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SYNOPSIS 
 
This article gives an overview of microstructure imaging of the brain with diffusion 
MRI and reviews the state of the art. The microstructure-imaging paradigm aims to 
estimate and map microscopic properties of tissue using a model that links those 
properties to the voxel scale MR signal. Imaging techniques of this type are just 
starting to make the transition from the technical research domain to wide application 
in biomedical studies. We focus here on the practicalities of both implementing such 
techniques and using them in applications. Specifically, the article summarises the 
relevant aspects of brain microanatomy and the range of diffusion weighted MR 
measurements that provide sensitivity to them. It then reviews the evolution of 
mathematical and computational models that relate the diffusion MR signal to brain 
tissue microstructure, as well as the expanding areas of application. Next we focus on 
practicalities of designing a working microstructure imaging technique: model 
selection, experiment design, parameter estimation, validation, and the pipeline of 
development of this class of technique. The article concludes with some future 
perspectives on opportunities in this topic and expectations on how the field will 
evolve in the short-to-medium term. 
  



1. INTRODUCTION 
 
The central vision in microstructure imaging is of virtual histology: estimating and 
mapping histological features of tissue using non-invasive imaging techniques, such 
as MRI. This virtual histology has several advantages over classical histology: i) it is 
non-invasive, avoiding the need for tissue samples, e.g. from biopsy; ii) it views intact 
in-situ tissue avoiding disruptions that arise from tissue extraction and preparation; iii) 
it is non-destructive so enables repeat measurements for monitoring; iv) it provides a 
wide field of view, typically showing a whole organ or body, rather than the small 
samples often used in classical histology; and v) data acquisition is relatively fast, 
cheap, and automated compared to classical histology.  
 
Classical histology has been a lynchpin in the development of modern neuroscience 
including understanding the brain’s macroscopic organisation e.g. [1], the 
mechanisms of connectivity and communication [2], and the pathologies 
underpinning neurodegeneration [3]. Such work primarily uses sliced post-mortem 
tissue. Clinical applications in the brain are mostly for post-mortem confirmation of 
diagnosis, as in-vivo brain biopsy is normally justified only in aggressive diseases 
such as grading brain tumours. The non-invasive, non-destructive nature of virtual 
histology offers the potential to study the live brain in situ in healthy volunteers or 
patients. The relative ease of data acquisition allows population studies that provide 
insight into anatomical variability. Furthermore, its non-destructive nature allows 
repeat measurements to monitor changes during normal development or pathological 
processes. Clinically, virtual histology avoids biopsy and the potential side effects of 
the invasive procedure, and provides a window on tissue changes when the risk of 
side effects prohibits biopsy. Moreover, the wide field of view that virtual histology 
provides potentially reduces false negatives that may arise from, say, poor targeting of 
a biopsy. 
 
Figure 1 compares typical images from classical histology and microstructure 
imaging. The clear advantage of classical histology is its level of anatomical detail; its 
submicron image resolution provides vivid insight into the cellular architecture of 
tissue, whereas microstructure imaging provides only statistical descriptions of the 
tissue over the extent of millimetre-sized image voxels. In some applications, rich and 
specific content of classical histological images is important; for example, in enabling 
a cancer histopathologist to identify the presence of minute fractions of mitotic cells. 
However, many  tasks that histologists perform seek broader statistical changes over a 
relatively wide extent of tissue. For example: the density and diameter distribution of 
axons in a white matter pathway determine its information-bearing capacity; different 
density, shape, and configuration of cells discriminate different types of brain tumour; 
widespread protein deposits are hallmarks of Alzheimer’s disease. In such 
applications, the precise detail of cellular architecture is less important and the 
benefits of microstructure imaging can significantly outweigh those of traditional 
histology. 



 

 
Figure 1. Comparison of classical histology and microstructure imaging showing a range of 
microstructure imaging techniques in the current literature organised by target tissue feature. A–D: 
Imaging indices of neurite (axon or dendrite) density with (A) classical histology from [4] and (B—D) 
by model-based dMRI. Maps show (B) the cylinder fraction from [4], (C) orientation dispersion (OD), 
neurite density index (vic) and isotropic fraction (viso) from NODDI [5], and (D) isotropic fraction, 
‘stick density’, and tissue mean diffusion from CODIVIDE [6]. (E–G): Imaging fibre orientation 
distribution. (E) Estimation of fiber directions from histology and corresponding estimates from dMRI 
[7]. (F) In vivo fiber orientation mapping using constrained spherical convolution [8]. (G) Combined 
mapping of microstructure and orientation by the spherical mean technique [9]. (H–L): Imaging indices 
of axon diameter. (H) Histology provides high-resolution maps enabling measurements of individual 
axon diameters; images from [10]. (I) Estimated axon diameter distributions from diffusion MRI using 
AxCaliber in [10] of the in-vivo rat-brain cluster into groups reflecting corresponding diameter 
histograms from histology. (J) Axon diameter indices from the monkey brain using ActiveAx [11] and 
(K) those from ex-vivo spinal-cord [12] and (L) in-vivo spinal cord using 300 mT/m gradients [13]. 
(M–P): Imaging cell shape indices. (M) Classical histology reveals elongated cells in a meningioma to 
the left and rounder cells in a glioma to the right; from [14]. (N) Fractional anisotropy from DTI is low 
in both meningioma and glioma tumours, but the microscopic anisotropy (µFA) from DIVIDE is more 
specific to cell shape and shows high value in the meningioma only [14]. (O) A similar measure of the 
microscopic anisotropy from double diffusion encoding in a rat brain [15] and (P) a healthy human 
brain [16]. (Q–T): Imaging myelin density. (Q) Classical histology by luxol fast blue shows reduced 
myelin density in the brain of a multiple sclerosis patient and (R) MRI-derived maps using quantitative 
relaxometry show similar features [17]. (S) MRI used to track the myelination in infants [18]. Finally, 
(T) an early example of the myelin water fraction from relaxation-weighted MRI [19].  
 
  
Microstructure imaging relies on a model that relates microscopic features of tissue 
architecture to MR signals. In general, the approach acquires a set of images with 



different sensitivities and fits a model in each voxel to the set of signals obtained from 
the corresponding voxel in each image. The process yields a set of model parameters 
in each image voxel, which constitute parameter maps of microscopic tissue features. 
Figure 2 illustrates with an example based on diffusion MRI. 
  
 

 
 
Figure 2. Illustration of the microstructure imaging paradigm, which fits a model relating microscopic 
tissue features to MR signals in each voxel to produce microstructure maps. For example, various 
techniques to map indices of axon diameter [10-12, 20, 21] use a simple geometric model of white 
matter microstructure, consisting of parallel non-abutting impermeable cylinders that represent axons. 
The methods acquire a set of images with varying diffusion-weighting and fit the model in each voxel 
to recover estimates of cylinder size and packing density, which provide maps of indices of axon 
diameter and axon density. MRI maps from [11]. Electron microscopy courtesy of Mark Burke. 
 
  
Diffusion MRI is a key modality for microstructure imaging, because of its unique 
sensitivity to cellular architecture. The technique sensitizes the MR signal to the 
random dispersion of signal-bearing particles, typically water molecules, over 
diffusion times in the millisecond range up to around one second. The mean free-path 
over this time at room or body temperature is in the micrometer range, i.e. the cellular 
scale, so that the cellular architecture of the tissue strongly influences the dispersion 
pattern of the molecules. Thus diffusion MR measurements support inferences on 
tissue microstructure. 
  
This article reviews the current state of the art in microstructure imaging of the brain 
using diffusion MRI. We thus focus on diffusion MRI techniques that aim to estimate 
and map tissue properties via biophysical models and mention only in passing 
diffusion MRI techniques based on signal models, which other parts of this special 
issue cover in more detail [22]. This kind of technique has reached an important 
turning point in recent years with its transformation from largely a technical research 
topic to widespread application in biomedical studies. With this in mind, the review 
aims to emphasise practicalities of developing microstructure-imaging techniques 



designed for front-line application while giving a critical review of the state of the art. 
Thus section 2 provides some background information on brain anatomy at the scale 
we are sensitive to with diffusion MRI together with the nature of the measurements 
we make. Section 3 then reviews the state of the art in models underpinning current 
microstructure imaging techniques and the range of current applications. Section 4 
focuses on practical issues in the development of microstructure imaging techniques; 
specifically: model selection, experiment design, parameter estimation, and 
validation. That section concludes with an outline of the microstructure-imaging 
development pipeline. Finally, section 5 discusses the future of diffusion MRI 
microstructure imaging of the brain highlighting opportunities for future research, 
development, and application, and considers the wider perspective of applications 
outside the brain and exploiting contrasts other than diffusion MRI. 
 

 
Figure 3. The neuron and the glial cells in brain tissue. (A) Cells have a cell body or “soma”. All cells 
have processes that extend from their soma, but only the neuron has an axon. Glial cells - astrocytes, 
oligodendrocytes, and microglia - support neuronal function. Oliogodendrocytes associate with several 
axons to wrap around each a segment, called an “internode”, of the thin layer of fatty myelin to boost 
saltatory conduction. The Nodes of Ranvier are the gaps between internodes. (B) The thickness of the 
myelin around axons in normal conditions has a roughly constant ratio with the axon diameter. That 
ratio is called the g-ratio (defined in fact as the inner diameter divided by the outer diameter). The 
space encapsulated by the axolemma, the cell membrane surrounding the axon, is the intra axonal 
space.  The illustration is reproduced from [23]. 

