. Biopharmaceuticals made in the C. reinhardtii chloroplast

A review of the literature identifies over 40 different therapeutic proteins successfully produced in *C. reinhardtii* chloroplast with many shown to be bioactive, as summarized in Table 1. In most cases these are single subunit proteins and therefore involve the introduction of only a single transgene, although there have been a few examples of multigenic engineering of the plastome [32, 33]. To-date all the therapeutic proteins reported are soluble and accumulate in the chloroplast stroma, save for a single report of targeting of an antibody fragment to the thylakoid lumen [34] although membrane-anchored proteins have been successfully produced in the algal chloroplast [35].

2.1 Subunit vaccines

Edible microalgae such as *C. reinhardtii* are attractive systems for oral delivery of protein vaccines. This is especially the case for farmed animals such as fish and poultry where alternative vaccination strategies such as injection of a purified vaccine are impractical or prohibitively expensive given the small size and low value of the individual animal. As detailed in Table 1, antigens from viral, bacterial and malarial parasite pathogens have been produced in the algal chloroplast, and in many of these cases an immunogenic response in model animals has been demonstrated. In several studies, a protein adjuvant (cholera toxin B subunit: CTB) has been fused to the N-terminus of the antigen. CTB assembles into a pentameric structure and acts as an effective mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. For those vaccines aimed at the aquaculture, poultry and livestock industries,

the whole dried algae could be formulated into the animal feed. For the malarial vaccines, the need for very low cost and simple production technologies for any treatment in developing countries may ultimately overcome the current strict regulations for vaccine purification and lead to the use of such whole cell preparations as oral therapeutics [63]. Importantly, several studies have shown that the chloroplastproduced vaccines in lyophilized algae remain stable and active at room temperature over extended periods. For example, Dreesen et al. [40] showed that their CTB-D2 vaccine was stable for more than 1.5 years at room temperature, and Gregory et al. [43] showed that their CTB-Pfs25 vaccine remained active for over six months at 22°C (although activity was reduced at 37°C). The lack of a requirement for a coldchain would obviously reduce the complexity and cost of vaccine distribution. Drying the algae also serves to bio-encapsulate the vaccine within multiple layers (the double membrane of the chloroplast, the cell membrane and the cell wall), thereby helping to protect the vaccine from oxidation during storage, and degradation within the animal stomach during delivery to the gut epithelium. Furthermore, it is possible that the components of the algal cell wall could act as an effective mucosal adjuvant [64].

2.2 Antibodies and immunotoxins

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

Complex proteins such as monoclonal antibodies (mAb) that contain multiple disulphide bonds are difficult to produce in prokaryotes and therefore have to be made using eukaryotic platforms [65]. Currently, almost all marketed antibodies are produced in mammalian cell culture, and are therefore expensive and limited in availability [66]. Although the chloroplast does not possess the machinery for glycosylation of proteins, work by the group of Mayfield has shown that the algal chloroplast is capable of correctly folding and assembling aglycosylated antibodies that are able to bind their target. An early study [52] produced a mAb against glycoprotein D of the herpes simplex virus (HSV) as a large single chain in which the variable region of the light chain was fused via a linker to the IgA heavy chain. This protein accumulated as a soluble protein that could form a dimer linked by disulphide bonds and was shown to bind the HSV glycoprotein in vitro. Subsequently, Tran et al. [33] demonstrated that a mAb comprising separate heavy and light chains that were co-expressed in the chloroplast assembled correctly into a functional tetramer of two heavy chains and two light chains held together by multiple disulphide bonds. The mAb was directed against the PA83 antigen of Bacillus anthracis and the study showed that the chloroplast-produced mAb bound to the antigen with a similar affinity to a mAb produced in a mammalian system.

The Mayfield group have extended their studies to show that immunotoxins – fusion proteins comprising antibodies linked to cytotoxic proteins which have applications in cancer treatment – can also be produced in the algal chloroplast. Production of such cytotoxic proteins in eukaryotic hosts such as CHO cells or yeast is not feasible because of the lethal effect of the toxin on the cytosolic translation apparatus, whereas production in prokaryotic systems is challenging because of the difficulty of folding and assembling such complex molecules. In two impressive papers, the group achieved the synthesis of immunotoxins comprising a single chain antibody recognizing the CD22 surface receptor from B-cells fused either to domain II and III of Exotoxin A from Pseudomonas aeruginosa [54] or to the ribosome inactivating protein, gelonin, from Gelonium multiflorm [55]. Both immunotoxins were capable of specifically binding B-cells in vitro and that in the case of the immunotoxin Exotoxin A, survival of mice implanted with a human B-cell tumor, the life-span was extended. This work showed that the algal chloroplast not only possesses the machinery necessary to fold and assemble complex eukaryotic proteins, but that the 70S ribosomes are unaffected by the toxic proteins and the organelle is able to completely contain the protein preventing any inhibitory effect on the host's cytosolic ribosomes. The chloroplast therefore presents an attractive subcellular compartment for efficient production of these highly complex therapeutics.

