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Main text 

Accurate pathological diagnosis is crucial for optimal clinical management of cancer patients. 

For the ~100 known brain tumour entities, standardization of the diagnostic process has been 

shown to be particularly challenging - with substantial inter-observer variability in the 

histopathological diagnosis and grading of many tumour types 1 2 3. The recent update of the 

WHO classification of tumours of the central nervous system 4 has added single-gene molecular 

markers to increase objectivity for some entities, but for the vast majority of classes such 

markers have not been established. Furthermore, the number of molecularly defined brain 

tumour classes is currently expanding much more rapidly than the means to reliably diagnose 

them. A database of the molecular signatures of all known CNS tumours could therefore help to 

standardise diagnostic procedures. We herein present the development of a comprehensive 

approach for DNA methylation-based CNS tumour classification across all entities and age 

groups, and demonstrate its application in a routine diagnostic setting. We show that machine 

learning algorithms are capable of reliably and robustly differentiating between 82 CNS tumour 

DNA methylation classes (represented by ~2800 reference samples), including recently defined 

subgroups not yet covered in official classifications. We further demonstrate that availability of 

this method may have a substantial impact on diagnostic precision compared with standard 

methods, resulting in a change of diagnosis in 12% of ~1100 prospective cases analysed at our 

centre. For broader accessibility we have designed a free and easy to use online classifier tool 

(www.molecularneuropathology.org) requiring no additional onsite data processing. Our results 

provide a blueprint for the generation of tumour classifiers across other cancer entities, with the 

potential to fundamentally transform modern tumour pathology. 

  

http://www.molecularneuropathology.org/
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The developmental complexity of the brain is reflected in the vast array of distinct brain tumour entities 

defined in the current WHO classification of CNS tumours 4. These tumours are clinically and biologically 

highly diverse, encompassing a wide spectrum from benign neoplasms that can frequently be cured by 

surgery alone (e.g. pilocytic astrocytoma), to highly malignant tumours responding poorly to any therapy 

(e.g. glioblastoma). Previous studies reported substantial inter-observer variability in the 

histopathological diagnosis of many CNS tumours, e.g., in diffuse gliomas 1, ependymomas 2 and 

supratentorial PNETs 3. Some molecular subgrouping has been introduced into the update of the WHO 

classification to partially address this, but only for a few entities, such as medulloblastoma). Furthermore, 

several single-gene tests based on DNA methylation analysis (e.g., MGMT promoter methylation 

status), FISH (e.g., 1p/19q, EGFR, MYC, MYCN, PDGFRA, 19q13.42, etc.) or immunohistochemistry 

(CTNNB1, LIN28A, etc.) that are required to cover the most important differential diagnoses have been 

shown to be difficult to standardize. Such diagnostic discordance and uncertainty confounds decision-

making in clinical practice as well as the interpretation and validity of clinical trial results.  

The cancer methylome is a combination of both somatically acquired DNA methylation changes and 

characteristics reflecting the cell of origin 5,6. The latter property allows, for example, tracing of the 

primary site of highly dedifferentiated metastases of cancers of unknown origin 7. It has been 

convincingly shown that DNA methylation profiling is highly robust and reproducible even from small 

samples and poor quality material 8, and such profiles have been widely used to subclassify CNS 

tumours that were previously considered homogeneous diseases 3,9-21. Based on this preliminary work 

within single entities, we herein present a comprehensive approach for DNA methylation-based 

classification of all CNS tumour entities across age groups. 

 

Unsupervised data analysis and definition of 91 DNA methylation classes 

To establish a comprehensive CNS tumour reference cohort, we generated genome-wide DNA 

methylation profiles (minimum of eight cases per group) representing almost all WHO defined 

neuroectodermal and sellar region tumours 1. We further profiled mesenchymal tumours, melanoma, 

diffuse large B-cell lymphoma, plasmacytoma and six types of pituitary adenomas, in total comprising 

76 histopathological entities and seven entity variants occurring in the CNS. The DNA methylation cohort 

was supplemented with data from published series 3,9-24. All histopathological entities and variants were 
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analysed by unsupervised clustering both within each entity as well as across histologically similar 

tumour entities, aiming to identify (i) distinct DNA methylation classes within one histopathological entity 

and (ii) DNA methylation classes comprising tumours displaying a varied histological phenotype. This 

iterative process led to the designation of 82 CNS tumour classes characterised by distinct DNA 

methylation profiles (Figure 1a). Twenty-nine of these were equivalent to a single WHO entity (category 

