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Abstract

Despite the benefits introduced by robotic systems in abdominal Minimally Invasive Surgery (MIS), major complications
can still affect the outcome of the procedure, such as intra-operative bleeding. One of the causes is attributed to accidental
damages to arteries or veins by the surgical tools, and some of the possible risk factors are related to the lack of sub-
surface visibilty. Assistive tools guiding the surgical gestures to prevent these kind of injuries would represent a relevant
step towards safer clinical procedures. However, it is still challenging to develop computer vision systems able to fulfill
the main requirements: (i) long term robustness, (ii) adaptation to environment/object variation and (iii) real time
processing.

The purpose of this paper is to develop computer vision algorithms to robustly track soft tissue areas (Safety Area,
SA), defined intra-operatively by the surgeon based on the real-time endoscopic images, or registered from a pre-operative
surgical plan. We propose a framework to combine an optical flow algorithm with a tracking-by-detection approach in
order to be robust against failures caused by: (i) partial occlusion, (ii) total occlusion, (iii) SA out of the field of
view, (iv) deformation, (v) illumination changes, (vi) abrupt camera motion, (vii), blur and (viii) smoke. A Bayesian
inference-based approach is used to detect the failure of the tracker, based on online context information. A Model
Update Strategy (MUpS) is also proposed to improve the SA re-detection after failures, taking into account the changes
of appearance of the SA model due to contact with instruments or image noise. The performance of the algorithm was
assessed on two datasets, representing ex-vivo organs and in-vivo surgical scenarios. Results show that the proposed
framework, enhanced with MUpS, is capable of maintain high tracking performance for extended periods of time (' 4min
- containing the aforementioned events) with high precision (0.7) and recall (0.8) values, and with a recovery time after
a failure between 1 and 8 frames in the worst case.

Keywords: long-term tissue tracking, tracking failure detection, model update strategy, robotic minimally invasive
surgery.

1. Introduction

The introduction of Robotics in Minimally Invasive
Surgery (RMIS) allows overcoming many of the obstacles
introduced by traditional laparoscopic techniques, by im-
proving the surgeon’s dexterity and the ergonomics during5

the surgical procedure, and restoring the surgeon’s hand-
eye coordination (Bravo et al., 2016; Forgione, 2009; Lan-
franco et al., 2004). Despite these benefits, the outcome of
the surgical procedure can still be compromised by adverse
events occurring during the surgery. In robotic abdominal10

surgery, for example, one of the major complications is
intra-operative bleeding due to injuries to vessels (Trinh
et al., 2012; Kaouk et al., 2012; Sotelo et al., 2014). Main
arteries or veins close to the surgical site can be acciden-
tally damaged during the execution of a surgical proce-15

dure, being a major risk factor associated to the surgeon’s

skill or robotic system reliability (Lorenzo et al., 2011).
Vessel damage may also activate a chain of secondary ef-
fects, such as the switch to open-surgery approach, a longer
anaesthesia time and post-operative bleeding, thus nega-20

tively affecting the surgical performance and leading, in
the worst case scenario, to patient death (Opitz et al.,
2005).

Computer-assisted technologies coupled with robotic
surgical systems can enhance the surgeon’s capabilities and25

the control of the surgical tools by providing guidance to
the surgical gestures. Specifically, these technologies could
be used in abdominal robotic surgery to prevent vessel in-
jury, by intra-operatively identifying and tracking a Re-
gion of Interest (ROI) bounding these delicate structures,30

which would work as active constraints to automatically
prevent the robotic arms from touching this area. Intra-
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Figure 1: An overview of the proposed framework for long term tracking of a safety area defined on endoscopic images

operative identification of structures of interest has been
explored using pre-operative information by means of Aug-
mented Reality (AR) systems (Nicolau et al., 2011; Onda35

et al., 2014; Penza et al., 2014). However, this approach
has to deal with dynamic changes of the anatomy between
the data acquisition phase (pre-operative) and the surgi-
cal procedure (intra-operative) (Penza et al., 2016; Puerto-
Souza et al., 2014; Faria et al., 2014). In fact, these changes40

can frequently occur due to (i) different pose of the patient
with respect to the one in which the pre-operative infor-
mation was stored, (ii) CO2 abdominal insufflation that
presses and changes the shape of the organs, (iii) instru-
ment tissue interaction, and (iv) heart beat and breathing45

that affect the registration on a smaller scale.
In order to measure the intra-operative tissue move-

ments, computer vision and image processing algorithms
have been exploited to track soft tissue areas relying only
on the image characteristics (Stoyanov, 2012b). Early50

works on soft tissue tracking algorithms applied to en-
doscopic images have been done exploiting optical flow
techniques. Stoyanov (2012a) used scene flow estimation
techniques for the recovery of 3D structures and motion of
the operating field from stereoscopic images, propagating55

this information to obtain a denser surface deformation
identification. The main advantages of such methods are
the sub-pixel accuracy and low execution time. However,
for long-term endoscopic videos, the tissue area appear-
ance may change or can be partially or totally occluded60

by instruments or camera movements. For these reasons,
such algorithms typically accumulate errors resulting in
tracking drift, or fail in case of occlusion.