2. BACKGROUND 
 
This section provides some background context for the rest of the article. First it 
provides information on the anatomy of brain tissue at the cellular scale – the primary 
targets for diffusion MRI and microstructure imaging. Second it reviews the range of 
diffusion MR measurements available to probe that anatomy. 



2.1 Brain microanatomy 
 
Brain tissue contains neurons and glial cells and separates into two types: grey matter 
(GM) and the white matter (WM). The GM contains the cell bodies, i.e. somas of 
neurons and glial cells, as well as neuronal dendrites, short-range intra-cortical axons, 
and the stems of long-range axons extending into the white matter. The WM is 
dominated by densely packed and often myelinated axons that emanate from the soma 
of neurons in GM, and project to distal GM areas or other parts of the body. Glial 
cells are also found in WM. Figure 3 illustrates the neuron and its environment, which 
in combination provide the basic mechanisms for brain function via communication 
between brain regions [24]. 

Dendrites 
In gray matter, the dendrites range from 0.2 to 3 µm in diameter for dendrites both 
proximal and distal to the soma of the neuron [25]. The dendrites branch from the 
soma membrane in a formation like a tree-crown; see figure 4. 
 
The structure of the dendritic tree and its branches, their extent and architectural 
outline depends on the type of neuron [25]. In general, relatively few (typically 1-5) 
dendrites extend from the soma body itself, but the total number of branches varies 
from 4 to >400. The cerebellar Purkinje cells have the most branches. The spatial 
extent of the dendrite tree ranges from 15 to 1800 µm radial distance from the soma to 
the tip of the most distal dendrite. Dendrites from each neuron strongly intermingle 
with those from other neurons in their neighbourhood to form a dense and complex 
dendritic network [25]. The Golgi-Cox stain, as shown in figure 4, visualizes just a 
fraction of neurons so does not reveal the full complexity of the dendritic network, but 
does highlight the variety of shapes of the dendritic tree. Figure 4F also shows small 
protrusions from the main shaft of the dendrites, which are called dendritic spines; see  
[26] for a review of their structure and function. For neurons in the cerebral cortex, 
the dendritic trees are mostly isotropic, extending and branching evenly in all 
directions, whereas elsewhere, e.g. in the layers of the hippocampus, the trees can be 
highly anisotropic to support inter-layer connectivity [25, 27]. 

Axons 
The connecting distances of axons range from a few millimeters, e.g. for intra-cortical 
connections, to over 1 m, e.g. for the corticospinal connections in humans  [28]. In 
WM the axon diameter ranges from 0.1 µm to >10 µm in vertebrates, with myelinated 
axon diameters rarely less than about 0.2 µm. A small number of “giant” axons (> 3 
µm) arise in the vertebrate brain and they have been observed for example in the 
corpus callosum (CC) [29, 30] and cortico-spinal tracts [31]. Larger axons transmit 
signals more quickly, as saltatory conduction, i.e. the signal propagation along the 
axon, increases in speed approximately linearly with axon diameter [32]. However, 
space constraints within the brain make giant axons “expensive” to host [33]. 



Moreover, energy consumption increases super-linearly with axon diameter further 
favouring small axons [33]. 
  
 

 
Figure 4. Golgi-Cox staining of the adult mouse brain to highlight neuronal and dendritic structures in 
grey matter. (A) Neurons in all brain regions are evenly and reliably stained with a Golgi-Cox protocol. 
Magnified images of (B,C) cerebral cortex, (D) hippocampus and (E) cerebellar cortex.  (F) Dendritic 
spines are visible at high magnification. (Golgi staining, differential interference contrast (DIC) 
images, scale bars 500 µm in (A,B), 50 µm in (E) and 5 µm in (F)). Figure and modified text from [27], 
figure 5. 
  



A brain connection is formed by a bundle of axons in WM that share a trajectory from 
emanation to target region. The axon diameter distribution (ADD) of a brain 
connection largely depends on the target region [34, 35], and varies among species for 
the same connection [36]. However, the ADD often has shape similar to a Gamma 
distribution, as often assumed in mathematical models e.g. [20, 37], i.e. a single-mode 
single-sided (positive only) distribution with a heavy tail extending into the range of 
“giant” axons. The mean of an ADD that contains myelinated axons is typically 0.5 - 
0.8 µm. Most ADD measurements are reported in the mid-sagittal CC. There, the 
mid-body of CC has a larger mean ADD than the genu, and the splenium has the 
smallest mean ADD (even though occasional giant axons do appear) [29, 30, 36, 38]. 
In mammals, brain connections that project through the mid-body tend to include the 
largest diameter axons [36]. These connections are associated with the motor system, 
which is one of the fastest conducting systems in the central nervous system and also 
includes the longest axons in the brain. Since the need for speed of a brain connection, 
and thus its ADD, is determined by its target [34, 35], projections with different target 
but emanating from the same cortical region [39] can contain quite different ADDs. 
For example the corticostriatal projections (ipsi- as well as contra laterally) typically 
contain smaller axons compared with the corresponding contralateral corticocortical 
projections [34, 40]. Interestingly, the size of the neuronal soma varies among neuron 
type in the range 7 - 58 µm, and for some neurons a positive correlation with axon 
diameter has been found [41, 42]. 

Myelin 
The myelin sheath consists of 80% lipids and 20% proteins and wraps around the 
axon in layers about 10 nm thick, as illustrated in figure 3. The myelin sheath divides 
into segments along the axon with regularly spaced gaps called “nodes of Ranvier” or 
just “nodes”. The internodal distance is approximately proportional to the outer axon 
diameter (i.e. myelin and axon) with a coefficient of proportionality of about 100. 
Thus the segments are 0.2-2 mm long [43], whereas the nodes of Ranvier themselves 
are 1-2 µm long [44]. 
 
The myelin insulates the axon, which boosts the conduction speed along axons by a 
factor of about 5.5 [32]. The outer diameter of a myelinated axon has an optimal ratio 
to the inner axon diameter (i.e. without the myelin). The ratio (inner diameter divided 
by outer diameter) is known as the g-ratio and, in normal CNS, simulations suggest 
the g-ratio that optimises conduction speed is about 0.7 [45]. 
 
In the primate CC, the fraction of unmyelinated axons as observed with EM is small 
compared with myelinated axons. Across the mid-sagittal CC, the largest fraction of 
unmyelinated axons can be found in the genu (16-20%), which includes the prefrontal 
corticocortical projections [29, 30]. The function of unmyelinated axons is still not 
clearly understood, but [35] provides some thoughts.  



Intra-axonal structure 
The intra-axonal space shown in figure 3b is the space encapsulated by the cell 
membrane of axons and contains macromolecules and proteins, as well as solid 
filaments and mitochondria. In axons, the cytoskeleton consists of filaments that 
maintain the axon’s shape and internal organization, and acts as mechanical support 
for the intra-axonal transportation system i.e. the microtubules. The microtubules 
have diameter of about 25 nm and are the intra-axonal railway transporting substances 
to and from the cell body, both retrograde and anterograde; they are easily seen with 
EM. The density of microtubules relates to axon diameter but not length [46]. 

Glial cells 
Besides neurons, the central nervous system also contains different types of glial cell. 
In contrast to neurons, glial cells have no axon and retain the ability to undergo cell 
division in adulthood. In adult human neocortex, [47, 48] find the proportion of glial 
cells (by cell count) to be 76.6% oligodendrocytes, 17.3% astrocytes and 6.5% 
microglia. Moreover, in adults, the glia/neuron ratio is 1.32 and 1.40 for males and 
females respectively. Aquaporin-4 (AQP-4) water channels in the cell membrane, 
which make the membrane highly permeable to water, are a feature of glial cells [49]. 
  
Oligodendrocytes create the myelin sheaths around axons as shown in Figure 3; see 
[50]. The soma is ~13 µm in diameter and extends up to 30 processes each like an arm 
that embraces a different axon providing the myelin for one internode segment. The 
processes extend to distances of 80-120 µm [51]. 
  
Astrocytes have somas of ~10 µm in diameter from which many processes extend in a 
star-shaped formation with an overall diameter of about 150 µm [52]. They perform a 
plethora of functions e.g. have a role in tissue repair and scarring, as well as 
maintenance of extracellular ion balance likely in relation to sleep [53]. The list is 
constantly growing; see [54] for a review of current understanding. The astrocytes are 
territorial meaning that their processes intermingle very little with the processes of 
neighbouring astrocytes. 
  
Microglia are macrophages that provide the first reaction for many CNS injuries [55]. 
Their soma is 10 µm in diameter and total coverage (with processes) is about 15-30 
µm. Like astrocytes, microglia are territorial cells [56]. 

Interstitial space. 
The interstitial, or extracellular, space (ECS) is the space that surrounds anatomical 
structures such as cells, axons and dendrites. Invasive microscopy techniques suggest 
that the fraction of ECS in adult brain of various non-human species is 15-35% [57]. 
However, neither electron nor light microscopy can provide reliable measurements of 
ECS fraction, because chemicals used in the processing of the tissue for the display 



introduce dehydration. The resulting shrinkage effects have been reported as low as 
<1% and as high as 65% [29, 30, 38, 58].  

  
Figure 5 Macroscopic effects arise from (A) differences in the trajectory of multiple axons across a 
single voxel and (B) from non-straight axonal trajectories across a voxel. Macroscopic configurations 
of axons like fanning, bending and crossing are often found in brain tissue. Panel (A) from [59] and 
panel (B) from [60] are both schematic drawings. Micrographs showing axonal undulation can be 
found in [61].  