2.3 Other therapeutic proteins

As detailed in Table 1, numerous other classes of therapeutic proteins have been successfully produced in the *C. reinhardtii* chloroplast and shown to be biologically active. These include hormones such as human growth hormone [28], antihypertensive peptides [62], cancer therapeutics [61], antibody mimics [56], autoantigens [49], wound healing factors [56] and anti-bacterial enzymes [31]. These examples serve to illustrate the potential of the chloroplast as a platform for a wide variety of recombinants. However, two areas where the GRAS benefits of microalgae such as *C. reinhardtii* could be particularly exploited is in allergen-specific immunotherapy (AIT) and in the delivery of gut-active proteins to livestock. Treatment of food allergies such as peanut allergy using AIT delivered via oral, sublingual or epicutaneous routes is a promising strategy. However, the high risk of

adverse side effects from the complex protein mix in peanut extracts means that immunotherapy using such extracts is not recommended in clinical practice. However, recombinant allergens can be purified without concern for contamination by cross-reactive peanut proteins, and are therefore an attractive alternative to native allergens for immunotherapy and allergy diagnostics [67]. Furthermore, the recombinant proteins can be modified to reduce the severity of the allergic response. Gregory et al. [50] showed that major peanut allergens produced in *C. reinhardtii* conferred protection from peanut-triggered anaphylaxis in a mouse model. This study hopefully will pave the way for human trials of AIT using oral delivery of the recombinant algae.

Mammary-associated serum amyloid (M-SAA) is a component of mammalian colostrum and induces mucin synthesis in gut epithelial cells, resulting in increased protection of newborns against bacterial infections in the intestine [68]. Algalproduced M-SAA provided in the feed could provide this protective agent for newborn mammals that lack a source of colostrum, serving as a prophylactic against infection. Manuell et al. [57] showed that M-SAA produced in C. reinhardtii was able to stimulate mucin production in human gut epithelial cell lines. Another feed additive that has significant health and economic benefits in agriculture is phytase. In plantderived animal feed, nearly 80% of the total phosphorus content is stored as phytate. However, phytate is poorly digested by monogastric animals such as swine, poultry and fish, as they lack the hydrolytic enzyme phytase. In addition, phytate also chelates important dietary minerals and essential amino acids. Therefore, dietary supplementation with bioavailable phosphate and exogenous phytases are required to achieve optimal animal growth [69]. Two separate studies have produced recombinant phytases in C. reinhardtii [58, 60] with the earlier study demonstrating that dried algal biomass fed to broiler chicks significantly reduced phytate excretion, and the latter study calculating that costs of the production in microalgae are comparable to commercial supplies of phytase. It is possible to envisage further cost savings in, for example, pig feed by 'pyramiding' different gut-active proteins such that a single alga produces multiple recombinant products such as phytase, M-SAA, vaccines and antibacterials.

269

270

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

4. Emerging synthetic biology approaches

Currently, most recombinant expression in the algal chloroplast involves single gene constructs created using conventional restriction enzyme-based cloning approaches. This limits the rate at which new transgenic lines can be produced and tested, and in particular, how many different permutations of constructs (different promoters, coding variants, regulatory elements, etc.) can be evaluated. We are now starting to see the application of synthetic biology principles to plastome engineering with the adoption of assembly standards such as Golden Gate and the creation of libraries of validated DNA parts that allow rapid one-step assembly of all the parts [27, 70, 71]. In the near future, we may see much more ambitious design strategies that involve extensive re-design of the plastome in silico such that large tracts of non-essential DNA are removed [72], essential endogenous genes are refactored into functional clusters [73] and multiple transgenes are engineered into different loci. Assembly and delivery of such synthetic genomes is technically feasible, as shown by O'Neill et al. [74] who demonstrated that the entire C. reinhardtii plastome could be assembled in yeast and transformed into C. reinhardtii by microparticle bombardment. The challenge is to develop selection strategies that allow the clean replacement of the endogenous plastome with the synthetic version without undesirable recombination events between the two resulting in the creation of chimeric plastomes [74]. Another challenge is to improve significantly the product yield through the use of synthetic *cis* elements to drive expression. Currently, the promoter and 5'UTR used to express transgenes are derived from endogenous photosynthetic genes. In some cases, expression levels can be improved by using the stronger promoter from the gene for the 16S ribosomal RNA fused to the 5'UTR of a photosynthetic gene [27, 75]. However, more often it is the performance of the 5'UTR that is the bottleneck [76], with the efficiency of translation constrained either by the same feedback regulation that prevents over-accumulation of individual photosynthetic subunits in the absence of their assembly partners (so called 'Control by Epistasy of Synthesis'), or by competition with the corresponding endogenous gene transcript for trans-acting factors that are required for transcript stability or translation, but are present in limiting concentration in the chloroplast [77]. Strategies to overcome this involve either replacement of the 5'UTR of the endogenous gene with that from another photosynthetic gene [78], or more elegantly to develop synthetic variants of the 5'UTR that are no longer subject to these limitations and therefore give improved

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

expression of the transgene [79]. Further studies into the design of synthetic promoters and UTRs, combined with improved knowledge of codon optimization rules, will advance the average recombinant protein yield from the current value of \sim 1% TSP to the >10% level required of a commercial platform.

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

304

305

306

307

5. Summary and perspectives

The microalgal chloroplast has clear potential as a novel industrial production platform for biopharmaceuticals. The continued development of synthetic biology tools for chloroplast engineering of C. reinhardtii will strengthen this potential by accelerating the creation of designer transgenic lines yielding high levels of the target protein. However, this increase in yield needs to be coupled with improvements in phototrophic algal biomass production in order to make the platform commercially competitive. Such improvements will come from a combination of media optimization [80], improvements in photobioreactor (PBR) design [81], and strain domestication such as selection for reduced light-antenna mutants that show higher productivity in PBRs as a consequence of greater light penetration [82]. Alternatively, it might prove more cost effective to switch to mixotrophic production in PBRs, or heterotrophic cultivation in fermenters where much high biomass productivity can be achieved [83]. In the case of C. reinhardtii acetate is used as the fixed carbon source, although strain engineering could enable the alga to be cultivated using glucose or sucrose as the carbon source [84]. Finally, the development of chloroplast transformation technology for other GRAS species such as Dunaliella salina, Chlorella vulgaris and Haematococcus pluvialis that are already grown commercially will provide opportunities for larger-scale and lower cost production of therapeutic proteins in algae.

