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Abstract We consider a short time existence problem motivated by a conjecture of
Joyce (Conjectures on Bridgeland stability for Fukaya categories of Calabi–Yau man-
ifolds, special Lagrangians, and Lagrangian mean curvature flow. arXiv:1401.4949,
2014). Specifically we prove that given any compact Lagrangian L ⊂ C

n with a finite
number of singularities, each asymptotic to a pair of non-area-minimising, transver-
sally intersectingLagrangian planes, there is a smoothLagrangianmean curvature flow
existing for some positive time, that attains L as t ↘ 0 as varifolds, and smoothly
locally away from the singularities.

1 Introduction

A long-standing open problem in the study of Calabi-Yau manifolds is whether
given a Lagrangian submanifold, one can find a special Lagrangian in its homol-
ogy or Hamiltonian isotopy class. Special Lagrangians are always area minimising,
so one way to approach the existence problem is to try to minimise area among all
Lagrangians in a given class. This minimisation problem turns out to be very subtle
and fraught with difficulties. Indeed Schoen and Wolfson [14] showed that when the
real dimension is 4, given a particular class one can find a Lagrangian minimising
area among Lagrangians in that class, but that the minimiser need not be a spe-
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cial Lagrangian. Later Wolfson [20] found a K3 surface and a Lagrangian sphere
in this surface such that the area minimiser among Lagrangians in the homology class
of the sphere, is not special Lagrangian, and the area minimiser in the class is not
Lagrangian.

An alternative way of approaching the problem is to consider mean curvature flow.
Mean curvature flow is a geometric evolution of submanifolds where the velocity
at any point is given by the mean curvature vector. This can also be seen as the
gradient descent for the area functional. Smoczyk showed in [15] that the Lagrangian
condition is preserved bymean curvature flow if the ambient space is Kähler–Einstein,
and consequently mean curvature flow has been proposed as a means of constructing
special Lagrangians. In order to flow to a special Lagrangian, one would need to show
that the flow exists for all time. This however can’t be expected in general, as finite
time singularities abound. See for example Neves [13]. For a nice overview on what
is known about singularities of Lagrangian mean curvature flow, we refer the reader
to the survey paper of Neves [12].

A natural question is whether it might be possible to continue the flow in a weaker
sense once a singularity develops and, in doing so, to push through the singularity.
Since all special Lagrangians are zero-Maslov class, and theMaslov class is preserved
by Lagrangian mean curvature flow, of particular interest is the mean curvature flow of
zero-Maslov class Lagrangians. In this case, the structure of singularities is relatively
well understood. Indeed Neves [11] has shown that a singularity of zero-Maslov class
Lagrangian mean curvature flow must be asymptotic to a union of special Lagrangian
cones.We note that inC2 every such union is simply a union of Lagrangian planes, and
so the casewe consider in the theorembelow is not necessarily overly restrictive. In this
paper we consider the simplest such singularity, namely that where the singularities are
each asymptotic to the union of two non-area-minimising, transversally intersecting
Lagrangian planes. Specifically we prove the following theorem which serves as a
partial answer to Problem 3.14 in [8].

Theorem (Short-time existence) Suppose that L ⊂ C
n is a compact Lagrangian

submanifold ofCn with a finite number of singularities, each of which is asymptotic to
a pair of transversally intersecting planes P1 + P2 where neither P1 + P2 nor P1 − P2
are area minimizing. Then there exists T > 0 and a Lagrangian mean curvature
flow (Lt )0<t<T such that as t ↘ 0, Lt → L as varifolds and in C∞

loc away from the
singularities.

We remark that the assumptions L ⊂ C
n and L compact are made to simplify

the analysis in the sequel, however since the analysis is all of an entirely local
nature we may relax this to L ⊂ M for some Calabi-Yau manifold M , and to L
non-compact provided, in the latter case, that we impose suitable conditions at infin-
ity.