Macroscopic configurations 
The image resolution of MRI typically provides voxels of a few mm3 in volume, from 
which we aim to draw statistics of microanatomy such as anisotropy, cell sizes and 
axon diameters – features in the micrometer lengthscale. Axons often extend across 
many voxels and each voxel can contain hundreds of thousands of axons, which can 
adopt a wide variety of configurations, e.g. bending, fanning, crossing, etc [7, 62, 63] 
as illustrated in figure 5a. Moreover, axons are not straight even within a single voxel, 
as figure 5b illustrates, which further complicates the task of modelling the geometry 
of axons at the millimetre scale. 

Vascular system 
The brain contains three vessel systems for blood perfusion: arteries, veins and 
capillaries. The capillaries contain the smallest vessels and ensure perfusion in brain 
tissue. They range in diameters between about 5 and 10 µm, and capillary density in 
cortical layers is high compared to WM [64]. Macroscopically, the capillaries 
generally appear randomly organised [64] and, when perfused, produce a water-

                    (A)         (B) 



dispersion effect, called intra voxel incoherent motion (IVIM) [65], similar to water 
diffusion through Brownian motion although dispersion is more rapid and has 
different time dependence.  

2.2 Sequences  
 
Diffusion is encoded into the MR signal by time-varying magnetic field gradients. 
Here, we focus on the most common type of pulse sequence for dMRI [66], which 
yields so-called single diffusion encoding (SDE) [67]. We will also briefly cover 
other encodings that can overcome some of the limitations inherent to SDE; figure 6 
illustrates the various pulse sequences we consider. 

Single diffusion encoding (SDE) 
SDE sensitizes the MR signal to diffusion using a pair of gradient pulses (figure 6A), 
which encode and decode the positions of spins. The sequence maintains a magnetic 
field gradient, defined by the gradient vector g, during each pulse of length δ. The 
onsets of the two pulses have separation ∆, which determines the diffusion time. 
Diffusion during and between the pulses leads to an attenuation of the MR signal, and 
this attenuation increases (i.e. signal decreases) monotonically with the variation in 
the distance traversed by the spins, i.e. their dispersion, between the two pulses. The 
mechanism that attenuates the signal is phase dispersion: the phase of each spin 
corresponds to the distance it moves in the direction of the gradient; a wider range of 
distances (i.e. greater dispersion) leads to a wider range of magnetisation phases 
contributing to the signal; with greater phase dispersion, the magnetisations have a 
lower sum, so we observe greater attenuation of the net signal.  
 
For free diffusion, the diffusion coefficient alone determines the range of distances for 
a particular δ and ∆. The degree of attenuation thus provides a direct estimate of the 
diffusion coefficient. However, in restricted diffusion, the maximal distance any spin 
can travel between encoding and decoding is limited, which in turn limits the signal 
attenuation. The attenuation depends on the restriction distance and, in multiple 
dimensions, the shape of a restricting pore. Thus, multiple SDE (or other) 
measurements obtained by varying the different parameters of the sequence, i.e. δ, ∆ 
and g inform estimates of size and shape of restricting pores; see [68-70] for 
examples.  
 
The b-value summarises the overall diffusion weighting of a sequence and, for the 

SDE sequence, 𝑏 = 𝛾𝛿 g !(Δ− !
!
), where 𝛾 is the gyromagnetic ratio. This formula 

assumes negligible ramp time in the pulses. For free diffusion, the b-value alone 
determines the signal attenuation, even though different combinations of |g|, δ and ∆ 
can make the same b. Specifically, 𝑆 𝑏 = 𝑆 0 exp (−𝑏𝑑), where S is the signal and 
d is the diffusivity. However, in the presence of restricted or hindered diffusion the 



attenuation depends separately on |g|, δ and ∆. Other variables of diffusion encoding 
sequences include the echo time (TE) and repetition time (TR). These are often fixed 
in measurement protocols with multiple sequence-parameter combinations to ensure 
constant relaxation weighting.  
  
Some unconventional implementations of SDE can offer distinct practical benefits. 
For example, the level of eddy currents can be reduced by implementing SDE in a 
double spin-echo sequence or with asymmetric gradients [71, 72]. While SDE is often 
implemented as a pulsed gradient spin-echo (PGSE) sequence (Fig. 6B), the pulsed-
gradient stimulated-echo sequence (PGSTE) can provide longer diffusion times than 
standard PGSE (Fig. 6C). In PGSE, the diffusion time is limited by T2 relaxation, 
since the SNR decays with TE as exp(–TE/T2). PGSTE comprises three 90° pulses 
(rather than one 90° and one 180° pulse in PGSE) that excite, store and recall the 
magnetization [73, 74] (compare figure 6 panels B and C). In PGSTE, only T1 
relaxation, which is slower than the T2 relaxation pertinent in PGSE, takes place 
between the second and third 90° pulses, PGSTE thus retains more signal at longer 
diffusion times. However, in PGSTE half of the signal is lost in the storage and recall 
process compared to PGSE [75]. Thus, PGSTE has an SNR advantage over PGSE 
only when the time between the gradient pulses exceeds ln(1/2) (T1-1–T2-1), where T1 
and T2 are the longitudinal and transversal relaxation times (disregarding 
imperfections of the RF pulses). In general in PGSTE, care must be taken to account 
for both the T1 weighting and diffusion weighting from crusher and imaging 
gradients, which can confound both experiment design and subsequent analysis [76]. 
Another unconventional implementation of SDE has gradient pulses of different 
lengths – the “long-short” sequence, which provides particular sensitivity to pore 
shape [77]. 
 
Common targets for SDE acquisitions in the brain are, in addition to cell size and 
shape mentioned above, properties such as anisotropy, fibre density, exchange and 
IVIM. Quantification of anisotropic diffusion for fibre direction estimation and 
tractography is covered elsewhere in this special issue. The degree of anisotropy of 
distinct compartments, such as axons, and the density of those compartments, can be 
estimated from experiments with multiple diffusion weightings, see e.g. [78, 79]. 
Compartment sizes, e.g., axon diameters, can be probed by SDE with variable 
diffusion times [80, 81]. Restriction manifests as a reduced signal attenuation, 
compared to free diffusion, as the diffusion time increases and the smaller the 
compartment the more marked the reduction of attenuation. Exchange between 
compartments [82, 83] manifests as increased signal attenuation, compared to full 
restriction, as diffusion time increases. The similar effects of increasing restriction 
length and exchange on the signal amplitude make them challenging to disentangle in 
practice with SDE [84]. Finally, for low b-values the SDE signal also captures effects 
of pseudorandom flow (the IVIM effect) [65], which can inform on capillary blood 
volumes, although quantification can be sensitive to noise [85]. 



Alternative waveforms 
Double diffusion encoding (DDE) (figure 6D) consists of two successive SDE blocks, 
separated by a so-called mixing time [80, 86]. DDE has also been referred to as the 
double pulsed-field gradient spin-echo sequence [87] or the double wave-vector 
experiment [88]. Five distinct usages of DDE target various microstructural features 
in different ways [67]. The first varies the relative gradient directions of the two SDE 
blocks to quantify microscopic anisotropy e.g. [89-92]. The second utilizes parallel 
gradients but a variable mixing time to measure exchange rates e.g. [23, 70, 93-95]. In 
this experiment, the first encoding block perturbs the signal fractions of different 
components, which then gradually restore to equilibrium. Exchange is measured by 
gradually increasing the mixing times while using the second encoding block to  
monitor this equilibration process. The third usage of DDE employs parallel and 
antiparallel gradients and a short mixing time to vary the degree of flow compensation 
and thereby improve estimation of blood volumes e.g. [85, 96, 97]. The fourth uses 
parallel and antiparallel gradients and short mixing time to estimate compartment 
sizes e.g. [88, 98]. Finally, the fifth usage targets pore size and shape distributions in 
heterogeneous media by noting the retention of diffusion diffraction patterns [99-
102]. 
  
Oscillating diffusion encoding (ODE) can be achieved with the oscillating gradient 
spin echo (OGSE) sequence, which replaces the constant gradient pulses in SDE with 
pulses that have oscillating gradient amplitude [103]. Oscillating waveforms may 
follow smooth sine or cosine functions (Fig. 6E) [103, 104], from square waves (Fig. 
6F) [103, 105, 106], or even irregular square waves [107]. With SDE, estimation of 
the diffusivity in small compartments requires short diffusion times, which limits the 
achievable b-value and thus the sensitivity to microscopic features. ODE can maintain 
b-value at short diffusion times by repeating multiple pulses. This can enhance the 
sensitivity to the diffusion coefficient in small pores and thus facilitate estimation of 
small sizes [108, 109]. However, recent work [110, 111] suggests the primary benefit 
of ODE for the estimation of axon diameters (or cylindrical pores in general) arises in 
the presence of orientation dispersion or uncertainty, because ODE retains sensitivity 
to size while avoiding high b-values that lead to low signal from free-diffusion along 
cylinders that are not perfectly perpendicular to the encoding gradients. 
 
Although SDE, DDE, and ODE have been most commonly used to date, there are no 
theoretical reasons for limiting the gradient waveform to such designs. Benefits may 
arise from using irregular waveforms [112, 113] (figure 6G). Specific examples 
include the combination of ODE with DDE into a double oscillating diffusion 
encoding (DODE) sequence, which may improve size and shape estimation [114]. 
Other approaches utilize multidimensional waveforms to disentangle microscopic 
anisotropy from variation in isotropic diffusion, which is not possible with SDE alone 
[115]. Examples include triple diffusion encoding (TDE) [116], circularly polarized 
gradients [117], magic angle spinning of the q-vector [118, 119], and q-trajectory 
encoding (QTE) [120, 121]. 



