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The Atlas Structure of Images 
Lewis D. Griffin 

Abstract— Many operations of vision require image regions to be isolated and inter-related. This is challenging when they are 

different in detail and extent. Practical methods of Computer Vision approach this through the tools of downsampling, pyramids, 

cropping and patches. In this paper we develop an ideal geometric structure for this, compatible with the existing scale space 

model of image measurement. Its elements are apertures which view the image like fuzzy-edged portholes of frosted glass. We 

establish containment and cause/effect relations between apertures, and show that these link them into cross-scale atlases. 

Atlases formed of Gaussian apertures are shown to be a continuous version of the image pyramid used in Computer Vision, and 

allow various types of image description to naturally be expressed within their framework. We show that views through Gaussian 

apertures are approximately equivalent to the jets of derivative of Gaussian filter responses that form part of standard Scale Space 

theory. This supports a view of the simple cells of mammalian V1 as implementing a system of local views of the retinal image of 

varying extent and resolution. As a worked example we develop a keypoint descriptor scheme that outperforms previous schemes 

that do not make use of learning. 

Index Terms—Image Analysis, Image Representation, Image Resolution, Gaussian Derivatives, Filter Steering, Keypoints.  

——————————      —————————— 

1 INTRODUCTION

onsider a scene (Figure 1a) containing two objects 
(faces) which are intrinsically similar but, because they 

are at different distances, manifest in the image data quite 
differently [1]. A vision system should have scale covari-
ance [2] so that it can assess the similarity despite the dif-
ferent image appearances. For this it has to access and in-
ter-relate image regions of different extent and level of de-
tail. The full set of image regions of different extent and 
detail, and their inter-relations, has a structure something 
like a geographical atlas [3]. 

The atlas idea is familiar in computer vision. It can be 
implemented using an image pyramid where a stack of im-
ages, of reducing size, is formed by repeated 2×2 pixel av-
eraging. Regions can be defined at any level of the pyramid 
as a set of pixels, typically square, and it is straightforward 
to say when a region at a fine level stands in a cause/effect 
relation with a region at a coarse level. A pyramid struc-
ture could be applied to Figure 1a as follows. Within the 
pyramid for the full image, there would be found a sub-
pyramid with base (say) 512×512 covering the near face, 
and a sub-pyramid with base (say) 32×32 covering the far 
face. The coarser levels of the near-face sub-pyramid 
would contain very similar pixel values to the far face 
sub-pyramid. 

Image pyramids work quite well in practice but with 
two problems. First that the detail changes between levels 
can be too large. For example if the far face extends over a 
24×24 area there will not be a really good match in the near 
face sub-pyramid. Second that repeated 2×2 averaging 
only approximates the way detail disappears with in-
creased viewing distance. Both of these problem are solved 
by the Scale Space framework [1, 4-7], which represents an 

image at different levels of detail using a continuous fam-
ily of images rather than a discrete set, and uses Gaussian 
blurring to generate those levels rather than 2×2 averaging. 
Gaussian blurring correctly infers the image that would be 
acquired if the scene were more distant, under the reason-
able assumption that the spatial sensitivity of the imaging 
sensors has a Gaussian form. 

 

 
Fig 1. The need for an atlas structure. a) A visual system should be 
able to assess the similarity of the two objects (faces) indicated de-
spite their difference in position, extent and visible detail. b) For that it 
needs to isolate and compare sub-regions of the image at different 
levels of scale. c) These sub-regions at different scales are related 
within the Scale Space of the image (x is image position, s is scale). 
The views of a region at different scales form slices of an atlas. The 
two faces are similar in the sense that the atlas of one is similar to a 
coarse segment of the atlas of the other (see section 6) i.e. C is similar 
to C’ and M to M’. 

The shift from 2×2 averaging to Gaussian blurring cre-
ates a complication when regions and their inter-relations 
are considered. In an image pyramid it is cut-and-dried 
what region of pixels at a fine level influence the pixels of 
a region at a coarse level, so it is straightforward to define 
when one region contains another, or when one region 
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causes another, even if the regions are at different levels of 
the pyramid. In scale space, however, the infinite support 
of Gaussian blurring kernels means that each value at a 
coarser scale is, in theory, dependent on the entire image 
at finer scales. So the definitions of containment and cau-
sation between regions, and indeed the definition of a re-
gion, are not obvious. 

The aim of this paper is to present a coherent motivated 
system of regions and their interrelations for the scale 
space framework, together defining a continuous atlas 
structure for images (figure 1b,c). We believe that this con-
ceptual framework can assist in the development of im-
proved computer vision algorithms, just as scale space was 
influential on SIFT [8]; in support of this we present such a 
development for keypoint description. 

We preview the paper. In section 2 we review scale 
space. In 3 we introduce apertures, each defined by a spa-
tial weighting function and an associated scale, as a defini-
tion of a region. These apertures provide views of the im-
age as through fuzzy portholes of frosted glass. In 4 we 
propose that one aperture should be considered to contain 
another if the view through the contained is stably deter-
mined by the view through the container. We formally 
characterize ‘stable determination’ in terms of reducing 
image norms relative-to-apertures. In 5 we define a pair of 
apertures to stand in a cause-effect relationship if the cause 
contains the effect and is as small as possible; or, equiva-
lently, the effect is contained in the cause and is as large as 
possible. We discover that cause-apertures are Gaussian 
blurs of effect-apertures, with the amount of blur being the 
difference in scale between the cause and effect. Notice that 
the blur of the aperture from effect to cause operates in the 
opposite direction to the blur of the scale space. In 6 we 
show that the causation relation assembles apertures into 
1-D families we call atlases; and we show that atlases 
formed of Gaussian apertures (Figure 1b), which we call 
Gaussian atlases (Figure 1c), are fundamental. In 7 we re-
view measurement of image structure by derivative-of-
Gaussian (DtG) filters, producing a jet of filter responses. 
In 8 we show that jets are to Gaussian apertures, as crops 
are to pyramids - they are a compact record of the view of 
an image through an aperture. In 9 we discuss the structure 
of Gaussian atlases. In section 10 the framework inspires a 
novel keypoint descriptor that outperforms previous non-
learnt descriptors. In 11 we summarize and discuss is-
sues arising. 

 

1.1 Formalism 

We present the theory for 1-D images, but generalisation 
to higher dimensions is straightforward because of the sep-
arability of the Gaussian and its derivatives [1]. Some fig-
ures show 1-D images, others 2-D. For clarity, we use   
for the image spatial domain, rather than , and refer to 

it simply as the domain. When a variable e.g. x   is in-

troduced we assume its type and any restrictions apply in 
the remainder. Functions of the domain are bolded and 

italicized (e.g.  G ). δ  is the delta function at the origin; xδ  

at x.    is used for convolution; and × for multiplication, 

where it aids readability. We use square parentheses for 

ordered pairs e.g.  : , A  is a generic aperture consist-

ing of the pairing of a weighting function : A  and 

a scale 0  . 
Some frequently used notations will be: 

 the 1-norm for integrals of functions i.e. 
1

: A A   

 sG  a 1-D Gaussian function of scale s; with its order 

n derivative  n
sG   being called a DtG. 

  n
sj I the vector of DtG responses up to order n to 

an image I, called a jet. 

