
Algorithms for Fault-Tolerant Placement of Stateful
Virtualized Network Functions

Binxu Yang†, Zichuan Xu‡, Wei Koong Chai∗†, Weifa Liang¶, Daphné Tuncer†, Alex Galis†, and George Pavlou†
† Department of Electronic and Electrical Engineering, University College London, London, UK

‡ School of Software, Dalian University of Technology, Dalian, China, 116621.
∗ Department of Computing & Informatics, Bournemouth University, UK

¶ Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
{binxu.yang.13, d.tuncer, a.galis, g.pavlou}@ucl.ac.uk, z.xu@dlut.edu.cn, wchai@bournemouth.ac.uk, wliang@cs.anu.edu.au

Abstract—Traditional network functions (NFs) such as fire-
walls are implemented in costly dedicated hardware. By decou-
pling NFs from physical devices, network function virtualization
enables virtual network functions (VNF) to run in virtual
machines (VMs). However, VNFs are vulnerable to various faults
such as software and hardware failures. To enhance VNF fault
tolerance, the deployment of backup VNFs in stand-by VM
instances is necessary. In case of stateful VNFs, stand-by instances
require constant state updates from active instances during its
operation. This will guarantee a correct and seamless handover
from failed instances to stand-by instances after failures. Never-
theless, such state updates to stand-by instances could consume
significant network bandwidth resources and lead to potential
admission failures for VNF requests. In this paper, we study
the fault-tolerant VNF placement problem with the optimization
objective of admitting as many requests as possible. In particular,
the VNF placement of active/stand-by instances, the request
routing paths to active instances, and state transfer paths to
stand-by instances are jointly considered. We devise an efficient
heuristic algorithm to solve this problem, and propose a bicriteria
approximation algorithm with performance guarantees for a
special case of the problem. Simulations with realistic settings
show that our algorithms can significantly improve the request
admission rate compared to conventional approaches.

I. INTRODUCTION

Cloud service provides exploit different network functions
(NFs), such as network address translation (NAT), firewall and
deep packet inspection (DPI), to improve network performance
and security. These NFs are embedded into dedicated hardware
that are costly and difficult to reconfigure. The advent of Net-
work Function Virtualization (NFV) provides a more flexible
and inexpensive support of NFs compared to conventional
hardware-based approaches [1]. Specifically, NFV decouples
NFs from physical devices by implementing NFs as software
running in virtual machines (VMs) in the form of virtualized
network functions (VNFs). As such, VNFs can be instantiated
on any data center (DC) with available computing resources.
This flexibility in VNF instantiation further enables advanced
VNF placement schemes [2], through which the cost and
performance of NFs can be largely improved [3].

Despite the achieved flexibility, moving NFs from hard-
ware to software poses grand concerns especially in terms
of reliability. For instance, VNFs are software running in
DCs, which are vulnerable to various problems such as
misconfiguration, faulty VMs and software malfunctions [4].
In order to enhance VNF fault tolerance, backup VNFs that
run in stand-by instances are required [5]. In case of failures,

requests to stateless VNFs can be immediately redirected to
one of their stand-by instances. In contrast, stateful VNFs
generate states during traffic processing [6] that need to be
transferred to stand-by instances in order to guarantee seamless
request redirection. For instance, a stateful NAT VNF needs
to maintain existing user connections to support its correct
operation. If a NAT fails, the transient states created by the
traffic itself have to be transferred to the backup NAT to avoid
NAT disconnection. Given that such state transfers need to be
continuously performed while active instances are in operation
[7], [8], it could consume considerable network bandwidth
resources, and lead to significant network link overheads.
Furthermore, if the network path used for state transfers
overlaps with the VNF request routing path, the active VNF
instance’s request admissions may fail due to delay violations
caused by link congestion. As such, decisions regarding 1)
the placement of active instances, 2) the placement of stand-
by instances, 3) request routings, 4) the state transfer paths
need to be jointly considered so that the number of admitted
user requests can be maximized. In this paper, we study the
fault-tolerant stateful VNF placement problem, whereby the
aforementioned four decisions are jointly determined under
DC computing and bandwidth resource constraints.

Providing efficient solutions to the fault-tolerant VNF place-
ment problems poses several challenges. On one hand, as stated
earlier, a naive solution that separately determines the instance
locations and routings may result in network congestion and
admission failures. It may also lead to significant network
communication costs if the active/stand-by instances are placed
with long network distance to the source and destination nodes
of requests. On the other hand, the number and placements
of stand-by instances directly influence the state update cost
for VNFs. At the same time, the number of stand-by instances
affects the robustness of the networks. Clearly, a higher
number of stand-by instances indicates a higher degree of
fault tolerance.

Previous studies on the fault-tolerant VNF placement prob-
lem have either focused on backup instances or stateless VNFs
[5], [9], [10], [11], [12]. For example, Kanizo et. al. [10]
investigated the planning-stage VNF backup instances (i.e.,
do not consider active instances) deployment problem while
taking into account the failure probabilities of network nodes.
Chantre et. al. [11] studied the placement problem of redundant
stateless VNFs in LTE networks with a focus on deriving the

optimal number of VNFs to guarantee reliability. Carpio et.
al. [5] investigated the joint active and backup stateless VNF
placement problem, but did not consider request routing and
VNF state transfers. To the best of our knowledge, this work
is the first study that jointly considers stateful active/stand-by
VNF placement, request routing and state transfers.

