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Abstract

Recent excavations of a Late to Post-Meroitic furnace workshop at Meroe, Sudan prompted 
questions concerning the use of some of its unusual design features and the nature of ironmaking 
practice.  To begin addressing these questions, four iron smelting experiments were conducted in a
purpose-built workshop modelled from the archaeological remains.  Some of the goals of the 
campaign included identification and testing of potential ore and technical ceramic resources as 
well as the production of slag with characteristics that mirrored those of the archaeological 
deposits.  The primary objective, however, was the further development of a model for Late to Post
Meroitic direct process iron production.  Comparison of the microstructural and chemical 
characteristics of the archaeological and experimental ironmaking residues leads to a rejection of 
hypothesized ore sources adjacent to Meroe, support for hypothesized technical ceramic resource 
locations, and a failure to replicate Late-Post Meroitic smelting slag.  However, the comparison 
also makes a strong contribution to the developing model of smelting practice at Meroe by 
emphasizing the need to create more consistent redox conditions within the furnace, greater 
standardization in preparing technical ceramics and the use of relatively lean ores (≈60 wt % Fe).
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Introduction

The production of iron, even at small scales, requires the complex coordination of social, 

technological, and economic know-how.  Ore must be prospected, mined, transported and 

prepared (usually roasting, crushing and sorting). Charcoal must be prepared by the slow burning 

of felled trees or branches, crushed to suitable size, and similarly transported to the primary 

production site.  These two main ingredients are then combined with air and flame within a furnace,

which itself requires the accumulation and processing of materials such as stone and clay.  The 

ironmasters, if successful, blend their accumulated resources and labour with knowledge and skill 

to yield a mass of iron and some quantity of residuum termed slag.  Most of the iron metal, being 

the ironmaster’s most valuable economic product, finds its way out of the workshop and into the 

hands of others as either raw material or finished artefacts.  The slag along with any primary 

material material losses are dumped in scatters or heaps that, in addition to remnant workshops, 

offer the only clues to past ironmaking behaviours. The hypotheses they generate, however, must 

be assessed through archaeologically constrained experimentation, 

The Royal City of Meroe, now part of a UNESCO World Heritage listing (Archaeological 

Sites of the Island of Meroe), was once the capital of the Kingdom of Kush and the focus of Kushite

political power between the third century BC and the fourth century AD (Humphris n. d.; Welsby 

1996; Török 2015). The numerous large piles of ironmaking residues also mark the city as one of 

Africa’s most impressive ancient iron production centres (see Humphris and Rehren, 2014) for a 

summary of relevant literature). Meroe has at times been postulated as a focus for the diffusion of 

iron from the north throughout sub-Saharan Africa and as the the recipient of ironmaking 

technology from Ethiopia to the south (Trigger 1969 and references therein).  Ongoing 

archaeological research at Meroe (since 2012) so far includes intensive systematic investigation of 

7 slag heaps from the more than 30 mapped at ground level (not including the numerous slag 

deposits existing within the deep stratigraphy across parts of the site).  Radiocarbon dating 

indicates over a thousand years of iron production (Humphris n. d.; Humphris and Scheibner 
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2017). The scale, intensity, and continuity of production represented by such large quantities of 

slag are amongst the major research goals of the project, 

One particular slag heap,  MIS6 (Meroe Iron Slag 6), was excavated in 2014 after 

geophysical surveys indicated the presence of a potential furnace workshop (Fig. 1;Humphris and 

Carey (2016).  The excavation exposed a floor displaying typical characteristics of Late Meroitic 

iron production workshops (Fig. 2; see (Humphris n. d.; Shinnie and Kense 1982; Tylecote 1982)  

with a well-preserved furnace base at the eastern end.  Radiocarbon dating indicates that many of 

the iron production residues found in association with the workshop date to Late Meroitic times, 

though the final use of the workshop took place in the early fifth century AD (see Humphris and 

Scheibner 2017 for details).  The dates also indicate  continual iron production into the Post-

Meroitic period, (Humphris and Scheibner 2017).

 The MIS6 workshop was situated on the south side of the slag heap and was built into the 

remains of an earlier Meroitic structure.  Prominent workshop features include a rectangular 

sunken workshop floor (about 30 cm lower than original ground level) with a shallow oval pit in the 

centre.  The sunken floor measures approximately 2.5 x 4 m.  A few centimetres of the lower 

portions of a single furnace with an internal diameter of 55 cm was preserved on the eastern end of

the workshop. A second smithing feature was identified on the western end of the workshop. The 

overall plan of the workshop parallels those of similar date that were excavated in the 1970’s 

(Shinnie and Kense 1982; Tylecote 1982).

The results of the MIS6 workshop excavation combined with those observed by Shinnie 

and Kense (1982) generated a rough blueprint for Late to Post-Meroitic furnace and workshop 

spaces that was amenable to empirical evaluation. The importance of experimental iron smelting 

as an investigative tool has been demonstrated repeatedly in both laboratory (Tylecote et al. 1971) 

and field (Crew 2000, 2013; Crew et al. 2012) settings.  The fundamental role played by materials 

production in economic systems mandates an accurate portrayal of its costs and benefits, a 

portraiture that can only be evaluated by controlled experiment.  