329

330

Funding information

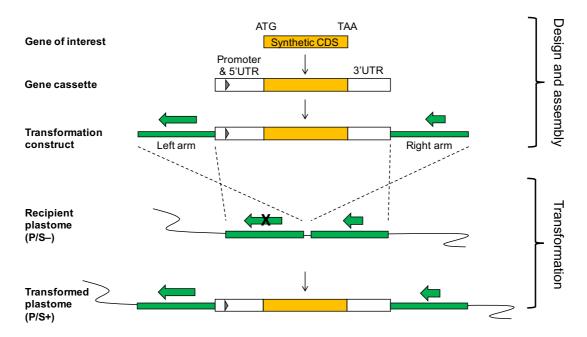
- Research in the Purton group on engineering of the algal chloroplast is supported by the UK's Biotechnology and Biological Sciences Research Council (grants BB/L002957/1, BB/F016948/1 and BB/L013789/1). Research in the Dyo group is supported by grant 2720/GF4 from the Ministry of Education and Science of the Republic of Kazakhstan.
 - 1

336		
337	Confli	icts of interest
338	The au	athors declare that there are no conflicts of interest.
339		
340	Refere	ences
341	1.	Murphy CD. The microbial cell factory. <i>Org Biomol Chem</i> 2012;10:1949–
342		1957. doi: 10.1039/c2ob06903b
343	2.	Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology
344		with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol
345		2013;24:405–413. doi: 10.1016/j.copbio.2013.04.004
346	3.	Guiry MD. How many species of algae are there? <i>J Phycol</i> 2012;48:1057–
347		1063. doi: 10.1111/j.1529-8817.2012.01222.x
348	4.	Guarnieri MT, Pienkos PT. Algal omics: unlocking bioproduct diversity in
349		algae cell factories. Photosynth Res 2015;123:255–263. doi: 10.1007/s11120-
350		014-9989-4
351	5.	Gimpel JA, Specht EA, Georgianna DR, Mayfield SP. Advances in
352		microalgae engineering and synthetic biology applications for biofuel
353		production. Curr Opin Chem Biol 2013;17:489–495. doi:
354		10.1016/j.cbpa.2013.03.038
355	6.	Scaife MA, Nguyen GT, Rico J, Lambert D, Helliwell KE et al.
356		Establishing <i>Chlamydomonas reinhardtii</i> as an industrial biotechnology host.
357		Plant J 2015;82: 532–546. doi: 10.1111/tpj.12781
358	7.	Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W et al. The
359		Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of
360		repeats. Plant Cell 2002;14:2659–2679. doi: 10.1105/tpc.006155
361	8.	Purton S. Tools and techniques for chloroplast transformation of
362		Chlamydomonas. Adv Exp Med Biol 2007;616:34–45. doi: 10.1007/978-0-
363		387-75532-8_4
364	9.	Purton S, Szaub JB, Wannathong T, Young R, Economou CK. Genetic
365		engineering of algal chloroplasts: progress and prospects. Rus J Plant Physio
366		2013; 60:521–528. doi: 10.1134/S1021443713040146

367	10. Almaraz-Delgado AL, Flores-Uribe J, Pérez-España VH, Salgado-
368	Manjarrez E, Badillo JA. Production of therapeutic proteins in the
369	chloroplast of Chlamydomonas reinhardtii. AMB Express 2014;4:57. doi:
370	10.1186/s13568-014-0057-4
371	11. Rasala BA, Mayfield SP. Photosynthetic biomanufacturing in green algae;
372	production of recombinant proteins for industrial, nutritional, and medical uses
373	Photosynth Res 2015;123:227-239. doi: 10.1007/s11120-014-9994-7
374	12. Hempel F, Maier UG. Microalgae as solar-powered protein factories. <i>Adv</i>
375	Exp Med Biol 2016;896:241–262. doi: 10.1007/978-3-319-27216-0_16
376	13. Green BR. Chloroplast genomes of photosynthetic eukaryotes, <i>Plant J</i>
377	2011; 66 :34–44. doi: 10.1111/j.1365-313X.2011.04541.x
378	14. Barkan A. Expression of plastid genes: organelle-specific elaborations on a
379	prokaryotic scaffold. Plant Physiol 2011;155:1520-1532. doi:
380	https://doi.org/10.1104/pp.110.171231
381	15. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM et al.
382	Chloroplast transformation in Chlamydomonas with high velocity
383	microprojectiles. Science 1988;240:1534-1538. doi: 10.1126/science.2897716
384	16. Doron L, Segal N, Shapira M. Transgene expression in microalgae — from
385	tools to applications. Front Plant Sci 2016;7:505. doi:
386	10.3389/fpls.2016.00505
387	17. Gutiérrez CL, Gimpel J, Escobar C, Marshall SH, Henríquez V.
388	Chloroplast genetic tool for the green microalgae Haematococcus pluvialis
389	(chlorophyceae, volvocales). J Phycol 2012;48:976–983. doi: 10.1111/j.1529-
390	8817.2012.01178.x
391	18. Georgianna DR, Hannon MJ, Marcuschi M, Wu S, Botsch K et al.
392	Production of recombinant enzymes in the marine alga Dunaliella tertiolecta
393	Algal Res 2013;2:2-9. doi: 10.1016/j.algal.2012.10.004
394	19. Zienkiewicz M, Krupnik T, Drożak A, Golke A, Romanowska E.
395	Transformation of the Cyanidioschyzon merolae chloroplast genome:
396	prospects for understanding chloroplast function in extreme environments.
397	Plant Mol Biol 2017;93:171-183. doi: 10.1007/s11103-016-0554-8
398	20. Xie WH, Zhu CC, Zhang NS, Li DW, Yang WD et al. Construction of
399	novel chloroplast expression vector and development of an efficient