  
 
 

 
Figure 6. Illustration of gradient waveforms and sequences used for diffusion encoding. (A) The single 
diffusion encoding (SDE) sequence consists of a pair of pulsed gradients defined by three parameters δ, 
∆ and g that together define the b-value. The encoding gradients must be implemented in a pulse 
sequence. (B) The spin echo (SE) sequence is composed of an excitation pulse (90o) and a refocusing 
pulse (180o). (C) The stimulated echo (STE) sequence replaces PGSE’s 180o pulse with two 90o pulses 
that store and recall the magnetization. The effective sign of the gradient is reversed by the 180o pulse 
in PGSE or by the last two 180o pulses in the PGSTE sequence, explaining the difference between the 
effective waveform in (A) and the actual waveform in (B) and (C). Panels (A, D–G) show the effective 
waveform. (D) The double diffusion encoding (DDE) sequence has two pairs of pulsed gradients, 
separated by a mixing time 𝑡!. The gradient directions of the two blocks may differ. Oscillating 
gradients, either with smooth (E) or square (F) waveforms, can provide short encoding times when 
performed with high frequency f. (G) Irregular gradient waveforms can also be used, for example, to 
obtain isotropic diffusion encoding. 

3. STATE OF THE ART 
 
This section summarises the current state of the art in models relating the diffusion 
MR signal to features of brain tissue through a historical review. It then reviews 
current applications in biomedicine of imaging techniques based on these models. 

3.1 Models for quantitative diffusion MRI  
 
Using biophysical models of diffusion to estimate tissue microstructure follows a 
longstanding tradition in the field of physical chemistry which applies models of this 
kind to determine microstructure of inanimate samples [122].  For example, Packer 
and Rees [81] quantified the size distribution of oil droplets using a model of spheres 
with log-normal distributed radii.  Pioneering works such as this have inspired the 
adoption of this approach in biomedical imaging.  Early days of diffusion tensor 
imaging (DTI) [123] hoped that simple indices such as the eigenvalues of the 
diffusion tensor, or combinations of them such as the mean diffusivity or fractional 
anisotropy, would reflect WM tissue properties such as myelination or fibre density. 
In regions of approximately parallel fibres, such as the CC, contrast in those 



parameters may arise from such tissue properties and has been used in that way in the 
literature, e.g. [124]. However, in general, the effects of orientation dispersion 
dominate such contrast and more sophisticated models are necessary to separate the 
effects [5]. This section reviews such models in the context of assessing brain tissue 
microstructure. 
 
In this article, we focus on models that exhibit the following two key features.  First, 
the models consider the signal in a voxel as the sum of contributions from several 
compartments. Each compartment is posited to correspond to certain cellular 
components and exhibit a distinct pattern of diffusion.  Often known as compartment 
models, they provide a natural way to describe the heterogeneity within a voxel and a 
mechanism to infer compartment-specific properties.  This is in contrast to signal 
models, such as DTI, diffusion kurtosis imaging (DKI) [125], q-space imaging [80, 
126], diffusion spectrum imaging (DSI) [127], and mean apparent propagator (MAP)-
MRI [128] for SDE, and extensions to DDE [15, 91, 129] [130, 131], which 
effectively treat each voxel as a single homogeneous compartment, thus providing 
only a composite view.  Such signal models are reviewed elsewhere in this special 
issue [22].  Second, the models relate the signal directly to salient microscopic 
features of each compartment, typically by modelling them as simple, idealised, 
geometric objects. For example, models often represent axons as cylinders.  Such 
simple geometries provide close analytical or simple numerical approximations of the 
signal, which enable estimation of specific microscopic features via numerical fitting.  
This is in contrast to, for example, bi-exponential decay models [132] [12], which, 
although compartmental in nature, do not explicitly associate diffusion characteristics 
with microstructural features. 
 
The first compartment model of neuronal tissue, pioneered by Stanisz et al [69], 
models nerve-tissue microstructure. It designates individual compartments for glial 
cells, axons, and extra-cellular space, and aims to estimate the volume fraction of 
each compartment and the spatial dimensions of the cells.  The glial cells are 
represented as identical spheres and the axons as identical prolate ellipsoids, giving 
rise to restricted diffusion characterised by their respective geometry. The diffusion in 
the extra-cellular space, hindered by the presence of glial cells and axons, is 
approximated with a tortuosity model. Tortuosity refers to the reduction of the 
apparent diffusivity, relative to the bulk diffusivity, in an environment with hindrance, 
i.e. obstacles that increase the path length of a diffusing particle  [133-136]. Evidence 
suggests this is a key factor determining the particle mobility in biological tissue 
[136]. Stanisz employs standard approximations of the tortuosity factor, see e.g. 
[137], for simple geometries that relate packing density to reduced apparent 
diffusivity as a function of the volume fractions of impeding objects – higher volume 
fraction leads to lower extracellular diffusivity.  The model additionally accounts for 
the exchange of water between the intra-cellular compartments and the extra-cellular 
space, via the Kärger model [138], enabling estimation of the exchange rate. 
 



More recent models of WM microstructure represent axons as straight, impermeable, 
cylinders.  The ball-and-stick model [139] represents the axons as parallel cylinders of 
zero radius (the “stick”), so that water diffuses only along the cylinder axis, and 
dispersion in the extra-axonal space follows an isotropic diffusion tensor model (the 
“ball”).  The model assumes that the intra- and extra-axonal spaces have a common 
intrinsic diffusivity.  The later and more general composite hindered and restricted 
models of diffusion (CHARMED) [140, 141] model assumes cylinders to have radii 
following a Gamma distribution [20] and to form one or more (crossing) bundles with 
distinct orientations. The intra-axonal signal is determined analytically by the cylinder 
radius and the intrinsic diffusivities parallel and perpendicular to the cylinder.  The 
extra-axonal diffusion is modelled with a general diffusion tensor unconstrained by 
any tortuosity model.  In [142] and [143], this two-compartment CHARMED model 
is simplified, by adopting the stick model of axons, to explain the DKI metrics.    In 
[10], the model is extended with a free water compartment [144] to account for in 
vivo CSF contamination.   
 
The AxCaliber technique [10, 20] uses the CHARMED model to estimate the ADD 
(axon diameter distribution). AxCaliber requires a-priori knowledge of the axon fiber 
orientation.  To enable orientation invariant mapping of axon diameter, the ActiveAx 
technique [11, 145] combines and simplifies features of Stanisz’s model [69] and the 
CHARMED model in [10] to produce the minimal model of white matter diffusion 
(MMWMD) [21].  The key simplifications are a single cylindrical axon radius, a 
single fixed intrinsic diffusivity for the intra- and extra-axonal compartments, and 
modelling the apparent perpendicular diffusivity of the extra-axonal diffusion tensor 
using a simple tortuosity model from [137].  The MMWMD includes an isotropically 
restricted compartment (the “Dot” compartment), similar to the glial-cell model in 
[69], to account for unattenuating signal observed at high b-value in ex vivo data. 
Later, Panagiotaki et al [146] and, more recently, Ferizi et al [147] construct a 
taxonomy of compartment models for WM including those above and a range of 
intermediate and additional compartment-combinations. 
 
Parallel cylinders assumed in the CHARMED and MMWMD models do not account 
for complex axonal configurations, such as bending and fanning fibers, that are 
widespread in WM – see figure 5 and surrounding text.  Spherical deconvolution [8, 
78, 148] aims to recover the distribution of fibre orientations, which partially captures 
this orientational complexity. Such techniques provide no information on fibre 
composition whereas generalisations of microstructural models discussed earlier 
potentially capture both.  The ball-and-stick model generalises straightforwardly to 
accommodate fibre crossing [149] and orientation dispersion [150] by incorporating 
multiple discrete sticks or a continuous distribution of sticks, respectively. Similarly, 
the MMWMD model generalises to capture fiber orientation dispersion [151] and 
crossing [152] and AxCaliber3D extends ADD mapping to crossing fibers [153].   
 



Models of complex orientation distribution led to the emergence of unified models 
that aim to represent both WM and GM. Jespersen et al [79] first exploit this 
opportunity with an analytical two-compartment model of neurites (dendrites and 
axons).  This model, to represent highly dispersed dendritic trees, assumes the 
cylinders modelling neurites follow an arbitrary orientation distribution described 
using spherical harmonics. Additionally, unlike the CHARMED model, the geometry 
of individual cylinders is not explicitly modelled.  Instead, an apparent transverse 
diffusion coefficient is used to reflect the combined effect of cylinder radius, bending, 
undulation, non-vanishing permeability, etc. Similar to the CHARMED model, the 
extra-neurite diffusion is modelled with a general diffusion tensor. 
 
