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Abstract:We report on the application of themulti-aperture analyserX-ray Phase-Contrast imaging
(XPCI) technique to the three-dimensional imaging of breast tissue samples. The experiment was
conducted at the SYRMEP beamline (Elettra synchrotron, Italy) with a monochromatic X-ray beam.
Along with the presentation of the methodology and resulting images, the potential extension of
this approach to enable in-vivo applications at acceptable doses is discussed.
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1 Introduction

X-ray imaging is a widely used method for the non-destructive inspection of the internal structure
of bulk samples. Its applications are numerous, encompassing security screening, material science,
biology and medicine. In conventional, absorption-based radiography, image contrast is generated
by the differences in the absorption that the X-ray beam experiences while travelling across the
sample. When the differences in absorption become small, X-ray phase-contrast imaging XPCI [1]
techniques can be applied to enhance image quality.

Several approaches for XPCI, involving both synchrotron facilities and laboratory sources,
have been proposed and investigated [2–17]. Here we focus on a multi-aperture analyser set-up [18]
implemented with monochromatic synchrotron radiation. It can be viewed as a development of edge
illumination (EI) [19], where the sensing edge is replaced by a set of apertures to simultaneously
attain high sensitivity and wide dynamic range. The EI method was shown to provide quantitative
phase and dark-field images [20, 21], by means of synchrotron radiation, microfocus tubes and
conventional rotating anode sources with extended focal spots [22, 23]. It also proved to be robust
against very relaxed coherence conditions and against thermal and mechanical instabilities [24–27]
and enabled low-dose implementations of XPCI in planar and three-dimensional imaging [28–30].

2 Methods

The experimental set-up is depicted in Figure 1: a 20 keVmonochromatic X-ray beam is amplitude-
modulated by a narrow slit in the vertical (y-axis) direction. After passing through the sample, the
shaped beam is analysed by a set of apertures that are placed just in front of the detector (Photonic
Science Ltd. CCD featuring 12.5 µmpixel size). In order to reconstruct three-dimensional volumes,
600 views of the sample are collected by rotating it around the y-axis, in angular steps of 0.3 degrees.
The illumination function (IF), i.e. the function that describes how the detected intensity changes
as a function of the vertical misalignment ȳ between the pre-sample aperture and the detector
apertures, is sampled at 5 different positions. The modifications imparted by the sample to the
illumination function are used to retrieve the sample absorption and refraction.
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Figure 1: Schematic of the experimental set-up. A monochromatic X-ray beam is shaped by an
absorbing aperture in the vertical (y) direction, it is passed through a sample that can translate along
and rotate around the y-axis, and it is analysed by a set of apertures before detection.

This is achieved by expressing the measured intensity as a convolution between the IF L( ȳ)
and the sample function O(x, y) [18]:

I ( ȳ) =
∫

L( ȳ − y)O(y)dy. (2.1)

which can be further expanded by using a multi-Gaussian model [21]:

I ( ȳ) =
∑
m

∑
n

Amn exp
[
−

( ȳ − µmn)2

2σ2
mn

]
(2.2)

where L( ȳ) =
∑

n(An/

√
2πσ2

n) exp [−( ȳ − µn)2/2σ2
n], (n = 1 . . . N), O( ȳ) =

∑
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m], (m = 1 . . . M), and the parameters are defined in the following way:

µmn = µm + µn, σ2
mn = σ

2
m + σ

2
n and Amn = AmAn(1/

√
2πσ2

mn). In this case N = 5 terms were
used for describing the IF.

The representations of the sample in the (x, z) plane are obtained reconstructing the following
two quantities by means of the Filtered Back Projection algorithm

−ln(t) = (4π/λ)
∫

β(z)dz (2.3)

∆yR = −zod ∂y

∫
δ(z)dz (2.4)

where δ indicates the decrement from unity of the refractive index, and β its imaginary part.
In this proof-of-principle arrangement, featuring only one pre-sample aperture, only one slice

at a time can be collected, then the sample has to be scanned along the y direction and the acquisition
procedure repeated.

The examined sampleswere derived from surgicalmaterial sent to the PathologyUnit according
to local guidelines for histological examination of the Pathology Unit of the Academic Hospital

– 2 –



of Cattinara, Trieste University, accredited by JCI (Joint Commission International). The images
presented in this study were acquired from specimens of breast lumpectomy obtained out of overleft
material to be wasted. The samples contain ductal carcinoma, glandular and adipose tissues. The
samples were fixed in 4% neutral buffered formalin and sealed in cylindrical polyethylene containers
(2.5 and 3 cm in diameter).

The work reported in this paper was carried out following the Directive 2004/23/EC of the
European Parliament and of the Council of 31March 2004 on setting standards of quality and safety
for the donation, procurement, testing, processing, preservation, storage and distribution of human
tissues.

Prior to the tomographic reconstruction, the absorption sinograms were filtered to mitigate ring
artefacts due to gain inhomogeneities of the CCD. The applied ring-removal procedure is based
on a combined wavelet-Fourier de-striping filtering, first proposed by Munch et al. [31], with a
decomposition level of 5 and a width of the Gaussian bandpass function of 2.

3 Results and Discussion

In Figure 2 slices from two samples are shown, with the conventional, absorption-based tomograms
in the left-hand side column, and the refraction tomograms on the right-hand side.

In the absorption images, glandular and cancer regions components are hyperintense compared
to the adipose component and the subtle glandular structures in adipose are perfectly visible. The
refraction images offer a high-contrast visualization of the interface between different types of tissue.
Moreover, in the refraction images the signal texture is different in glandular and in adipose regions,
further studies are necessary, comparing tomographic images and histology in order to understand
the origin of this texture differences and to evaluate their possible diagnostic significance in terms of
presence of microvasculature or specific disorder in the cancer cell organization. Several artefacts
are visible in those images, they can be mainly attributed to the presence of strong-contrast edges
due to air bubbles within the samples.

The dose delivered to the samples was evaluated only afterwards, and was estimaed in the order
of 17Gy. This value is clearly too high for clinical implementations of the technique, however several
hardware and data acquisition strategy modifications can be considered, that would signifincalty
reduce it. By keeping the same statistics at the detector, a factor of 20 can be gained by using a direct
conversion device with approximately 100 µmpixels and detection efficiency approaching 90%, like
that used in the SYRMEP breast CT development [32, 33] (which doubles the detection efficiency
of the scintillator used in this experiment). A further reduction by a factor of 5 can be achieved by
using smaller apertures in the masks [28]. Moreover, instead of sampling the illumination function
in 5 points, single-shot retrieval algorithms can be used [34, 35]. These modifications alone would
already reduce the dose to a few tens of mGy, at which point further optimization of the energy,
exposure time per projection and possibly of the reconstruction algorithms would enable meeting
the low-dose requirements of clinical implementation [36–39].
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Figure 2: Two example slices: (a) and (c) are the absorption tomograms, while (b) and (d) are
the refraction tomograms. Images (a) and (b) have 3 cm diameter, while (c) and (d) have 2.5 cm
diameter.

4 Conclusion

Breast tissue samples where imaged through a multi-aperture analyser set-up using monochromatic
synchrotron radiation. Absorption and refraction tomograms were successfully reconstructed for
samples of approximately 2.5 and 3 cm diameters. A ring-removal procedure was used to attenuate
ring-shaped artefacts in the absorption slices. Streak-type artefacts were present in the refraction
images and are mainly attributed to the presence of air bubbles within the sample. Finally, strategies
to reduce the dose delivered to the sample were proposed, which could enable moving the technique
towards clinical applications in the future.
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