In the one-dimensional case all curves are Lagrangian. Ilmanen–Neves–Schulze
considered the flow of planar networks, that is finite unions of embedded line seg-
ments of non-zero length meeting only at their endpoints, in [5]. They showed that
there exists a flow of regular networks, that is networks where at any meeting point
exactly three line segments come together at angles of 2π/3, starting at any initial non-
regular network. To do so they performed a gluing procedure to get an approximating
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family of regular initial conditions, and proved uniform estimates on the correspond-
ing flows, allowing them to pass to a limit of flows to prove the result. The proof here
is based heavily on their arguments, and many of the calculations we do are similar to
those in that paper. To prove the short-time existence, we construct a smooth approx-
imating family Ls of initial conditions via a surgery procedure. Specifically we take
a singularity asymptotic to some non-area-minimising pair of planes P1 + P2, cut it
out and glue in a piece of the Lagrangian self-expander asymptotic to those planes
at a scale determined by s. For full details see Sect. 7. Each of these approximating
Lagrangians is smooth, and hence standard short time existence theory gives a smooth
Lagrangian mean curvature flow Ls

t corresponding to each s. As s → 0 the curvature
of Ls blows up so the existence time of the flows Ls

t guaranteed by the standard short
time existence theory goes to zero. Instead we are able to prove uniform estimates on
the Gaussian density ratios of Ls

t , which combined with the local regularity result of
Brian White [19] provides uniform curvature estimates, interior in time, on the flows
Ls
t , from which we obtain a uniform time of existence allowing us to pass to a limit

of flows and prove the main result.
There are two key components in the proof of the estimates on the Gaussian density

ratios. The first is a stability result for self-expanding solutions to Lagrangian mean
curvature flow. More specifically we show that if a Lagrangian is weakly close to a
Lagrangian self expander in an L2 sense, then it is close in a stronger C1,α sense. The
proof of this stability result depends crucially on a uniqueness result for zero-Maslov
smooth self-expanders asymptotic to transverse pairs of planes due to Lotay andNeves
[10] and Imagi et al. [6]. The second component is a monotonicity formula for the
self-expander equation, which allows us to show that the approximating family of
initial conditions that we construct in the proof, which are self-expanders in a ball,
remain weakly close to the self-expander for a short time. The combination of these
results tells us that the evolution of the approximating flows is close to the evolution
of the self-expander near the singularity. Since self-expanders move by dilation, we
have good curvature control on the self-expander, and hence estimates on the Gaussian
densities of the approximating flow.

Organisation The paper is organised as follows. In Sect. 2 we recall key definitions
and results. In Sect. 3 we derive evolution equations and monotonicity formulas for
geometric quantities under the flow. In Sect. 4 we prove the Stability result mentioned
above. Section 5 contains the proof of themain theoremwhich gives uniform estimates
on the Gaussian density ratios of the approximating family near the singularity. From
this we get uniform estimates, interior in time, on the curvature of the approximating
family which allows us to appeal to a compactness argument. Section 6 contains the
proof of the short time existence result itself. Section 7 details the construction of the
approximating family used in the proof of themain theorem.Finally the appendix, Sect.
A, contains miscellaneous technical results, including Ecker–Huisken style curvature
estimates for high-codimension mean curvature flow.
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2 Preliminaries

2.1 Mean curvature flow

Let Mn ⊂ R
n+k be an n-dimensional embedded submanifold of Rn+k . A mean cur-

vature flow is a one parameter family of immersions F : M × [0, T ) → R
n+k such

that the normal velocity at any point is given by the mean curvature vector, that is

dF

dt
= �H .

Of particular interest to us are self-expanders. These are submanifolds M ⊂ R
n+k

satisfying the elliptic equation
�H − x⊥ = 0,

where (·)⊥ is the projection to the normal space. In this case one can show that
Mt = √

2tM is a solution of mean curvature flow.
A fundamental tool in the analysis of mean curvature flow is the Gaussian density.