In the remainder of this paper, we first introduce the
considered scenario and the related definitions in Section II.
Then, we propose an efficient heuristic based on the joint
availability of DC computing resources and the accumulative
bandwidth resources of DC’s inbound links in Section III. The
proposed heuristic jointly computes the placement of both
active and stand-by stateful VNF instances. For a special case
of our problem without bandwidth constraint, we propose
a (2, 4 + ε) bicriteria approximation algorithm with proved
approximation ratios on the achieved cost and maximum DC
utilization in Sections IV. The proposed algorithm exploits
an approach based on auxiliary graph that allows active/stand-
by instances, request routings and state update paths to be
jointly considered. The evaluation results presented in Section V
suggest that the proposed algorithms significantly improve the
request admission rate while reducing DCs’ cost. At the same
time, they outperform existing solutions that separately consider
placements, routings and update paths. Concluding remarks
are finally presented in Section VI.

II. FAULT-TOLERANT VNF PLACEMENT PROBLEM

A. System model
We model the network G = (V ∪ DC, E) operated by a

cloud service provider with a set V of switches, a set DC of
DCs attached to V , and a set E of network links (see Fig 1).
We follow the convention to assume that the number of DCs
is far less than the number of switches. Each DCi ∈ DC has
computing resources C(DCi) that can be utilized to instantiate
VNFs instances. A sequence of VNFs forms a service chain,
denoted as SC, and an instance of a service chain is defined
as an implementation of its specified VNFs in a VM. Given
the computing capacity C(DCi) of DCi , a limited number
of instances of different service chains can be supported in
each DC. Similarly, each link e ∈ E has a capacity B(e) of
bandwidth resources that can be allocated to user requests.
Without loss of generality, we assume that each DC and the
switch node attached to it is connected by a high-speed optical
cable with abundant network bandwidth (see Fig 1) so that the
delay and communication cost incurred at these links can be
considered as negligible. Furthermore, the transmission delay
on each link e ∈ E is denoted as de.

B. Requests for VNFs and service chains
We denote as rj = (sj , tj ;SCj , ρj , Dj) user request j. Each

user request requires to be routed from a source node sj to a
destination node tj at a given packet rate ρj within Dj time,
such that its traffic passes through one instance of its required
service chain SCj .

Different user requests have different demands for SC, with
each type of service chains having a different sequence of
VNFs. Without loss of generality, we assume that the computing
resource requested by an instance of service chain SCj for

Stand-by	SC	instance		

Ac0ve	SC	instance		

V1	 V2	

V5	 V4	

V3	

DC3	

DC1	

DC2			

Ac0ve	VNF		

Service		

Request	Rou0ng			

State	Update			

Post-failure	Rou0ng			

Stand-by	VNF		

Ac0ve	VNF		

Stand-by	VNF		

Fig. 1. An example of fault-tolerant placement problem in G with a set
DC = {DC1, DC2, DC3} connected by a set V = {v2, v3, v5} of switches.

processing the traffic of rj is proportional to its packet rate, i.e.,
ρj · cb, where cb is a given constant representing the amount
of computing resources that is needed to process each unit
packet rate. The total amount of computing resource allocated
to all instances of service chains in a data center DCi must
not exceed its computing capacity C(DCi).

The end-to-end delay requirement Dj of each request rj
specifies the maximum tolerable delay experienced by its traffic
from its source node, sj , to its destination node, tj . It consists
of the processing delay of service chain SCj at a DC and the
transfer delay on each link. Specifically, assuming an instance
of SCj at DCi is assigned to process the traffic of rj , then
its experienced delay consists of the transfer delay d(sj , DCi)
from sj to DCi, the processing delay d(SCj , DCi) by an
instance of SCj at DCi, and the transfer delay d(DCi, tj)
from DCi to tj . The end-to-end delay requirement of rj is:

d(sj , DCi) + d(SCj , DCi) + d(DCi, tj) ≤ Dj . (1)

C. Stateful Active and Stand-by Instances

Faults can occur anywhere and at anytime in a network
due for example to natural disasters in the locations of DCs,
software malfunctions in VNFs, and hardware failures in DCs.
To avoid service interruption due to such failures, we assume
that an active instance of service chain of each request is placed
into one DC, and a few stand-by instances of the service chain
are placed into other DCs. For simplicity, the instances are
considered at the service chain level which consists of various
VNFs. Once the active instance fails (e.g., one of the composite
VNFs within a SC fails), its traffic can be seamlessly redirected
to one of the stand-by instances for processing. In this work, we
consider stateful VNFs (i.e., stateful SCs), whereby the states
from the active instance need to be constantly transferred to
stand-by instances while the active instance is still in operation.
Such state transfer plays a vital role in enabling the seamless
and correct request redirection from an active stance to a
stand-by instance.