Recently, different attempts have been implemented in
order to build a long-term tracking system with enough65

robustness and reliability for long video sequences (in the
order of minutes), which would be suitable for real surgical
scenarios. This issue has been addressed using feature-
based approaches, since they are invariant to rotation,
scale changes of the area to track, and they are able to70

find feature matches between non consecutive frames, yet
affecting accuracy and computational time. Yip et al.
(2012) described a history preserving strategy to achieve
long term tracking, without handling the effects of instru-
ment occlusion and shading. A probabilistic framework to75

track affine-invariant anisotropic regions has been devel-
oped by Giannarou et al. (2013), where a recover strategy

from potential tracking failure has been approached us-
ing spatial context and region similarity information to
update an Extended Kalman Filter tracking framework.80

Puerto-Souza and Mariottini (2013) introduced a Hierar-
chical Multi-Affine (HMA) algorithm to map features be-
tween two endoscopic images, allowing to recover features
that were lost after a complete occlusion or sudden cam-
era motions. Mountney and Yang (2012) exploited online85

learning and classification using a context specific feature
descriptor, in order to increase the robustness against drift
and occlusion. Du et al. (2015) used a triangular geometric
mesh model to combine features and intensity information
to robustly track soft tissue surface deformation. Affine de-90

formation modelling is used by Schoob et al. (2016) to pro-
vide motion compensation in dynamic surgical scenes, and
an occlusion detection scheme was proposed to increase ro-
bustness against tracking failures. A framework for online
tracking and retargeting is proposed by Ye et al. (2016),95

based on the concept of tracking-by-detection. Moreover,
an important aspect to take into account in the develop-
ment of a soft-tissue long-term tracker is the context infor-
mation. In visual tracking, different works has been done
in the areas of instrument segmentation from endoscopic100

video (Pezzementi et al., 2009; Bouget et al., 2015; Allan
et al., 2015; Bouget et al., 2017).
Despite the progresses made, it is still challenging to de-
velop a framework able to fulfil the main system require-
ments, as proposed by Yang et al. (2011):105

• long-term robustness of the tracking even under com-
plicated conditions recurring into the surgical field
of view, such as: (i) tissue motion and deformation,
(ii) occlusion by instruments, (iii) area out of field
of view, (iv) large camera movements, (v) scale and110

orientation changes, (vi) blood and smoke changing
the scene and (v) tissue specular highlights;

• adaptation to environment variations and changes in
the tissue surface itself;

• real-time processing to allow the application in prac-115

tical surgical scenarios (15 fps or greater value de-
pending on the application).

In this work, we propose a framework for Long-Term
Safety Area Tracking (LT-SAT) that is robust and reliable
under the aforementioned adverse events in long surgical120
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Figure 2: Graphical representation of the proposed framework for soft tissue Safety Area (SA) tracking. On the timeline are highlighted the
main steps: Tracking, SA features redetection, failure detection and Tracking Re-initialization. The keyframes represent the reference frame,
with respect to whom M is computed.

endoscopic sequences. In particular, considering the clini-
cal issues previously described, we decided to focus the at-
tention on tracking areas of interest to be preserved from
injury during RMIS, such as main arteries or veins (por-
tal vein, hepatic artery, splenic artery and vein, mesenteric125

artery and vein) in intervention of liver, pancreas, prostate
and colon resection. However, the proposed framework
can be applied to any other applications aiming at track-
ing structures of interest in the surgical field of view. The
framework combines the advantages of an optical flow al-130

gorithm (Sec. 2.1) with a tracking-by-detection approach
(Sec. 2.3), which exploits a novel Model Update Strategy
(MUpS) for improving the identification of the Safety Area
(SA). Since the optical flow methods are prone to failure,
a Bayesian approach is used to detect possible failures,135

considering online context information (Sec. 2.2). An ex-
tensive quantitative analysis on ex-vivo and in-vivo video
sequences is presented to demonstrate long-term achieve-
ment (Sec. 3). The results and discussion of this analysis
are presented in Sec. 4 and conclusion in Sec. 5140

2. Methods

The workflow of the proposed framework for long-term soft
tissue tracking on endoscopic images is shown in Fig. 1. We
assumed that the Safety Area Definition, i.e the identifi-
cation of the structure to be preserved from injury during145

surgery on the endoscopic image, is done manually or reg-
istering a pre-operative model intra-operatively (Puerto-
Souza et al., 2014). The SA is defined as a set of m 2D
points p1, p2, ..., pm with each pi ∈ R2. The basic steps for
the Tracking of the SA along the video sequence consist in150

(i) detecting salient features inside the SA (ii) finding cor-
responding features in the successive frames, and exploit-
ing the matched features to (iii) find the perspective trans-
formation between them (M) and used it to (iv) update

the new position of the SA. Due to the presence of image155

noise, errors in the perspective transformation computa-
tion, or total occlusion of the SA, a tracking failure can
occur. Failure Detection scheme is thus proposed, together
with a Tracking Re-initialisation strategy to re-detect the
SA in the image when visible. The keyframe represents the160

reference frame, that is re-initialised every time a Track-
ing Re-initialisation is performed. Fig. 2 shows more in
detail the workflow of the proposed method, described in
the following sections.

2.1. Tracking165

The tracking of the SA is performed using a feature-based
approach. In the first frame, a set of features (fGFTT )
are detected inside the SA contour (SAk), using GFTT
detector (Shi and Tomasi, 1994). Kanade-Lucas-Tomasi
Tracker (KLT) is then used for feature tracking since, as170

stated by Tomasi and Kanade (1991), it is fast and reliable
in case of (i) small movements, (ii) constant brightness and
(iii) constant flow in the local neighbourhood.
The feature tracking is computed estimating a frame-by-
frame feature translation. Since this approximation can175

lead to errors in tracking due to (i) image noise, (ii) inten-
sity changes caused by illumination or camera exposure
changes, (iii) artefacts of the image sensor and (iv) spec-
ular reflections, the following strategies were implemented
to remove outliers:180