    : , , : , ,f c c f  F C  generic fine and 

coarse scale apertures; with : c fG G   the Gaussian 

which effects the image blur to move between their 
viewed scales. 

    , : ,ww s s G  a Gaussian aperture of width w, for 

viewing the image at scale s. 
We will make frequent use of inner products (IPs) 

which are maps from pairs of vectors (e.g. images) to a sca-

lar value _,_ :V V   that is symmetric in its argu-

ments, linear in each, and positive-definite i.e. , 0v v  , 

with equality if and only if 0v  . An IP induces a norm 
2

: ,v v v , which measures magnitudes and so can be 

used to measure distances (i.e.  , :d u v u v  , and angles

1 1
cos : ,uv u v u v

 
 . We use different styles of paren-

theses for different types of inner product (IP): 

 angled, for the standard L2 IP e.g. , : I J IJ  

 rounded, for IPs relative to an aperture e.g. 

 , : ,  I J A I J   

 fences, for IPs of jets at a scale e.g. 

   
1

0

, : 2 !
i

i i
s

i n

j k s i j k


 

    

2 SCALE SPACE 

If the function :I  represents the ideal image falling 

on the signal transduction surface, then its scale space is 

the 1-D family of functions  : ,s s  I  generated 

by blurring it with Gaussian kernels (

     21
2 4

: 4
x s

s x s e
 

G ) of increasing width :s s I G I . 

The ideal image is at the base of the Scale Space i.e. 

0
lim s
s

I I  because 
0

lim s
s

G δ . The scale parameter 0s   

has dimension length-squared and is half the variance of 
the Gaussian. This parameterization allows compact 

statements of (i) scale similarity s t s t  I G I , and (ii) that 

scale space satisfies the heat equation    s xx s x  I 0 . 

The theory of scale space was definitively expounded in 
[1]; earlier statements and alternative derivations are 
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reviewed in [9, 10]; and the theory is generalized in [11-14]. 
Figure 2 illustrates the Scale Space of an example image, 
using parameterization of scale by ln s  which reveals 

scale similarity. 
Convolution by Gaussian kernels is a convenient way to 

express scale space and an efficient way to implement it 
digitally. An equivalent formulation is as the complete set 
of measurements of the image obtained by computing its 
IPs with Gaussian filters of every size at every image posi-

tion (i.e.       ,s sy x y x I G I ). This formulation makes 

clear the status of scale space as a model of biological vi-
sion: individual filters correspond to individual V1 simple 
cell neurons; and measurements to neural 
responses [15-17]. 

 

 
Fig 2. Illustrates Scale Space. Top-left: Gaussian kernels (1-D and 
2-D) used to produce levels of scale space by convolution. Sections 
through the scale space of an example image: horizontal (bottom-left) 
and vertical (right). 

3 APERTURES 

We distinguish between apertures and patches. An aper-
ture is an operator for isolating a particular image region. 
The fundamental operation that an aperture must support 
is the computation of an image IP relative to it. A patch is 
a record of the view of an image ‘through’ an aperture. 
They can be efficiently stored to allow computation of IPs 
without access to the entire image. 

Figure 3 shows patches from three types of aperture. 
The top row are the simplest type, square crops from an 
image: like views through clear glass windows. Moving 
from top row to middle, the aperture has been changed 
from square to circular, and the extraction has been per-
formed on an intermediate level of scale space: the win-
dows have become portholes, and the glass has become 
frosted. Moving from middle row to bottom, the aperture 
has been changed to a fuzzy Gaussian weighting function: 
the frosted glass portholes now have a fuzzy edge, some-
thing similar being used for aesthetic reasons in modern 
vehicle windows. 

The traditional ‘crop-type’ aperture can be character-
ized by the subset of the domain ( A  ) extracted. The 

high-frequency border of such apertures can result in the 
extracted patch changing abruptly as the aperture or image 
is translated. This problem has been addressed in diverse 
domains of signal analysis by generalizing the characteri-
zation of apertures as domain subsets, via discontinuous 

indicator functions (i.e.    :A x x A 1 , using the Iverson 

bracket), to a characterization as non-negative weighting 

functions [18, 19]. Let : A   be a generic non-nega-

tive weighting function. Diverse forms for A  have been 
proposed, typically continuous and bell-shape; and in 
computer vision methods using a scale space framework, 
Gaussian windows have been found effective [5, 20-23]. 

 

 
Fig 3. Illustrates different types of patch. All patches are from an 
image of a woodland scene. Each row is a different type of patch. 
Patches in the same column are roughly matched in extent and artic-
ulation which increases across columns from left to right. Top: ‘Tradi-
tional’ patches - cropped from an image. Middle: Aperture-based 
patches - using circular region apertures applied to a level of scale 
space. Bottom: As middle but positive weighting function apertures. 
The weighting functions are Gaussians, which are argued in section 6 
to be fundamental.  

 

In this work we adopt the characterisation of image ap-
ertures as a positive weighting function with an associated 

scale e.g.  : , A . We will refer to apertures as coarse or 

fine in reference to the value of  , and large or small in 

reference to the extent of A . 
Before proceeding, we note an oddity with this charac-

terization. Since weighting functions are not constrained, 
for example, to unit weight; a weighting function and a 
multiple of it define distinct apertures. Whereas, intui-
tively, they might be expected to have the same view of the 
image, thus define the same aperture. The advantage of 
our characterization is that it allows a criterion for aperture 
containment that performs as expected. We have been un-
able to find a criterion that performs as well, if we require 
a weighting function and a multiple of it to define the 
same aperture.  

We define the image IP relative to  as 

 , : ,  I J A I J . This definition trivially satisfies the 

symmetry and linearity requirements for an IP, but posi-
tive-definiteness holds if and only if A  is nowhere zero; if 
it does have zeros then the IP is improper which is harm-
less. The induced norm with respect to an aperture is 

 
2 2: , ,  I I I A I , and from this distances and angles 

can be defined as described earlier. 

 

4 CONTAINMENT 

For image pyramids, built with 2×2 averaging, 
containment is clear-cut and intuitive: a region at some 
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level of the pyramid is contained within some other region 
if the pixel values within the former can be perfectly 
computed from those within the latter. So for example, an 
8×8 patch of pixels at one level contains the 4×4 patch of 
pixels with the same support at the next level, or the 2×2 at 
the level after that.  