We denote as DCa
j the DC where the active instance of

service chain SCj of user request rj is placed and denote
as DCsj the set of DCs where stand-by instances of SCj are
placed. We assume that the state update rate of each request
from its active instance to stand-by instances is proportional to
its packet rate, i.e., β ·ρj , where β (> 0) is a given constant. We
further assume that the computing resource demand of stand-by
instances will be allocated only when they are activated (i.e.,

stand-by instances do not consume computing resources in the
placement problem). Since the focus of our work is on the
pre-failure placement of active/stand-by VNFs, we consider
the resource provisioning of back-up instances (after VNFs
fail) out of the scope of this paper.

D. Cost model

Minimizing the implementation cost for user requests is
usually considered as an effective objective to reduce the
operational cost of network service providers. Here, the
implementation cost of a request rj = (sj , tj , SCj , ρj , Dj)
consists of (i) the operational cost of computing resource
to process requests, i.e., the use of an active instance of
service chain SCj in DCa

j , (ii) the communication cost of
transferring its traffic from sj to DCa

j for processing, (iii) the
communication cost of transferring the processed data from
DCa

j to its destination tj , and (iv) the communication cost of
updating status from DCa

j to DCs in DCsj . Let c(SCj , DCi) be
the cost of implementing an instance of service chain SCj of rj
in DCi, and c(e) be the cost of transferring a unit packet rate
for request rj through link e ∈ E. Without loss of generality,
we assume that the edge cost c(e) is within the range of (0, 1].
Then, the implementation cost c(rj) of rj in active DCa

j and
a set DCsj of stand-by DCs of the network is:

c(rj) = ρj

(
c(SCj , DC

a
j) +

∑
e∈p(sj,DCa

j
)

c(e) +
∑

e∈p(DCa
j
,tj)

c(e)

+
∑

DCi∈DCsj

∑
e∈p(DCa

j
,DCi)

c(e)
)
,

(2)
where p(y,z) is the shortest path in G from node y to node z.

E. Problem definition

Different cloud service providers may have different network
performance indicators to optimize the service delivery process
of their networks. To cater for the different optimization
objectives of different network service providers, we study
two different fault-tolerant VNF placement problems that
correspond to different operators’ needs as follows.

1) Considering that start-up service providers have limited
computing and bandwidth resources, their main interest is
to admit as many requests as possible, so that their limited
resources are perfectly utilized while achieving the least
operational cost. Thus, we consider the optimization objective
as the maximization of the admitted number of requests.
Specifically, the goal of the fault-tolerant VNF placement
problem is for all user requests rj in R to place an active
instance of service chain SCj to a DCa

j , to place a number
of stand-by instances to a set of DCs

j , to find the routing
path for requests from sj to tj via DCa

j and to find the state
update path from DCa

j to DCs
j , so that as many requests as

possible are admitted while the total cost of implementing
these admitted requests is minimized, subject to the computing
resource capacity constraints C(DCi), the network bandwidth
capacity B(e) for e ∈ E, and the end-to-end delay constraints.

2) Service providers that provide computing-intensive work-
load processing in distributed DCs may want their DCs to be

balanced (e.g., geographical load balancing), such that users
in different locations have maximum resource availabilities
with guaranteed user experiences. Assuming that links in G
have abundant resources to implement all requests in R, let Ri

be the set of instances of service chains that are admitted by
DCi. The goal of the fault-tolerant VNF placement problem
without bandwidth capacity constraint is the same as the fault-
tolerant VNF placement problem except that the objective is
to minimize the maximum DC utilization for all DCs, i.e.,

min max
DCi∈DC

∑
rj∈Ri

ρj · cb
C(DCi)

, (3)

while the cost of implementing all requests is minimized, i.e.,

min
∑

DCi∈DC

∑
rj∈Rj

c(rj), (4)

subject to the computing resource capacity constraints of DCs
in DC and the end-to-end delay constraints of requests.

Both problems are clearly NP-hard given that a special
version of these problems without considering fault-tolerant
requirements and (or) bandwidth resource constraints is NP-
hard by simple reduction from another NP-hard problem, the
unsplittable single-source flow problem [13].

III. A HEURISTIC FOR THE FAULT-TOLERANT VNF
PLACEMENT PROBLEM

Due to the NP-hardness of the problem, in the following,
we propose an efficient heuristic to solve it.

A. Algorithm
To avoid poor performance in terms of request admission

rate and cost, the placement of active/stand-by instances,
request routings and update paths need to be jointly computed.
Conventional approaches such as naive greedy algorithm select
DCs for the active and stand-by instances separately. It first
finds the DC with the largest amount of available computing
resources to host the active instance for rj , and then selects a
random number of DCs with lowest transfer costs to host stand-
by SC instances for rj . As a result, the separate placement and
routing decision may result in situations where no update paths
are available from the active instance to one of its stand-by
instances due to link congestions.