In January 2015, a workshop modelled from the  archaeological data was constructed at 

the Royal City of Meroe in order to run a series of experimental iron smelts that might provide 

scientific insights into the ancient ironmaking activities.  Organised  as part of a community 
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engagement event (Humphris et al. n. d.), four experiments were conducted within the 

reconstructed space that, in addition to creating a tangible experience for visitors (Fig. 3),were 

designed to illuminate the technological recipes followed by Late and Post-Meroitic ironmasters. 

Scientific goals included identifying furnace resources and preparation procedures; evaluating the 

function of the specialized “furnace lining” found scattered on the site, exploring the design of the 

air intake mechanisms, and developing a model of general furnace operation procedures—ore to 

fuel ratios, charging regime, and management of the air supply. Modelling the quantities of iron and

slag produced per smelt was also a key research agenda and essential for shedding light on the 

extinct Meroitic socioeconomy.  These, of course, were ambitious goals that could not hope to be 

achieved in total after a few smelts constrained by time, logistics, and cost.

 Macroscopic observations from the smelts and the materials it generated are detailed in 

Humphris et al. (n. d.) and summarized below.  Table 1 summarizes the experimental design and 

yields while the materials, organization, recipe and product yields of the experiments are depicted 

in Fig. 4.  As far as possible, the archaeological record was replicated including crushing ore to a 1-

2 cubic cm size, attempting to use a similar charcoal (Acacia type Nilotica), and attempting to 

replicate the technical ceramics (TC) using local materials.  Despite these efforts , the production 

of slag equivalent to those of the archaeological record remained elusive in both expected 

quantities and character.   The archaeological slag contained tap slag, ropey slag stringers, and 

dense furnace slag.  Except from a single run of tap slag, most of the experiments produced a 

viscous furnace slag with high porosity whose friable materials broke into sharp fragments.  

Potential causes for the poor correspondence between the experiments and archaeology 

were suggested based on the observations at hand.  Furnace temperature records indicated that 

MS-1 failed to generate enough heat during the first 3 h of charging which led to poor yields.  The 

failure of MS-2  was variously blamed on the use of a low quality ore, the high humidity of the day 

and a furnace that was too hot/too reducing during later stages of the smelt.  MS-3 produced a 

furnace slag with slightly lower viscosity, though low temperatures at the start of the smelt followed 

by high heat and reducing conditions at the end probably let to  reduced yields and poor slag 

production.  There was a sense, throughout the first three experiments, that the charge  was 

reacting too strongly with the ceramic furnace well, especially near the intersections of the wall with
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the tuyères. The use of a refractory lining in MS-4 aimed to correct this problem, but failed to cure 

in time for the smelt.  The added moisture was suspected of preventing the build-up of sufficient 

heat and reducing conditions for bloom production and the development of a fluid slag.   Through it

all, there was a sense that the air supply system was also problematic, specifically the use of 

tuyères that plunged some 20-25 cm into the furnace from the internal wall and pot-bellows 

constructed with a shallow diaphragm and basal nozzle.  Nonetheless, the experiments illuminated

key features of Late – Post Meroitic smelting practice including operational constraints within the 

workshop space and the accessibility of potential material resources.

The archaeometric examination of experimental resources and smelting products in direct 

comparison with those found in the archaeological record helps extend these insights by 

highlighting microscopic and chemical variation within and between groups defined by context and 

shedding light on fundamental recipe differences. In addition, explanations for experimental failures

can be assessed against expected slag characteristics like the quantities and types of iron oxides 

present in the microstructure.  Most importantly, the systematic comparison of experimental and 

archaeological samples, as presented here, provides the opportunity to check potential models of 

Late-Post Meroitic smelting practices against reality and develop a deeper understanding of past 

technological choices and outputs.  There may be many ways to smelt iron, even when following 

the constraints of the archaeological record, but any given furnace workshop followed a restricted 

set of these.

Investigative methods

Sample Selection and Preparation

Materials from each smelting experiment were collected as completely as possible. Some 

compromises were made in the recovery process in order to accommodate the smelting festival 

schedule.  Larger products, such as blooms, tuyère fragments, and slag masses were bagged 
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immediately while others were collected en masse in metal drums to cool and be sorted later by 

hand and magnet.  This included material that was shovelled directly form the furnace.  Care was 

taken not to sample material that became integrated with the sandy floors of the workshop as 

these contained were contaminated with small quantities of archaeological slag.  Observations 

were not recorded, however, for slag that could not be dislodged from the furnace wall without 

damage or of volume changes to the furnace wall.  These necessary compromises created bias in 

the recorded weights of the smelting products, but not the sampling of material for microscopic and

chemical  analysis.  

Priority was given to slag during sampling because it provides the best single proxy for 

smelting recipes.  Time limitations combined with the volume of materials being considered 

necessitated that a relatively small subsample be taken from the experimental residues.  