400	transformation system for the diatom <i>Phaeodactylum tricornutum</i> . Mar
401	Biotechnol 2014;16:538-546. doi: 10.1007/s10126-014-9570-3
402	21. Bock R. Engineering plastid genomes: methods, tools, and applications in
403	basic research and biotechnology. Annu Rev Plant Biol 2015;66:211-241. doi:
404	10.1146/annurev-arplant-050213-040212
405	22. Zhang B, Shanmugaraj B, Daniell H. Expression and functional evaluation
406	of biopharmaceuticals made in plant chloroplasts. Curr Opin Chem Biol
407	2017;38:17-23. doi: 10.1016/j.cbpa.2017.02.007
408	23. Chen Q, Davis KR. The potential of plants as a system for the development
409	and production of human biologics. F1000Research 2016;5(F1000 Faculty
410	Rev):912. doi: 10.12688/f1000research.8010.1
411	24. Yan N, Fan C, Chen Y, Hu Z. The potential for microalgae as bioreactors to
412	produce pharmaceuticals. Int J Mol Sci 2016;17:E962. doi:
413	10.3390/ijms17060962
414	25. Zhao Y, Shi X, Zhang Z. High-frequency electroporation and expression of
415	human interleukin 4 gene in Chlamydomonas reinhardtii chloroplast. Joumal
416	of Huazhong Agricultural University 2006;25:110–116.
417	26. Economou C, Wannathong T, Szaub J, Purton S. A simple, low cost
418	method for chloroplast transformation of the green alga Chlamydomonas
419	reinhardtii. Methods Mol Biol 2014;1132:401-411. doi: 10.1007/978-1-
420	62703-995-6_27
421	27. Bertalan I, Munder MC, Weiß C, Kopf J, Fischer D et al. A rapid, modular
422	and marker-free chloroplast expression system for the green alga
423	Chlamydomonas reinhardtii. J Biotechnol 2015;195:60-66. doi:
424	10.1016/j.jbiotec.2014.12.017
425	28. Wannathong T, Waterhouse JC, Young REB, Economou CK, Purton S.
426	New tools for chloroplast genetic engineering allow the synthesis of human
427	growth hormone in the green alga Chlamydomonas reinhardtii. Appl
428	Biotechnol Bioeng 2016;100:5467-5477. doi: 10.1007/s00253-016-7354-6
429	29. Young REB, Purton S. Codon reassignment to facilitate genetic engineering
430	and biocontainment in the chloroplast of Chlamydomonas reinhardtii. Plant
431	Biotechnol J 2016;14:1251–1260. doi: 10.1111/pbi.12490

432	30. Ramundo S, Rochaix J-D. Controlling expression of genes in the unicellular
433	alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch.
434	Methods Enzymol 2015;550:267-281. doi: 10.1016/bs.mie.2014.10.035
435	31. Stoffels L, Taunt HN, Charalambous B, Purton S. Synthesis of
436	antimicrobial bacteriophage proteins against Streptococcus pneumoniae in the
437	chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 2017;15:1130–
438	1140. doi: 10.1111/pbi.12703
439	32. Su Z-L, Qian K-X, Tan C-P, Meng C-X, Qin S. Recombination and
440	heterologous expression of allophycocyanin gene in the chloroplast of
441	Chlamydomonas reinhardtii. Acta Biochim Biophys Sin (Shanghai)
442	2005;37:709–712. doi: 10.1111/j.1745-7270.2005.00092.x
443	33. Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP. Synthesis and
444	assembly of a full-length human monoclonal antibody in algal chloroplasts.
445	Biotechnol Bioeng 2009;104:663-673. doi: 10.1002/bit.22446
446	34. Zedler JAZ, Mullineaux CW, Robinson C. Efficient targeting of
447	recombinant proteins to the thylakoid lumen in Chlamydomonas reinhardtii
448	using a bacterial Tat signal peptide. Algal Res 2016;19:57-62. doi:
449	10.1016/j.algal.2016.07.007
450	35. Gangl D, Zedler JA, Włodarczyk A, Jensen PE, Purton S et al. Expression
451	and membrane-targeting of an active plant cytochrome P450 in the chloroplast
452	of the green alga Chlamydomonas reinhardtii. Phytochemistry 2015;110:22-
453	28. doi: 10.1016/j.phytochem.2014.12.00
454	36. Sun M, Qian KX, Su N, Chang HY, Liu JX, Chen GF. Foot-and-mouth
455	disease virus VP1 protein fused with cholera toxin B subunit expressed in
456	Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 2003;25:1087–1092.
457	doi: 10.1023/A:1024140114505
458	37. He DM, Qian KX, Shen GF, Zhang ZF, Li YN et al. Recombination and
459	expression of classical swine fever virus (CSFV) structural protein E2 gene in
460	Chlamydomonas reinhardtii chloroplasts. Colloids Surf B Biointerfaces
461	2007; 55 :26–30. doi: 10.1016/j.colsurfb.2006.10.042
462	38. Siripornadulsil S, Dabrowski K, Sayre R. Microalgal vaccines. Adv Exp
463	Med Biol 2007;616:122–128. doi:10.1007/978-0-387-75532-8_11