1), 29 represented subclasses within a WHO entity (category 2), in eight the WHO grading was not fully 

recapitulated (category 3) and in 11 the boundaries of methylation classes were not identical to the entity 

boundaries of WHO (category 4) (Figure 1a). The remaining five represented DNA methylation classes 

not defined by the WHO classification (category 5), three of which were recently described 3 as well as 

the not yet well-defined class of anaplastic pilocytic astrocytoma and one new subclass of infantile 

hemispheric glioma. There was evidence for several additional classes of rare tumours, with too few 

cases to be included at present. In consideration of the impact of the tumour microenvironment on the 

methylation profile, we included 47 tumour samples with a pronounced inflammatory or reactive tumour 

microenvironment, respectively, both demonstrating distinct methylation profiles. We additionally 

selected 72 samples representing seven non-neoplastic CNS regions, resulting in a reference cohort of 

2,801 samples from 91 classes (Figure 1a) that was visualized using t-SNE dimensionality reduction 25 

(Figure 1b) and supported the separation of samples into the defined DNA methylation classes (see 

also Extended Data Figure 1a, b). Supplementary Information Table 1 gives an overview of methylation 

class characteristics and Supplementary Information Table 2 shows case-by case information of the 

reference samples.  

To test the stability of separation of methylation classes by t-SNE we performed iterative random down 

samplings of the reference cohort and observed a high stability of groups irrespective of the exact 

composition of the cohort (Extended Data Figure 1c, d). To analyse for possible confounding batch 

effects within our pre-processed reference cohort data set (after adjusting for FFPE versus frozen 

material) we applied the sva algorithm 26,27. We found no significant surrogate variables that may have 

indicated batch effects (data not shown). Assessment of overlayed t-SNE representations of the 

reference cohort with gender, patient age, material type, array preparation date, tissue source, and 

tumour purity also did not indicate unexpected associations (Extended Data Figure 2, Extended Data 

Figure 3a-c, see Extended Data Methods for purity calculation model). For reference astrocytomas, 

oligodendrogliomas and glioblastomas we additionally performed classification according to the TCGA 

pan glioma DNA methylation model 28 indicating a strong association of the TCGA classes LGm1-6 with 



9 
 

specific classes defined in our reference cohort (Extended Data Figure 3d, Supplementary Information 

Table 2). 

 

 

Classifier development 

Application in routine diagnostics requires fast and reproducible classification of samples as well as a 

measure of confidence for the specific call. To this end, we employed the Random Forest (RF) algorithm 

29 to generate 10,000 binary decision trees, incorporating genome-wide information from all 2,801 

reference samples and 91 methylation classes (Extended Data Figure 4). Each of these trees assigns 

a given diagnostic sample to one of the 91 classes, resulting in an aggregate raw score (Figure 2a). To 

get class probability estimates that can be used to guide diagnostic decision-making, we fitted a 

multinomial logistic regression calibration model that transforms the raw scores into a probability that 

measures the confidence in the class assignment (‘calibrated score’). The calibration allows comparison 

of classifier results between classes despite a different raw score distribution from class to class 

(Extended Data Figure 5a, b). Cross validation of the RF classifier resulted in an estimated error rate of 

4.89% for raw and 4.28% for calibrated scores and an area under receiver operating characteristic curve 

(AUC) of 0.99, indicating a high discriminating power (Figure 2b, c). The vast majority of cross validation 

misclassifications occurred within eight groups of histologically and biologically closely related tumour 

classes, distinction of which is currently without clinical impact (with the possible exception of choroid 

plexus tumours 17; Figure 2b). We therefore defined eight ‘methylation class families’ (MCF), for which 

calibrated scores are summed up to a single score. This reduced the cross-validated error rate for the 

clinically relevant groupings to 1.14% (Figure 2b, c). 

For application to diagnostic tumour samples, a threshold value for the prediction of a matching class is 

required. Receiver operating characteristic (ROC) analysis on the maximum calibrated scores resulting 

from cross validation data was performed to estimate possible threshold values (Extended Data Figure 

5c, d). A balanced specificity (93.8%) and sensitivity (of 93.4%) was observed at a cut-off of ≥0.836 

(Youden index). At a cut-off of ≥0.958, specificity reached 100% but sensitivity was reduced to 82.7%. 

As a practical compromise, we set our threshold in the middle between both these values (≥0.9). For 

subclasses within methylation class families, we defined a threshold value of ≥0.5 as sufficient for a 

valid prediction, as long as all family member scores add up to a total score of ≥0.9. Taking the maximum 

as prediction threshold and using a multiclass approach 30, overall sensitivity and specificity was 0.989 
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and 0.999, respectively (Figure 2c). Single class specificity and sensitivity for the ≥0.9 threshold are 

provided in Supplementary Information Table 3. 