1. In order to check the matching correctness, an affine
consistency check is also performed between the fea-
tures belonging to the keyframe and the features in
frame i, as stated by Shi and Tomasi (1994); The
estimation of the affine motion between local win-185

dow around the feature is considered as a measure
of dissimilarity to reject wrong matches;
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2. Endoscopic images are usually affected by specular
reflections due to the tissue characteristics and the
proximity of the light source to the tissue. The spec-190

ular reflections appear as bright regions in the im-
ages and are identified applying a thresholding op-
eration on S and V channels and dilatation opera-
tions (Lehmann and Palm, 2001). The features lo-
cated close to specular highlights are discarded.195

If fGFTTk
is the set of features describing the SAk in the

keyframe and fGFTT i
is the corresponding set of tracked

features in the frame i, the tracking of the SA is performed
as follows:

SAi = M · SAk (1)

where SA is the SA contour for the keyframe and for the200

frame i and M is the perspective transformation computed
between fGFTTk

and fGFTT i
. M is computed and applied

with respect to the keyframe and not with respect to the
previous frame i−1 in order to avoid drifting and accumu-
lating errors during tracking, as it is shown in Fig. 2. The205

perspective transform M is computed using the RANSAC
strategy (Fischler and Bolles, 1981), which is robust in
populations with an high number of outliers.
Using these strategies in long video sequences, the number
of matched features decreases in time, compromising the210

reliability of M and thus, the tracking. In the proposed
workflow, the re-detection of the features is performed each
time the features number decreases below the 70% with re-
spect to the features detected in the frame keyframe. The
frame in which a re-detection is computed is considered215

as the new keyframe, i.e. the successive M transforma-
tions will be computed with respect to the set of features
detected in this frame.

2.1.1. Foreground-Background Segmentation

A global Bayesian probabilistic model based on colour220

histogram is implemented in order to constantly discrim-
inate features describing the SA from the ones describ-
ing background or any other object occluding it, inspired
by the work of Duffner and Garcia (2013) and Du et al.
(2016). A Probability Segmentation Map (PSM) is com-225

puted, representing for each pixel of the SA the proba-
bility of belonging to the background p(c = 0) or to the
foreground p(c = 1). This map is used to keep only the
features laying in a pixel with a foreground probability
p(ci = 1|y1:i) > τforeground. We preferred a pixel-based230

segmentation in order to maintain an accurate pose es-
timation of the object to track. A cost aggregation step,
which could make this process less sensitive to image noise,
was not taken into account to keep the computational time
low.235

The initialisation of the probabilistic model is done by
computing the HSV histogram (with 12x12 bins for H and
S channels and 8 separate bins for V channel) of the rect-
angular area fitting the SA, to identify the colour char-
acteristics of the foreground/background. Assuming that240

the area of interest is completely visible in the SA, the
foreground histogram is initialised considering the area of
the image inside the convex hull of the features detected,
as proposed by Du et al. (2016), while the background is
initialised using the pixel values outside the convex hull,245

as shown in Fig. 3b.
In the successive frames, in order to deal with appear-

ance changes of the tissue, the HSV colour distribution of
the pixels, previously identified as background/foreground,
is used to update the current probability distribution, as250

stated in Eq. 2. Consequently, the probability of each pixel
to belong to the background or foreground, is determined
by its HSV colour, the previously (i− 1) computed proba-
bility distribution, and on transition probabilities for fore-
ground and background p(ci|ci−1). The transition proba-255

bilities were chosen in order to disadvantage the transition
from background to foreground. In fact, in the case of a
SA occlusion by an instrument for a long time, the pixels
belonging to the instrument have to remain part of the
background to ensure that the instrument is not becoming260

part of the tracked model. On the other hand, pixels be-
longing to the tissue have to take into account appearance
changes and thus have a higher translational probability.

The PSM update can be described by the following Eq:

p(ci|y1:i) =
p(yi|ci = 1)

z∑
ci−1

p(ci = 1|ci−1)p(ci−1|y1:i−1)
(2)

where ci is the class of the pixel at frame i (where
c ∈ {0, 1}), y1:i is the pixel’s HSV colour from frame 1 to i,265

and z is a normalisation constant to keep the probabilities
sum to 1.

For not compromising the update of the model in case
of partial occlusion of the SA, a clustering of the features
inside the SA is computed using the kmeans OpenCV func-270

tion, and only the pixels belonging to the convex hulls of
the clustered features (ncluster) are considered during the
update of the foreground histogram (see Fig. 3c). An ex-
ample of how the features are discarded depending on the
computed PSM is illustrated in Fig. 3.275

2.2. Failure Detection

A Bayesian approach is used to estimate the joint failure
probability of the tracker, defined as p(F |A,B,C,D), and
caused by a combination of the multi clues A, B, C and
D.280

A is the number of tracked features (nfeat) inside the SA,
necessary for the computation of M . If nfeat is less
than 4, M cannot be computed;

B is the percentage of features lost in frame i with respect
to the number of features in the keyframe (plost). A285

high percentage of lost features could indicate the
presence of a partial occlusion or sudden changes in
the scene;
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Figure 3: On the top, the SA definition (left) and the correspondent
Probability Segmentation Map (right) are shown. In the left image,
it is also possible to see, drawn with a green line, the convex hull
defined on the entire set of features and used for the initialisation
of the foreground probability. On the bottom left, a frame with
partial occlusion is shown. Here again, the green lines represent the
convex hulls defined on the feature clusters. The correspondent PSM
is shown on the right, where it is possible to see how the instrument
occluding the SA has a low probability of belonging to the foreground
(in blue). The values of the colour bar of the PSMs ranges from 0
to the maximum probability value of belonging to foreground of the
frame (normalised with respect to the maximum value for providing
a better visualisation). τfor is the foreground threshold, beyond
which the pixels are considered part of the foreground.