464	39. Surzycki R, Greenham K, Kitayama K, Dibai F, Wagner R et al. Factors
465	effecting expression of vaccines in microalgae. Biologicals 2009;37:133-138.
466	doi: 10.1016/j.biologicals.2009.02.005
467	40. Dreesen IA, Charpin-El Hamri G, Fussenegger M. Heat-stable oral alga-
468	based vaccine protects mice from $Staphylococcus$ aureus infection. J
469	Biotechnol 2010;145:273-280. doi: 10.1016/j.jbiotec.2009.12.006
470	41. Michelet L, Lefebvre-Legendre L, Burr SE, Rochaix J-D, Goldschmidt-
471	Clermont M. Enhanced chloroplast transgene expression in a nuclear mutant
472	of Chlamydomonas. Plant Biotechnol J 2011;9:565-574. doi: 10.1111/j.1467-
473	7652.2010.00564.x
474	42. Gregory JA, Li F, Tomosada LM, Cox CJ, Topol AB et al. Algae-produced
475	Pfs25 elicits antibodies that inhibit malaria transmission. PLoS ONE
476	2012;7:e37179. doi: 10.1371/journal.pone.0037179
477	43. Gregory JA, Topol AB, Doerner DZ, Mayfield S. Alga-produced cholera
478	toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol
479	2013;79:3917–3925. doi: 10.1128/AEM.00714-13
480	44. Jones CS, Luong T, Hannon M, Tran M, Gregory JA et al. Heterologous
481	expression of the C-terminal antigenic domain of the malaria vaccine
482	candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Appl
483	Microbiol Biotechnol 2013;97:1987-1995. doi: 10.1007/s00253-012-4071-7
484	45. Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R et al. A
485	Chlamydomonas-derived human papillomavirus 16 E7 vaccine induces
486	specific tumor protection. PLoS ONE 2013;8:e61473. doi:
487	10.1371/journal.pone.0061473
488	46. Vlasák J, Bøíza J, Ryba Š, Ludvíková V. Alga-based HPV16 E7 vaccine
489	elicits specific immune response in mice. Asian J Plant Sci Res 2013;3:141-
490	148.
491	47. Castellanos-Huerta I, Bañuelos-Hernández B, Téllez G, Rosales-Mendoza
492	S, Brieba LG et al. Recombinant hemagglutinin of avian influenza virus H5
493	expressed in the chloroplast of Chlamydomonas reinhardtii and evaluation of
494	its immunogenicity in chickens. Avian Dis 2016;60:784-791. doi:
495	10.1637/11427-042816-Reg
496	48. Beltrán-López JI, Romero-Maldonado A, Monreal-Escalante E,
497	Bañuelos-Hernández B. Paz-Maldonado LM et al. Chlamydomonas

498	reinhardtii chloroplasts express an orally immunogenic protein targeting the
499	p210 epitope implicated in atherosclerosis immunotherapies. Plant Cell Rep
500	2016;35:1133–1141. doi: 10.2174/1389557516666161004161801
501	49. Wang X, Brandsma M, Tremblay R, Maxwell D, Jevnikar AM et al. A
502	novel expression platform for the production of diabetes-associated
503	autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol
504	2008;8:87. doi: 10.1186/1472-6750-8-87
505	50. Gregory JA, Shepley-McTaggart A, Umpierrez M, Hurlburt BK, Maleki
506	SJ et al. Immunotherapy using algal-produced Ara h 1 core domain suppresses
507	peanut allergy in mice. Plant Biotechnol J 2016;14:1541-1550. doi:
508	10.1111/pbi.12515
509	51. Hirschl S, Ralser C, Asam C, Gangitano A, Huber S et al. Expression and
510	characterization of functional recombinant Bet v 1.0101 in the chloroplast of
511	Chlamydomonas reinhardtii. Int Arch Allergy Immunol 2017;173:44-50. doi:
512	10.1159/000471852
513	52. Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully
514	active antibody in algae. Proc Natl Acad Sci USA 2003;100:438-442. doi:
515	10.1073/pnas.0237108100
516	53. Barrera DJ, Rosenberg JN, Chiu JG, Chang YN, Debatis M et al. Algal
517	chloroplast produced camelid VH H antitoxins are capable of neutralizing
518	botulinum neurotoxin. Plant Biotechnol J 2015;13:117-124. doi:
519	10.1111/pbi.12244
520	54. Tran M, Henry RE, Siefker D, Van C, Newkirk G et al. Production of anti-
521	cancer immunotoxins in algae: ribosome inactivating proteins as fusion
522	partners. Biotechnol Bioeng 2013;110:2826–2835. doi: 10.1002/bit.24966
523	55. Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD et al. Production
524	of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl
525	Acad Sci USA 2013;110:E15-E22. doi: 10.1073/pnas.1214638110
526	56. Rasala BA, Muto M, Lee PA, Jager M, Cardoso RM et al. Production of
527	therapeutic proteins in algae, analysis of expression of seven human proteins
528	in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J
529	2010;8:719–733. doi: 10.1111/j.1467-7652.2010.00503.x

