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Abstract. Analysis of CT scans for studying Chronic Obstructive Pul-
monary Disease (COPD) is generally limited to mean scores of disease
extent. However, the evolution of local pulmonary damage may vary be-
tween patients with discordant effects on lung physiology. This limits the
explanatory power of mean values in clinical studies. We present local dis-
ease and deformation distributions to address this limitation. The disease
distribution aims to quantify two aspects of parenchymal damage: locally
diffuse/dense disease and global homogeneity/heterogeneity. The defor-
mation distribution links parenchymal damage to local volume change.
These distributions are exploited to quantify inter-patient differences.
We used manifold learning to model variations of these distributions in
743 patients from the COPDGene study. We applied manifold fusion to
combine distinct aspects of COPD into a single model. We demonstrated
the utility of the distributions by comparing associations between learned
embeddings and measures of severity. We also illustrated the potential to
identify trajectories of disease progression in a manifold space of COPD.

1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a complex disorder arising
from various pathological processes including emphysema and functional small
airways disease (fSAD). The extent of emphysema and fSAD that make up
overall disease burden can vary, which can affect lung physiology. Both disease
processes can progress at different rates, complicating prognostication. Optimis-
ing the quantification of disease extent in COPD may improve the precision of
disease staging and monitoring.

Analysis of lung disease from Computed Tomography (CT) has typically
relied on the analysis of the lung using global averages. Such metrics cannot
capture the anatomical distribution of disease. Methods have been proposed to
quantify the contribution of various emphysema subtypes [5] or the distribution
of image features [2]. Harmouche et al. [5] built an emphysema manifold by
analysis of classified emphysema subtypes. A Severity Index (S) was derived from
this space that is complimentary to the mean level of emphysema. In contrast,
Bragman et al. [2] modelled local distributions of density and biomechanical
features; exploiting them to investigate differences between subtypes of COPD
whilst also classifying these subtypes.



2 Method

We present a new method to quantify the spread of parenchymal disease and
measure its effect on lung deformation. It is based on locally quantifying tis-
sue destruction and deformation to capture heterogeneity or homogeneity across
the lung. The outcome is a distribution that quantifies various aspects of lung
pathophysiology that can be modelled to test associations with various clinical
hypotheses. The distributions can be exploited to quantify inter-patient differ-
ences in lung tissue pathology and deformation. A single model of tissue disease
and deformation can be obtained by combining separate embeddings obtained
from manifold learning with manifold fusion.

2.1 Lung deformation and tissue classification

The deformation between paired breath-hold CT scans acquired at forced resid-
ual capacity (Iexp, Ω∗) and total lung capacity (Iins, Ω) can be obtained using
nonrigid registration. The output is a transformation ϕ mapping each coordi-
nate x ∈ Ω → x∗ ∈ Ω∗. Local volume change is characterised by the Jacobian
determinant J . It is calculated on a voxel-wise basis: J = det (∇xϕ).

Parametric Response Mapping (PRM) [4] was used to classify voxels as em-
physema (PRMemph) and functional small airways disease (PRMfSAD). For all
voxels xi ∈ Iins, the tissue class zi is based on Hounsfield Unit (HU) thresh-
olds in Iins and Iexp. A voxel is classified as PRMemph if Iins(xi) ≤ −950
and Iexp(ϕ(xi)) ≤ −856. A voxel is classified as PRMfSAD if Iins(xi) > −950
and Iexp(ϕ(xi)) ≤ −856. The airways and vasculature are segmented by only
considering voxels with an HU between −500HU and −1024HU in both scans.

2.2 Local disease and deformation distributions

We present the concept of local feature distributions (Fig.1a and b). The aim
is to quantify local abnormalities in lung physiology and pathology to define
a signature unique to a patients disease state. We introduce two models: 1)
local disease distributions and 2) local deformation distributions. The disease
distributions model the spread of emphysema and fSAD whilst the deformation
distribution characterises local volume change across the lung. They are created
by locally sampling regions of Z and J in a Cartesian grid using local regions of
interest Ωk (ROI) where k = 1 · · ·K indexes the center voxel of the ROI. The
size (r × r × r) of the ROI governs the scale of the sampling.