 

 

Clinical implementation 

For evaluation of clinical utility, we prospectively analysed a series of 1,155 diagnostic CNS tumours in 

parallel with standard histopathological workup (Figure 3a, b). For 51 cases (4%) the material was not 

suitable for methylation profiling, mostly because of too low tumour cell content or only very limited total 

material. Methylation profiling was performed for the remaining 1,104 samples and the cases were 

assigned as either ‘matching to a defined DNA methylation class’ (calibrated score ≥0.9) or as ‘no match’ 

cases (highest score <0.9) (for a case-by-case list see Supplementary Information Table 4). The 

investigated cases comprised 64 different histopathological entities from both adult (71%) and paediatric 

patients (29%). The spectrum of entities was enriched for rare and difficult to diagnose cases received 

for referral, and therefore did not exactly match the distribution seen in daily routine diagnostic practice 

centres. Histopathological evaluation was performed blinded to DNA methylation profiling results and 

included standard molecular testing.  

In total, 88% of profiled samples (n=977/1,104) matched to an established DNA methylation class with 

a calibrated classifier score ≥0.9 (Figure 3b). For 838 of these (838/1,104; 76%), results obtained by 

pathology and DNA methylation profiling were concordant. In 171 of the cases, an unambiguous 

molecular subgroup could be assigned, which would not have been available based on histopathology 

evaluation only (e.g., molecular subgroups of medulloblastoma and ependymoma, many of which were 

included in the latest version of the WHO classification for CNS tumours 4).  

For the remaining 139 samples with a calibrated classifier score ≥0.9, the DNA methylation class was 

discordant from the pathological diagnosis. These cases were histologically and molecularly re-

evaluated, including additional molecular-pathological investigation (DNA copy-number profiling, 

targeted gene sequencing, gene panel sequencing 31, and gene fusion analysis of a subset of cases, 

see Supplementary Information Table 5 for case-by-case details). This resulted in a revision of the initial 

histopathological diagnosis in 129 of the 139 cases (12% of all cases, Figure 3c) in favour of the 

predicted methylation class. In agreement with a number of recent reports, several of these were IDH 

wildtype astrocytomas and anaplastic astrocytomas reclassified as IDH wildtype glioblastomas. 
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Establishing a new diagnosis had a profound clinical impact: A change in WHO grading was observed 

in 71% of these cases (92/129), with both upgrading (41%, 53/129) and downgrading (30%, 39/129; 

Figure 3c). Discrepant results could not be resolved in only 10 cases (<1% of profiled cases), and the 

histopathological diagnosis was retained. To substantiate the impact in clinical practice we contacted 

five external centres that have started to implement methylation profiling for diagnostic cases using our 

algorithm. In total, these centres analysed 401 diagnostic cases and in 50 cases (12%) a new diagnosis 

was established, nearly perfectly recapitulating our rate of reclassification (Extended Data Figure 6a, 

Supplementary Information Table 6). Analysis of the individual centres indicates that the rate of 

reclassification varied between 6% and 25% most likely due to differences of the spectrum of 

investigated cases and more upfront molecular testing by some centres (Extended Data Figure 6b). 

Twelve percent of tumours from the prospective cohort (127/1,104) could not be assigned to a DNA 

methylation class using the rigid calibrated classifier score cut-off of ≥0.9 (Figure 3b). To further clarify 

the role of these non-classifiable cases we performed an unsupervised t-SNE analysis of the reference 

cohort together with the diagnostic cohort (Figure 4a). This demonstrated a high overlap of the 

classifiable cases with the reference cohort, whereas non-classifiable cases frequently fell in the 

periphery of the reference classes or even completely separate from these and frequently grouped with 

other non-classifiable cases (Figure 4a). This may indicate that such cases represent rare novel 

molecular entities that have not been previously recognized. An example for such a likely novel CNS 

tumour entity is exemplified for one unusual tumour type in Figure 4a, b.  