In contrast, our heuristic jointly selects a DC for the active
instance and a number of DCs for its stand-by instances.
Specifically, the heuristic first sorts all requests in R in
increasing order of their rates, and then sequentially considers
the requests in the sorted list. Next, for the jth request rj in
the sorted list, the algorithm ranks DCs based on the increasing
order of the product of the available computing resources and
the accumulative available network bandwidth resources of
DC’s inbound links. Let NR(DCi, j) be the ranking of DCi

after considering the (j − 1)th request in the sorted list. Let
also denote A(DCi, j) and A(e, j) as the available computing
and bandwidth resources of DCi and link e after considering
the (j − 1)th request. Then,

NR(DCi, j) = A(DCi, j) ·
∑

e∈Ei
adj

A(e, j), (5)

where Ei
adj is the set of inbound links of DCi. The idea of

such ranking is to find a set of DCs that not only have enough
computing but also network bandwidth resources for both active
and stand-by instances.

Based on the obtained ranking, the algorithm selects the
DC with the highest rank, denoted DChr. Then, the algorithm
checks if (1) DChr has enough computing resources to host
an active instance of SCj for rj ; and (2) if the shortest path
from sj to tj via DCa

j has enough bandwidth resources to
transfer rj at rate ρj . The algorithm also checks whether (3)
DChr conforms to rj’s delay requirement. If the above three
requirements are all satisfied, DChr is selected as DCa

j . The
algorithm then searches stand-by instances for rj . To this end,
the rest of DCs other than DChr are sorted in the increasing
order of state update costs to DChr. Each DC in the sorted DC
list is further added to DCsj until there is a DC that cannot meet
the bandwidth resource requirement for updating states from
DChr. To avoid all the other data centers to be selected to host
stand-by instances, we set a threshold K (1 ≤ K ≤ |DC|) for
the number of DCs that can be used for stand-by instances. This
prevents a large number of DCs to be selected to place stand-by
instances and as such avoids the creation of unnecessary burden
for state updates. If no stand-by DC exists after considering
the rest of the DCs, request rj is rejected.

In case constraints (1), (2) and (3) cannot be satisfied, DChr

is added to DCsj as the accumulative bandwidth resources to
nearby DCs might make DChr a promising candidate for stand-
by instances. DCs other than DChr are sorted in a list Lhr

based on the increasing accumulative communication cost to
DChr. The algorithms then iterates through DCs in Lhr until
a DCi that can serve the active service chain instance is found,
i.e., a DC that meets constraints (1), (2) and (3). Once such a
DCi is found, it is selected to be the DC that hosts the active
instance of rj . Among the rest DCs in Lhr, only the ones that
have enough bandwidth resources for state updates rate β · ρj
from DCa

j are added to DCsj (with |DCsj | ≤ K). If neither
such DC can be found for its active instance nor a set of DCs
can be determined for its stand-by instances, rj is rejected.

The above procedure continues until all requests in R are
considered. The details of the proposed heuristic are shown in
Algorithm 1.

B. Algorithm Complexity

The performance of the proposed heuristic is given by the
following theorem.

Theorem 1. Given a network G = (V ∪DC, E), let R be a set
of requests with each represented by rj = (sj , tj , SC

k, ρj , Dj).
Algorithm 1 delivers a feasible solution to the fault-tolerant
VNF placement problem in O(|R|(|DC| log |DC|) + (|V | +
|DC|)3) time.

Proof. To show the feasibility of the algorithm, we need to
show that the resource demands of each admitted request and
its end-to-end delay requirement are met. Clearly, this is true
due to steps 7 and 21.

For the running time of the proposed heuristic, we can see
that the most time-consuming phases of Algorithm 1 are (1)
finding all pair shortest paths in G, (2) ranking all DCs, and

Algorithm 1 Heuristic
Input: Network G(V ∪ DC, E); Set of requests rj ∈ R where rj =

(sj , tj , SCj , ρj , Dj), K.
Output: Assignments of each request in rj ∈ R to DCa

j for active SC
instances and to DCsj for stand-by SC instances.

1: for rj ∈ Rj do
2: Sortedlist ← SortIncreaseOrder(DC) based on Eq. (5)
3: DChr ← Sortedlist.getF irst();
4: DCsj ← ∅ and DCa

j ← NIL;
5: A(p(sj ,DChr)

)← G.shortestPathAvailBandwidth(sj , DChr);
6: A(p(DChr,tj)

)← G.shortestPathAvailBandwidth(DChr, tj);
7: if ρj ≤ A(p(sj ,DChr)

) && ρj ≤ A(p(DChr,tj)
) && Dhr ≤ Dj

then
8: DCa

j ← DChr ;
9: Updatelist ← SortIncreaseOrder(DC \ DChr) based on state

update costs to DChr ;
10: for each DCi ∈ Lhr do
11: DCsj ← DCsj ∪ {DCi}
12: if K = |DCsj | or A(p(DCi,DChr)

) ≤ β · ρj then
13: Break;
14: else
15: DCsj ← DCsj ∪ {DChr}
16: Lhr ← SortIncreaseOrder(DC \ DChr) following state update

costs to DChr ;
17: for each DCi ∈ Lhr do
18: if DCa

j 6= NIL && A(p(DCa
j ,DCi)

) ≥ β · ρj && |DCsj | ≤
K then

19: DCsj ← DCsj ∪ {DCi};
20: else
21: if ρj ≤ A(p(sj ,DCi)

) && ρj ≤ A(p(DCi,tj)
) && Di ≤

Dj then
22: DCa

j ← DCi;
23: else
24: if |DCsj | ≤ K then
25: DCsj ← DCsj ∪ {DCi};
26: Update DCs’ available resources and network link resources
27: return The assigned DC to place the service chain of each request for

the processing of its traffic, and a set of DCs to replicate its service chain.