We modelled two properties of disease spread: 1) locally diffuse/dense disease
and 2) global homogeneity/heterogeneity. For each ROI centered at zk where
z ∈ Ωk, we computed the fraction of PRMemph and PRMfSAD voxels; defined
as vk(emph) and vk(fSAD). Dense disease occurred when vk(·) → 1 whilst
diffuse disease was present when vk(·) → 0. The deviation of diffuse and dense
regions in the lung defined the heterogeneity/homogeneity of disease spread.

A distribution f(v(·)) for each feature was built by sampling K regions. The
shape of the distribution is governed by the two disease properties (Fig.1a). It



provides information on the nature of local disease spread (diffuse or dense) and
whether it is homogeneous or heterogeneous.

Expansion of the lung is dependent on local biomechanical properties (em-
physema) and airway resistance (functional small airways disease), which will
affect lung deformation locally. To capture volume change on a local basis, the
Jacobian map (J) was sampled by calculating the mean Jacobian (µ(J)k) for
all Ωk. A distribution f(µ(J)) of these measurements was built to capture local
volume change throughout the lung using the same process as above (Fig.1b).
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Fig. 1. Local disease and deformation distributions.

2.3 Manifold learning of COPD distributions

We hypothesised that the heterogeneity of COPD could be modelled by the local
disease and deformation distributions. Manifold learning can be used to capture
variability in the distributions and learn separate embeddings for emphysema,
fSAD and lung deformation. Fusion of these embeddings can then be performed
to create various models of COPD.

Distribution distance. Inter-patient differences are computed using the Earth
Movers Distance (LEMD) [11]. It is a cross-bin distance metric, which measures
the minimum amount of work needed to transform one distribution into another.
The distributions are quantised into separate histograms hv(emph), hv(fSAD) and
hJ using Nb bins. They are normalised to sum to 1 such that they have equal
mass. A closed-form solution of the LEMD can be used for one-dimensional distri-
butions with equal mass and bins [7]. It reduces to the L1-norm between cumula-
tive distributions (H) of two histograms h1,(·) and h2,(·): LEMD

(
h1,(·), h2,(·)

)
=(∑Nb

n |Hn,1,(·) −Hn,2,(·)|
)

.

Manifold learning and fusion. Manifold learning is used to model emphy-
sema, fSAD and Jacobian distributions. The aim is to capture variations in the
distributions in a population of COPD patients. As emphysema and fSAD occur
synchronously and both affect lung function, the manifold fusion framework of
Aljabar et al. [1] is employed to create a single representation of these processes.



For P subjects, the PRM classified volumes are Z1, · · · ,ZP and their re-
spective Jacobian determinant maps are J = J1, · · · , JP . The distributions are
quantised using Nb bins into their respective histograms hp,v(emph), hp,v(fSAD)

and hp,J . Pairwise measures in the population are obtained with the LEMD

yielding the pairwise matrices Memph, MfSAD and MJ . They can be visu-
alised as connected graphs where each node represents a patient and the edge
length is the LEMD. Isomap1 [12] is applied to each matrix. A K-nearest neigh-
bour search is first performed to create a sparse representation of M(·) where
edges are restricted to the K-nearest neighbourhood of each node. A full pair-
wise geodesic distance matrix D(·) is then estimated by analysis of the K-nearest
graph ofM(·) using Djikstra’s shortest-path algorithm [3]. The low-dimensional

embedding y
(·)
p , p = 1, ·, P is obtained by minimisation of

min
∑
p,j

(
D

(·)
p,j − ||y(·)p − y(·)j ||

)2
(1)

using Multi-Dimensional Scaling. The coordinate embeddings forMemph,MfSAD

and MJ are ye, yf and yJ with dimensions de, df and dJ that are selected.
Fusion of the coordinates y(·) can be performed in any combination to inves-

tigate various processes. For simplicity, we consider all embeddings. The coordi-
nates are uniformly scaled with the scale factors se, sf and sJ such that the first

component of each embedding y
(·)
1 has a unit variance. These are concatenated

to yield Y = (seye, sfyf , sJyJ) with dimension de + df + dJ . A distance matrix
Mc is obtained by calculating pairwise Euclidean distances of Y . Isomap is then
applied to yield the combined coordinate embedding yc with dimension dc.