For scale space, where infinite-support Gaussian blur-
ring is used instead of finite-support averaging, the crite-
rion for containment is less obvious. We start by advancing 
an informal characterization: 

If image differences can be seen as well through an aper-
ture  as they can through an aperture  then   

We then adapt ideas from well-posedness and stability 
analysis [24, 25] to formalize this as:  

,     X Y X Y X Y  

Equivalently, and more simply: 

   Z Z Z   

Summarized as: 
aperture norms decrease with respect to containment. 

This definition is consistent with the intuitive containment 
relation for image pyramids as the variance of a set of pixel 
values is always more than the variance of their averages 
across non-overlapping subsets. 

To explore our norm-reduction definition we start by 
considering the infinite-support apertures with constant 

unit-value weight  : ,s s 1 . The norm of an image I with 

respect to such is  
2 222 2 ˆ,

s

s
s e   I I I , where Î   

is the Fourier Transform of I. Since 
22 se   decreases with 

increasing s for all   , so does the norm whatever I. Hence 

c fc f   . This demonstrates that containment is 

possible in a scale space setting. 

Next we consider arbitrary fine  : , f F  and coarse 

 : ,c C  apertures; f c . These apertures, which I stress 

are not assumed to be of gaussian form, will be used re-
peatedly in the remainder. They view onto the scales f and 
c of the scale space of an image (I). For compactness, the 
blurring operator that changes between these scales will be 

written : c fG G , so c f I G I .  

Let        : cos , : sinx x x x   E O  be sinusoidal im-

ages. Given that 
21

2
f

f e


 


 G E E  and similarly for O , 

we can deduce that 
22 2

1

fe 
 

 E O F  and simi-

larly for . Additionally, since f c , for sufficiently large 

  it must be that 
2 2

1 1

f ce e  F C . Putting those to-

gether, we deduce 
2 2 2 2

     E O E O , which 

means that either  E E  or  O O . Which-

ever is true it demonstrates that ; and, since no re-

strictions were put on ,F C , it follows that that a finer ap-

erture is never contained within a coarser (recalling that ‘fine’ 
and ‘coarse’ refer to the level of scale space that the aper-
tures view, not to the extent of the apertures). 

This allows us to establish that containment is a partial 
order. Reflexivity and transitivity are trivial. For anti-sym-
metry we require that      . Given 

that we have shown that a coarse aperture cannot contain 
a fine, the premise can only be true if the apertures are 
equal scale, and anti-symmetry is then trivially true. 

Focussing on the case of a coarse aperture potentially 
contained within a finer, to evaluate the requirement that 
aperture norms decrease with respect to containment, we 

consider the generalized Rayleigh quotient Z Z  and 

its maximum value , . Containment can be expressed in 

terms of this maximum value i.e. , 1   . 

Standard theory [26], and some re-arrangement, gives that 

,  is the largest eigenvalue of    1 _    F G C G ; 

which, by the Perron-Frobenius Theorem [27], is paired 
with the unique positive eigenvector (Y). Multiples of Y are 
the images whose norm fractionally decreases the least as 
one changes from  to . In summary: 

  , ,, 0, 0        Y FY G C G Y   

A special case of containment is when , 1  , in which 

case we call the containment tight and denote it T . 

Any reduction of a tightly containing aperture, or any ex-
pansion of a tightly contained aperture, will break the con-
tainment i.e. 

   0 , ,T f c      ε F ε C ε  

The eigen-condition, though formally correct, is not a 
practical test for deciding whether a particular fine aper-
ture contains a particular coarse, as it in general requires a 
challenging computation. However, we can use it to gen-
erate fine apertures that tightly contain a particular coarse 
by picking the image whose norm is not reduced by mov-
ing between the apertures i.e. given any 0Y  then 

   1 ,T f     
 
Y G C G Y . Similarly, we can gener-

ate coarse apertures that are tightly contained within any 

fine: given any 0Q  then    , Tc   
 
Q G G Q F . 

These constructions show, perhaps unexpectedly, that at 
each finer scale there is an infinity of apertures tightly-con-
taining any given coarse, and at each coarser scale an infin-
ity of apertures tightly contained within a fine (Fig 4). This 
does not occur with discrete pyramid structures. 
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Fig 4. Illustrates tight containment of apertures. The apertures on 
the coarse row are associated with a strong blur; on the medium row 
with a medium blur; and on the fine row with a smaller blur. Both 
coarse apertures are tightly contained within the medium aperture, 
which is in turn tightly contained within both the fine apertures. 
Containment means that the view through the contained aperture is 
determined by the view through the container. The containment 
relation is tight when the containing aperture cannot be reduced in any 
way, nor the contained aperture be expanded in any way, without it 
causing the relation to fail. The dotted apertures are gaussians, the 
solid are not – illustrating that tight containment can hold between 
apertures of either type. 

 

5. CAUSATION 

Suppose a face has been viewed through a fine aperture. 
Recording the view will prepare the system to re-identify 
the person should they reappear at the same distance. To 
be ready to re-identify them if they reappear at greater 
viewing distances the system needs to record the view 
through some effect aperture at each coarser scale. Simi-
larly, a vision system might make a candidate detection of 
some object through a coarse aperture; perhaps a bright 
blob has been seen that may be a face. It would then wish 
to examine the same region of the image through a finer 
cause aperture to test the detection.  

Which aperture  of scale f should be chosen as the 

cause of a coarse effect aperture ? Informally, the cause 

should be large enough to contain the effect, otherwise it 
will miss details that give rise to coarsely visible features; 
but it should not be larger than it needs to be, so that it 
views a minimum of additional structure that would need 
to be matched in future presentations. 

We wish to determine the intersection of these two con-
straints – large enough, but not larger than needed. The 
first is easy to characterize: the cause aperture should con-
tain the effect aperture i.e.  . For the second con-

straint we need a measure of aperture size which combines 
extent and amplitude, and captures how much structure 
an aperture can view. For this we propose the L1-norm of 
the weighting function. This is a simple choice that seems 
reasonable; for example, it is proportional to the expected 

squared norm of a random white noise signal W   i.e.  

 
222

1
E ,x f x

x x 

     
   W δ F G δ F  . 

Next we observe that 
1 1

  C F  which fol-

lows easily from 
1 1T  C F , which we show 

starting from the eigen-condition for tight containment. 

   

  

1

1 1

1

1
,





    

   

F Y G C G Y

C G Y G Y C

 

where the rightmost inequality comes from application of 
the Cauchy-Schwartz inequality, with intermediate step 

1, , 1y y
  G δ Y G δ Y . Cauchy-Schwartz also shows 

that the inequality will only be an equality (the minimum 

1
F  condition) when 1 1c c   G Y G Y , which is true 

only if cY ; and when it does the eigen-condition simpli-

fies to  F G C . So in conclusion: 

the minimum of 
1

F , subject to  , is 

uniquely achieved by  F G C . 

