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SUMMARY 

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases ranging from 

steatosis, through non-alcoholic steatohepatitis (NASH) to cirrhosis. The development of 

fibrosis is the most important factor contributing to NASH-associated morbidity and 

mortality. Hepatic stellate cells (HSCs) are responsible for extracellular matrix deposition in 

conditions of frank hepatocellular injury and are key cells involved in the development of 

fibrosis. In experimental models and patients with NASH, urea cycle enzyme gene and 

protein expression is reduced resulting in functional reduction in the in vivo capacity for 

ureagenesis and subsequent hyperammonemia at a pre-cirrhotic stage. Ammonia has 

been shown to activate HSCs in vivo and in vitro. Hyperammonemia in the context of 

NASH may therefore favour the progression of fibrosis and the disease. We therefore 

hypothesise that ammonia is a potential target for prevention of fibrosis progression of 

patients with NASH. 
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INTRODUCTION 

The WHO estimates over 650 million people globally and more than 29 million Europeans 

have chronic liver disease [1]. Alarming increases in obesity rates and in tandem, 

increases in rates of non-alcoholic fatty liver disease (NAFLD), plus an ageing population 

mean that liver disease will become an even greater health concern over the next decade 

[2]. NAFLD is a spectrum of liver disease ranging from steatosis, through non-alcoholic 

steatohepatitis (NASH) to cirrhosis, and possible hepatocellular carcinoma. The prognosis 

of patients with simple steatosis appears good whereas NASH often has a progressive 

course with increased liver-related morbidity and mortality [3-5]. Given the increasing 

population prevalence of NAFLD and NASH, the ability to treat NASH would be a 

significant clinical breakthrough. Treatment options for NASH are limited to life-style 

modifications with no approved targeted drug therapy available. This article focuses on 

recent studies that provide the basis for proposing targeting of ammonia as a new 

therapeutic approach for NASH.  

 

BACKGROUND 

NAFLD is a condition characterized by fatty acid uptake, de novo fatty acid synthesis and 

reduced beta-oxidation leading to increased liver fat in patients that are not consuming 

excessive alcohol. The pathophysiological diagnosis of NASH refers to the presence of 

histological inflammation, pericellular fibrosis and liver injury super imposed on vesicular 

fat laden hepatocytes characteristic of NAFLD [6]. Recently, NASH has been defined as a 

“multiple parallel hits” disease that can progress to liver fibrosis, which develops primarily 

in the pericentral areas, surrounding groups of hepatocytes and thickening of the space of 

Disse with eventual nodule formation [7]. The development of advanced fibrosis is the 
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most important factor contributing to NASH-associated morbidity and mortality [8]. The 

main cell type responsible for extracellular matrix deposition are hepatic stellate cells 

(HSC), that undergo activation in conditions of frank hepatocellular injury, enabling them to 

participate in the wound healing process [9]. HSCs are key in maintaining architectural 

integrity and in the development of fibrosis, portal hypertension and liver cancer [10-12] 

and reduction in their activation is a target for therapy. 

 

The Urea cycle, as a complete process running exclusively in the liver, has evolved in 

mammals to ultimately remove ammonia through conversion of excess amino-nitrogen to 

urea. The cycle comprises 5 enzymes, the first and the last of which reside in the 

mitochondria - cabamoylphosphate synthetase (CPS) and ornithine transcarbamoylase 

(OTC) [13]. In liver failure patients, ammonia accumulates through reduction in the function 

of the urea cycle due to a reduction in liver cell mass, producing numerous deleterious 

effects ranging from hepatic encephalopathy to neutrophil dysfunction and loss of muscle 

mass [14-17]. Genetic OTC deficiency is the most common type of inherited urea cycle 

enzyme deficiency disease and is manifest by catastrophic hyperammonemia and hepatic 

encephalopathy. In the adult form of OTC deficiency, milder degrees of hyperammonemia 

are manifest [18].  

 

In NASH, many lines of investigation indicate that mitochondria are dysfunctional [19] and 

it is, therefore, possible that the resultant mitochondrial injury may affect CPS and OTC 

function, and in turn, result in compromised urea synthesis capacity and ultimately 

hyperammonemia. As mitochondria are mandatory for the production of cellular energy 

through β-oxidation of fatty acids, disruption in their function is often accompanied by an 
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enhanced production of reactive oxygen species (ROS), which mediates a pro-

inflammatory microenvironment, promoting further liver injury.  