3 Experiments

3.1 Data processing

A total of 1, 154 scans of COPD patients (GOLD ≥ 1) were downloaded from
COPDGene [10]. They were acquired on various scanners (GE Medical Sys-
tems, Siemens and Philips) with the following reconstruction algorithms: STAN-
DARD (GE), AS+ B31f and B31f (Siemens), and 64 B (Philips). The Pulmonary
Toolkit2 was used for lung segmentation. Breath-hold scans were registered with
NiftyReg [9] with a modified version of the EMPIRE10 pipeline [8]. The transfor-
mation was a stationary velocity field parameterised by a cubic B-spline and the
similarity measure was MIND [6]. The constraint term was the bending energy
of the velocity field, weighted at 1% for all stages of the pipeline. After manual
inspection of the registrations, 743 patients were selected. Scans were rejected if
there were major errors close to the fissures and the lung boundary.

The sampling size of the ROIs was r = 20mm, consistent with the size of the
secondary pulmonary lobule. Sampling was performed with a Cartesian grid of

1lvdmaaten.github.io/drtoolbox/
2github.com/tomdoel/pulmonarytoolkit



center voxels spaced every 5mm. We chose a value of Nb = 60 as its effect on
pairwise distances was minimal with increasing Nb when Nb > 50.

The dimensionality d of y and the parameter K for each embedding were
determined by estimating the reconstruction quality of the lower-dimensional
coordinates. The residual variance 1− ρ2M,y between the distances in M(·) and

the pairwise distances of y(·) was considered. For each embedding step (ye, yf

and yJ), we determined the combination of K and d that minimised the resid-
ual variance. Grid-search parameters were set to d∗ ∈ [1, 5] and K∗ ∈ [5, 100].
Final parameters were K = [50, 30, 45] and d = [5, 5, 4] for ye, yf and yJ . We
considered a model of the disease distributions (ye, yf → yc1) and a model also
including the deformation (ye, yf , yJ → yc2). Parameters for both models were
Kc1 = 55 and Kc2 = 60 with dc1 = 4 and dc2 = 4.

Table 1. Pearson correlation coefficient between the first three embedding coordinates
and the distributions using the median (ϕ), median absolute deviation (ρ), skewness
(γ1), kurtosis (γ2). [∗ = p < 0.05, † = p < 10−3]

PRMemph PRMfSAD J

ye1 ye2 ye3 yf1 yf2 yf3 yJ1 yJ2 yJ3

ϕ 0.96† -0.19† 0.01 0.97† 0.07 -0.01 -0.48† -0.06 0.04

ρ 0.89† 0.22† -0.00 0.35† -0.36† -0.41† -0.46† 0.14∗ -0.09

γ1 -0.71† -0.28† 0.00 -0.86† 0.21† 0.16† -0.68† -0.24† 0.00

γ2 -0.41† -0.26† -0.01 -0.37† 0.33† 0.26† -0.36† -0.18† -0.01

3.2 Associations with disease severity

Correlations between the embeddings and distribution moments were computed
(Table 1). The first and second components of the embeddings had strong
to moderate correlations with the distribution parameters, demonstrating that
manifold learning of the distributions modelled the variation in the population.

We considered several models to predict COPD severity using FEV1%predicted
and FEV1/FVC (Table 2). We considered three simple models (mean PRMemph,
mean PRMfSAD and mean Jacobian µ(J)) and compared them to univariate
and multivariate models of embedding coordinates (y). The univariate models