(2) iteratively selecting a number of DCs for each request.
Clearly, phase (1) takes O((|V | + |DC|)3) time, phase (2)
takes O(|DC| log |DC|) time, and phase (3) takes O(|DC|) time.
Since the ranking of DCs is performed every time when a
request is admitted, the overall running time of algorithm 1 is
O(|R|(|DC| log |DC|) + (|V |+ |DC|)3).

IV. A (2, 4 + ε) BICRITERIA APPROXIMATION ALGORITHM
FOR THE PROBLEM WITHOUT BANDWIDTH CONSTRAINT

In this section, we consider the fault-tolerant VNF placement
problem without bandwidth capacity constraint. We assume
that the network G has enough bandwidth resources on its
links, and all requests in R can be admitted. For this problem,
we propose a bicriteria approximation algorithm with an
approximation ratio of (2, 4 + ε). Such a ratio indicates that
(1) the implementation cost of all requests is twice the optimal
cost, and (2) the minimum maximum utilization of computing
resources in a DC is (4 + ε) times the optimal one, where ε is
a constant with ε > 0.

A. Overview
Given network G and a set R of requests, the fault-tolerant

VNF placement problem without bandwidth capacity constraint
is to balance the workloads among DCs by not only minimizing
the maximum resource utilization of DCs but also minimizing
the total requests’ implementation costs. One challenge is
with respect to the tradeoff between the balance of DC

utilizations and the implementation costs of requests. For
instance, the active instance of some requests may have to
be placed into DCs with high communication costs in order to
achieve a balanced workload among DCs. In order to achieve
a near optimal solution, we jointly consider the active/stand-by
instance placements, request routings and state update paths.

The idea behind the proposed approach is to reduce the
fault-tolerant NFV placement problem without the bandwidth
capacity constraint in G into a single-source unsplittable flow
problem [13] in an auxiliary graph G′ = (V ′, E′). Then,
a feasible unsplittable flow in G′ that minimizes both the
implementation cost of requests and the maximum congestion
of links in G′ is a feasible solution to the original problem in G.
Note that the aim of the single-source unsplittable flow problem
is, given a network G = (V,E, u), a source vertex s, and a
set of M commodities with sinks t1, ..., tM and associated
real-valued demands σ1, ..., σM , to route the demand σm of
each commodity m along a single s − tm flow path so that
the congestion, i.e., maxe∈E{ feue

, 1}, and the cost of flow f
are minimized, while the edge capacities constraints of G are
met. To solve the unsplitable flow problem, Kolliopoulos and
Stein [13] gave (2, 4 + ε) approximation algorithm for flow
cost and link congestion.

B. Algorithm

The approximation algorithm first constructs the auxiliary
graph G′ = (V ′, E′). Recall that the traffic of each request rj
is processed by an active instance of its SCj in a DC, and
by one of its stand-by instances in other DCs if the active
instance fails. Thus, each DCi corresponds to a DC node
(see Fig. 2), and is added into the auxiliary graph G′, i.e.,
V ′ ← {DCi | 1 ≤ i ≤ |DC|}. For each DC node DCi,
we further add a virtual DC node DC ′i (see Fig. 2) into V ′,
i.e., V ′ ← V ′ ∪ {DC ′i} so that the DC capacity constraint is
converted into a link constraint. Next, for each DC node, we
add a few stand-by set nodes to G′, whereby each stand-by set
node represents a candidate set of DCs for stand-by instances
(see Fig. 2). Specifically, the stand-by set nodes of DCi are
different combinations of DCs from DC\{DCi} whereby each
stand-by set node has no more than K DCs. For example, DC1

from Fig. 2 has a 3 stand-by set nodes DC2, DC3 and node
DC2,DC3 where k = 2. Note that a stand-by set node will not
be added twice (e.g., there is only one DC1 ins stand-by set
nodes). Last, we add a request node into V ′ for each request
rj , and add a common source s0 for all requests into V ′.

An edge from the common source s0 to each of stand-by
set node is added into E′. Its capacity and cost are set to
infinity and zero, respectively (i.e., no bandwidth constraint).
Also, there is an edge from each stand-by set node to a DC
node DCi if DCi is not in the set of DCs represented by the
stand-by set node (e.g., DC1 has edges to DC2, DC3 and
DC2 & DC3 in Fig. 2). The capacity of the edge is set to
infinity, and its cost is the accumulative cost of state updates
from DCi to the DCs within the set of DCs represented by
the stand-by set node. Further, an edge from DCi to DC ′i is
added. Its capacity is the processing capacity of DCi, and its
cost is set to 0. We add an edge from each DC ′i to a request
rj if DCi provides a total delay (e.g., sum of processing and

Algorithm 2 An (2, 4+ε) Bicriteria Approximation Algorithm
for the fault-tolerant VNF Placement Problem without Network
Bandwidth Constraint
Input: A network G(V ∪ DC, E), a set requests rj ∈ R where rj =

(sj , tj ;SCj , ρj , Dj).
Output: Assignments of each requests in rj ∈ R to DCa

j for active SC
instances and to DCsj for stand-by SC instances.