C is the validity of the perspective transform M com-
puted between fGFTTk

and fGFTT i
(vM ), consid-290

ered valid if: (i) the z coordinate of the transformed
points is positive, and (ii) the ninth element of the
homography transformation is non-zero, which means
a non-valid perspective matrix;

D is the standard deviation of the optical flow distribu-295

tion (stdof ) in terms of image velocity directions.
A wide distribution indicates errors in the matching
stage due to a sudden change of the scene.

The conditional probability table was defined by assigning
to each of the clues a probability distribution, as shown in300

Fig. 4. For the clues A, B and D, that are continuos vari-
ables, a Gaussian distribution was chosen, and for the clue
C a probability cross table was used, since vM can assume
only two values (0 or 1). If P(F| A,B,C,D) > pth, the
framework switch to the Tracking Re-initialisation (See305

Sec. 2.3).
The parameters of the probability distributions (made

of the sigma values for each distribution and the proba-
bility values for C) were chosen in order to reach a high
accuracy on the detection of the tracking failure. In order310

to find the parameters giving the maximum accuracy, a
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Figure 4: Graphical representation of the joint probability used to
estimate the tracking failure (F). The probability distributions asso-
ciated to the clues (A, B, C, D) are shown.

Monte Carlo sampling approach was used. The parame-
ters were sampled within pre-defined ranges, selected from
experimental observations, and the cost function, used
to determine the best parameter set, was defined as the315

weighted accuracy of the failure classification, as described
by the following Eq.:

accuracy =
k1 · TP + k2 · TN
k1 · P + k2 ·N

(3)

where TP, TN, FP and FN are respectively the number of
true positive, true negative, false positive and false nega-
tive classifications, and k1 = 0.8, k2 = 0.2 are the weights320

assigned to favour an high rate of TP.
The joint probability was iteratively computed, vary-

ing the randomly sampled parameters, on a subset of video
sequences (training set), where the evidence values (nfeat,
plost, vM , stdof ) were used as input, together with the325

ground truth information (manually defined when the fail-
ure of the tracking really occurred). The parameter set
giving an accuracy higher than 0.9 was chosen after 1000
iterations.

2.3. Tracking Re-initialization330

If a failure during the tracking is detected, a tracking-by-
detection approach based on the generalized Hough trans-
form (Ballard, 1981) is used to find the SA model in the
current frame i, inspired by Seib et al. (2012). The re-
detection of the SA is performed in three phases, as de-335

scribed in the following subsections.

2.3.1. Model Initialization

In the first keyframe, in which the SA is defined, a model
of the SA is stored. SURF features (fSURFk

) and descrip-
tors (Bay et al., 2006) are computed inside the SA, since its340

scale and rotation invariant characteristics are necessary to
match features between non-consecutive frames, as in the
case of Tracking Re-initialization. KLT initialized with

5
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GFTT would not be useful in this case, since it searches
feature matches locally, without taking into account pos-345

sible large displacements of the SA and being invariant to
rotation and scale. The model is characterized by the fea-
ture position (x, y), scale (σ) and orientation (θ), and the
centroid (c0) of the area. These feature descriptors, con-
sidered with respect to the centroid, uniquely characterise350

the SA, enabling the SA recognition at any frame.

2.3.2. Model Update

The model defined in the first frame is not always enough
to re-detect the SA in long video sequences, since changes
in the tissue appearance may occur. For this reason, we355

used a fixed number of models (nmodels) chosen following a
novel Model Update Strategy (MUpS). These models (mj ,
where j = 1...nmodels is the index of the model) are stored
in a buffer. They should be different enough from the first
model to represent small variations. However, in order360

to avoid the collection of erroneous models, a similarity
with the first model should be ensured. As a measure
of similarity we choose the Bhattacharyya distance (BD)
between the color histogram of the model in the keyframe
and in the current frame i, inspired by (Giannarou et al.,365

2013). It is defined as:

BD(Hfirst, Hcurr) =
√

1− ρ(HfirstHcurr) (4)

where H is the normalized histogram density defined as
H = {hbin}bin=1...m, with

∑m
bin=1 hbin = 1.

ρ is the Bhattacharyya coefficient computed from the fol-
lowing Eq.:370

ρ(Hfirst, Hcurr) =

m∑
bin=1

√
hfirstbin hcurrbin (5)

In order to make the similarity measure robust against
illumination variations, we opted for using the combina-
tion of H and S channels from the HSV image instead of
the RGB channels used by Giannarou et al. (2013). Thus,
the strategy to update the model, also described in Alg. 1,375

can be explained as follows:

• The model stored in the first frame is always kept
fixed in order to always have a valid reference;

• The new model (mi) is collected only if the BD is
within the range δBD = {δmin, δmax}. Indeed, a380

value of BD < δmin means that the current model
is too similar to the first one and storing it in the
buffer would not add any meaningful information,
while BD > δmax means that the model is too dif-
ferent from the first one and it should not be stored385

in the buffer to avoid collecting erroneous models.
To find out the best values for δmin and δmax, we
computed the histogram of BD values of a training
dataset, and we observed that the 10th and 90th per-
centile were best representatives for strongly similar390

and strongly dissimilar models, respectively;

Algorithm 1 Model Update Strategy

1: procedure updateWeight(model, β1, β2)
2: model.weight = β1 ·model.BD + β2

model.nTused
model.nT

used

3: end procedure
4: procedure updateModel(modelBuffer, modelNew, BD-

max, BDmin, m, β1, β2)
5: if modelNew.BD > BDmin and modelNew.BD < BD-

max then
6: if sizeof(modelBuffer) < nmodels then
7: add modelNew to modelBuffer
8: updateWeight(modelNew, β1, β2)
9: else

10: modelWeakest = model with lowest weight in
modelBuffer

11: if modelWeakest.nTused > m then
12: replace modelWeakest with modelNew in

modelBuffer
13: updateWeight(modelNew, β1, β2)
14: end if
15: end if
16: end if
17: return modelBuffer
18: end procedure

• A weight is assigned to each model belonging to the
buffer, as:

wj = β1 ·BDj + β2
nTused
nTused

(6)

where nTused is the number of times the model was
previously used for the SA recognition and the num-
ber of times the model was not used is nTused. β1
and β2 are the weights assigned to the two parame-395

ters determining the goodness of the model (wj);

• If the buffer is not full, the new model mi is added
to it;

• If the buffer is full, the model mj with the minimum
weight wj will be replaced by the new model mi only
if:

nTused > t (7)

where t was empirically chosen.