 

Emerging data suggests a link between NASH, reduction in gene expression and function 

of urea cycle enzymes, resulting in hyperammonemia and progression of liver injury and 

fibrosis. This supports a rationale for targeting ammonia as a potential treatment for 

NASH. The mechanism is likely to be specific for liver disease in which triglycerides 

accumulate in hepatocytes and the liver becomes steatotic thereby reducing the function 

of urea synthesis leading to hyperammonemia at a pre-cirrhotic stage. Long-chain fatty 

acids promote perturbations in urea cycle enzyme gene expression resulting in 

hyperammonemia [20], whereas hepatic triglyceride accumulation (as is the case in 

NASH) is known to inhibit ureagenesis and increase ammonia concentrations around 

perivenous hepatocytes [21]. Hyperammonemia is associated with alteration of several 

genes including the Toll-like receptor pathway and increased hepatocyte apoptosis [22]. In 

urea cycle enzyme knock out mice, induction of chronic liver injury leads to increased 

oxidative stress, impaired fatty acid β-oxidation and enhanced liver injury compared to wild 

type mice [23] and likewise, livers from patients with urea cycle disorders, including OTC 

deficiency, demonstrate extensive hepatic fibrosis and cirrhosis [24]. 

 

OBSERVATIONS LEADING UP TO THE HYPOTHESES 

Evidence that NASH results in hyperammonemia and a reversible reduction in 

activity and function of urea cycle enzymes 

1. We have previously shown experimentally that diet-induced NASH in rats reduces CPS 

and particularly OTC gene and protein expression resulting in functional reduction in the in 
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vivo capacity for ureagenesis [25]. This impairs nitrogen homeostasis and results in 

hyperammonemia at a non-cirrhotic stage, Figure 1A and B. A follow-on study 

demonstrated that these changes were reversible upon recovery from NASH, and that 

reversal of NASH by reversion of the fat diet to normal chow, restored CPS and OTC gene 

and protein expression [26].  

 

2. In another experimental model of NASH (methionine-choline deficient (MCD) mice), we 

demonstrated reduced OTC gene expression and showed that reducing the level of 

bacterial translocation through mesoporous carbons [27], prevents NASH and restores 

OTC gene expression. This suggests that inflammation in NASH contributes to depression 

of OTC gene expression and that functionality of OTC can be restored [26], Figure 2. 

 

3. Importantly, in humans, NASH is also associated with reduced gene and protein 

expression of urea cycle enzymes. Data from human microarray shows that all the key 

urea cycle enzymes are down-regulated in the livers of patients with NASH, with OTC 

showing a >2 fold reduction compared to normal liver (Prof Ramon Bataller – personal 

communication). Furthermore, in NAFLD patients who had a liver biopsy obtained during 

bariatric surgery, those with NASH and fibrosis had significantly lower OTC gene 

expression than patients with steatosis alone [26], Figure 3A and increased ammonia 

concentrations in liver tissue, Figure 3B.  

 

4. The reduced urea cycle enzyme expression in patients with NASH gives rise to a 

reduced ammonia clearance. In patients with biopsy-proven, non-cirrhotic NASH. Felipo et 

al. found higher plasma ammonia levels compared to patients with simple steatosis and 
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age-matched controls [28]. Additionally, these non-cirrhotic NASH patients showed 

evidence of neuropsychiatric disturbances that are commonly associated with 

hyperammonemia in the context of cirrhosis.  

 

Evidence that ammonia produces functional and morphological changes in human 

HSCs  

Pathological levels of ammonia are known to induce metabolic effects and cell swelling in 

astrocytes in the brain, which is central in the pathogenesis of hepatic encephalopathy 

[29]. Several studies have indicated that astrocytes and HSCs share a similar mesodermal 

origin and express similar cell markers of activation [30, 31].  We have recently 

demonstrated that pathological ammonia concentrations (50-300uM) produce changes in 

human HSC behaviour including significant alterations in cellular morphology (cytoplasmic 

vacuolisation, ER enlargement), reactive oxygen species production and induction of 

further HSC activation. Removal of ammonia from the cultures restored HSC morphology 

and function towards normality indicating that the ammonia-induced changes in HSCs are 

reversible [32], Figure 4.  