530	57.	Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M et al. Robust
531		expression of a bioactive mammalian protein in Chlamydomonas chloroplast.
532		<i>Plant Biotechnol J</i> 2007;5:402–412. doi: 10.1111/j.1467-7652.2007.00249.xn
533	58.	Yoon SM, Kim SY, Li KF, Yoon BH, Choe S et al. Transgenic microalgae
534		expressing Escherichia coli AppA phytase as feed additive to reduce phytate
535		excretion in the manure of young broiler chicks. Appl Microbiol Biotechnol
536		2011;91:553–563. doi: 10.1007/s00253-011-3279-2
537	59.	Campos-Quevedo N, Rosales-Mendoza S, Paz-Maldonado LMT,
538		Martinez-Salgado L, Guevara-Arauza JC et al. Production of milk-derived
539		bioactive peptides as precursor chimeric proteins in chloroplasts of
540		Chlamydomonas reinhardtii. Plant Cell Tiss Organ Cult 2013;113:217–225.
541		doi: 10.1007/s11240-012-0261-3
542	60.	Erpel F, Restovic F, Arce-Johnson P. Development of phytase-expressing
543		Chlamydomonas reinhardtii for monogastric animal nutrition. BMC
544		Biotechnol 2016;16:29. doi: 10.1186/s12896-016-0258-9
545	61.	Yang Z, Li Y, Chen F, Li D, Zhang Z, Liu Y et al. Expression of human
546		soluble TRAIL in Chlamydomonas reinhardtii chloroplast. Chinese Science
547		Bulletin 2006;51:1703-1709. doi: 10.1007/s11434-006-2041-0
548	62.	Ochoa-Méndez CE, Lara-Hernández I, González LM, Aguirre-Bañuelos
549		P, Ibarra-Barajas M et al. Bioactivity of an antihypertensive peptide
550		expressed in Chlamydomonas reinhardtii. J Biotechnol 2016;240:76-84. doi:
551		10.1016/j.jbiotec.2016.11.001
552	63.	Jones CS, Mayfield SP. Steps toward a globally available malaria vaccine:
553		harnessing the potential of algae for future low cost vaccines. Bioengineered
554		2013; 4:164–167. doi: 10.4161/bioe.22577
555	64.	Rosales-Mendoza S. Algae-made vaccines targeting human diseases. In:
556		Algae-Based Biopharmaceuticals. Springer, Cham. 2016. doi: 10.1007/978-3-
557		319-32232-2_3
558	65.	Gupta SK, Shukla P. Advanced technologies for improved expression of
559		recombinant proteins in bacteria: perspectives and applications. Crit Rev
560		Biotechnol 2016;36:1089–1098. doi: org/10.3109/07388551.2015.1084264
561	66.	Matthews CB, Wright C, Kuo A, Colant N, Westoby M, Love JC.
562		Reexamining opportunities for therapeutic protein production in eukaryotic

563	microorganisms. Biotechnol Bioeng 2017;114:2432-2444. doi:
564	10.1002/bit.26378
565 6	7. Ferreira F, Wolf M, Wallner M. Molecular approach to allergy diagnosis
566	and therapy. Yonsei Med J 2014;55:839–852. doi: 10.3349/ymj.2014.55.4.839
567 6	8. Larson MA, Wei SH, Weber A, Mack DR, McDonald TL. Human serum
568	amyloid A3 peptide enhances intestinal MUC3 expression and inhibits EPEC
569	adherence. Biochem Biophys Res Commun 2003;300:531-540. doi:
570	org/10.1016/S0006-291X(02)02901-7
571 6	9. Humer E, Schwarz C, Schedle K. Phytate in pig and poultry nutrition. J
572	Anim Physiol Anim Nutr (Berl). 2015;99:605-625. doi: 10.1111/jpn.12258
573 7	0. Noor-Mohammadi S, Pourmir A, Johannes TW. Method to assemble and
574	integrate biochemical pathways into the chloroplast genome of
575	Chlamydomonas reinhardtii. Biotechnol Bioeng 2012;109:2896–2903. doi:
576	10.1002/bit.24569
577 7	1. Oey M, Ross IL, Hankamer B. Gateway-assisted vector construction to
578	facilitate expression of foreign proteins in the chloroplast of single celled
579	algae. PLoS One 2014;9:e86841. doi: 10.1371/journal.pone.0086841
580 7	2. Scharff LB, Bock R. Synthetic biology in plastids. <i>Plant J</i> 2014;78:783–798.
581	doi: 10.1111/tpj.12356
582 7	3. Gimpel JA, Nour-Eldin HH, Scranton MA, Li D, Mayfield SP. Refactoring
583	the six-gene Photosystem II core in the chloroplast of the green algae
584	Chlamydomonas reinhardtii. ACS Synth Biol 2016;5:589-596. doi:
585	10.1021/acssynbio.5b00076.
586 7	4. O'Neill BM, Mikkelson KL, Gutierrez NM, Cunningham JL, Wolff KL et
587	al. An exogenous chloroplast genome for complex sequence manipulation in
588	algae. Nucleic Acids Res 2012:40;2782–2792. doi: 10.1093/nar/gkr1008
589 7	5. Rasala BA, Muto M, Sullivan J, Mayfield SP. Improved heterologous
590	protein expression in the chloroplast of Chlamydomonas reinhardtii through
591	promoter and 5' untranslated region optimization. Plant Biotechnol J
592	2011;9:674–683. doi: 10.1111/j.1467-7652.2011.00620.x
593 7	6. Coragliotti AT, Beligni MV, Franklin SE, Mayfield SP. Molecular factors
594	affecting the accumulation of recombinant proteins in the Chlamydomonas
595	reinhardtii chloroplast. Mol Biotechnol 2011;48:60–75. doi: 10.1007/s12033-
596	010-9348-4