This result shows that, according to the criteria we have 
argued for, the cause of an effect aperture is given by the 
blur of the effect aperture by a Gaussian of scale equal to 
the difference in scale between the cause and effect. Note 
that since the cause is at a finer scale than the effect this 
blurring operates in the opposite direction to that for the 

scale space image i.e.  F G C  vs. c f I G I . In figure 5 

a cause-effect pair of apertures are illustrated. 
 

 
Figure 5 – Cause-effect apertures. The apertures (unimodal cruves) 
are in cause and effect relation. The cause aperture is the blur of the 
effect aperture. Two 1-D images (dark and lighter) are shown at the 
scales the apertures view. Observe how the image blur increases go-
ing upwards in the figure, while the aperture width increases going 
downwards. The two images have been chosen so that they are very 
similar within the view of the cause aperture; consequently they are at 
least as similar within the view of the upper aperture. 

6. ATLASES 

The causal relation between apertures is transitive; and 
distinct apertures have distinct causes (i.e. 

1 2 1 2    C C G C G C  ). Therefore the relation par-

tions the set of all possible apertures into non-intersecting 
1-D families which we call atlases in allusion to geographic 
map collections; particularly those kind which start with 
coarse scale maps, followed by increasingly finer scale 
maps of the regions covered by the coarser. 
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Every atlas has the same structure -   
0

,s s c
c s

 
 G Z - 

a closed interval family of apertures whose weighting 
functions are blurs of the coarsest aperture (Z). Z can only 
be the top of an atlas if it cannot be even infinitesimally 
deblurred to a positive function, since that would then be 
the top. Thus atlases are topped by apertures whose 
weighting function has zero values and/or insufficiently 
rapid Fourier energy decay. 

Of special interest are those atlases topped by delta 
functions at some scale t. Since all the finer apertures in 
such an atlas are gaussians, and gaussians apertures occur 
only in such atlases, we call them Gaussian Atlases (fig 6). 
Gaussian apertures have been suggested as particularly ef-
fective and natural for scale space analysis [20-23]. We de-

note a Gaussian aperture as    , : ,ww s s G  and a Gauss-

ian atlas as   
0

,
s t

t s s
 

 . 

Observe that the sum of the scale parameters for the ap-
erture and the blur is constant throughout the atlas. This is 
because the blur relation amongst the apertures of the atlas 
runs in the opposite direction to the ordinary blur of scale 
space. Consequently, the combined effect of the image blur 
and the windowing has the same spatial support at all lev-
els of the atlas. This is the same as for an image pyramid 
when the base is a square with side length a power of 2, 
but without that tricky detail. 

While the sum of the aperture parameters is constant 
across the atlas, their ratio is not. So while each aperture is 
sensitive to the same image extent, the number of degrees 
of freedom which it sees it with varies across the atlas, just 
as in a pyramid. 
 

 
Fig 6. Illustrates a Gaussian atlas. Left: The aperture weighting 
functions of a gaussian atlas shown as a contour plot across scale 
space. The dashed curve marks the locus of aperture transitions be-
tween convex and concave (a convenient landmark). With increasing 
scale the apertures can be seen to get tighter, and the peak value 
increases. For improved visibility the grey-levels of the plot have been 
clipped at an upper threshold. Right: Example apertures from the atlas 
at a selection of scales as indicated by the arrows. Dashed lines, as 
at left, mark the transition between convex and concave regions. 

We note that Gaussian atlases are special because: 

 Amongst the atlases with a particular width (meas-
ured by aperture spatial variance) at some scale, the 
one with greatest extent over scale is Gaussian; so they 
allow tracking of a fine scale view to the coars-
est scales. 

 The Gaussian form for apertures is especially attrac-
tive, as it minimizes high frequency content for a fixed 
width (shown by the Fourier uncertainty principle), 
which means that views through them change as 
slowly as possible with their translation (useful for 
steerability in section 10). 

 A vision system cannot be expected to directly imple-
ment all possible apertures. In such a case it may in-
stead synthesize bespoke ones from a basis set. Since 
apodized IPs are linear in the aperture this synthesis is 
straightforward i.e. 

        , , ,
, , ,

p q s s s
p q


   

A B A B
I J I J I J . 

To be uncommitted the basis set should be sufficient 
to generate all other apertures. The positive cone of the 
delta functions contains all positive functions, so these 
are sufficient. 

 In section 8 we show that Gaussian apertures permit a 
simple effective analogue of the patch used in com-
puter vision, allowing views through them to be effi-
ciently stored and compared.  

We can now give a specific answer to the puzzle problem 

in figure 1a. An ideal vision system would compute a sep-
arate Gaussian atlas for each point of Scale Space. One of 
these atlases (solid in figure 1c) views the near face, an-
other (dashed in figure 1c) the distant. These atlases isolate 
the faces from the rest of the image, and coordinate views 
of their appearance at different scales. Apertures at 
matched scales of the two atlases show very similar views 
of the two faces. The distant face atlas matches a top por-
tion of the near face atlas – this is the sense in which they 
appear similar. The lower segment of the near-face atlas 
shows detailed views of that face that are not available for 
the distant. 

7. DTGS, JETS AND THE HERMITE TRANSFORM 

A scale space can also be constructed from responses to de-

rivative of Gaussian (DtG) filters    :
n n n

s sx  G G , illus-

trated in figure 7a. Such a construction satisfies the scale 
similarity and heat equation properties [16, 28], but the 
base of the scale space is the derivative of the ideal image 
rather than the ideal image. Not only do DtG filters arise 
as the unique linear filters given the scale similarity con-
straint, they also provide a good fit to the receptive field 
profiles of V1 simple cells [16, 17, 29]. 
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Figure 7 – The DtG model of image measurement. a) An equal-
scale family of 2-D DtG filters of 0th (top row) to 3rd (bottom row) or-
der. The family shown has, at each order, rotated copies of a single 
filter. This matches V1 simple cells, but the Cartesian basis derivatives 
typically implemented in Computer Vision are linearly equivalent [28]. 
b) The jet is equal to the point derivatives of the image blurred to the 
scale of the filters. c) The jet is equal to initial terms of the Hermite 
Transform of the image. 

The response of a DtG filter is called a jet component 

   
: ,

nn
s sj I G I . DtGs can be considered non-infinitesi-

mal derivative operators because jet components (with a 
sign change if odd order) are equal to the point derivative 
of the image blurred to the scale of the filter i.e. 