Specimens were selected to represent: 1) a cross-section of slag pulled from different locations 

within the furnace (those sampled during the experiment)  and 2) slag with positive and neutral 

response when exposed to a typical hand magnet. A total of 6 slag specimens was  sampled from 

MS-1; 5 from MS-2; 7 from  MS-3;  and  6 from MS-4.  These specimens are identifiable in the raw 

data by the “-S” suffix in the specimen name (Charlton and Humphris 2017).  Approximately 5 kg of

crushed roasted ore was collected from each homogenized batch to provide an analytical sample 

for each experiment.  The analytical sample included 5 specimens from MS-1 (1 Doline + 4 

Purple); 5 from MS-2; 4 from MS-3; and 4 from MS-4. These are identifiable in the raw data by the 

“- O” suffix in the specimen name (Charlton and Humphris 2017).  A smaller sample TC was 

collected from the experiments since no change was made in the ceramic recipes across the 

campaign.  The sample included 3 specimens from MS1; 2 from MS-4; and one generic specimen 

removed from the furnace arch following MS-4.  These specimens are identifiable in the raw data 

by the “-T” suffix in the specimen name (Charlton and Humphris 2017).

There is a fundamental difference in scale when sampling the products of a single 

experimental smelt, compared to sampling the products of numerous smelts accumulated in 

heterogeneous slag heap over a number of years or decades in the archaeological record 

(Humphris and Carey 2016).  To mitigate this, the archaeological smelting residues analysed here 

were sampled from the  fill of the furnace  base (collected as a bulk sample during excavation),  
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and assumed to contain the products of the last firing of the furnace (Fig. 5).  Contamination from 

the overlying burden of the slag heap, however, cannot be ruled out.  The sandy matrix of the 

furnace fill was sieved through 1 mm mesh and larger materials sorted into stone, slag, ore, and 

TC based on macroscopic characteristics (especially colour, texture, density, magnetism, inclusion 

presence, and porosity).  Most materials were small and fragmented, although some slag was 

large enough to identify as internal furnace flows, or prills, and furnace slag.   A sample of these 

materials was selected for analysis including 15 slag, 7 ore, and 5 TC specimens.  Again, more 

emphasis was placed on the sampling of slag than other materials and reflected the possibility that 

macroscopic identification might be in error when dealing with specimens of small size.

Subsamples of experimental and archaeological materials were microscopically and 

chemically characterized at the UCL-Qatar Archaeological Materials Science Laboratories in Doha.

These specimens were sectioned, cleaned, and mounted in blocks of epoxy resin, and then 

polished using standard metallographic techniques to a finish of 1 µm.  All specimens were 

examined via optical microscopy and then coated with a thin film of carbon for scanning electron 

microscopy (SEM) and X-ray microanalysis via energy dispersive spectroscopy (EDS). 

Optical microscopy

Polished specimens were examined under reflected light with a Leica DM 2500P at 

magnifications of x50, x100, and x200.  Phases and their morphologies, along with any observed 

anomalies, were noted, and reference images were taken for most specimens. Secondary material

characterization was made based on the microscopically identified features and applied to each 

specimen prior to chemical analysis (see Charlton and Humphris 2017 for images and material 

identifications).

Scanning Electron Microscopy and X-ray microanalysis

Polished carbon-coated specimens were further examined with a JEOL JSM 6610 low 

vacuum SEM equipped with an Oxford Instruments X-Max N50 energy dispersive spectrometer. 

Images were captured with backscattered electrons (BSE) to observe phase differences, and 
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element compositional analyses conducted for each.  X-ray spectra were acquired, interrogated, 

and quantified using Oxford Instruments Aztec 3.1.  Spectra were optimized using a cobalt 

standard and acquisition parameters were kept constant (working distance = 10 mm; accelerating 

voltage = 20kV; process time = 5; deadtime ≈ 40%).  All EDS analyses were conducted as area 

scans at magnifications of x200, resulting in analysed areas of 0.28 mm2.  A total of 5  scans were 

made for each specimen. The areas were chosen systematically to represent the average 

microstructure (and chemistry) of the sample across its entire area..  The size of each area 

depended on the heterogeneity of each specimen; an even size distribution if the specimen had a  

homogeneous microstructure or a variable size distribution if clear differences were observed.  The

aim was to give proportional coverage to all microstructural features and provide an accurate 

estimate of the specimen’s bulk chemistry.  This step is important since many smelting residues, 

and especially slag, are often heterogeneous.  Peak identifications were made manually in order to

optimize each fitted spectrum to its empirical spectrum and identify anomalies created by the pulse

pile up correction algorithm.  SEM images, raw data, and assessments of inter-specimen variability

can be found in Charlton and Humphris (2017).

Data quality

The results of small surface area analyses using a beam technique are subject to analyst 

biases. Their reliability can only be evaluated quantitatively by direct comparison of homogenized 

specimens through true bulk techniques like X-ray fluorescence or inductively coupled plasma 

spectroscopy.  The relative reliability of the technique, however, can be assessed by the ability to 

recognize discrete groups of materials defined a priori by context or experiment. 