2.3.3. Model Recognition400

SURF features are detected on the entire frame i and
then are matched with the features belonging to the set of
mi using a nearest-neighbor matching. As a first outlier
rejection stage, the wrong matches are rejected if the ratio
between the closest and the second-closest descriptor dis-
tances is lower than a threshold τl (Lowe, 2004). The pos-
sible SA poses, represented by the position (x, y), scale (σ)
and orientation (θ), are clustered in a multi-dimensional
Hough-space accumulator, as shown in Fig. 5. The coarse
grid represents translation in x and y direction, while in
each of these cells, the bins along x axis represent σ and

6
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Figure 5: On the left, the process for the recognition of the SA
in the new frame. The features detected in the current frame are
matched with the ones belonging to the models (colored and black
lines indicate respectively right and wrong matches). On the right,
the Hough accumulator is shown: the two axes indicate the feature
position, and, inside each cell, the horizontal and vertical translation
encode the scale and rotation, respectively. Each feature match votes
for a possible SA position, increasing the Hough space accumulator,
represented on the right. Right matches increment the same Hough
accumulator cells, leading to a maximum (white squares), while the
wrong matches votes are scattered (gray squares).

the ones along the y axis represent θ. Each feature match
independently votes for a possible SA position, orientation
and scale, increasing the corresponding bin in the accumu-
lator. The new centroid position ci is estimated as:

ci = (cxi, cyi) = v + pi (8)

where pi is the feature position in frame i and v:

v =

(
cos(α) −sin(α))
sin(α) cos(α)

)
(c0 − p0)

σs
σ0

(9)

v is the translation vector from the centroid of the model
c0 to the position of a feature p0 in the model, normalized
with the scale ratio of the feature in frame i (σi) and of
the feature of the model (σ0), and rotated depending on
α = |θ0 − θi|, i.e. the rotation angle between respectively405

the feature rotation of the model and of the frame i. The
maximum in the Hough-space returns the set of features
fSURF i of the model that best match the SA, a shown in
Fig. 5.

Every time a SA is recognised, the Tracking algorithm410

is re-initalized with the same workflow described in Sec. 2.1,
establishing a new keyframe. In this phase, the probabil-
ity segmentation map has a fundamental role, since the SA
can still be partially occluded. Keeping only the features
belonging to the foreground prevents from failure. If the415

SA is not recognised, the algorithm waits until it is visible
again.

3. Experimental Evaluation

The evaluation is focused at demonstrating the robust-
ness of the algorithm against: (i) partial occlusion (PO),420

(ii) total occlusion (TO), (iii) SA out of the field of view
(OFV), (iv) deformation (DEF), (v) illumination changes
(IC), (vi) abrupt camera motion (ACM), (vii), blur (BLR),
and (viii) smoke (SMK), which are the main events, often
happening during surgeries, that can affect the reliability425

Parameters definition values

Tracking

ncluster number of feature clusters 8

p(ci = 0)|ci−1 = 0) background to background
transitional probability

0.9

p(ci = 0)|ci−1 = 1) background to foreground
transitional probability

0.1

p(ci = 1)|ci−1 = 0) foreground to background
transitional probability

0.6

p(ci = 1)|ci−1 = 1) foreground to foreground
transitional probability

0.4

τforeground foreground threshold 0.7

Failure Detection

maxfeat
maximum feature number

for distribution A
nfeatSA · 2

σnfeat(F = 0)∗
sigma value of the

non-failure probability
distribution of A

maxfeat

3

σnfeat(F = 1)∗ sigma value of the failure
probability distribution of A

6

σplost(F = 0)∗
sigma value of the

non-failure probability
distribution of B

19

σplost(F = 1)∗ sigma value of the failure
probability distribution of B

53

¯pvM (F = 0)∗ non-failure probability for C 0.1

pvM (F = 1)∗ failure probability for C 0.47

σstdof (F = 0)∗
sigma value of the

non-failure probability
distribution of D

43

σstdof (F = 1)∗ sigma value of the failure
probability distribution of D

165

pth failure threshold 0.4

Tracking Re-initialization

nmodels
number of models used by

the MUpS
10

t
minimum number of times a
model can be used before

being replaced
5

δmin
10th percentile of BD

distribution
0.1

δmax
90th percentile of BD

distribution
0.5

β1 model weight parameter 0.5

β2 model weight parameter 0.5

Table 1: Summary of the parameters used in the evaluation of the
algorithm. All the parameter values were empirically chosen except
for the ones marked with *, whose values were computed as described
in Sec. 2.2.

of a tracker. In order to assess the performance of the al-
gorithm against these events, we used ex-vivo and in-vivo
datasets.
The ex-vivo dataset is made of endoscopic images of ex-
vivo organs (goat kidney, pig liver). It was developed sim-430

ulating surgical scenarios in a controlled way, recreating
typical events happening during surgery. The videos were
recorded using a da Vinci® stereo camera and the robotic
system (Intuitive Surgical Inc., CA) at the Surgical Robot
Vision group (University College London, London, UK).435