     
0

1
nn n n

s s
x

j x


   I I  (Figure 7b). A jet is a vector of 

components from a family of DtG filters up to some order 

of differentiation i.e.       
T

0:n n
s s sj j jI I I  . A nat-

ural IP for jets, defined as    
1

, : 2 !
n

n ns
n

u v s n u v


 , has 

been derived [30, 31]. 
Jets can also be interpreted as truncated Hermite trans-

forms [32, 33] (Figure 7c), the basis functions of which are 
the scaled Hermite polynomials, defined by 

   
: 4

n nn
w w ww H G G . The scaled Hermite polynomials are 

orthogonal with respect to a Gaussian aperture with win-

dow scale w  and blur scale 0 (denoted  ,0w   using the 

notation introduced in 6) i.e.  
 

 
,0

, ! 8
nm n

w w mn
w

n w H H . 

Jet components can be understood, not only as the IP be-
tween a DtG and the image, but also as the aperture IP be-
tween the image and a scaled Hermite polynomial i.e. 

     
 ,0

4 ,
nn n

w w
w

j w


 I H I . Since the scaled Hermite pol-

ynomials are a complete orthogonal basis relative to 

 ,0w  [34], images can be expressed as a weighted sum 

of those polynomials, with the weights relating to jet com-

ponents i.e.      
 

2

1

0 ,0

2 ! 0
n n n

w w

n w

w n j
 



  I I H . This 

linkage between jets and the Hermite Transform provides 
a clear justification for the jet IP previously proposed [30, 

31] i.e.        ,0
, ,w w ww

j j  I J I J . 

8. JETS AS PATCHES 

We have defined patches to be the view of an image 
through an aperture. With an image pyramid, patches are 
simply sub-arrays of pixel values cropped from some level 

of the pyramid. They are a perfectly efficient record of the 
view. In contrast, the aperture-based approach we have 
developed seems not to have such an efficient representa-

tion of views. In particular, if we consider AI   to be the 

patch arising from viewing the image I through the aper-

ture  ,A  then that has the full dimensionality of a func-

tion over the image domain, and so has a huge memory 
footprint however small the aperture. However we will de-
scribe how jets can be considered as an alternative 
memory-efficient approach to patches for Gaussian aper-
tures. 

In the previous section we derived that for a Gaussian 
aperture with zero blur scale its IP was equal to the IP of 
infinite order jets measured with DtGs of scale that match 
the aperture. We can easily amend the formula to remove 
the restriction on the aperture having zero blur scale, ob-

taining        
,

, ,w s w sw s w
j j 

 I J I J . This shows that 

the infinite order jet measured with DtG filters of scale w, 
allows us to compute IPs for all the apertures in the Gauss-

ian atlas   
0

,
s w

w s s
 

  with height w i.e. 

       
,

, ,w ww s s w s
j j 

 
I J I J  . 

So infinite order jets are a record of the view through a 
Gaussian aperture, but being infinite dimensional they are 
still impractical as a patch. One could just use finite order 
jets as patches and accept that they only approximate the 
view through the corresponding Gaussian aperture i.e.  

       ,
, ,n n

w s w s w sw
j j  I J I J , but the quality of the ap-

proximation is variable: if s is small, w large, and n small it 
will be poor. 

To get a better controlled approximation we advance 
the general statement 

       ,
, ,n n

w w w sw
j j

 
I J I J  

i.e. the n-jet IP approximates some Gaussian aperture IP. 
We will argue for what the parameters ( ,w s  ) of the ap-

proximated aperture are, as a function of the jet order (n) 
and scale (w); and then confirm our approximation with 
numerical experiments. 

We use two constraints to determine ,w s  . First is that 

the approximating aperture should belong to the Gaussian 
atlas with top scale w – it certainly does as n . This 

means that w s w   . Second we try to maximize the sim-

ilarity of the diagonals (relative to a delta function basis) of 

the two IPs. Specifically we compare 
 ,x w s 

δ  and 

 n
w x

w
j δ . The first evaluates to    

1
2

28 w ss x


  G  and the 

second to          
1

2

2

1 2

0

8 8 !w

i i
w

i n

w x w i x




 

G H . The 

first is exactly Gaussian in form, the second roughly. We can 
make them similar by equalizing their variances: 

  ,
var 2x w sx

w s
 

  δ ,    4 1
2 1

var n n
w x nwx

j w


δ . Solving 

the two constraints – w s w    and 4 1
2 1

2 n
n

w s w


     – 
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yields 2
2 1

n
n

w w


   , 1
2 1n

s w


   . So we arrive at the approxi-

mation: 

       2 1
2 1 2 1

,
, , n

n n

n n
s s s ss
j j

 

I J I J  

In words: 

 a vision system, probing the image with DtG filters of 
scale s up to order n, senses the image like viewing it 

through Gaussian apertures of width 2
2 1

n
n

s


 and blur 

scale 1
2 1n

s


. 

This approximation can also be read in the other direction 
to determine the scale and order of DtGs needed to approx-
imate a given Gaussian aperture: 

       2 2

,
, ,

w w
s s

s w s ww s
s w

j j
      
 



I J I J  

(where  _  is the rounding function). Figure 8a,b show a 

Gaussian aperture and an approximately equivalent DtG 
filter system.  
 

 
Figure 8 – Gaussian aperture approximated equivalent to a DtG 
family. a) A gaussian aperture (pale) and the blur kernel of its associ-
ated scale (darker). b) The system of DtG filters up to 3rd order that 
approximate the view through (a). c) Each plot shows a natural image 
profile (thin), the view through the Gaussian aperture shown in (a) 
(thick), and the view according to the jet measured by the filters in (b) 
(thick). d) For pairs of natural image profiles the IPs computed by ap-
erture (a) or by jet (b) are highly correlated. e) The correlation between 
the jet IP and the equivalent-aperture IP increases with jet order, for 
natural signals. 

Figure 8c show that the views of two natural signals ac-
cording to the Gaussian aperture of Figure 8a and the ap-
proximating jet of Figure 8b are similar. For a more quan-
titative evaluation of the approximation we performed an 
experiment using a thousand pairs of 1-D profiles ex-
tracted at random orientations from a database of natural 
images. We compared the IPs between pairs of these pro-
files computed using either finite order jets or approxi-
mately-equivalent Gaussian apertures. To make the com-
parison more exacting we repeated the experiment but us-
ing image profiles with their DC component subtracted so 

that their mean within the aperture was a zero. To make it 
still more exacting we repeated the experiment but using 
profiles that were standardized by a linear transformation 
that gave them zero mean and unit standard deviation 
within the aperture. 