Three certified reference materials (CRM) were analysed as part of most analytical 

sessions to ensure stable instrument performance and provide a means of assessing the precision 

and accuracy of quantified results.  The US Geological Survey CRM basalts BCR-2G (Plumlee 

1998a), BIR-1G (Smith 1998), and BHVO-2G (Plumlee 1998b), were selected for this purpose.  

Results deviated from the recommended values and from one another due to variations in beam 

current and minor differences in focusing.  Normalization across all identified elements led to 

general increases in accuracies and precision for most elements with recommended values greater
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than 0.1 wt % (Table 2 – 4).  Low values of P and Mn are notable exceptions, creating less precise,

but, in general, more accurate values. Results of all CRM analyses are reported in Charlton and 

Humphris (2017).

A decision was made to report results as elements rather than oxides—the latter being the 

more common approach in the literature.  More than a preference, the decision is based on the fact

that ED spectra identify elements, not compounds.  Oxygen is amongst those elements and may 

be measured more precisely than calculating its presence by stoichiometry.  This is particularly true

when oxides of a given element, like Fe, may vary between the materials one wishes to compare.  

One can always calculate stoichiometry using the elemental data, but may not be able back 

transform to element wt% with the same confidence.  More important is that phase structure and 

oxide choice tend to agree such that analytical totals approach 100 wt %. 

There are three main reasons why such totals may not be approached in any given case.  

First, beam currents may vary and influence the calculated totals.  Totals amongst the CRMs, for 

example, sometimes reached 111 wt % and could be corrected with normalization as noted above. 

Second, low totals will occur when voids are present.  This is only partially correctable by 

normalization and reduces accuracy to an unknown level.  Where porosity is similar between 

specimens, their relative chemical variation will be maintained.  Caution, however, is warranted 

when levels of porosity are dissimilar, as in the case of samples from different materials.  A third 

reason that totals might deviate from 100 wt % is a poor analysis caused by instrument failure, 

improper instrument configuration, or exceptionally bad sample preparation.  An examination of the

data created in this study indicate that deviations are caused by changes in beam current and 

levels of porosity.  No individual specimens was removed from consideration.

Materials characterization

Iron production generates a broad range of residual materials, many of which have blurred 

definitions.  Categories used here include: ore—ferruginous stone comprised of goethite and silica 

grains of varying size and structure; part-reduced ore (PRO)--ore showing increasing quantities of 

ferrous oxide skins as well as reactions with alumina and silica that result in irregularly structured 

hercynite and fayalite crystals;smelting slag—a once molten or semi-molten ferrosilicate comprised
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mainly of fayalite, wüstite, glass,  and possibly hercynite;  smithing slag—smelting slag that has 

reacted with ceramics from the smithing hearth, additional quantities of fuel ash, and hammer scale

; bloom slag—slag that adheres to the bloom and often contains high levels of silica and lime 

relative to most other smelting slag; fuel ash slag—vitreous material with high lime, potash, and 

magnesia concentrations formed from the reactions of fuel ash and TC, ceramic rich slag—vitreous

slag with high alumina and silica contents  that forms from the reaction of TC; TC—remanent 

fragments of furnace wall and tuyères; and gromp—fused bits of slag and unconsolidated iron that 

often forms on top of blooms.  Broad categories like ore, slag, and TC display distinct macroscopic 

and microscopic characteristics that make them easy to sort.  Small fragments of slag and TC 

collected from the archaeological furnace fill could be identified based the presence of fayalite and 

silica grains, respectively.  Distinguishing ore samples from PRO was more challenging.

All ore samples collected from archaeological materials were assumed to be reacted to 

varying degrees, some of which could be expected to be closer to slag in chemical composition 

and depleted of Fe.  Ore fragment size was approximately 1-2 cubic cm, the same as used in the 

experiments. The presence of ooids was the only reliable microscopic identifier, but could not be 

trusted to identify all ore samples.  This problem was mitigated by implementing a group 

identification procedure involving principal component analysis (PCA) and hierarchical cluster 

analysis (HCA).  Employing functions from the R base package (R Core Team 2017), all 

specimens were subjected to standard PCA (following the terminology of (Baxter and Freestone 

2003).  That is, a PCA was applied to the standardized (z-score) values of all elements above the 

0.1 wt % for the materials under consideration. This is also equivalent to running the PCA on the 

correlation matrix. The PC scores were grouped using average-linkage HCA. Those specimens 

identified through microscopy as PRO were chemically distinct from slag and TC.  The PCA and 

HCA procedure was repeated for the PRO specimens and the group that contained the highest Fe 

concentrations was subsequently assigned to the “ore” chemical group. All procedures and R code 

are provided in Charlton and Humphris (2017).

Similarly, some slag specimens contain fuel ash or ceramic enrichment that goes unnoticed

in microscopic examination.  These enrichments can be detected chemically, following the same 

procedures outlined above. The identification of discrete slag groups whose members are enriched
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in Al, Si, and Ti indicate stronger TC influence, while those rich in Ca, K, and Mg are indicative of 

stronger fuel ash influence (see Charlton et al. 2010).  Such enrichments are identified by the 

strong positive correlation of the relevant element loadings.  Outlying groups of slag with either of 

these enrichments were removed from consideration in order to make reasonable material 

comparisons.  It is worth noting that structurally distinct groups include members derived from 

multiple experiments.  The iterative procedure for removing outliers was repeated until no distinct 

outliers could be detected from any single experimental or archaeological group. Charlton and 

Humphris (2017) provides a step-by-step account of the entire procedure with supporting graphs.