(y
(e,f)
1 ) showed moderate improvement over the simple mean models. However,

the combined models (yc11 and yc21 ) improved model prediction. The multivariate
models demonstrated best performance, with model 2 (yc2 = ye + yf + yJ) per-
forming best, even after adjusting for an increase in variables. It had a Bayesian
Information Criterion (BIC) of 620 compared to 625 (yc1) and 633, 650 and
648 for PRMemph, PRMfSAD and µ(J) respectively. The increase in explanatory
power was also seen when correlating the first component of the combined models
(y

c1,2
1 ) with FEV1%predicted. The first components of the combined models had



Pearson coefficients of r = 0.67, p < 0.001 and r = 0.70, p < 0.001 respectively.
Coefficients for the mean models were r = −0.63, p < 0.001, r = −0.50, p < 0.001
and r = 0.52, p < 0.001 respectively. We also used manifold fusion to create a
joint model between mean values of PRMemph and PRMfSAD and a second
with PRMemph, PRMfSAD and µ(J). Pairwise mean differences were used to
create M(·). Correlation of the first component was r = 0.60, p < 0.001 and
r = −0.65, p < 0.001 respectively. This corroborated the utility of combining
embeddings based on the local distributions (yc21 → r = 0.70, p < 0.001).
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Fig. 2. Projection of embeddings a) yc1 and b) yc2 with FEV1%predicted overlayed.

Table 2. Regression of models versus various clinical measures of COPD severity.
Model performance quoted as adjusted-r2. [† = p < 10−3]

Mean features univariate multivariate

Y PRMe PRMf µ(J) yc11 yc21 ye1 yf1 yJ1 yc1 yc2 ye yf yJ

FEV1%p 0.40† 0.25† 0.26† 0.45† 0.49† 0.42† 0.29† 0.13† 0.48† 0.51† 0.43† 0.34† 0.14†

FEV1/FVC 0.51† 0.30† 0.22† 0.54† 0.53† 0.54† 0.32† 0.09† 0.59† 0.60† 0.55† 0.38† 0.10†

3.3 Trajectories of emphysema and fSAD progression

It is likely that trajectories of disease progression in COPD vary depending on
the dominant disease phenotype. We assessed whether we can model these in the
tissue disease model (yc1). We parameterised yc1 using the emphysema and fSAD
distributions as covariates (l) with kernel regression: yc(l(·)) = 1

v

∑
iK(li − l)yci

where K is a Gaussian kernel and v is a normalisation constant. The covariate
was the LEMD between the distributions and an idealised healthy distribution
(distribution peak at v = 0). The outcome is two trajectories in the manifold



space (Fig.3a). The emphysema trajectory can be considered as the path taken
when emphysema progression is dominant and vice-versa for fSAD. We classified
patients based on these trajectories. A patient is seen to follow an emphysema
progression trajectory if it is closest to yc(l(emph)). At the baseline, patients are
classified as both emphysema and fSAD subtypes. When considering two sets
of patients stratified by trajectory, the explanatory power of the embeddings
improved in comparison to yc1 (Table 2). The emphysema regression produced
an adjusted-r2 of 0.52 and 0.63 when predicting FEV1%predicted and FEV1/FVC

respectively whilst fSAD was 0.45 and 0.62.
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Fig. 3. a) Three-dimensional projection of yc1 and b) classified trajectories of yc1 .

4 Discussion and Conclusion

We have presented a method to parameterise distributions of various local fea-
tures implicated in COPD progression. The disease distributions model local
aspects of tissue destruction whilst modelling global properties of heterogene-
ity and homogeneity. The deformation distribution quantifies the local effect
of disease on lung function. Patients exhibiting different mechanisms of tissue
destruction can have identical global averages yet can display different disease
distributions. These differences are likely to cause differences in local biomechan-
ical properties, which are captured by the deformation distribution.

We have shown that models of the proposed distributions better predict
COPD severity than conventional metrics (Table 2). We have shown that em-
beddings based on distribution dissimilarities have stronger correlations with
FEV1%predicted than those learned from mean differences. Both these results
suggest that the position of a patient in the manifold space of yc1 or yc2 is
critical for assessing COPD. This was observed in the trajectory classification
(Fig.3). Determining the trajectory that a patient is following may help inform
therapeutic decisions and improve our understanding of COPD progression.

Complexity of the modelling may be increased to model more specific in-
formation about lung pathophysiology. Separate manifolds can be produced on



a lobar basis. This is likely to further increase the explanatory power of the
models since inter-lobar disease metrics correlate with different aspects of physi-
ology. The detection of regional differences in local deformation may add further
important information regarding the pathophysiology of a patient.
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