All the videos were recorded at 25fps with an image res-
olution of 720× 576.
The in-vivo dataset consist of videos of real surgical oper-
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ations performed at Ospedale Niguarda Ca’ Granda (Mi-
lan, Italy). The videos were captured with a monocular440

STORZ endoscope, at 25fps and a resolution of 1280 ×
720. All the data were appropriately anonymised. Details
of each video sequences in terms of duration, number of
frames, and a brief description are presented in Fig. 6
For each sequence, we created a Ground Truth (GT), in445

the form of a 2D polygon around the area of interest, with
a interframe step of 10. This was performed manually
by an operator with the supervision of an expert surgeon.
For a more accurate evaluation, the same frames were also
labeled with one of the following attributes: SA visible450

(SAV), PO, TO, OFV, DEF, IC, ACM, BLR and SMK.
These datasets and the associated ground truth are avail-
able online for the benefit of the community 1. Tab. 2
shows the percentage of frames with each attribute for
each video of the two datasets.455

The performance was assessed using precision and re-
call curves, and the F-measure (Wu et al., 2013). For each
video, the precision value α was computed as:

α =
TP

TP + FP

where TP is the number of true positives of the SA tracked
and FP is the number of false positives of the SA tracked.
The recall value β is defined as:

β =
TP

TP + FN

where FN is the number of false negatives of the SA tracked.
The F-measure γ is the harmonic mean of precision and
recall:

γ = 2 · α · β
α+ β

The metrics used to for the definition of true positives of
the SA is the overlap ratio, measured in pixels, and defined
as:

ø =
|T ∩G|
|T ∪G|

where T is the set of SA tracking results, and G is the set
of GT.460

The precision and recall curves were computed vary-
ing the overlap ratio threshold used to identify the TP
values. The F-measure was computed considering ø >
(0.2, 0.5, 0.8).

In case of partial occlusion, the SA also included the465

occluding object. So, to take into consideration only the
area of interest (foreground), the PSM was used to keep
only the pixels inside the SA with p > τforeground, which
effectively discarded all pixels belonging to the background
(and thus the occluding object). The overlap ratio was470

computed considering only the foreground area. The eval-
uation was performed with and without the MUpS, in or-
der to assess its contribution. Precision and recall curves

1http://nearlab.polimi.it/medical/dataset/

where computed for both cases. A detailed analysis of
the robustness of the LT-SAT tracker against the events475

(SAV, PO, DEF, IC, ACM, BLR, SMK) was performed
computing precision and recall curves, considering all the
video sequences together. Results are represented using
the Area Under the Curve (AUC).

The recovery time after the failure was computed as480

the mean number of frames between the lost of the SA
tracking and the correct re-detection (ø > 0.5) for each
video sequence, with and without MUpS.

In these experiments, the accuracy of the segmentation
is implicitly evaluated with precision curves. In fact, the485

PSM was used to determine the foreground area inside the
SA, and this area is used to compute the overlap ratio used
in precision and recall evaluation.

The code was implement in C++, using the OpenCV li-
brary for the management of the images and KLT library2

490

for KLT algorithm implementation, since the OpenCV ver-
sion of the KLT tracker does not include the affine con-
sistency check. The code released by Seib et al. (2012)
was used for the tracking by detection approach. The pro-
gram was running on a system with GNU/Linux operating495

system, and a CPU Intel Core i5-3230M with four cores.
The parameters used for this evaluation are summarized
in Tab.1. The same parameter values were used for all the
video sequences.

4. Results and Discussion500

In Fig. 6 example images from each video sequences of the
in-vivo and ex-vivo dataset are shown. In the first column,
the SA, as defined in the first frame, is shown. The second
and third column show two characteristic frames showing
one of the aforementioned events. It is worthy to point out505

that, in the analysed videos, the SAs represent different
tissue surfaces, and there is a high percentage of frames
with partial or total occlusion, where the target is not
visible, as shown in Tab.2, allowing the assessment of the
algorithm under different conditions.510

Fig. 7 shows an example of the trend of the variables rep-
resenting the clues (A, B, C, D) used to estimate the joint
failure probability P. The second last row of the figure rep-
resents when the Tracking Re-initialisation is active. From
these data, we can observe different events (highlighted in515

Fig. 7 with numbered orange boxes) that trigger the track-
ing re-initialisation:

1. The percentage of lost features drastically increases
since the area is moving out of the camera field of
view;520

2. The number of features inside the SA decreases dras-
tically due to an instrument occlusion. This event
combined with an increase of the optical flow stan-
dard distribution (caused by wrong matches) leads
to a failure of the KLT tracker;525

2https://cecas.clemson.edu/stb/klt/
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ex-vivo dataset in-vivo dataset Average Percentage [%]
EV1 EV2 EV3 IV1 IV2 IV3 IV4 IV5 IV6 0 20 40 60

SAV [%] 58.14 52.55 66.55 28.50 54.62 20.83 31.25 30.39 41.31
PO [%] 7.43 7.45 12.55 40.17 27.18 6.94 37.50 13.24 12.46
TO [%] 7.86 11.45 14.18 4.50 0.00 4.17 0.00 0.00 0.00

OFV [%] 12.57 10.36 3.82 23.50 0.53 1.39 0.00 0.00 2.62
DEF [%] 3.71 8.00 0.00 1.00 1.58 0.00 0.00 2.94 8.52
IC [%] 0.00 0.00 0.00 0.00 1.85 13.89 0.00 14.71 2.62

ACM [%] 5.57 3.64 0.00 0.67 1.85 5.56 0.00 7.84 4.92
BLR [%] 4.71 6.55 2.91 1.67 5.80 47.22 31.25 15.20 24.59
SMK [%] 0.00 0.00 0.00 0.00 6.60 0.00 0.00 1.72 2.95

Table 2: Percentage of frames with Safety Area Visible (SAV), Partial Occlusion (PO), Total Occlusion (TO) , Out Of Field of View (OFV),
Deformation (DEF), Illumination Change (IC), Abrupt Camera Motion (ACM), Blur (BLR) and Smoke (SMK) for each video of the two
datasets.