 

Evidence that reduction of ammonia concentration in vivo reduces stellate cell 

activation and reduces portal hypertension 

We undertook an in vivo study to establish if the ammonia scavenging drug ornithine 

phenylacetate (OP) was able to prevent the activation of HSC. Four-week bile duct ligated 

rats with advanced fibrosis and hyperammonemia were treated with OP and we observed 

reduced plasma ammonia, abrogated tissue markers of HSC activation and significantly 
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reduced portal pressure indicating that targeting ammonia in vivo reduces HSC activation 

and may also be beneficial for treatment of portal hypertension [32], Figure 5.  

 

 

THE HYPOTHESIS 

The data presented above shows that NASH produces a reversible reduction in the 

expression and function of urea cycle enzymes resulting in decreased ammonia elimination 

and ultimately hyperammonemia at a non-cirrhotic stage. Ammonia produces 

morphological changes and further activation of HSCs, which, in the context of NASH, by 

means of their pro-fibrotic and pro-inflammatory potential, may favour the progression of 

NASH. It follows that ammonia scavenging may represent a therapeutic target in NASH, 

Figure 6. 

 

Hypothesis: 

1. Administration of an ammonia-lowering drug in NASH reduces disease progression 

through non-urea ammonia scavenging and thereby reduction in activation of HSCs.  

 

DISCUSSION 

Our hypothesis provides the rationale for targeting ammonia as a potential treatment for 

NASH. We suggest that hyperammonemia is present in NASH at the non-cirrhotic stage 

and that ammonia is an important molecule involved in the progression towards 

development of fibrosis. We believe this mechanism is specific for steatotic liver diseases 

and ammonia scavenging could therefore also be an anti-fibrotic therapy in e.g. alcoholic 

steatohepatitis. In contrast, in patients with decompensated cirrhosis ammonia lowering is 
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a strategy for the treatment of hepatic encephalopathy. Extra cerebral effects of ammonia 

have not been fully appreciated [14, 33]. More recently, pathophysiological concentrations 

of ammonia were shown to result in neutrophil dysfunction both in vivo and in vitro [16]. 

Also, Dasarathy et al. have shown that ammonia is important in the muscle metabolism 

and may be a target to treat sarcopenia [34]. OP has been proven to reduce ammonia 

levels in animals with acute-on-chronic and acute liver failure [35, 36], and our findings 

indicate that this may also reduce activation of HSCs [32]. Preliminary data from our own 

laboratories have shown similar results in a NASH animal model [37]. Also in humans, OP 

is considered safe and beneficial as an ammonia scavenger to treat hyperammonemia in 

healthy subjects and patients with cirrhosis [38]. Therefore, the potential for early 

translation to test our hypothesis in NASH patients is not far away, especially as other 

ammonia lowering agents e.g. lactulose are already used as standard-of-care in the 

prevention and treatment of hyperammonemia and hepatic encephalopathy in cirrhotic 

patients.  
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FIGURE CAPTIONS 

Figure 1. Capacity of urea nitrogen synthesis (CUNS) (A) and liver ammonia 

concentrations (B) in control and NASH animals. 

Changes in the in vivo capacity of urea nitrogen synthesis (CUNS) in animals fed a 

standard diet (controls) or a high-fat high-cholesterol (HFC) diet for 4 (early NASH) and 16 

(advanced NASH) weeks. Bars represent the mean and SEM. * P=0.01 compared to 

controls (A). Ammonia concentrations in liver tissue from animals fed a standard diet 

(controls) or a HFC diet for 16 weeks assessed using Nessler’s reagent [39]. In controls, 

ammonia is present in red blood cells only (pale-yellow, black arrows). In HFC-fed 

animals, ammonia is diffusively scattered in the hepatic parenchyma and tends to 

accumulate in the walls of vessels (black arrows) (B).   

Footnote: Figure 1A: Reprinted from Am J Physiol Gastrointest Liver Physiol, 307, Thomsen KL, Grønbæk H, 

Glavind E, Hebbard L, Jessen N, Clouston A, George J, Vilstrup H. Experimental non-alcoholic 

steatohepatitis compromises ureagenesis, an essential hepatic metabolic function, G295-G301, Copyright 

(2014), with permission from the American Physiological Society. 