A simpler neurite model is subsequently proposed for neurite orientation dispersion 
and density imaging (NODDI) [5].  NODDI simplifies the orientation-dispersed 
MMWMD model [151] by representing neurites as sticks rather than cylinders. The 
main differences with Jespersen’s model in [79] are a parametric description of 
orientation dispersion with a Watson distribution, which models isotropic orientation 
dispersion about a single main fibre orientation, a single fixed intrinsic diffusivity for 
the intra- and extra-neurite compartments, and the use of a tortuosity model to specify 
the apparent extra-neurite diffusion tensor. The NODDI model has been recently 
extended to accommodate more general orientation distributions and to relax many of 
its constraints on diffusivities. Tariq et al [154] replace the Watson distribution with a 
Bingham distribution to accommodate dispersion anisotropy. Fibre crossings are 
accounted for in [155].  Kaden et al [9] avoids any assumption on the shape of the 
fibre-orientation distribution and further allows the estimation of the intrinsic 
diffusivity. However, this requires removing the CSF compartment to obtain 
estimates from data acquisitions currently practical for clinical studies.  Jelescu et al 
[156] generalise this two-compartment model further, by allowing the intra- and 
extra-neurite compartments to have different intrinsic diffusivities and by not 
imposing the tortuosity model, but show that this leads to degeneracies among 
parameters given currently practical data acquisition. Lampinen et al [6] show that 
extending the data acquisition to include a spherical tensor encoding protocol yields 
additional information that may address this degeneracy allowing us to relax one 
model constraint. 
 
Another family of compartment models places strong emphasis on the statistical 
modelling of tissue heterogeneity.  One of the first examples is diffusion basis 
spectrum imaging (DBSI) [157].  DBSI is unique in that it models the extra-axonal 
space as a spectrum of isotropic diffusion tensors.  This spectrum of extra-axonal 
compartments is defined by an arbitrary continuous function of diffusivity that 
specifies the relative fraction of isotropic tensors with any given diffusivity.  A 
similar idea is exploited in a generalisation of the ball-and-stick model [158], which 
assumes a spectrum of intrinsic diffusivities that follows a gamma distribution.  
Restricted spectrum imaging [159] generalises DBSI by modelling both intra- and 
extra-axonal spaces in terms of diffusivity spectra.  Most recently, Scherrer et al [160] 



propose a comprehensive model to capture the heterogeneity from restricted, 
hindered, and isotropic diffusion.  The heterogeneity is modelled by matrix-valued 
gamma distributions to generalise the similar approaches in [158, 161-163]. 

Limitations of these models 
Current models have several common limitations.  First, at the heart of compartment 
models is the division of the measured signals into separate compartments.  This is 
necessary to disentangle the signal into the contributions from the various underlying 
cellular components, but the validity of the division is difficult to assess directly.  
While experimental evidence suggests that the WM signal can be divided into intra- 
and extra-axonal origins, e.g. [164], the existence of distinguishable compartments for 
glial cells and/or CSF has not been demonstrated explicitly.  Second, the volume 
fractions estimated from the current models are invariably weighted by the T1 and T2 
relaxation times of the corresponding compartment.  A case in point is the absence of 
a myelin compartment in diffusion modelling, which is the result of the very short T2 
of myelin [19] in comparison to the echo times of typical diffusion MR experiments.  
Third, straight, impermeable cylinders are the standard model of neurites but are an 
over-simplification.  Axons are known to undulate [165] and dendrites to branch 
[166] (see figures 4 and 5).  The impermeable assumption may be reasonable in 
healthy WM over the typical timescales of diffusion MR experiments, but is likely 
violated in pathology [70, 94, 167].  Fourth, extra-axonal space is often assumed to 
exhibit time-independent hindered diffusion and modelled by a diffusion tensor, 
sometimes with a tortuosity model.  However, in vitro experiments [168, 169] suggest 
that the extra-cellular space can exhibit non-Gaussian diffusion in a densely packed 
environment.  Further studies [170, 171] suggest the time dependence of extra-axonal 
diffusion might not be negligible for experiments involving diffusion times of ~10ms 
to ~100ms. Various models assume fixed or otherwise constrained diffusivity 
parameters, but recent evidence [156, 172] [6, 173] suggests violations of this 
assumption in the brain. Models for brain tissue often neglect the IVIM effect (see 
section 2.1), which again may be reasonable for healthy tissue, but can be 
significantly altered in pathology.  
 
To summarise, models potentially incorporate many biophysical influences on the 
signal. However, practical acquisition protocols support estimation of relatively few 
model parameters. Model constraints, such as ignoring certain effects, fixing certain 
parameters, enforcing relationships on parameter combinations, or imposing prior 
distributions on parameter values, are unavoidable. The art of model design involves 
first selecting constraints that are not overly restrictive or erroneous, and second 
understanding the behaviour of the model when its constraints or assumptions are 
violated. At the time of writing, the community is far from convergence on either 
issue and much debate continues over what constraints and assumptions are 
reasonable and how best to interpret parameters [6, 9, 156, 174]. 



3.2 Applications 
 
Model-based diffusion MRI aims to provide biologically more specific interpretation 
than standard techniques such as DTI.  For example, the range of model-based 
approaches reviewed in the previous section aim to map, and support subsequent 
analysis of, indices of specific microstructural features that DTI conflates, such as 
neurite density, axonal diameter, and neurite orientation distribution. This has great 
appeal for studying normal brain development, maturation and aging as, well as 
understanding a broad range of brain disorders. This subsection reviews current 
examples of such applications to biologically-motivated questions. 

Axonal/dendritic density and orientation distribution 
Among the first example applications, Vestergaard-Poulsen et al [175] apply 
Jespersen’s neurite model [79] to examine neurite remodelling in chronic stress 
studied in fixated tissue. They demonstrate a significant reduction in neurite density 
estimates in the hippocampus, amygdala and the prefrontal cortex. Later, Wang et al 
[176] adopt the same model to examine the treatment effect of marrow stromal cells, 
which stimulate neurite reorganisation to promote functional recovery, in an animal 
model of traumatic brain injury. They find increased neurite density estimates in the 
treatment group relative to the control group and the estimated neurite density from 
diffusion MRI strongly correlates with histology. In both examples, ex vivo imaging 
is conducted following the sacrifice of the animals. 
 
As one of the first applications involving living human subjects, Tavor et al [177] use 
the CHARMED model to study structural plasticity of the brain following short term 
learning. They demonstrate an increase in an index of dendritic density (the fraction 
of the restricted compartment) in several GM areas, including hippocampus and 
parahippocampal gyrus, that explains the reduction in mean diffusivity (MD) 
observed from the corresponding DTI data. In addition, they show that the percentage 
change in dendritic density index induced by the learning task is consistently larger 
than the percentage change in MD. This example highlights the increased sensitivity 
for detecting subtle microscopic changes with specific markers of microstructure. 
However, since CHARMED is a WM model and does not explicitly model orientation 
dispersion, it may lead to biased estimates of dendritic density in GM and axonal 
density for WM with non-negligible orientation dispersion. 
 
Kunz et al [178] apply both the NODDI and CHARMED models to assess WM 
microstructure in the newborn. The study demonstrates the feasibility of such analysis 
and shows that these biophysical models explain multi-shell data better than the 
diffusion tensor model. The results further suggest that NODDI’s accounting for non-
negligible orientation dispersion is important in all the major WM tracts, including the 
corpus callosum.  Winston et al [179] apply NODDI to study GM microstructure for 
the first time. In a clinical cohort of individuals with focal cortical dysplasia, a 



subtype of epilepsy, the authors show that focal lesions exhibit reduced neurite 
density index consistent with previous histological analyses. They additionally show 
that the reduction in neurite density index is significantly more conspicuous than the 
corresponding changes in MD and FA. NODDI has since been applied to study 
normal brain development [180], chart the trajectory of brain maturation [181-183], 
investigate neurodevelopmental disorders [184, 185], neurodegeneration [186, 187], 
and other neurological disorders  [188, 189].  The simplified two-compartment 
CHARMED model in [142] has also been increasingly adopted to enhance our 
understandings in brain development [190, 191], neurodegeneration [192, 193], and 
neuroinflammation [194-196]. 

Axon diameter 
Given its impact on the speed of information transfer, estimating axon diameter is of 
significant interest in neuroscience.  Techniques like AxCaliber [20] and ActiveAx 
[11] are difficult on most human scanners, because the gradient strength is insufficient 
for sensitivity to most axon diameters [21]. Thus applications of these techniques are 
limited. Horowitz et al [197] provide the first example, applying AxCaliber, on a 
clinical 3T system with 40 mT/m gradient, to estimate axon diameter distributions in 
the CC and correlate these to interhemispheric response times. However, the study 
has triggered debate within the community about its validity [198], given the known 
limitations of estimating axon diameters on systems with inadequate gradient [110] 
[21, 111]. More recently, Huang et al [199] take advantage of the unique Connectom 
scanner with 300 mT/m gradient and use a simplified version of AxCaliber in a 
clinical cohort (Multiple Sclerosis) to investigate axonal pathology in the mid-sagittal 
section of the corpus callosum.  Huang et al [199] demonstrates increased axon 
diameter index in the MS lesions compared to adjacent normal appearing white matter 
(NAWM), a finding consistent with reported histopathologic data. 

4. Implementation and practicalities 
This section introduces some key steps in the implementation of practical 
microstructure imaging techniques and summarises the state of the art in each. 

 4.1 Model selection 
 
Statistical model selection [200, 201] seeks the model that best explains observations. 
The problem is important in microstructure imaging, because our understanding of the 
mechanisms of MR signal generation from complex tissue architectures remains 
crude so we typically have to make empirical choices. Moreover, the degree of 
complexity that our data can support is unclear. Broadly two strategies are available: 

1. Ockham’s razor, which seeks the simplest model, i.e. the model with the 
smallest number of free parameters, that explains the data. This means 



“explaining” in the statistical sense of fitting the data within errors expected 
from noise. Various information criteria, such as Akaike’s information 
criterion (AIC) or the Bayesian information criterion (BIC) [200] explicitly 
encode the idea by trading off model complexity against goodness of fit; 
Bayesian model selection [201] works similarly implicitly. 