As shown in Figure 8d the correlation between the jet 
and aperture IPs for raw profiles approached 100%. This is 
because the variation about the mean of natural signals is 
typically small compared to the mean itself; so the DC 
component, which varies widely from profile to profile, is 
the primary determinant of either type of IP. The correla-
tion between the two types of IP is still very high for the 
profiles with DC component removed: for the pair of IPs 
illustrated in 8a,b it is 99.3%. When the profiles are stand-
ardized, equating their contrast as well as silencing their 
DC components, the correlation drops to a still high 98.7%. 
Figure 8e shows that the correlation between the IPs im-
proves with jet order, which is not surprising given that we 
know that it becomes perfect as the order becomes infinite. 
In conclusion, the results of figure 8 suggest that the ap-

proximation        2 1
2 1 2 1

,
, , n

n n

n n
s s s ss
j j

 

I J I J  is suffi-

ciently accurate, for natural image data, that jets can be 
considered as functionally equivalent to patches from 
Gaussian apertures.   

9 GAUSSIAN ATLASES 

We consider   
0

,
s t

t s s
 

   as an example Gaussian at-

las. Based on the approximation in section 8, the aperture 
at scale s within this atlas approximates the jet arising from 
measurement by a DtG filter family of scale t and order 

2
t s

s
n      i.e. coarser levels in the atlas are equivalent to in-

creasingly truncated jets. 
The width (measured as spatial standard deviation) of 

the aperture at scale s in the example atlas is  2 t s . 

Plotting this using a simple position and scale parameteri-
zation ( x s ) reveals a parabolic shape (fig 9a). A different 

picture results if we use a parameterization which makes 
the degrees of freedom of the scale space more homogene-

ous [5, 35, 36]; in particular, using  2 lnx s s  reveals the 

atlas to have a roughly pyramidal shape (fig 9b). 
We can chart the degrees of freedom of an atlas using 

the approximate equivalence between Gaussian apertures 
and jets. We have done this in figs 9a,b by marking the 
heights of apertures approximating different orders of jet, 
and sub-dividing the apertures according to the dimen-
sionality of the jets. The rendering of the atlas in fig 9b re-
veals how closely it is a continuous analogue of the discrete 
image pyramid (fig 9c). 
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Figure 9 – Gaussian atlas and image pyramid compared. a) The 
black curves indicate the widths of the apertures in an atlas (shown 
dashed in figure 6). Horizontal lines indicate apertures equivalent to 
jets; subdivided by the degrees-of-freedom of the jet. b) As (a) but 
rendered with coordinates that make the degrees of freedom of scale 
space more homogeneous. c) An image pyramid as often used in 
Computer Vision. 

We end with a tour through the atlas from coarse to fine, 
considering 2-D images, and what apertures at different 
scales reveal about them. At the top of the atlas is the aper-
ture    0, ,t t δ  which reveals a single degree-of-free-
dom about the image. An IP with respect to this aperture 
is exactly equal to the IP with zero order jets. For natural 
images, such apertures provide nothing of use since local 
mean intensity is so dependent on illumination. 

Going finer we reach the aperture  2 1
3 3,t t  whose IP 

approximates the 1st order jet IP.  The 1st order jet has three 
degrees-of freedom, so this tell us that the aperture gives a 
view like a superior 3-pixel patch. First order jets provide 
a gradient vector in addition to mean intensity. The mag-
nitude of the gradient is determined by local illumination, 
but the magnitude divided by the mean intensity is stable 
to intensity multiplication. It has been suggested that hu-
man vision is insensitive to 1st order structure [37], but 
Computer Vision has many effective descriptors that make 
effective use of the distribution of gradient directions over 
a region [8, 38]. 

Going finer we reach the aperture  4 1
5 5,t t  whose IP 

approximates the 2nd order jet IP. This jet has six de-
grees-of-freedom so the aperture gives a view like a supe-
rior 6-pixel patch. Sufficient articulation is visible through 
such apertures to allow local symmetry to be tested for [39] 
revealing around seven qualitatively distinct classes of 
structure. Basic Image Features are a scheme to do this di-
rectly from the equivalent 2nd order jet [40, 41], and Local 
Binary Patterns do something comparable based on 3×3 
patches of down-sampled images [42]. 

Finer still we reach the aperture  6 1
7 7,t t  whose IP ap-

proximates the 3rd order jet IP. Such apertures reveal the 
image with approximately ten dimensions of articulation 
(the dimension of the 3rd order jet). At present there are no 
published schemes to classify this level of complexity 
based on geometry, though it seems plausible [43]. Cer-
tainly curved versus straight edges should be distinguish-
able, and ramps versus edges, but probably much more. 

Finer still, the aperture  8 1
9 9,t t  approximates 4th or-

der jets with 15 dimensions, and  10 1
11 11,t t  approxi-

mates 5th order jets with 21 dimensions. V1 simple cells 
may possibly have sufficiently articulated filters that they 

can compute this order of jet, but not likely higher [44]. 
Whether a modest codebook of geometrically distinct forms 
for such apertures is possible is unknown; modern Com-
puter Vision systems would instead typically employ a 
learnt codebook whose bins are driven by their utility at 
inferring semantic labels when part of a larger recogni-
tion system [45]. 

As one progresses to even finer scales of the atlas the 
views become higher and higher dimensional. In some 
problem domains, verbatim recording of these views may 
be useful when individual rigid objects need to be 
recognized, but in natural images where recognition of 
object class is more important than object identity, and non-
rigid deformation and occlusion are frequent, such records 
are unlikely to be worth the cost of storage. A possible 
alternative is to store an incomplete record of the view. One 
way to do this would be to store precisely located sub-
aperture views at a restricted set of locations. For example, 
with a face one might use a Gaussian aperture to get exact 
views down to the level C in fig 1b, with nested, attached, 
relatively-located Gaussian apertures each focusing on an 
eye, a mouth etc., and going down to the level M [46]. 
Another possibility is to store unlocated sub-aperture 
views for all locations [47] - a locally-orderless 
representation [47-49]. When these views are quantized 
this is called a Bag-of-Textons representation in Computer 
Vision. For example in [50] gaussian-windowed local 
histograms of BIF classifications are used as a descriptor. 
There are many other examples [51]. 

10 EXPERIMENTAL EVALUATION 

We explore the usefulness of the Gaussian aperture frame-
work using image keypoint matching as an example. Key-
points are a common construction used in a range of Com-
puter Vision systems [52]. They are sparse but numerous 
locations within an image identified by a detector with the 
aim of reducing the combinatorics of image-to-image 
matching. Once localised a dominant scale and orientation 
for each is computed based on local image structure; and a 
descriptor of the image neighbourhood, at the dominant 
scale aligned to the dominant orientation, is computed. De-
scriptors for different keypoints can then be compared 
with the aim of establishing matches between images from 
which dense correspondence can be interpolated. 