Resource and recipe hypotheses

Direct comparisons were made between experimental and archaeological ores, TC, and 

slag.  Nominal scale microstructural variation was noted and the chemistry of all samples was 

evaluated with PCA.  Affinities between microstructural and chemical groups (defined by context or

experiment number) indicate similarities in exploitation (in the case of ores and TC) and use (in the

case of slag).  Given the small sample sizes and lack of repeated trials, the statistical significance 

of such similarities and differences was not evaluated.

Reduction efficiency and resource costs

Ironmaking recipes are compared in three ways.  The first comparison relies on plotting 

slag chemistry within the FeO – SiO2 – Al2O3 ternary phase diagram.  This equilibrium diagram is 

an effective thermochemical model for most ferrosilicate slags.  Though representing an ideal 

system somewhat different from the non-equilibrium conditions of bloomery furnaces, it 

nonetheless provides a means of comparing smelting recipes and making inferences about the 

technological choices of the smelters (Rehren et al. 2007; Charlton et al. 2010).  The second 

involves calculation of the reducible iron index (RII; see Charlton et al. 2010) which serves as a 

proxy for redox conditions within a bloomery furnace.  The validity of RII requires that any element 

or oxide concentrations in the slag influenced from non-ore parental materials must be estimated 
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and removed prior to comparison. This is achieved by means of mass balance calculations, the 

third method.  Mass balances estimate the resource proportions required by the system to 

generate a slag with a specified chemistry, as well as the amount of iron produced per unit of slag.

Both the ternary phase diagram and RII calculation require a conversion of elements into 

oxides.  The procedures and multipliers used are provided in Charlton and Humphris (2017).  In 

both cases, MnO is added to FeO because the two are common ore constituents and MnO 

behaves similarly to FeO in the smelting context (Mn is only one proton less than Fe).  Other 

oxides, such as CaO and MgO, while often behaving in a similar fashion to FeO, are less prevalent

in ores and are more likely derived from fuel ash. They should not be included unless a strong 

case can be made for them deriving primarily from the ore.

Results

Ore

A key goal for the experimental campaign was the identification of reasonable ore 

resources.  Ores were grouped into 3 types based on macroscopic inspection by the lead smelter.  

These included, in order of use, Doline—a fine-grained oolitic ironstone associated with filled-

sinkholes (dolines), Purple—a soft and variable ironstone crust found in the hills behind the Meroe 

Pyramids, and Oolitic—an ironstone with a recognizable spheroidal texture also acquired in the 

hills behind the pyramids.  Representative backscattered electron micrographs of the three ore 

varieties are shown in Fig. 6 in comparison with similar samples analysed from the MIS6 furnace.  

Clear differences are revealed in the microstructures of the experimental ores (Fig 6 A-C) 

and the potential ores recovered from the archaeological workshop (Fig 6 D-F).  The Doline and 

Oolitic ores are most similar in structure, containing a series of Fe-rich ooids of varying size.  The 

so-called Oolitic ore is more weathered and contains higher numbers of vesicles within its matrix.  

The microstructure of the Purple ores contains a network of Fe-rich phases and large voids, giving 

them the appearance of trabecular bone or a mass of microfossils.  The potential archaeological 
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ores contain a series of round structures that resemble the ooids of the experimental ores, but with 

a more prominent radial structure and less obvious concentric rings. Other examples are more 

amorphous in structure and the pattern of vesicles resembles that of the Purple ores.

Systematic differences are also observed in ore chemistry (Table 5), with variation in all 

elements measured above 0.1 wt %.  PCA biplots of the first three PC axes reveal the patterns in 

ore chemistry and highlight the greater similarity between the potential archaeological ores and the

purple ores used in experiments MS1 and MS2.  The Doline and Oolitic ores are richer in Fe, with 

lower concentrations of Al and Si.  The Doline ores have higher concentrations of P and lower Co 

relative to the Oolitic ores.  The Purple ore is characterized by higher Al concentrations relative to 

those found within samples taken from MIS6 (Fig 7).

Though the Doline and Oolitic ores seem more appropriate for effective bloomery smelting 

based on their relative richness in Fe compared with refractory elements, it is clear that they are 

not related to the archaeology of MIS6. These ores do share similar ooid grain sizes with those 

from the MIS6 furnace, but  the more fractured character of the latter may have led to greater 

penetration of reducing gasses. This might have made the archaeological ores more reducible 

despite their relative leanness in Fe.

Technical ceramics

Little difference is observed between the experimental and archaeological TC 

microstructures (Fig. 8).  This most likely reflects the use of the same or similar local resources, 

including Nile clay and surface sand.  The only obvious microscopic difference between the two 

sample sets is the inclusion of slag in the temper of the archaeological ceramics (Fig. 9).  Whether 

this addition is intentional or incidental cannot be determined (see Ting and Humphris 2017) for a 

more detailed consideration of TC produced at Meroe).