2. Cross validation [202], which seeks the model that best predicts unseen data. 
Two distinct tasks arise in predicting i) within-sample measurements 
(interpolation) and ii) out-of-sample measurements (extrapolation). 

The two strategies often broadly agree, and provably so [202], because a model that 
predicts unseen data best is generally one that fits visible data well but without 
overfitting, i.e. using the smallest possible number of parameters. However, 
inconsistencies certainly arise, see e.g. [147]. The strongest conclusions come from 
using multiple model-selection strategies to identify concurrence of model ranking. 
 
A series of publications [147, 203-206] comparing the ability of different models to 
explain diffusion MR signals from WM tissue, using both strategies above, provides 
insight into the complexity of models that such data can support. Panagiotaki et al 
[203] compared various models on data from fixed ex-vivo rat-brain tissue using the 
BIC. They conclude that explicit modelling of restriction in the axonal compartment, 
as well as isotropic restriction (as in Stanisz’s glial cell compartment [69] or 
ActiveAx’s Dot compartment [11]), are essential in capturing signal variation. Ferizi 
et al [147] perform a similar analysis on in-vivo human brain data, finding again that 
three compartments are necessary to capture signal variation, although the in-vivo 
data supports less complex models than Panagiotaki’s ex-vivo data. Ferizi et al [147] 
consider AIC, BIC, and cross-validation, as well as a study of the stability of model 
ranking over bootstrap samples, which provides useful additional insight into which 
conclusions are reliable. Rokem et al [207] compare the diffusion tensor model and a 
multi-compartment model using cross validation with scan-rescan data. More recent 
work [204-206] highlights the importance of fibre dispersion in modelling the signal 
from in-vivo WM, establishing it as a key component of modern diffusion MRI 
models for neuroimaging. A broader study reporting results from an organised 
challenge across the community [205] compares a wider set of model classes using 
cross-validation (primarily for interpolated data). Results suggest that even very crude 
and simple biophysical models can explain data as well as more complex signal 
models. 
  
With these kinds of experiment, it is important to keep in mind that simply 
“explaining” the signal, i.e. fitting measured data with few parameters, says very little 
about the biophysical accuracy of the model. As an illustrative example, Nilsson et al 
[208] conclude from studying fitting errors of various WM models, that axonal 
permeability strongly affects the signal. However, that experiment did not consider 
models that incorporate the effects of orientation dispersion. Later work from the 
same group [165] shows that orientation dispersion (a more likely biological 
explanation) explains the variation in the data just as well. Nevertheless, experiments 



that compare fitting errors and model complexity, or prediction accuracy, have great 
value. That value lies in the ability to reject models that cannot explain the data. This 
kind of statistical model selection thus provides a filter on a broad set of models we 
might initially brainstorm for an application, allowing us to distil a small set of 
candidates that are plausible explanations of what we measure. This insight is key to 
designing practical and reliable imaging techniques that use such models. However, 
empirical validation, as we review in section 4.4, is essential to refine the choices 
further. 
 
Finally, we note the importance of out-of-sample measurements in model selection 
(and verification). Often different or new types of measurement can reveal 
weaknesses or differences among models. For example, recent results from spherical 
tensor encoding [6] or from very rich data sets with high b-values [174] show that the 
NODDI model does not explain the full range of signals, particularly from grey 
matter, despite it fitting data from standard clinical acquisition protocols fairly well.  

4.2 Experiment design optimisation 
 
Experiment design refers to the finite set of data points we sample from the, generally 
infinite, space of possible measurements. The choice of experiment design is critical 
in getting good parameter estimates in any model-based estimation task. In 
quantitative MRI, the experiment design is the choice of pulse-sequence parameters in 
each image that provides the data to which we fit the model. In diffusion MRI, the 
pulse-sequence parameters might be, depending on the complexity of the model, just 
the b-value or a more complete set of defining parameters, e.g. δ, Δ, g, TE, for the 
SDE sequence [145]. A good design has to balance competing effects, such as 
increasing sensitivity with b-value but lower signal-to-noise ratio as TE increases to 
accommodate higher b-value. To design a protocol for front-line application, i.e. use 
in a biomedical study or clinical application rather than development, we seek the 
combination of measurements that, for a particular budget of acquisition time, 
maximises sensitivity to the parameters of a model we have chosen to use.  
 
The Fisher information matrix [209] F is the expectation of the second derivative of 
the log likelihood of the measured signal. It is a key tool in experiment design 
optimisation, because the inverse of F provides an estimate of the covariance matrix 
(i.e. the expected uncertainty of the estimates) of the model parameters given the 
design. Design optimisation typically seeks to minimise the variance of the parameter 
estimates. Thus, several scalar functions of F, e.g. Tr(F-1), 1/Det(F), etc - see [209, 
210], provide suitable objective functions to minimise with respect to the combination 
of sequence settings comprising the acquisition protocol. 
  
Applications of these ideas in quantitative MRI include Dixon imaging [211], 
quantitative magnetisation transfer [212], arterial spin labelling [213]. In diffusion 



MRI microstructure imaging, [145] outlines a framework for optimising the design in 
this way. The acquisition protocols for ActiveAx in [11, 21], NODDI [5] and filter 
exchange imaging (FEXI) [214] all use this approach. These optimised designs can 
produce substantial improvements in parameter maps over ad-hoc designs; see Figure 
7 for an example. 
  
Two caveats are important with this experiment design strategy: 
1. For any non-linear model, F depends on the choice of model parameters. This 
creates circularity: we can only optimise the design for pre-defined parameter values; 
yet we do not know the parameter values, which is why we estimate them. Moreover, 
in MRI, the parameter values vary spatially, but we can only choose one protocol 
common to all voxels. In practice, we break this circularity by: a) assuming that the 
optimality of the design changes slowly as a function of the parameter values; and/or 
b) selecting a range of combinations of representative parameter values and averaging 
the objective function over each combination. 
2. The optimisation has high dimension. A typical diffusion MRI protocol 
includes of order 100 diffusion weighted images. With SDE, each has at least 5 
degrees of freedom leading to a 500-dimensional optimisation problem [145]. Such 
problems are usually intractable. If we consider the whole gradient waveform, as in 
[112, 113, 120], the problem explodes further to 100s of parameters per measurement. 
To mitigate this, we can impose constraints on the protocol to bring the 
dimensionality of the problem under control. For example, the framework in [145] 
divides the DWIs into a relatively small number, M, of high angular resolution 
diffusion imaging (HARDI) shells each with common pulse timing. This reduces the 
dimensionality to 3M. Even with this relatively small number of dimensions, the 
search requires multiple runs of a lengthy stochastic optimisation to find good 
solutions, as the objective function has many local minima. An alternative strategy is 
to optimise proxy quantities, such as the maximal b-value in the minimum echo time 
[120]. 
  
These caveats reveal that experiment design is an inexact science at least in 
application to microstructure imaging. However, even the suboptimal solutions we 
obtain can make substantial practical differences; again see figure 7. In fact, even in 
very high dimensional experiment design problems, optimisation can find useful 
solutions and provide important insight into the choice of protocol; see for example 
[113]. Validation experiments using simulations, physical phantoms, and relevant 
biological samples are important to verify efficacy of any design. 
   
We emphasise that the experiment design strategy above is only appropriate once a 
suitable model has been identified. Preceding steps in the development of 
microstructure imaging techniques can require quite different design strategies. For 
example, model comparison experiments (section 4.1) tend to cover the useful 
measurement space as widely as possible to reveal all significant and potentially 
useful effects. This contrasts strongly with F-based designs, which cluster 



measurements around a few points at which the signal changes rapidly with parameter 
values. Other developmental steps use F-based optimisation, but in different ways. 
For example, to establish (or rule out) sensitivity of a particular family of 
measurement to a particular parameter (can we measure any realistic axon diameters 
in white matter with SDE and 40mT/m gradients?) requires the best possible 
combination of measurements within the family; see for example [145]. Similarly, to 
make statements about which pulse-sequence family is most sensitive to a particular 
parameter (is OGSE more sensitive to axon diameter than SDE?) requires the optimal 
combination of measurements within each family; see for example [110, 215]. The 
literature on experiment design, e.g. [210], contains a variety of other strategies that 
are relatively unexplored in microstructure imaging and quantitative MRI. 
 

 
Figure 7. Comparison of AXR maps from the original [216] experiment design (left) and the optimised 
[214] experiment design (right). The map on the right shows clearer structure and contrast despite 
requiring only 13 minutes of acquisition as opposed to 45 minutes for the map on the left. (The slices 
do not exactly match, as the acquisitions come from different subjects in a different study, but they 
show typical contrast for each protocol.) The unit of the grey scale is 1/s.  

4.3 Parameter estimation 
  
Once we have a model and some data, a variety of options are available for fitting the 
model to the data to obtain parameter estimates. An accompanying article in this 
special issue [22] focuses on some aspects of this challenge, but we summarise key 
techniques briefly here for completeness. 
  