597	77. Choquet Y, Wollman FA. Translational regulations as specific traits of
598	chloroplast gene expression. FEBS Lett 2002;529:39-42. doi:
599	org/10.1016/S0014-5793(02)03260-X
600	78. Gimpel JA, Hyun JS, Schoepp NG, Mayfield SP. Production of
601	recombinant proteins in microalgae at pilot greenhouse scale. Biotechnological description of the scale of th
602	Bioeng 2015;112:339-345. doi: 10.1002/bit.25357
603	79. Specht EA, Mayfield SP. Synthetic oligonucleotide libraries reveal novel
604	regulatory elements in Chlamydomonas chloroplast mRNAs. ACS Synth Biol
605	2013;2:34–46. doi: 10.1021/sb300069k
606	80. Radzun KA, Wolf J, Jakob G., Zhang E., Stephens E., Ross I &
607	Hankamer B. (2015). Automated nutrient screening system enables high-
608	throughput optimisation of microalgae production conditions. Biotechnology
609	Biofuels 8, 65. doi: 10.1186/s13068-015-0238-7
610	81. Gupta PL, Lee SM, Choi HJ. A mini review: photobioreactors for large scale
611	algal cultivation. World J Microbiol Biotechnol 2015;31:1409–1417. doi:
612	10.1007/s11274-015-1892-4
613	82. Cazzaniga S, Dall'Ostoa L, Szaub J, Scibilia L, Ballottari M et al.
614	Domestication of the green alga Chlorella sorokiniana: reduction of antenna
615	size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels
616	2014;7:157. doi: 10.1186/s13068-014-0157-z
617	83. Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K. Best practices in
618	heterotrophic high-cell-density microalgal processes: achievements, potential
619	and possible limitations. Appl Microbiol Biotechnol 2011;91:31-46. doi:
620	10.1007/s00253-011-3311-6
621	84. Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A et al.
622	Functional integration of the HUP1 hexose symporter gene into the genome of
623	C. reinhardtii: Impacts on biological H(2) production. J Biotechnol
624	2007;131:27–33. doi: 10.1016/j.jbiotec.2007.05.017
625	

Figure 1: Marker-free strategy for introducing transgenes into the *C. reinhardtii* chloroplast. The gene-of-interest (GOI) is codon-optimised to match chloroplast genes, and assembled into a transformation construct using a 'one-step' method such as Golden Gate or Gibson assembly. The left and right arms are chloroplast DNA parts that ensure insertion into a specific intergenic region via homologous recombination between the arms and the recipient plastome. One of the arms carries a wild-type copy of a gene that is essential for photosynthesis, and selection is based on the repair of a mutated form of this gene (indicated with an 'X') in the photosynthesis-deficient (P/S–) recipient strain. The resulting transformant is therefore restored to phototrophy (P/S+) with only the GOI introduced into the plastome.

 Table 1: Therapeutic proteins produced in the C. reinhardtii chloroplast.

protein name	description	key findings	yield ¹	reference
Subunit vaccines				
CTB-VP1	CTB adjuvant fused to structural protein VP1 of Foot-and-Mouth Disease Virus, a pathogen of livestock.	First report of a potential mucosal vaccine produced in algae.	3% TSP	[36]
E2	Structural protein E2 of classical swine fever virus, a pathogen of swine.	Elicited a strong immunogenic response in mice following subcutaneous, but not oral, administration.	1.5 – 2% TSP	[37]
p57	Protein p57 from <i>Renibacterium</i> salmoninarum, the causative agent of bacterial kidney disease in salmonid fish.	Both live and freeze-dried algae elicited an immunogenic response when fed to fish.	nd	[38]
VP28	Envelope protein VP28 of White Spot Syndrome Virus, a pathogen of crustaceans.	Codon optimization of the VP28 gene, and strain context appeared to have a marked effect on protein accumulation.	>20% TCP	[39]
CTB-D2	CTB adjuvant fused to D2 fibronectin-binding domain of bacterial pathogen, <i>Staphylococcus aureus</i> .	Oral delivery to mice of dried algae elicited specific mucosal and systemic immune responses and protected the mice against infection.	0.7% TSP	[40]
AcrV and VapA	Antigens from <i>Aeromonas</i> salmonicida, a bacterial pathogen	Choice of promoter/5'UTR and host strain significantly improved expression levels.	0.8% TSP (AcrV) 0.3% TSP (VapA)	[41]

	of salmonids.			
Pfs25 and Pfs28	Surface protein antigens from malarial parasite, <i>Plasmodium falciparum</i> .	Recombinant antigens shown to be structurally similar to the native proteins. Antibodies to Pfs25 bound the sexual stage parasite and exhibited transmission blocking activity.	0.5% TSP (Pfs25) 0.2% TSP (Pfs28)	[42]
CTB-Pfs25	CTB adjuvant fused to Pfs25 surface antigen of <i>P. falciparum</i>	Oral delivery to mice of the dried algae elicited an immune response.	0.09% TSP	[43]
Pfs48/45	Surface protein antigen from <i>P. falciparum</i> .	The recombinant antigen shown to accumulate in the chloroplast in the correct structural conformation.	n.d.	[44]
E7GGG	A mutated, attenuated form of the E7 oncoprotein from Human Papilloma Virus type 16	Induction of anti-E7 IgGs, and E7-specific T-cell proliferation detected in mice following sub-cutaneous injection of total algal extract. High levels of tumor protection obtained following challenge with a tumor cell line expressing the E7 protein.	0.12% TSP	[45]
E7GGG-AadA	E7GGG fused to the bacterial spectinomycin resistance enzyme, AadA.	Subcutaneous injection of algal extracts into mice showed high production of E7-specific antibodies, but low activation of E7-specific CD8+ cells.	n.d.	[46]
MPT64	Secreted antigen of <i>Mycobacterium</i> tuberculosis.	High-level expression obtained using the 16S rRNA promoter fused to the <i>atpA</i> 5'UTR.	n.d.	[27]