  

Figure 2. H&E staining of liver tissue and ornithine transcarbamylase mRNA levels 

in controls and methionine-choline deficient mice with and without carbon 

treatment. 

Representative H&E stain of liver tissue and ornithine transcarbamylase (OTC) mRNA 

levels from controls and from methionine-choline deficient (MCD) mice with and without 

treatment with mesoporous carbons (Yaq-001). Results from MCD mice are presented as 

relative levels compared to controls. Bars represent the mean and SD. ** P<0.01.  
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Figure 3. Ornithine transcarbamylase mRNA levels in patients with steatosis and 

NASH (A) and liver ammonia concentrations in healthy controls and NASH patients 

(B).  

Ornithine transcarbamylase (OTC) mRNA levels in the liver from patients with simple 

steatosis and patients with NASH. Results are presented as relative levels compared to 

GAPDH. The solid horizontal lines indicate the mean values and the bars SD. The OTC 

mRNA levels are decreased in patients with NASH compared with simple steatosis 

(P=0.05) (A). Ammonia concentrations in liver tissue from healthy controls and in patients 

with NASH assessed using Nessler’s reagent [39]. Black arrows point to ammonia. In 

NASH patients, the ammonia tends to accumulate in the cytoplasm of the hepatocytes 

(pale yellow) on occasion in very high concentrations (black spot). L indicates lipid droplets 

(B). 

 

Figure 4. Ammonia causes alterations in cellular morphology, reactive oxygen 

species (ROS) production and induction of human stellate cell (HSC) activation. 

(A) Transmission Electron Microscopy shows that ammonia causes dramatic 

morphological changes in a dose-dependent manner, with appearance of cytoplasmic 

vacuolisation and ER enlargement. (B) Mean fluorescence intensity (MFI) of ROS signal is 

normalized according to the number of cells and expressed as percentage of control. Bar 

graphs show means of three independent values ± SD. *** P<0.001 vs. corresponding 

values of SFM. (C) Ammonia affects protein expression of the HSC activation markers α-

SMA, myosin IIa and IIb, PDGFRβ and vinculin.  
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Figure 5. Plasma ammonia, tissue markers of human stellate cell (HSC) activation 

and portal pressure in bile duct ligated (BDL) rats following ornithine phenylacetate 

(OP) treatment. 

(A) Plasma levels of ammonia are significant upregulated in BDL and amino acids (AAs)-

fed BDL animals in comparison to sham-operated rats (* P<0.05 and ** P<0.01 vs. sham). 

OP treatment reduces significantly ammonia levels in BDL-AAs-fed animals in comparison 

to BDL animals (** P<0.01). (B) Hyperammonemia treatment in BDL-induced fibrosis 

shows an additional significant increase in myosin IIb, collagen type I and PDGFRβ 

protein expression in comparison to BDL-induced fibrosis. In contrast, treatment with OP 

abrogates the strong effect of AAs-fed BDL on all HSC-related activation markers. (C) 

Portal pressure is increased in BDL rats compared to sham (*** P<0.001). Administration 

of OP results in a significant lowering of portal pressure compared to BDL saline-treated 

rats (* P<0.01). 

Footnote: Figure 4 and 5: Reprinted from J Hepatol, Vol 64, Jalan R, De Chiara F, Balasubramaniyan V, 

Andreola F, Khetan V, Malago M, Pinzani M, Mookerjee RP, Rombouts K. Ammonia produces pathological 

changes in human hepatic stellate cells and is a target for therapy of portal hypertension, 823-833, Copyright 

(2016), with permission from Elsevier. 

 

Figure 6. Schematic showing NASH induces hyperammonemia resulting in 

activation of human hepatic stellate cells (HSCs)  

NASH produces a reversible reduction in the expression and function of urea cycle 

enzymes, resulting in a functional reduction in in vivo capacity for ureagenesis. The 

resulting hyperammonemia activates HSCs generating both morphological changes and 

pro-fibrotic and pro-inflammatory factors that may favour the progression of NASH. It 

follows that ammonia scavenging may represent a therapeutic target in NASH. 
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Figure 1A
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Figure 1B 
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Figure 2 
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Figure 3A 

 

  



21 
 

 

Figure 3B 
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Figure 4 
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