1: Construct an auxiliary graph G′ = (V ′, E′) from network G(V ∪DC, E)
as exemplified by Fig. 2;

2: Find a single-source unsplittable flowf in the auxiliary graph G′ by
applying the algorithm presented in [13];

3: The requests that are assigned into DCi in the flow f will be processed
by an instance of a service chain in DCi, and request will be assigned a
set of DCs that are represented by the stand-by set node in f .

4: return The assigned DC to place the service chain of each request for
the processing of its traffic, a set of DCs to replicate its service chain, the
request routings and update paths.

communication delay) for request rj smaller than the request
delay requirement. The capacity of this edge is set to infinity.
Its cost is the total cost of processing costs of DCi for request
rj (e.g., ρjc(SCj , DC

a
j)) plus the communication costs from

sj to DCi and from DCi to tj at packet rate ρj . Fig. 2 shows
an example of the constructed auxiliary graph G′. Given the

DC1	 DC1’	 rj	

rj+2	DC3	 DC3’	

rj+1	DC2	 DC2’	S0	

Stand-by	set	nodes	

Data	centers	DC2	
DC3	
	
DC�	

DC3	

DC1	
DC3	

DC1	

DC1	
DC2	

Fig. 2. An example of the auxiliary graph G′ = (V ′, E′) constructed from
network G with a set DC = {DC1, DC2, DC3} of DCs that are connected
by a set V = {v2, v3, v5} of switches. R = {rj , rj+1, rj+2}.

constructed auxiliary graph G′(V ′, E′), the original problem
is transferred to the problem of single source unsplittable
flow problem in G′. To find a feasible flow f in G′, the
algorithm presented in [13] is invoked. The main steps of the
approximation algorithm are shown in Algorithm 2.

C. Algorithm analysis

We now analyze the correctness and performance of the
proposed algorithm.

Theorem 2. Given a network G = (V ∪ DC, E), let
R be a set of requests with each represented by rj =
(sj , tj , SC

k, ρj , Dj)). Algorithm 2 delivers a bicreteria ap-
proximate solution with an approximation ratio of (2, 4 + ε)
with (1) the implementation cost of all requests twice the
optimal cost, and (2) the minimum maximum utilization of
computing resource in a DC (4+ ε) times the optimal one, for
the fault-tolerant VNF placement problem without bandwidth
capacity constraint, in O(T2(|R|+ |V |+ |DC|

(|DC|−1
k

)
, |R| ·

|DC| + |DC|
(|DC|−1

k

)
)) time, where T2(m,n) is the time to

solve a fractional minimum-cost flow problem with m edges
and n nodes in the flow graph, and ε is a constant with ε > 0.

Proof. We first show the feasibility of the proposed algorithm.
Given an unsplittable flow f , it starts at a request node rj
and ends at the common source s0 in G′ according to the
construction of auxiliary graph G′. Clearly, a DC node DCi for
active instance and a stand-by set node exists in the route. The
traffic of request rj is processed by the placed active instance
in DCi, and it is routed on the paths from rj’s source sj to
DCi and from DCi to destination tj (e.g., represented by edge
〈DC ′i, rj〉 in auxiliary graph). Also, since an auxiliary edge
between a stand-by node to DCi denotes the state update path
from DCi to one of the stand-by set nodes, the processing states
are then updated to one of the stand-by set nodes following
the traversed edge by f . In addition, the delay requirement of
rj is met, as f only exists when there is an edge between rj
and DC ′i (i.e., delay is met).

We then show the approximation ratio of the devised
approximation algorithm. It is clear that the solution to the
single-source unsplittable flow problem in auxiliary graph G′

corresponds to the solution to the VNF placement problem
without bandwidth constraint in network G. The approximation
ratio obtained for the former problem thus is the approximation
ratio for the latter, i.e., (2, 4 + ε).

We then show the time complexity of the approximation
algorithm, which can be divided into two stages: (1) the
construction of the auxiliary graph G′(V ′, E′); and (2) finding
an unsplittable flow in the constructed auxiliary graph using
the algorithm proposed by Kolliopoulos and Stein [13]. Clearly,
the construction of G′ takes (|V ′|+ |E′|) time, where |V ′| =
O(|R| + |V | + |DC| +

∑|DC|−1
k=1

(|DC|−1
k

)
) = O(|R| + |V | +

|DC|
(|DC|−1

k

)
), and E′ = O(|R|·|DC|+ |DC|

(|DC|−1
k

)
), where∑|DC|−1

k=1

(|DC|−1
k

)
is the maximum number of stand-by set

nodes for all DCs. According to [13], finding a unsplittable flow
in G′ takes O(T2(|V ′|, |E′|)+ |E′| log(|V ′|/ε)) = O(T2(|R|+
|V |+ |DC|

(|DC|−1
k

)
, |R| · |DC|+ |DC|

(|DC|−1
k

)
)) time.