НА	Hemagglutinin of Avian Influenza Virus H5	Ocular administration of the recombinant HA to broiler chickens resulted in an immunogenic response.	770 μg/g DB	[47]
CTB-p210	CTB adjuvant fused to the p210 epitope of ApoB100, the main apolipoprotein in low density lipoproteins associated with atherosclerosis.	Oral delivery of fresh algae to mice elicited an immune response.	60 μg/g FB	[48]
Autoantigens				
hGAD65	Human glutamic acid decarboxylase	Purified hGAD65 shown to be immunoreactive to diabetic sera and able to induce proliferation of spleen cells in a diabetic mouse model.	0.25-0.3% TSP	[49]
hIL4	Human Interleukin 4	First report of algal transplastomic lines produced by electroporation.	n.d.	[25]
Allergens				
Ara h 1 core domain and Ara h 2	Major peanut allergens	Recombinant protein conferred protection from peanut-triggered anaphylaxis in mouse model.	n.d.	[50]
Bet v 1	Major birch pollen allergen	The algal-derived Bet v 1 had similar	0.01-0.04% TSP	[51]

		immunologic properties to its <i>E. coli</i> - produced counterpart.		
Monoclonal antibodies (mAb)				
HSV8-lsc	Large single-chain (lsc) antibody against glycoprotein D of herpes simplex virus.	First demonstration of accumulation of soluble, correctly folded lsc antibody in the algal chloroplast including dimer formation via inter-molecular disulfide bonds.	0.5 % TSP	[52]
83K7C	Human IgG1 antibody against anthrax protective antigen 83.	First demonstration that heavy and light chains synthesized in the same chloroplast assemble into a full-length functional mAb.	${\sim}100~\mu g/g~DB$	[33]
Nanobodies				
$V_{H}H$	Variable domain of camelid heavy chain-only antibodies targeting botulinum neurotoxin	V _H H proteins were shown to bind with high affinity to the toxin, and to survive in the gut of mice fed fresh whole algae.	1.4 – 4.6% TSP	[53]
Immunotoxins				
αCD22CH23PE40	Chimeric antibody to B-cell surface antigen CD22 fused to the enzymatic domain of exotoxin A from <i>Pseudomonas</i> aeruginosa.	Immunotoxin was soluble and able to forms a dimeric structure. It was able to kill B cells <i>in vitro</i> and significantly prolonged the survival of mice with implanted B-cell tumours.	0.2-0.3% TSP	[54]
αCD22CH23Gel	Chimeric antibody to B-cell surface	As above, the immunotoxin formed a dimer	0.1-0.2% TSP	[55]

	antigen CD22 fused to 80S ribosome inactivating protein gelonin from <i>Gelonium multiflorum</i> .	and was capable of binding to, and reducing the viability of, B-cell lymphomas.		
Antibody mimics				
10FN3	Tenth binding domain of human fibronectin type III.	Low yield of 10FN3 significantly improved by expression as a SAA-10FN3 fusion.	n.d.	[56]
14FN3	Fourteenth binding domain of human fibronectin type III.	Purified as a soluble protein of the expected molecular mass.	3%	[56]
Growth factors				
VEGF	Vascular endothelial growth factor	Bioactivity of purified protein confirmed in VEGF receptor binding assays.	2% TSP	[56]
hGH	Human growth hormone	Algal cell lysate showed hGH bioactivity in mammalian cell proliferation assay.	0.5 mg/L culture	[28]
Gut-active proteins				
M-SAA	Bovine mammary-associated serum amyloid	Purified M-SAA stimulated mucin production in human gut epithelial cell lines.	>5% TSP	[57]
AppA	Phytase from Escherichia coli	Dried algal biomass fed to broiler chicks significantly reduced phytate excretion.	n.d.	[58]

NCQ	Chimeric protein comprising 20 known bioactive peptide sequences from milk proteins	The artificial protein accumulated to readily detectable levels in algal lines.	0.16 – 2.4% TSP	[59]
PhyA-E228K	Phytase from Aspergillus niger	Algal cell lysate showed high phytase activity <i>in vitro</i> at optimal pH of 3.5.	n.d.	[60]
Wound healing factors				
HMGB1	High mobility group protein B1	Purified protein showed similar bioactivity to commercial HMGB1 produced in bacteria.	2.5% TSP	[56]
Anti-bacterials				
Cpl-1 and Pal	Endolysins from bacteriophage of Streptococcus pneumoniae.	Algal cell lysates and purified endolysins showed effective anti-bacterial activity against various serotypes of S. <i>pneumoniae</i> .	0.9–1.2% TSP ~1.3 mg/g DB	[31]
Cancer cell therapeutics				
TRAIL	Tumor necrosis factor-related apoptosis-inducing ligand	Soluble protein accumulated in the chloroplast.	0.43%-0.67% TSP	[61]
Anti-hypertensive peptides				

	Chimeric protein containing anti- hypertensive peptides	Intragastric administration of the dried algae to a rat model significantly reduced systolic blood pressure.	0.292 mg/g DB	[62]
641				
642				