The experimental and archaeological TC samples are also chemically similar as seen in 

Table 6 and Fig. 10. The archaeological ceramics tend to be richer in Fe and Mn, probably 

reflecting a contribution from the slag temper. A second difference is that the archaeological 

ceramics have a more consistent chemistry.  These findings are in agreement with the microscopic

observations and suggest that the resources acquired for the experiments generally match those 
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used by Late Meroitic furnace builders. The modern production, however, failed to replicate the 

precise recipe and skill of the ancients.

Slag

Investigations of the slag reveal high levels of microstructural diversity both within and 

between experiments and lower levels of variability within the archaeological slags. Fig. 11 shows 

representative micrographs from each experiment and MIS6 (ordered MS-1 through MS-4 by row) 

with the bottom row showing MIS6).  The experimental slag contains phases common to primary 

iron smelting slag, such as fayalite (Fe2SiO4), wüstite (FeO), hercynite (FeAl2O4) and glass. 

However, it also contains magnetite (Fe3O4)—a phase more often found in slag produced under 

more oxidizing conditions (grey phase in Fig. 11 A, D, I and L).  Here, the presence of magnetite 

may also be indicative of  ore particles that failed to reduce completely. The range of structures 

indicates formations in variable thermal and redox furnace environments.  This observation is 

consistent with the character of the smelts as documented by the operation log and thermal 

profiles (Humphris et al. n. d.). The archaeological slag, by contrast, is relatively lean and only 

contains fayalite, glass, some hercynite, and small concentrations of wüstite. From the overall 

consistency and visibly low levels of wüstite (and other free iron oxides) in the MIS6 slag 

microstructure, it is hypothesized that the Meroitic ironmasters were effective in achieving high 

reduction efficiency through skilful replication of distinct recipes and smelting practices. MS2 and 

MS3 are the only experimental smelts to yield slag specimens with microstructures similar to the 

MIS6 furnace slag, perhaps reflecting higher redox conditions during particular times of the smelt 

(see Humphris et al., n.d.).

Slag chemistry reveals extensive diversity between all smelts and the archaeology (Table 

7).  This reflects both the use of different ores and variation in furnace operation.  A PCA of the slag

chemistry is able to discriminate each group with little error (Fig. 12).  The model proposed by

(Charlton et al. 2013) can be invoked to generate hypotheses that account for the observed 

chemical differences based on variation in parent material contributions (Table 8) as specified 

strong positive correlations between element loadings.
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The plot of PC1 vs PC2 (Fig. 12, left) shows MIS6 to be discriminated by strong positive 

correlations of Si, Ti, Mn, and Ba.  These correlations can be estimated by the acute angle and 

similarities in magnitude of the loading vectors.  The model indicates that this separation is due to 

chemical constraints imposed by ore differences and/or TC enrichment.  MS1 slag is loosely 

discriminated by strong correlations of Na, Mg, Ca, and P which the model indicates is a function of

constraints imposed by differences in ore and/or fuel ash.  The plot of PC1 vs PC3 (Fig. 12, right) 

shows that MS3 and MS4 slag is separated by the strong positive correlation of Fe and Co, 

indicating an ore difference.  MS2 and MS4, however, are not well explained.  

The autocorrelation of Fe and Si in ironmaking slags presents a limitation to this model.  

These elements are always negatively correlated and, in addition to being related to parent 

material chemistry, are also influenced by furnace redox conditions.  The first PC axis can, 

therefore, also be interpreted as a ratio of Fe to Si.  The discrimination of MIS6 slag may also be 

explained as the result of a more reducing furnace environment relative to the experimental slags.  

A second PCA of slag subcompositional variables was run to remove the confounding effects of Fe

and Si.  Fig. 13 shows biplots of the first few PC axes of this analysis and adds greater clarity to 

the chemical constraints influencing the different production contexts.  The strong positive 

correlations between Ba, Mn, and Ti again indicate that the MIS6 slag was produced from a 

different ore.  MS1 is again hypothesized to derive from a different ore and/or to be enriched by 

fuel ash.  MS2 and MS3 slag show greater overlap and are discriminated by high positive 

correlations between Co and Al, reflecting an ore difference and their similarity in localized 

geochemical contexts.  By comparison with the previous PCA of slag, the MS2 slag is 

hypothesized to be produced in a more reducing furnace environment than that of MS3, or having 

used an ore that was less rich in Fe.  Both are true based on ore analyses (see Table 5) and smelt 

descriptions (see Table 1 above and Humphris et al., n.d.).  Slag from MS4 seems to be best 

separated by higher correlations of K and P, though it used the same ore as MS3.  The best 

hypothesis to account for this surprising result is that MS4 slag incorporated greater quantities of 

fuel ash.  The unique experimental design and complications of MS4 (i.e. the addition of a lining 

and the layered charges fits this explanation see Table 1 and Humphris et al., n.d.). The slag, what 
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little was produced, was allowed to sit in a relatively cool bed of charcoal in which it could dissolve 

additional quantities of fuel ash.