3. The standard distribution of the optical flow increases
due to a sudden movement of the camera; The gra-
dient of colour represents the direction of the arrows
and shows a scattered behaviour around the SA, rep-
resenting erroneous features matching. KLT tracker530

alone would fail since it is not robust to sudden move-
ment of the scene;

4. The homography is invalid due to wrong feature mat-
ches caused by partial instrument occlusion. In this
case, KLT would continue to work, however track-535

ing wrong features (i.e. not belonging to the area of
interest) and compromising the SA tracking.

The Bayesian joint probability computation was ad-
justed to be very sensible to possible failures, because a
false negative is not critical for our application. All the540

events aforementioned are examples of cases in which KLT
fails, demonstrating the need of a failure detection and SA
re-detection strategies. Moreover, if a failure is not de-
tected at the first frame, the tracking shows a degradation
and the Bayesian joint probability will estimate the failure545

most probably after a few frames, re-initialising correctly
the SA.
The precision and recall curves are shown in Fig. 8. These
curves demonstrate the performance of the tracking and
the effect of the MUpS. Considering all frames, the preci-550

sion and recall values are strong, as it is confirmed by the
F-measure (Tab. 3). Fig. 9 shows the AUC of the preci-
sion and recall curves for all the different events, consider-
ing all the video datasets. Following this figure, the effect
of the MUpS improves the recall values in all the cases,555

to the detriment of slightly lower precision values. The
bar plot highlights the robustness of the LT-SAT tracker
with MUpS against all the events, considering challenging
in vivo video sequences.
Tab. 3 reports the recovery time used to re-detect the560

safety area after a failure. As we can observe, the MUpS
improves significantly the recovery time.

The computational time of the framework does not ful-
fil the requirement needed for real time application, since
it reached only ' 1.60fps. Nevertheless, since the current565

implementation of the code was more focused on the de-

velopment and testing of the algorithm performance, the
computational performance can be optimised by improv-
ing the software architecture and memory management.

570
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Figure 8: Precision and Recall curves for all the video sequences
of the ex-vivo (first row) and in-vivo (second row) datasets. The
dashed and continuous lines represent the results without and with
the Model Update Strategy (MUpS), respectively.
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Figure 9: Bar plot of the Area Under the Curve (AUC) for Precision
and Recall curves considering all the video sequences of the ex-vivo
and in-vivo datasets.
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SA Frame A Frame B res duration n frames description

EV1
720x576 04m:40s 7000

The video shows an
exposed goat kidney
and the SA is
defined on the main
vessel entering in the
kidney.

EV2
720x576 03m:52s 5800

The video shows a
similar surgical field
of view as in EV1
with a different
kidney.

EV3
720x576 03m:40s 5500

The video shows a
pig liver and the SA
is defined on a
vessel.

IV1
1280x720

04m:03s 6080

These sequences were
extracted from a video
of a pancreatectomy
procedure.IV2

1280x720
02m:31s 3780

IV3
1280x720

00m:28s 710

IV4
1280x720

00m:06s 150

IV5
1280x720

02m:42s 4070

IV6
1280x720

02m:01s 3035

Figure 6: Image samples from the ex-vivo (1st-3rd rows) and in-vivo (4th-8th rows) datasets. The first column shows the SA defined in the
first frame. The second and third columns show two characteristic frames (Frame A & Frame B), showing Partial Occlusion (PO), Total
Occlusion (TO), Deformation (DEF), Illumination Changes (IC), Abrupt Camera Motion (ACM), Blur (BLR) or Smoke (SMK). The last
columns show, in this order: the image resolution, the duration and number of frames and a brief description of the video sequence content.

ex-vivo dataset in-vivo dataset
EV1 EV2 EV3 IV1 IV2 IV3 IV4 IV5 IV6

γlow 0.93/0.95 0.44/0.96 0.97/0.97 0.34/0.60 0.40/0.91 0.61/0.97 0.72/0.96 0.73/0.92 0.85/0.88
γmedium 0.93/0.95 0.44/0.96 0.90/0.96 0.34/0.60 0.39/0.69 0.61/0.95 0.72/0.96 0.67/0.52 0.80/0.83
γhigh 0.80/0.78 0.30/0.64 0.20/0.87 0.22/0.39 0.02/0.07 0.44/0.23 0.40/0.86 0.16/0.10 0.22/0.24

rtime 0.84/0.47 37.50/0.88 7.00/2.00 16.00/8.04 3.13/0.57 5.17/0.25 3.00/0.00 3.49/12.75 7.11/5.78

Table 3: F-measure values (without/with MUpS) for three different overall thresholds (low = 0.2, medium = 0.5, high =0.8) and Recovery
Time [# frames] (without/with MUpS)

5. Conclusion

In this paper, we proposed a framework for Long-term
Safety Area Tracking (LT-SAT), which aims to be used to
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Figure 7: Example of clue values (nfeat, plost, stdof , vM ) used to estimate the joint failure probability. On the left, images representative of
the clues are shown. The tracked safety area is represented by a blue line and the features by green circles. Image 1 and 2 represent cases in
which nfeat and plost decrease due to an OFV and PO. The arrows on the image 3 represent the optical flow computed by KLT tracker, where
the colour gradient shows the direction of the arrows and highlights a scattered behaviour around the SA, due to ACM. The lines in image
4 represent the wrong matches between consecutive frames, caused by a PO. On the right, the graphs show the evolution of the clues along
the video sequence. The orange boxes highlight the clue values corresponding to the images in the left. The last two rows show, respectively,
the frames in which the Tracking Re-initialisation is active and the visibility of the SA. When the framework is in Re-initialisation modality,
the clue values are not measurable, and thus they are represented with a lighter colour since their values are not representative.