V. EVALUATIONS

A. Experiment Settings

We consider synthetic networks generated by GT-ITM [14].
The network size ranges from 50 to 250 nodes with a node
connectivity of 0.2 (i.e., the probability of having an edge
between two nodes is 0.2) [15]. In these networks, the server
to DC ratio is set to 0.1, and each DC has a CPU capacity in
the range 4,000 to 8,000 Mhz. The transmission delay of a
network link varies between 2 milliseconds (ms) and 5 ms [16].
The costs of transmitting and processing 1 GB (approximately
16,384 packets with each having size of 64 KB) of data are set
within [$0.05, $0.12] and [$0.15, $0.22], respectively, following
typical charges in Amazon EC2 with small variations [17].
We consider five categories of NFs: Firewall, Proxy, NAT,
DPI, and Load Balancer, their computing demands (e.g., CPU)
are adopted from [18]. Further, the consumed computing
resources of a service chain is the sum of the computing
demands of its contained NFs (the number of contained NFs
is randomly selected between 1 and 50). The processing delay
of a packet for each NF is randomly drawn from 0.045 ms
to 0.3 ms [18], and the processing delay of a service chain
is the total processing delay of its NFs. Each request rj is

generated by randomly selecting its source sj and destination
tj from G with packet rate ρj randomly selected between
400 and 4, 000 packets/second [19]. Each request has a delay
requirement ranging from 10 ms to 100 ms [20], [21]. The
running time is obtained based on a machine with a 3.40GHz
Intel i7 Quad-core CPU and 16 GB RAM.

There has not been any existing work considering the fault-
tolerant stateful VNF placement. One possible solution is to
derive each decision variable in a separate step (similar to
an existing approach for stateless VNF placement problem
[5]). In this sense, we compare our algorithms against a
greedy algorithm (described in III-A) that separately selects
the placement of active/stand-by SC instance, request routings
and state transfer paths. The greedy aims to maximize the
throughput by admitting requests with small packet rates first.
For simplicity, we refer to this greedy algorithm as algorithm
Greedy, and the greedy without bandwidth constraint as
GreedynoBW . The proposed heuristic and approximation
algorithms (Algorithms 1 and 2) are referred to as Heuristic
and Appro, respectively.

B. Performance evaluation

We first compare the performance of algorithm Heuristic
against that of algorithm Greedy for networks with various
sizes. Fig. 3 shows the result in terms of the number of
admitted requests, the average cost of admitting a request,
and the running time. We see from Fig. 3 (a) that the proposed
algorithm Heuristic consistently achieves a number of
admitted requests higher than Greedy by 10%. This is due to
the fact that algorithm Heuristic jointly selects the active
and stand-by instances. As such, both network resources and
DCs’ computing resources are efficiently utilized, which avoids
the request rejections that happened with Greedy due to
separate selection process. The surge of admitted requests
observed with both algorithms for networks with size equal to
250 can be explained by the fact that in this case, the bandwidth
resources between any two network nodes are on average
increased (i.e., more network links exist between two nodes
when network size becomes larger), which results in relaxed
constraints in terms of bandwidth. From Fig. 3 (b), we observe
that the two algorithms achieve almost the same total cost.
However, since the overall admitted request number obtained
with Heuristic is higher than that of Greedy, we see from
Fig. 3 (c) that the Heuristic achieves a lower per request
cost than Greedy. Furthermore, Heuristic achieves a
lower cost in terms of the average cost per admitted request
than that of Greedy. Meanwhile, we see from Fig. 3 (d) that
Heuristic slightly results in a longer running time than that
of algorithm Greedy.

We then compare the performance of algorithm Appro
with that of algorithm GreedynoBW in terms of the maximum
resource utilization of DCs, the average cost of implementing
a request, and the running time under the same network
settings. It can be seen from Fig. 4 (a) that the proposed
algorithm Appro consistently delivers solutions with lower
maximum DC resource utilization than that obtained with
algorithm GreedynoBW . For example, when the network size
is 100, the minimum maximum resource utilization of DCs of

 100

 150

 200

 250

 300

 350

 50 100 150 200 250

N
u

m
b

e
r

o
f

A
d

m
it

te
d

 R
e
q

u
e
s
t

Size of Network Topologies

Heuristic

Greedy

(a) Admitted number of requests

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 50 100 150 200 250

T
o

ta
l
C

o
s
t

Size of Network Topologies

Heuristic

Greedy

(b) Total cost

 18
 20
 22
 24
 26
 28
 30
 32
 34
 36

 50 100 150 200 250

P
e
r

R
e
q

u
e
s
t

C
o

s
t

(1
0

-4
)

Size of Network Topologies

Heuristic

Greedy

(c) Average cost per request

0

4,000

8,000

12,000

16,000

 50 100 150 200 250

R
u

n
n

in
g

 T
im

e
 (

m
s
)

Size of Network Topologies

Heuristic

Greedy

(d) Running time

Fig. 3. Performance of algorithms Heuristic and Greedy.