While it is clear that none of the ores used in the experiments match those used by the 

Meroitic smelters responsible for MIS6, the question still remains as to whether or not the 

archaeological material represents a stronger reducing environment or the use of a leaner ore.  

That is, despite ore differences, were the furnaces operated in a fundamentally different way?  The 

hypothesis that furnace operation is different can be evaluated with the FeO – SiO2 – Al2O3 phase 

diagram, RIIs and mass balance calculations via Crew’s (2000) method.  As noted above, the 

validity of the second model depends on the results and accuracy of the third.  Indeed, if reduction 

efficiency is to be evaluated on a ternary model, the same requirement holds. This requirement is 

not achievable, however, given the unknown error differences between SEM analyses of slag and 

TC required to formulate mass balances.  

A partial way forward is provided by the fact that the MIS6 ores are similar in richness to the

Purple ore used in MS2 and there is no fundamental difference in other recipe ingredients (TC and 

charcoal). Nor does the evidence indicate a difference in the fuel ash influence which might occur 

due to different charcoal types or blowing rate.  Comparisons between these two samples can 

therefore illuminate ordinal scale differences in redox conditions.  A similar evaluation can be made

between MS3 and MS4.  Issues still remain regarding the differential influence of ceramics on slag 

chemistry and require that results be treated with caution.  Nonetheless, all experimental samples 

are included for information.

Fig. 14 shows the projection of slag specimens into the FeO – SiO2 – Al2O3 phase diagram. 

Group modes that approach the point labelled Optimum 1 are more depleted of FeO while those 

that approach Optimum 2 are richer in FeO.  A comparison of the MIS6 and MS2 slag distributions 

suggest that the former may be leaner in FeO, but with substantial overlap. A comparison of MS3 

and MS4 slag also fails to reveal any clear differences.  The same results are obtained by 

comparing RII values (Fig. 15).

Mass balance calculations produce a very different picture, however (Table 9). Considered 

on an ordinal scale, MIS6 shows the greatest reduction efficiency followed by MS3, MS1, MS2 and

MS4, respectively.  The experimental yield results indicate a reduction efficiency order with MS1 as
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the most efficient followed by MS3, MS2 and MS4.  The mass balances therefore create a 

reasonable, if not exact, correspondence to the experimental observations.  Similarly, the 

placement of the MIS6 yield calculation aligns with the hypothesised high level of reduction 

efficiency based on slag microstructure (i.e. low concentrations of free iron oxides).

Discussion 

The experimental smelts detailed in Humphris et al. (n.d.) and whose residues are 

investigated here, failed to yield much iron or produce more than one flow of tap slag that 

resembles that found in the archaeology of MIS6.  Analysis of the materials that were produced 

during the experiments, however, provides some new insights into bloomery smelting at Meroe 

during the Late and Post-Meroitic period.  Most importantly, microstructural investigations of 

potential iron ore found within the archaeological furnace fill and those used in the experiments 

indicates the exploitation of an oolitic ore source, in line with suggestions by Abdu and Gordon 

(2004) and the single analysis published by Wainwright (1945).  It is also clear that the ore used at 

MIS6 was not obtained in the iron-rich hills just east of Meroe as sometimes suggested (Tylecote 

1982; Rehren 2001).  This is noted both in the structure of the ooids and in their chemistry.  

Identifying the true source of the ore remains an important challenge, one that could further benefit 

from the analysis of trace elements (especially the rare earth elements; see Leroy et al. (2012).  

This provides a potential avenue of future research.

The microstructure and chemistry of the archaeological and experimental TC are consistent

with Tylecote's (1982) hypothesized use of local sand and Nile clay by Meroitic smelters.  The 

chemical analyses also indicate a greater uniformity in TC preparation by past tuyère and furnace 

makers than was achieved for the experiments (see also Ting and Humphris, 2017.  The presence 

of slag as temper in these ceramics is noteworthy, though it is unclear whether or not its presence 

suggests intentional or incidental inclusion.  On one hand, a crushed slag temper could pass on 

beneficial properties to the ceramic paste that increases its workability or industrial life-span.  On 

the other hand, the presence of crushed slag could be an accident of the spatial organization of TC
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production and its proximity to ironmaking workshops.  Of practical note, the sharp edges of 

crushed slag would be difficult to handle while fabricating the TC’s. An investigation of sand 

constituents at different locations at Meroe may help resolve the issue and illuminate new details 

related to the production economy.

Analysis of the experimental and archaeological slag shows few similarities.  Each 

experiment produced slag with a diverse range of microstructures that indicates inconsistent 

control over furnace redox conditions.  This is a consequence of both poor air supply design and a 

variable draft (Humphris et al. n. d.).  Nonetheless, some MS2 slags do show the lean fayalite and 

glass microstructures observed in the MIS6 slags.  This suggests that similar conditions were 

approached in certain areas of the furnace for at least a brief time.  What sets this experiment 

apart from the other three is the use of a leaner ore (similar in Fe concentrations to that sampled 

from MIS6) and a higher rate of air supplied over a longer period of time.  This supports a model of 

Late-Post Meroitic bloomery smelting that involved consistent redox conditions across the furnace 

plan and high volumes of air supplied during key stages of the smelt, if not its entirety.