Keypoint description is non-trivial because of: geomet-
ric and luminance distortions; positional, rotational and 
scale variability in keypoint detection; and noise. Many 
keypoint descriptors have been proposed (most famously 
SIFT [8]), and several datasets on which to compare them 
have been assembled. Recently, the HPatches dataset [53] 
has been developed to unite the various advantages of pre-
vious datasets; performance scores for baseline descriptors 
have been computed and a competition workshop ran at 
ECCV 2016. We will present results on HPatches using 
methods developed under the aperture framework, after 
first describing the steerability properties of apertures 
and jets. 
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10.1 Steerability 

2D DtG filter families are rotationally steerable [7, 15]. 
Meaning that a rotation of the family, about the filters com-
mon centre, can be computed by linear re-combination of 
the original family. This property transfers to the jets that 
the families measure. For example, the 1st order jet 

 
T

00 10 01:j j j j  transforms under an image rotation of 

  to 

1 0 0

0 cos sin

0 sin cos

j 

 

 
 
 
  

 . 

Rotation steerability can be understood informally but 
intuitively in the Gaussian aperture framework, to wit: jets 
approximate a Gaussian windowed view of the Gaussian 
blurred image, nothing is lost or gained from the view of 
the image through that window as the image is rotated 
about the window centre, hence the rotated jet is deter-
mined by the original jet. Further using this equivalence 
between jets and Gaussian apertures suggests that jets 
should be approximately steerable for small translations and 
scalings of the image. Calculation confirms this [33]. For 

example, after a small translation 
x   the jet is approxi-

mately  
T

10 20 11xj j j j , and after a small stretch of 

1 xx  in the x-direction the jet is approximately

       
T

20 10 30 212 2 2xxj s j j s j s j  . Similarly, for a 

small rotation   the jet is approximately

 
T

01 100j j j  . Note that for rotation only the origi-

nal jet components are needed, whereas translation needs 
components one order higher, and re-scaling two orders. 

Steering of jets computed in this way is approximate be-
cause it is a linearization of the trajectory of the jets through 
jet space as the image is transformed, and because higher 
order jet terms may be needed that are not available in the 
original jet. In practice we can control the approximation 
by not translating or rescaling too far, and by assuming 
that any unavailable higher order terms are zero [33]. Re-
sults in the next section show that the approximation is 
good enough to be useful. 
 

10.2 HPatches Results 

The HPatches dataset consists of 65×65 pixel patches, or-
ganized into pairs, in disjoint training and test sets [53]. In 
the classification challenge, positive pairs show matching 
scene locations, and are classified as easy or hard depend-
ent on the amount of between-image variation and the in-
accuracy of the keypoint localization. Negative pairs show 
non-matching locations, either from the ‘same’ or ‘differ-
ent’ scenes. From the two types of positive pair, and two 
types of negative pair, four separate sub-challenges are 
constructed, with overall performance defined as the mean 
over the four. In each classification sub-challenge a ran-
domized list of 200K positive pairs and 1M negative pairs 
has to be ranked according to confidence of match, and the 
ranking is scored as average precision. 

We have computed the performance scores of several 

novel descriptors on the HPatches classification challenge. 
In all cases we identically pre-processed the patches by 
performing a type of sphering about the mean patch. Spe-
cifically, we (i) standardized each patch to zero-mean and 
unit variance, (ii) computed the mean of standardized 
patches, (iii) divided the values of each standardized patch 
by their RMS deviation from the mean patch. The aim of 
the pre-processing was to lessen pedestal and contrast var-
iation within positive pairs and to make the distribution of 
patches more uniform. 

Table 1 lists scores for: a selection of baseline de-
scriptors; the ECCV 2016 ‘local features’ competition en-
tries; and for our descriptors. Citations for descriptors are 
given in table where available. Descriptors can be classi-
fied as to whether they are purely engineered with tuning 
of only a small number of parameters, or whether they use 
supervised learning from labelled training data to tune a 
large number of parameters to the specifics of the chal-
lenge. Before our contribution learnt descriptors strongly 
outperformed unlearnt. The best learnt - cassa-yt - a CNN 
approach, scores 93.89%; the best non-learnt - cmp-dm-1 - 
scores 75.04%. The novel schemes we present are non-
learnt, using only a small number of parameters, tuned on 
a training set disjoint from the testing. Our results reduce, 
without eliminating, the lead that learnt schemes have 
over non-learnt. 

 
TABLE 1 

KEYPOINT DESCRIPTOR SCORES ON 
HPATCHES CLASSIFICATION CHALLENGE 

 

Shaded rows are new schemes presented in this paper.  

 
Starting with lower scores, our first descriptor (pyramid) 

is a square downsampled patch (like figure 3 top row). 
Tuning the scheme’s parameters on the training data, we 
found trimming the patch to 64×64 and downsampling to 
an 8×8 patch was most effective, giving a score slightly 
higher than the raw SIFT descriptor provided as an 
HPatches baseline. 

To compare against pyramid we tuned a gaussian aper-
ture descriptor - g-apertures (like figure 3 bottom row) and 
a jet-based approximation - j-apertures. The parameters of 
the two schemes were optimized together, so that the 
tuned order of n=16 and DtG scale of σfilter=24.0 for j-aperture 
corresponds to the tuned σblur=21.48, σwindow=23.98 for g-aper-
tures according to equations of section 8. The two aperture 



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2017.2777856, IEEE Transactions on Pattern Analysis and Machine Intelligence

LEWIS D GRIFFIN.:  THE ATLAS STRUCTURE OF IMAGES 11 

 

schemes perform almost identically, and marginally better 
than pyramid, in accordance with our theory. 

The performance of j-apertures (71.22%) does not reach 
the performance of cmp-dm-1 (75.04%) which is the best of 
previous non-learnt descriptors. The decisive difference 
seems to be that j-aperture is predicated on unperturbed po-
sitional correspondence between the two patches, whereas 
SIFT-based schemes, such as cmp-dm-1, allows for jittered 
correspondence. To address this we developed a steerable 
jet descriptor. 

Our steerable jet approach is predicated on the differ-
ence between the two patches in a matching positive pair 
in large part arising from a linear spatial transformation. 
Under this assumption, if we could measure the jets in the 
correct different positions, orientations, etc. in the two 
patches they would match better than in the default posi-
tion and orientation. However, because the position, orien-
tation, etc. of jets (equivalently Gaussian apertures) is so 
fuzzily defined, there is no need to re-measure the jet, we 
can approximate ‘nearby’ jets by steering the original jet as 
illustrated in Figure 10. 