preserve SA from injury during RMIS. We decided to focus
on tracking vessels in the field of abdominal surgery, moved575

by the need for preventing bleeding during different kinds
of surgical procedures. Despite this, we believe that our
algorithm is applicable and useful for other applications
where it is required the tracking of visible structures in
the surgical field of view.580

The overall results show that the framework fulfils the
main requirements stated in Sec. 1, such as (i) the long-
term robustness under complicated conditions, thanks to
the combination and improvement of state-of-the-art track-
ing strategies with a Bayesian-based failure detection scheme;585

and (ii) the adaptation to environment/object changes,
thanks to the novel strategy of updating the models used
for the SA re-initialisation. The hybrid combination of
KLT tracker, based on GFTT, with tracking-by-detection
approach, based on SURF features, aims at exploiting the590

strengths of the two approaches. The KLT tracker is ro-
bust, accurate and computationally cheap in case of small
movements, while tracking-by-detection approach would
be more computationally expensive and less accurate than
KLT if used to track the SA frame-by-frame. The choice of595

the GFTT for the frame-by-frame tracking is supported by
the fact that in robotic surgery, the camera is not manually
handled, and it could be robotically held in a fixed posi-
tion for a long period, resulting in small movements of the
SA. On the other hand, the strength of the SURF detector600

is the invariance to rotation and scale changes that allows
to recover the SA, even if it disappears for many frames
and reappears in a totally different pose. Here, SURF is
strengthened by a generalised Hough Transform approach
to discard outliers. Moreover, the implemented method605

reduces the drift effect caused by incremental tracking in
the following manner: (i) In the KLT tracking, the trans-
formation of the SA is done with respect to the key frame
and not with respect to the previous frame; (ii) The track-
ing re-initialisation contributes to clear any degenerative610

drift behaviour from the KLT tracking by resetting the
pose of the SA; (iii) the first model is always kept in the
buffer list since newer model could include drift.
The analysis of the ex-vivo and in-vivo videos show that
the framework is capable of maintaining good tracking per-615

formance for extended periods of time (' 4min), covering
the entire video sequences in which the vessel had to be
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tracked. The high precision values confirm that the per-
formance of the framework is within the specifications re-
quired by the surgeons.620

The real improvement given by the proposed frame-
work with respect to state-of-the-art algorithms consists in
the robustness, represented by recall values. Particularly,
in contrast with the literature, we tested the algorithm on
long video sequences (between 5000 and 7000 frame), sim-625

ulating and considering many of the events happening in
surgery and that can affect the performance of the track-
ing. This extensive evaluation on long video sequences
allows to state that the algorithm is able to work properly
and robustly in a real surgical scenario.630

However, there are few possible cases in which the pro-
posed framework would not recover from tracking failure:

• In case the image is blurred or noisy the recovery
of the SA can be delayed, with an average recovery
time reported in Tab. 3;635

• In case of sudden big deformation, the homograpy
transformation computed between sets of matched
features can be erroneous since it assumed that the
points represented by the features are laying on a
plane, and the tracking re-initialisation would not640

be able to recover the new SA pose, since model
recognition 2.3.3 is based on the relation between
each feature and the centroid of the model;

• In case the appearance of the SA is greatly changed
during a total occlusion. This situation would not al-645

low to the Model Update Strategy (MUpS) to store
the model appearance changes, preventing its recov-
ery by the Tracking re-initialisation. In the video se-
quences used for the evaluation, the LT-SAT tracker
with MUpS was always able to recover the model af-650

ter a failure, with the recovery time reported in Tab.
3.

Thus, the main weakness of the algorithm is the diffi-
culty in tracking the SA during a big deformation. The use
of several SAs could help in overcoming this problem (as655

also stated by Puerto-Souza and Mariottini (2013)). In-
deed, a global SA can be considered as a group of spatially
distributed SAs, each one assuming its small portion of tis-
sue as a planar surface. Then, multiple local affine trans-
formations can be computed between the SAs’ matches. In660

case of using multiple SAs, our implementation would need
to be scaled up taking into account multiple affine trans-
formations in the tracking stage, a global failure probabil-
ity, multiple buffers of models for the re-initialisation, and
deformable mesh model or any other similar strategy to665

combine the tracking information of each SAs to estimate
the global pose of the SA.

The robust long-term tracking of the SA has been pro-
posed in this paper to preserve delicate areas (i.e. vessels)
from injuries during surgery. In practice, the 2D track-670

ing of the SA could be used as a prior identification of

the area of the image to reconstruct in 3D. Thus, hav-
ing a 3D point cloud of the delicate area in any time of
the surgery, can be exploited to know where this area is
located with respect to the robotic instruments (in case a675

robotic system is used). Visual, auditory or haptic sensory
channels can be exploited to warn the surgeon about the
SA-instruments distance and augment the operation with
such a feedback (Enayati et al., 2016).

Future work will aim at addressing the issue of robust680

tracking under big deformations, exploiting deformation
modelling techniques. Also since the current implementa-
tion of the algorithm is not able to run in real time, next
steps will include software architecture improvements and
code optimisation, which should reduce considerably the685

computational time. At this point, authors aim at in-
tegrating this framework with a dense 3D reconstruction
algorithm, already developed by Penza et al. (2016), in or-
der to obtain a 3D area tracking, and integrate the overall
system in a robotic platform.690
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