The slag sample obtained from each experimental context could be discriminated by its 

chemistry.  Differences in ore account for most of the differences, though variation in furnace 

operation accounts for dissimilarities in fuel ash and TC influences.  None, however, used ores that

matched those of found in the MIS6 furnace fill.

It is worth noting that only MS4 included the addition of a furnace lining similar to that found

on site.  Tylecote’s (1982) investigation revealed this lining to be comprised of large sand grains 

fused together with vitrified clay and slag.  Silica, the major constituent in the sand at Meroe, is 

refractory and the large grains would serve to lessen reactivity.  Such a lining would be less prone 

to thermochemical attack and would have a reduced influence on slag chemistry. This does not 

preclude, however, the potential influence of melting tuyères or unlined portions of the furnace 

walls.  The MS4 lining did not have time to cure prior to commencement of the smelt and accounts,

at least in part, for the experiment’s performance.  Nonetheless, it is not surprising that mass 

balances indicate less ceramic input in the archaeological slag produced in a lined furnace 

compared to that from the experiments.
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The ceramic contribution tends to increase the average concentrations of Al and Si in the 

slag, thereby diluting the concentration of elements more common in the ores, especially Fe.  This 

influence can impact other analyses seeking to identify differences in redox conditions.  This is 

observed in both the ternary and RII models, rendering them ineffective as proxy measures of 

relative redox conditions.  Calculating the mass balance provides a means of estimating ceramic 

and ore inputs as well as Fe yields.  The accuracy of that estimate, however, depends on chemical 

measures that share common sources of error.  While the analysis of glass basalt CRMs is useful 

for knowing that the SEM-EDS produces high quality results under ideal conditions, it does not 

account for uncertainties introduced by varying levels of sample heterogeneity and porosity.  This 

limitation becomes greater when considering the ore and ceramic analyses.  Comparisons 

between the samples of similar structure and chemistry will share similar patterns of error, but 

comparisons between ore, ceramic, and slag (as used in the mass balance calculations), becomes

problematic.  The results of such any analysis must be regarded with caution and considered 

ordinal scale at best.

A second complication affects the ternary model, RII, and mass balance measures. Each 

considers the identified smelting slag and not the large volume of unreacted and partly reacted ore 

that was also produced during the experiments. The models assume that all of the ore reacts 

completely to form metal and slag. This assumption holds greater validity for archaeological slag 

heaps where it is typical to find negligible amounts of intermediate ore-slag products and is 

indicative of a mature smelting process.  The intermediate products were, however, non-negligible 

in the experiments discussed here.  Thus, all the mass balance calculations over-estimate the 

amount of iron produced per smelt and may account for the erroneous ordering of MS1 and MS3 in

terms of yield.

Conclusions

The experimental iron smelts at Meroe, Sudan and the questions that arose during and after 

the campaign succeeded in shedding light on Late and Post-Meroitic ironmaking practices despite 
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their failures to produce large quantities of iron or slag of appropriate character.  Ore investigations 

revealed that an oolitic ironstone was exploited that was not, or at least is no longer, available in 

the immediate site vicinity.  Resources used for the production of TC are consistent with the 

hypothesis of local exploitation of sand and Nile clay.  The similarity of slag microstructures 

between MS2 and MIS6 provides evidence that Late and Post- Meroitic iron producers created 

more consistent redox environments within their furnaces.  This has implications for both the 

design of the air supply system and its operation.  Finally, the mass balances, while limited, are 

consistent with the hypothesis that a specially prepared furnace lining is an essential part of 

Meroitic smelting practice and necessary for producing slag with similar properties to those found 

within the archaeometallurgical record of the site.

The strength of the insights derived from this investigation must, of course, be tempered by 

the fact that the archaeological residues reflect what was probably the last smelt conducted in the 

MIS6 furnace. It is unlikely to be representative of the some 300 years of smelting practices that 

may have contributed to the slag heap’s formation. Smelting practices and ore sources may have, 

and probably did, change over time.

The findings of this small scale experimental study and the questions they raise have had 

immediate impacts on the direction of research.  Preliminary ore results led to a new search for a 

potential ore source and the identification of a previously unrecorded Meroitic mining area in hills 

about 9 km to the northeast of the Royal City.  Research on the character of the ironstone samples 

extracted from subsequent archaeological investigation of this mining area is ongoing. More 

intensive petrographic investigations are also providing a better model of ancient technical ceramic

ecology (Ting and Humphris 2017).  Evidence for diachronic variability, along with the 

considerations above, is being explored in ongoing field and laboratory investigations. A critical 

assessment of the experimental design has also led to a new experimental campaign in autumn 

2017. Perhaps the most important impact, however, is in recognizing the critical role played by 

experimental archaeology in exploring, challenging, and extending models of past human 

behaviour.
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