The standard procedure is to use maximum likelihood estimation, typically via non-
linear fitting such as gradient descent, independently in each image voxel. Standard 
implementations of NODDI, AXR imaging, and AxCaliber, all use this approach and 



typically report a single best-guess parameter estimate in each image voxel, although 
gradient descent techniques do often provide an additional measure of confidence in 
each parameter estimate, which can be useful. Sampling techniques, such as Markov 
Chain Monte-Carlo (MCMC), sample the posterior distribution on the parameter 
values, which can provide a more complete picture of confidence in each parameter 
estimate as well as avoiding local minima problems associated with gradient descent; 
ActiveAx uses a multi-stage fitting process involving gradient descent followed by 
MCMC sampling. The use of averaging across direction prior to fitting [9, 90, 172, 
217-220], as in the spherical mean technique [9, 172] or methods that compute higher 
order moments [174, 221, 222], can provide invariants to the fibre orientation 
distribution sensitive only to fibre composition. This can avoid fitting to very large 
numbers of measurements by non-linear optimisation, which increases speed and 
enhances stability.  
  
Recently, various techniques move away from gradient descent to use linearised 
fitting routines, convex optimisation, or dictionary based methods. These can avoid 
local minimum problems and dramatically reduce computation time, at the cost of 
some precision of the final estimates.  The AMICO framework [223], LEMONADE 
[224], WMTI [142], and [225] are all examples. However, confidence estimates are 
less straightforward to obtain from such techniques than from classical parameter 
estimation. 
  
Exploitation of spatial coherence of brain images can help to increase accuracy of 
parameter estimates and resolve ambiguities. In both WM and GM, the statistics of 
tissue composition are often similar in neighbouring voxels suggesting that we can, 
sometimes, pool information from neighbouring voxels, rather than treating each 
independently, to better inform parameter estimates. In WM, the macroscopic 
continuity of axon bundles potentially provides further constraints on parameter 
estimates and their spatial variation. Morgan [226] fit the trend in axon diameter 
across the CC to all voxels in the region; Scherrer et al [160] use the BOBYQA 
algorithm [227] to exploit spatial coherence during fitting of the DIAMOND model. 
Recent combinations of global tractography and microstructural parameter estimation 
[228, 229] also embrace this idea.  

4.4 Empirical evaluation 
 
In order to assess the degree to which model parameters capture the underlying 
features of the tissue, evaluations can be performed by simulations or by combined 
dMRI and microscopy measurements in phantoms or tissues. Figure 8 summarises the 
spectrum of approaches. Each provides a different balance between realism of 
microstructure and control of ground-truth values. Numerical approaches typically 
offer high control at the expense of realism, whereas the reverse holds true for 
measurements in tissue. 



  
Numerical simulations support investigations of the robustness of parameter estimates 
under ideal conditions. The basic premise is to predict the signal for a given 
measurement protocol, add noise, and fit the model in multiple repetitions. 
Synthesizing from and fitting back the same model can establish effects of protocol 
design and noise level on parameter estimates (e.g. [230]), the range in which 
parameters can be estimated with high accuracy [231, 232], and the interplay between 
the hardware constraints and parameter estimates, e.g. the available gradient strength 
and the estimated axon diameter index, as in [21]. Such evaluations establish an upper 
bound for the parameter accuracy, which can be compared across sampling protocols. 
 

 
Figure 8. Methods for empirical validation of microstructure imaging showing the spectrum of 
techniques with increasing realism but decreasing specificity of ground truth (left to right). (A) 
Numerical simulations can be used to simulate data (top) and evaluate the robustness of model 
parameter estimation (bottom). (B) Monte-Carlo simulations can be used to investigate diffusion in 
simple to complex digital substrates [233]. (C) Physical phantoms can be composed of inert material 
(top, from [234]) or of biological material (bottom, from [235]). Measurements on phantoms provide 
an opportunity to validate the pulse sequence implementation, as well as sanity check parameter 
estimates in simple geometries where ground truth is relatively well defined and to some extent 
controllable. (D) Fixed tissue offers means to obtain high-quality data without motion artefacts, while 
still having access to ground truth via, for example, electron microscopy (bottom, courtesy of Mark 
Burke). (E) Measurements on viable (rather than fixed) tissue in a maintenance chamber can be 
performed to alleviate potential alterations of the tissue microstructure from fixation; the image pair at 
the bottom show electron microscopy from tissue that spent 10 hours in a tissue maintenance chamber 
(left) compared to tissue deprived of glucose and oxygen for 2 hours (right); courtesy of Simon 
Richardson. (F) In vivo imaging combined with ex situ microscopy can be performed in preclinical 
conditions or in patients undergoing surgery to assess the agreement of MRI-based and microscopy-
based analysis.  
 
We can learn how model parameters respond under departures from the model 
assumptions by generating data using a model or procedure that is more complex than 
the one used for fitting. Numerical approaches are useful in this context, and have 
been used to illuminate how DTI parameters respond to e.g. crossing fibers or partial 
volume effects [14, 236, 237], and to study degeneracy in parameter estimation [156]. 
Monte Carlo (MC) simulations are especially useful to simulate dMRI of complex 
microstructure [231, 233, 238, 239]. In MC simulations, random walkers are released 
in a numerically defined microstructure substrate. For each walker, the phase accrued 
from a simulated gradient waveform is recorded and used to predict the signal. 



Substrates can be constructed to match model assumptions of, for example, parallel 
non-abutting cylinders, as in [231, 233, 238, 239]. Alternatively, the model can be 
challenged by constructing substrates with higher complexity. Such simulations have 
been conducted to learn how the model parameters respond to changes in fiber shape, 
permeability, undulation, or dispersion [31, 114, 165, 231, 233]. Segmented histology 
slides can also yield a substrate with a high level of complexity in both the intra-
axonal and extracellular spaces [109, 240]. 
  
Physical phantoms, that represent but generally simplify the tissue of interest, provide 
the opportunity to test models with measured data but from idealised or simplified 
samples. Ground-truth values of model parameters can sometimes be controlled in the 
phantom construction, and importantly, obtained by independent methods such as 
microscopy. Different materials are used for phantom construction. Inert materials 
such as glass or plastics offer long shelf life, high reproducibility, and good control 
over microstructural parameters. Conversely, biological phantoms, e.g., vegetables or 
cell cultures, have shorter shelf life, but are often cheap and easy to prepare, although 
the features of the microstructure are harder to control and measure. Axon-like 
phantoms have been constructed from hollow glass capillaries and used to verify 
diffusion models [241, 242], validate the relation between pore sizes and diffraction 
patterns from DDE [101], test size estimation with ODE [243], to study microscopic 
anisotropy [244], and to test dMRI with free gradient waveforms [215]. Fiber-like 
phantoms can also be constructed with co-electrospinning [234, 245], or formed by 
liquid crystals [246]. Asparagus stems have capillaries that can approximate large 
axons [235, 240, 247], while asparagus puree can be used to study microscopic 
anisotropy [220]. Phantoms that approximate round cells can be constructed from oil-
water emulsions [81]. Such phantoms have been used to test compartment models 
[81, 105, 248] and later to test multimodal microstructure estimation [249]. Yeast 
cultures also form phantoms with isotropic diffusion in distinct intra- and extracellular 
compartments [168] [250] [251] [94]. Yeast cells feature temperature-dependent 
membrane permeability, detectable by DDE [70], and cell-sizes in the range of 4–8 
µm, which makes yeast cell suspensions an ideal testbed for methods aimed at cell 
size estimation [107, 252]. 
 
Measurements in a microstructural environment close to in vivo can be performed by 
using fixed tissue, which offers many of the same benefits as phantoms. A drawback 
is that the ground-truth microstructure cannot be controlled and may be less well 
characterised than in phantoms. Many challenges must be addressed to obtain high-
quality data of fixed tissue [253]. It is of key importance to minimise the interval 
between death and fixation [254], although once fixated successfully, the 
microstructure and the diffusion parameters can be stable for years [253].  However, 
the degree to which the fixation alters the microstructure is unknown [255]. 
Alternatively, measurements on viable tissue samples can be obtained to avoid 
possible fixative-related biases [255-257]. Results from comparisons between dMRI-
derived parameters and microscopy of fixed tissue have revealed time-dependent 



diffusion congruent with diffusion restricted within axon-sized compartments [20, 
68], OGSE-frequency dependence in both the intra-axonal and extracellular spaces 
[109], and good agreement of myelinated neurite fractions from dMRI and histology 
[4]. Image analysis of fixed tissue has also been used to quantify levels of axonal 
orientation dispersion [7, 258].  
  
Direct validation where the same tissue is used for both MRI and histology is 
particularly useful to guide the interpretation of model parameters, for example, by 
comparing axon diameters estimated from dMRI to those estimated from histology 
[10]. Naturally, such validation is impossible in healthy human brain tissue, and can 
be challenging even in a preclinical setting. Indirect validation by comparison to 
literature values is an alternative, for example, regarding axon diameter estimation in 
humans [11]. Resections in patients with e.g. brain tumours may, however, offer a 
rare opportunity for direct validation [259, 260].  

4.5 Development pipeline 
The various steps above are all important in the development of successful 
microstructure imaging techniques. Figure 9 illustrates broadly how the different steps 
fit together. The key messages are: 

I. The process is iterative rather than linear: earlier steps predominantly inform 
later steps, but, very often, later steps will reveal new information that require 
rethinking and repetition of earlier steps. 

II. Theoretical work to understand tissue structure and signal generation are 
necessary to find good models, but not sufficient. Empirical steps are essential 
to refine candidate models that theoretical brainstorming identifies. This 
includes both statistical model selection to reject models that do not explain 
the data, and validation against independent measurements to find models that 
best estimate histological parameters. 

III. Theoretical development of the model must go hand-in-hand with the design 
and choice of sequence and measurement protocol to ensure that the data 
acquired provide sensitivity to the parameters we intend to estimate. 