Appro is 10% lower than that of algorithm GreedynoBW .
The rationale behind is that algorithm Appro explores a
fine-grained trade-off between the resource utilizations and
the cost of implementing requests. Fig. 4 (a) also shows
that the maximum resource utilization of DCs is decreasing
with the network size. This is because larger networks mean
on average more computing resources in DCs, which incurs
lower resource utilization. In addition, as shown in Fig. 4 (b)
and (c), algorithm Appro also delivers a lower implementation
cost. Regarding the running time, it should be noted that our
algorithms are intended to be executed offline and to compute
solutions that will be implemented in DC networks at the
network configuration stage. The running time of Appro is
therefore considered as tolerable. Finally, we observe that both
the maximum DC utilization in Fig. 4 (a) and the total cost in
Fig. 4 (b) are not increasing as the network size grows, which
further justifies the performance guarantee of the proposed
Appro algorithm.

 0

 20

 40

 60

 80

 100

50 100 150 200 250

M
a
x
 D

a
ta

c
e
n

te
r

U
ti

li
z
a
ti

o
n

 (
%

)

Size of Network Topologies

Appro

GreedynoBW

(a) Maximum DC utilization

 20

 25

 30

 35

 40

 45

 50

 50 100 150 200 250

C
o

s
t

Size of Network Topologies

Appro

GreedynoBW

(b) Total cost

 0

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 50 100 150 200 250

R
u

n
n

in
g

 T
im

e
 (

m
s
)

Size of Network Topologies

Appro

GreedynoBW

(c) Running time

Fig. 4. Performance of algorithms Approximation and GreedynoBW .

VI. CONCLUSION

In this paper, we proposed a novel efficient heuristic approach
for the fault-tolerant VNF placement problem that jointly
computes the placement active and stand-by instances of
stateful VNFs, the routing paths and update paths of user
requests. For a special case of the problem without network
bandwidth constraint, we proposed a bicriteria approximation
algorithm with performance guarantees. We evaluated the
performance of the proposed algorithms based on simulations
under realistic settings. Our evaluation results show that the
performance obtained with each algorithm outperforms existing
solutions that separately determine placements, routings and
state update paths.

ACKNOWLEDGMENT

This work was partially funded by the CHIST-ERA CON-
CERT/EPSRC (I1402), EU H2020 UMOBILE (645124),
EU 5GEx (671636), NECOS projects (777067), and the
fundamental research funds for the central universities
(DUT17RC(3)061).

REFERENCES

[1] ETSI, NFV white paper 1, https://portal.etsi.org/NFV/.
[2] Z. Xu et al., “Throughput maximization and resource optimization in

nfv-enabled networks,” in IEEE ICC, 2017.
[3] S. Clayman et al., “The dynamic placement of virtual network functions,”

in IEEE NOMS, 2014.
[4] R. Potharaju and N. Jain, “Demystifying the dark side of the middle: a

field study of middlebox failures in datacenters,” in ACM IMC, 2013.
[5] F. Carpio, S. Dhahri, and A. Jukan, “Vnf placement with replication for

loac balancing in nfv networks,” in IEEE ICC, 2017.
[6] B. Kothandaraman, M. Du, and P. Sköldström, “Centrally controlled

distributed vnf state management,” in ACM SIGCOMM Workshop on
Hot Topics in Middleboxes and Network Function Virtualization, 2015.

[7] J. Khalid et al., “Paving the way for nfv: Simplifying middlebox
modifications using statealyzr.” in UNSENIX Proc. of NSDI, 2016.

[8] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high
availability framework for middleboxes,” in ACM Proc. of SoCC, 2013.

[9] M. Huang et al., “Throughput maximization in software-defined networks
with consolidated middleboxes,” in IEEE LCN, 2016.

[10] Y. Kanizo et al., “Optimizing virtual backup allocation for middleboxes,”
IEEE ICNP, 2016.

[11] H. D. Chantre and N. L. da Fonseca, “Redundant placement of virtualized
network functions for lte evolved multimedia broadcast multicast services,”
in IEEE ICC, 2017.

[12] H. Huang et al., “Service chaining for hybrid network function,” IEEE
Trans. on Cloud Computing, DOI:10.1109/TCC.2017.2721401, 2017.

[13] S. G. Kolliopoulos and C. Stein, “Approximation algorithms for single-
source unsplittable flow,” SIAM J. on Computing, vol. 31, no. 3, pp.
919–946, 2001.

[14] GT-ITM, http://www.cc.gatech.edu/projects/gtitm/.
[15] B. Yang et al., “Cost-efficient nfv-enabled mobile edge-cloud for low

latency mobile applications,” IEEE Trans. on Network and Service
Management, DOI:10.1109/TNSM.2018.2790081, 2018.

[16] S. Knight et al., “The internet topology zoo,” IEEE J. on Selected Areas
in Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[17] I. Amazon Web Services, Amazon ec2 instance configuration,
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-ec2-
config.html.

[18] J. Martins et al., “Clickos and the art of network function virtualization,”
in USENIX Proc. of NSDI, 2014.

[19] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE INFOCOM, 2016.

[20] Microsoft, Plan network requirements for Skype for business,
https://technet.microsoft.com/en-us/library/gg425841.aspx.

[21] B. Yang et al., “Seamless support of low latency mobile applications
with nfv-enabled mobile edge-cloud,” in IEEE Cloudnet, 2016.