 

Technical robustness and inter-laboratory comparison 

Technical robustness of the RF classifier was investigated by inter-laboratory comparison. Results of 

two independent laboratories (starting from DNA extraction) were highly correlated, with only two of 51 

samples (4%) showing a classifier score slightly lower than 0.9 in one of the centres whereas all other 

cases were classified identically (Extended Data Figure 7a). Calculation of copy number profiles was 

also stable across laboratories (Extended Data Figure 7b). To ascertain forward compatibility with 

developing technologies, we further used the RF classifier to interrogate newer EPIC DNA methylation 

arrays and high-coverage whole-genome bisulfite sequencing data. For all 27 samples from different 

CNS tumours profiled on both array platforms, raw scores and calibrated scores were highly correlated 
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(Extended Data Figure 7c) and running them through the classifying algorithm resulted in the same 

prediction for every case. Further, for all 20 high-coverage whole-genome bisulfite sequencing samples 

(11 different CNS tumour entities), the highest prediction score was for the same class as the 450k 

array, suggesting that our approach is applicable to different DNA methylation profiling techniques with 

only slight adaptations (Extended Data Figure 7d). 

 

Global dissemination of the platform 

To ensure unrestricted community access to our classification system, we created a free web platform 

for data upload, automatic normalization, Random Forest classification, and PDF report generation 

(www.molecularneuropathology.org). DNA copy-number profiles 30 and O6-methylguanine-DNA-

methyltransferase (MGMT) promoter methylation status 31 are additionally provided, since they can be 

generated from the same data source – thus having the potential of replacing several time- and cost-

intensive single-gene tests. A representative website report is shown in Extended Data Figure 8. During 

upload, the data provider can consent if the data may be used for further classifier development. We 

expect that this web platform can thereby act as a hub for a worldwide cooperative network to 

continuously identify and track rare tumour classes so that they can eventually be added to the catalogue 

of known human cancers. Since the launch of the website in December 2016, over 4500 cases have 

been uploaded from over 15 participating centres. New biological insights can likely also be gained 

based on the interrelationships of tumour classes, and by closer examination of how gene methylation 

affects tumour biology.  

In conclusion, we demonstrate that DNA methylation-based CNS tumour classification is a valuable 

asset for clinical decision making. In contrast to traditional pathology, whereby there is a pressure to 

assign all tumours to a described entity even for atypical or challenging cases, the objective measure 

that we provide here allows for ‘no match’ to a defined class. This information can also be of substantial 

value in highlighting that a tumor is not a typical example of a given differential diagnosis, and may rather 

belong to a rarer, yet undefined class. We defined 5 categories of methylation classes that have different 

clinical implications. Category 1 can be directly translated to WHO entities. Category 2 represent 

subclasses of WHO entities. For all but ependymal tumor subclasses, currently little clinical implications 

derive form subclassification and a translation back to the WHO class may be appropriate for clinical 

http://www.molecularneuropathology.org/
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purposes. Category 3 reflects the fact, that WHO grading cannot be fully recapitulated by methylation 

profiling for several classes. Further data is required to assess if the methylation classes of this category 

may provide a more robust means of prognostication than histology alone, as has been demonstrated 

for several other classes 3,11,14. In category 4, the WHO entity boundaries are not identical to the 

boundaries of the methylation classes. Until additional data on the exact boundaries become available, 

this category should be critically discussed in the clinical context and orthogonal testing should be 

undertaken whenever possible. Category 5 represents putative new entities that are currently not 

recognized by the WHO and where little data on these cases exists, but where biological rationale for a 

novel class was considered to be strong.  

A study in which reference pathology and molecular diagnostics are blinded for each other´s results is 

currently ongoing for all childhood brain tumours diagnosed in Germany to objectivise the potential effect 

of re-classification on patient outcome (http://pediatric-

neurooncology.dkfz.de/index.php/en/diagnostics/molecular-neuropathology), with results due over the 

next few years.  

We expect that the principle of using DNA methylation signatures as part of a combined histo-molecular 

tumor classification will improve diagnostic accuracy not only in neuropathology, but will serve as a 

blueprint in other fields of tumour pathology. In our experience, adaptation of this technique in diagnostic 

laboratories is relatively straightforward. Extended Data Figure 9 summarizes a sample workflow for 

diagnostic implementation.  

In particular, the digital nature of methylation data facilitates easy exchange and will allow aggregation 

of extensive tumor libraries. This will likely result in the detection of exceptionally rare tumor classes and 

a continued refinement of classifiers. Inclusion of new classes will allow a prompt translation into 

diagnostic practice, almost certainly resulting in a more dynamic tumor classification. The easy 

exchange also has great promise for standardization of tumor diagnostics across centres and across 

clinical trials.   

http://pediatric-neurooncology.dkfz.de/index.php/en/diagnostics/molecular-neuropathology
http://pediatric-neurooncology.dkfz.de/index.php/en/diagnostics/molecular-neuropathology
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