 

 

Figure 10 – Examples of the s-j-aperture descriptor. The top ex-
ample is from the ‘easy’ positive pair set, the bottom from the ‘hard’. 
Left column: patches overlaid with a red circle indicating the measured 

aperture, with radius 2  times the filter scale; and green ellipses in-

dicating the steered aperture. 2nd column: the view of the patch 
through the measured aperture, computed from the measured jet. 3rd 
column: view through the steered aperture, computed from the 
steered jet (which was computed from the measured jet). Note how 
the steered views, within a pair, are more similar than the measured 
views. Right column:  image-horizontal cross-sections of the scale 
space extent of the atlases arising from the measured and steered 
apertures. Vertical axis is log-scale; the bottom line is pixel scale, the 

next line a blur of 1  , then 2  , etc. These panels show the con-

siderable overlap of the measured and steered atlases, which sup-
ports the accuracy of the steering. In all panels of the figure it is im-
portant to bear in mind that the red and green lines do not mark hard 
cut-off but only the start of the decaying part of the apertues. 

To compute the optimal steer of the jets 
1 2,j j  of the 

patches in a pair we compute six derivatives of each with 
respect to rotation (one), translation (two) and rescalings 
(three) of the image, as described in section 10.1. We ar-

range these derivatives as columns in two matrices 
1 2,D D

. Let the vector of parameters of the transformation applied 

to 
1j  be  

T

x y xx xy yy       , steering it to 

T

1 1j  D . The inverse transformation applied to 
2j , as-

suming it is small, has parameters   steering it to 
T

2 2j  D . Solving to get the steered jets are as close as pos-

sible gives    1 2 1 2j j


  D D , where the + superscript 

denotes the pseudo-inverse using the jet IP. The distance 
between the optimally steered jets, computed using the jet 
norm, is the score for the patch pair. 

This scheme works well but becomes less effective when 
the transformation that relates the patches is large. In par-
ticular, this occurs for a small number of patch pairs where 
there is a very large rotational change. We can improve the 
scheme by performing an exact rotation of one jet, by fixed 
amounts, before performing jet steering and using which-
ever rotation leads to the smallest jet distance. We use ro-

tations of  0.8, 0.4, 0   radians.  

This scheme - s-j-aperture - using a jet order of n=10 and 

a scale of  3.82filter    (both tuned on the trainin dataset) 

gives a score of 85.10%, a considerable improvement on the 
previous best (cmp-dm-1) for non-learnt descriptors of 
75.04%, while producing a descriptor with lower dimen-
sion than anything of similar performance. We have not 
performed formal speed tests, but the computations are 
simple and non-iterative and should be competitively fast. 

We have experimented with wringing every last drop 
of performance out of the jet steering approach. The best 
scheme we found (m-s-j-aperture) uses a higher order 
(n=27) jet, up to eight steering transformations performed 
in sequence, with two extra parameters to control the mag-
nitude of the transformations and to choose when to stop 
performing them. Since this substantially increases the 
computation time and the descriptor dimensionality, 
while only slightly improving performance (86.83%), we 
do not advocate its use instead of s-j-aperture. 

In conclusion, the fuzziness of Gaussian apertures al-
lows a highly effective keypoint descriptor that performs 
10 percentage points better than other non-learnt de-
scriptors. While we acknowledge that the current best 
learnt descriptors perform a further 9 percentage points 
better, the operation of non-learnt schemes is more easily 
understood than learnt schemes, which may eventually 
lead to even better learnt schemes. 

 

11 SUMMARY & DISCUSSION 

We have presented a geometric structure for isolating im-
age regions at different scales and inter-relating them: a 
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continuous version of the discrete image pyramid. Its fun-
damental element is the aperture, a positive weighting 
function paired with a level of scale space that it views. 
Such an aperture gives a view on the image as if through a 
fuzzy porthole of frosted glass. To organize these apertures 
into cross-scale structures we first defined a containment 
relation which holds when one aperture does not see any-
thing that the other does not. We showed that only aper-
tures that view finer scales can contain apertures that view 
coarser scales. We defined containment to be tight if the 
containg aperture cannot be reduced or the contained ex-
panded. We showed, unexpectedly, that there are multiple 
apertures at any given fine scale that tightly contain any 
given coarser aperture. We simplified this complex struc-
ture of containment relations by defining a cause/effect re-
lation to hold when there was containment, and the cause 
was as small as possible (or equivalently the effect was as 
large as possible). It transpired that causes were related to 
effects by a blur of the aperture equivalent to the fine to 
coarse scale change. We noted that it was important to ap-
preciate that the blurring relation of aperture causation op-
erates in the opposite direction to the blurring process of 
scale space images. The cause/effect relation strings aper-
tures into 1-D cross-scale families we called atlases. We ar-
gued that preeminent within possible atlases were those 
composed of Gaussian apertures. 

Having established the special status of Gaussian aper-
tures, we related views through them to jets measured by 
DtG filters, showing that finite order jets approximate the 
views through equivalent apertures. We checked this ap-
proximation using computations on natural images. Fi-
nally, we showed that Gaussian atlases were like a contin-
uous version of the image pyramid, and that various types 
and modes of image description can naturally be ex-
pressed in terms of them. Using keypoint description as an 
example, we showed how the aperture framework could 
inspire improved useful algorithms. We developed a key-
point descriptor that outperforms previous non-learnt de-
scriptors, halving the lead that learnt methods have 
over non-learnt. 

We briefly consider the biological relevance of our 
model. DtGs are an accepted model of Simple Cell neurons 
in mammalian primary visual cortex (V1) [16, 17]. As a 
model it fits the near linear response of these cells and ac-
counts for the structure of their receptive fields [29]. 
Though it must be noted that there is still much that it does 
not account for [16, 59]. Since DtGs effectively compute de-
rivatives of the blurred image, the model allows an inter-
pretation of V1 as a multi-scale differential geometry en-
gine [60]. This runs counter to an older interpretation, 
dominant in experimental Psychology, of Simple Cells as 
measuring local Fourier energy, an ensemble thus compu-
ting something like a patchwise Fourier Transform [61]. 
The framework in this paper provides theory underlying 
the patchwise view: it gives a picture of V1 as implement-
ing a wide set of fuzzy-edged, frosted-glass portholes for 

viewing the image, using hardware that looks quite differ-
ent from that. 

We conclude with some ideas on how the theory of atlas 
structure could be developed further. 

 On-demand synthesis of bespoke apertures from a 
Gaussian basis could be used to more precisely seg-
ment image objects. This could be efficiently done 
using large apertures to cover large parts of the ob-
ject, and progressively smaller apertures to cover 
into the corners. There is neurophysiological and 
psychophysical evidence consistent with such a 
scheme [62, 63]. 

 Many effective local image descriptors are con-
catentations of a few repetitions of the same scheme 
operating at progressively coarser scales over wider 
extents [41, 64]. This gives, in effect, a local foveated 
view of the image. This is different from the atlases 
that we have described, which get tighter with in-
creasing scale. Such foveated descriptors could cor-
respond to views through apertures which are not 
iso-scale, but instead get coarser as the weighting 
function decays away from the centre. 

 The nesting of atlases provides a means to put lo-
cally-orderless descriptions of image structure on a 
firm footing, possibly leading to refined schemes. 
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