IV. Very good arguments must be identified for increasing model complexity over 
the simplest available models that reasonably explain the trends in the data (as 
described in section 4.3). Robustness, repeatability, and computation time are 
extremely important for clinical and biomedical application. These 
requirements favour simpler models even further than statistical model 
comparison alone. On the other hand, the assumptions of simpler models may 
be violated more easily and frequently. Users must be cautious of this and 
have an understanding of how the model behaves when it happens.  Of course, 
it is much easier to reason about anomalous parameter values in a model with 
two variables than a model with ten, so the ability to detect and explain 
anomalies again should favour simple models. 



V. Similarly, very good arguments must be identified for using pulse sequences 
that go beyond the simplest possible (e.g. SDE via PGSE). In particular, the 
benefits of non-standard sequences in terms of parameter sensitivity are 
sometimes quite subtle. At the same time, such measurements may incur 
unexpected and easily-missed artefacts. Benefits and drawbacks should thus 
be analysed and tested carefully. Moreover, lack of availability on commercial 
MRI scanners can hinder wide uptake even when benefits are clear.  

VI. Robust and usable software together with exemplar applications are essential 
for translation to widespread uptake. Both require substantial investment of 
time, but are essential steps in identifying problems of usage and 
interpretation, as well as engineering a technique for front-line application. 

 

 
 
Figure 9. Microstructure imaging development pipeline. We identify three phases. A theoretical phase 
first gains an understanding of the microstructure of the tissue of interest, it then brainstorms 
measurements (i.e. choice of sequence and protocol) likely to provide sensitivity to the imaging targets 
within that tissue, and similarly brainstorms candidate models linking those measurements to tissue 
features. An experimental phase then acquires data to test, compare, validate, and select working 
models and acquisition protocols. Finally, an application phase develops user-friendly software 
enabling widespread uptake of the technique. This must involve work with end-users in real-world 
applications to turn prototype code into a working system, understand user behaviour, and provide the 
necessary education to use the technique appropriately. The phases, as well as the steps within them, 
are mutually informative so that the pipeline is iterative rather than linear. 



5. FUTURE AND EMERGING IDEAS 
 
Despite the great promise, current microstructure-imaging techniques remain 
simplistic with clearly identifiable limitations. A variety of paths are available for 
amelioration of current limitations and for greater advances towards the next-
generation of quantitative microstructural imaging techniques.  

5.1. Better models  
 
The biophysical models underpinning current microstructure imaging techniques 
remain crude. The practical demands for simple models, which section 4.5 
summarises, necessitate major simplifying assumptions, such as fixed diffusivity 
parameters, fixed axon diameter distribution, no exchange between compartments, 
perfectly straight and cylindrical axons, simplistic tortuosity approximation, the list 
goes on. A variety of anomalous results point to the fact that these design choices are 
oversimplifications. For example, diffusion MRI axon diameter mapping techniques 
typically overestimate the axon diameter in comparison to classical histology by a 
factor of 3 or more [11, 21, 151]; isotropic diffusion encodings suggest similar mean 
diffusivity in the intra and extra-cellular spaces [121], which is incompatible with 
diffusion models such as NODDI, at least in GM; measurements at high b-value may 
not support tortuosity constraints [174], although the intuition that greater axon 
density reduces perpendicular diffusivity seems reasonable so the result perhaps 
suggests other model inaccuracies. Current models neglect effects such as exchange, 
axonal undulation, branching of dendrites and glial cell processes. Simply adding 
additional model parameters to capture such effects leads to over-parametrisation 
preventing any sensible parameter estimates. However, independent experiments to 
measure these various quantities potentially enable strong priors to help account for 
such effects. Recent trends toward computational rather than mathematical models, 
see for example [166, 167], can help capture effects, such as undulation, exchange, 
branching, and extra-cellular tortuosity, for which mathematical models are 
intractable. They do not help with over-parametrisation, but such models can help 
identify the locus of possible parameter combinations that can explain measurements 
thus supporting more reasoned downstream inference that accounts for parameter 
uncertainty. 

5.2. Advanced pulse sequences  
 

Current techniques in widespread application use the standard SDE sequence. 
However, as discussed in section 2.1, advanced pulse sequences potentially offer 
greater sensitivity to tissue features we currently estimate as well as additional 
sensitivity to new features. Research remains to characterise fully the benefits of 



different sequences and the precise situations in which those benefits arise, although 
certain specific benefits are already clear. For example, OGSE enhances sensitivity to 
axon diameter in simple compartment models in the presence of orientation dispersion 
or uncertainty [110]; DDE and q-space trajectory imaging can discriminate 
microscopic anisotropy from distributed microscopic pore size, which SDE cannot 
distinguish [90, 91, 115, 220, 260]; DDE can enhance sensitivity to exchange [23, 94] 
and improve estimation of blood volumes [85]. Several challenges remain in 
exploiting the potential benefits of such sequences: i) making them readily available 
and stable on standard clinical platforms; ii) optimizing acquisition strategies and 
imaging protocols to yield acceptable scan times, iii) identifying specific applications 
in which they offer a clear benefit; iv) constructing sufficiently stable and 
parsimonious models that relate their signals to useful tissue features. Immediate 
applications do arise in verifying, or highlighting limitations of, models designed 
using only standard SDE sequences, as in [6]. 
 

5.3. Parameter estimation 
 
We can expect methods of parameter estimation to become more reliable enhancing 
precision of parameter maps. The dictionary-based approaches discussed in section 
4.3 offer great promise and are essential for processing very large databases of 
images. Techniques such as multi-model inference [200] are largely unexplored in 
microstructure imaging, but should help to avoid consistent bias in parameter 
estimates while avoiding over-fitting. Such techniques also enable quantification of 
uncertainty in parameter estimates arising not just from noise, but also from 
uncertainty in the choice of model, thus quantifying more precisely our belief that 
parameter estimates reflect true underlying tissue microstructure. 

5.4. New hardware  
 
Next-generation MRI scanners can dramatically enhance the performance of 
microstructure imaging techniques. Stronger magnetic field gradients have major 
benefit by i) increasing the signal to noise of diffusion-weighted measurements by 
reducing the echo time required for a particular b-value; ii) reducing the lower bound 
on the pore size to which the signal is sensitive. Dyrby et al [21] demonstrate the 
benefits of enhanced gradient strength on estimation and mapping of axon diameter in 
fixed monkey brains confirming earlier simulation work such as [235]. The ex-vivo 
work in [12] exploits 50T/m gradients. Recent work on the Boston Connectom 
scanner [261] shows promising results in axon diameter mapping in live subjects both 
in health e.g. [13] and in disease [199] .  

        



Higher field strength also offers advantages for diffusion MRI and microstructure 
imaging in general by providing images with higher signal and higher spatial 
resolution. Although higher field strength also reduces T2 potentially to the detriment 
of diffusion MR signals, recent work [262, 263] confirms benefits of moving to 
higher field as well as the complementarity of 3T and 7T data, which can combine 
advantages of higher spatial resolution at high field with higher signal at high b-value 
available at lower field [264]. 

5.5. Multimodality  
 
A major new avenue for microstructure imaging in the future is to combine 
information from diffusion MRI with that from other MR contrasts or even other 
modalities. Various other quantitative MR techniques offer complementary 
information on tissue microstructure to diffusion MRI and the construction of models 
informed by multiple contrasts has the potential to resolve ambiguities that are 
intrinsic to single modality approaches. The first multi-modality microstructure 
imaging techniques are just starting to appear. For example, recent work on g-ratio 
estimation and mapping combines estimates of myelination from quantitative 
magnetisation transfer [124, 265] or myelin water imaging [266] with estimates of 
axonal density from diffusion MRI, albeit without using an integrated model of both 
contributing modalities. Early work combining estimates of pore density from 
diffusion MR and optical imaging provides an example of an integrated model [249]. 
Exciting possibilities arise in joint modelling of relaxometry, e.g. [267], and 
susceptibility imaging, e.g. [268], with diffusion MRI since the former are 
confounded by microstructural orientation effects, which the latter is able to estimate 
with relatively high accuracy. However, serious challenges arise in multi-modal 
microstructure imaging. First, the idea demands unified models relating MR to tissue 
features across multiple contrasts, none of which currently have broadly agreed 
models even independently. Second, practical issues arise in processing and 
alignment of images from different contrasts, which often use quite different 
acquisition and reconstruction algorithms, to ensure sets of measurements from 
corresponding volumes of tissue. 

5.6. Further applications 
 
As we mentioned in section 3.2, the range of applications of microstructure imaging 
techniques in the brain is expanding rapidly. The idea further extends naturally to 
non-brain applications, although different models are required to explain the signal. 
Recent developments in non-brain cancer imaging [269-271] extend the paradigm 
from the brain with extremely promising results. Many other opportunities are 
available in, for example, imaging the heart, muscle tissue, liver, kidney, lung, 
placenta, and many other solid organs. The appetite for such techniques from 



clinicians and biomedical researchers can be very high, because they rely solely on 
painstaking histological analysis for specific information on tissue structure. 
However, it can take time to educate such users in the precise capabilities of such 
techniques. As non-invasive approaches become more available and popular, we must 
be careful to understand their limitations and educate users of such limitations to 
avoid misinterpretation. Nevertheless, exposing techniques to users is essential to 
identify both potential and limitations – we hope an understanding of the pipeline 
outlined in figure 9 can help to balance these competing pressures and expedite the 
development of powerful future microstructure imaging tools. 
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