We first define the backwards heat kernel ρ(x0,t0) as follows

ρ(x0,t0)(x, t) := 1

(4π(t0 − t))n/2 exp

(
−|x − x0|2
4(t0 − t)

)
.

Next, for a mean curvature flow (Mt )0≤t<T we define the Gaussian density ratio
centred at (x0, t0) and at scale r by

�(x0, t0, r) :=
∫
Mt0−r2

ρ(x0,t0)(x, t0 − r2)dHn(x)

=
∫
Mt0−r2

1

(4πr2)n/2 exp

(
−|x − x0|2

4r2

)
dHn(x)

this is defined for 0 < t0 ≤ T , 0 < r ≤ √
t0 and any x0 ∈ R

n+k . Huisken in [4]
proved the following monotonicity formula.

Theorem 2.1 (Monotonicity Formula) If (Mt )0≤t<t0 is a mean curvature flow, then

d

dt

∫
Mt

ρ(x0,t0)(x, t)dHn(x) = −
∫
Mt

∣∣∣∣ �H − (x0 − x)⊥

2(t0 − t)

∣∣∣∣
2

ρ(x0,t0)(x, t)dHn(x).

In particular, it follows that �(x0, t0, r) is non-decreasing in r . Consequently we can
define the Gaussian density as

�(x0, t0) := lim
r↘0

�(x0, t0, r).
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One can show that (x0, t0) is a regular point of the flow if and only if �(x0, t0) = 1.
The following local regularity theorem of White [19] says that if the density ratios are
close to 1, then that is enough to get curvature estimates.

Theorem 2.2 (Local regularity) Let τ > 0. There are constants ε0(n, k) > 0 and
C0(n, k, τ ) < ∞ such that if ∂Mt ∩ B2r = ∅ for t ∈ [0, r2) and

�(x, t, ρ) ≤ 1 + ε0 ρ ≤ τ
√
t, x ∈ B2r (x0), t ∈ [0, r2),

then

|A|(x, t) ≤ C0√
t

x ∈ Mt ∩ Br (x0), t ∈ [0, r2),

where A(x, t) is the second fundamental form of Mt at the point x.

Finally, we introduce what it means for two manifolds to be ε-close in C1,α . Given
an open setU ⊂ R

n+k and two n-dimensional submanifolds	 and L defined inU , we
say that	 and L are 1-close inC1,α(W ) for anyW ⊂ U with dist(W, ∂U ) ≥ 1 if for all
x ∈ W , B1(x)∩	 and B1(x)∩L are both graphical over some common n-dimensional
plane, and if u and v denote the respective graph functions then ‖u − v‖1,α ≤ 1. We
then say that 	 and L are ε-close in W if after rescaling by a factor 1/ε, 	 and L are
1-close in ε−1W for any W with dist(ε−1W, ε−1∂U ) ≥ 1.

2.2 Lagrangian submanifolds and Lagrangian mean curvature flow

We consider Cn with the standard complex coordinates z j = x j + iy j . We will often
identify C

n with R
2n . We let J denote the standard complex structure on C

n and ω

the standard symplectic form on C
n , defined by

ω =
n∑

i=1

dxi ∧ dyi .

We say that a smooth n-dimensional submanifold ofCn is Lagrangian if ω|L = 0. We
also consider the closed n-form �, called the holomorphic volume form, defined by

� := dz1 ∧ · · · ∧ dzn .

On any oriented Lagrangian a simple computation shows that �|L = eiθLvolL , where
volL is the volume form on L .We call eiθL : L → S1 the Lagrangian phase, and θL the
Lagrangian angle, which may be a multi-valued function. We henceforth suppress the
subscript L . In the case that θ is a single valued function, we say that the Lagrangian
L is zero-Maslov. An equivalent condition is [dθ ] = 0, that is, dθ is cohomologous
to 0. If θ ≡ θ0 is constant, then we say that L is special Lagrangian. In this case L is
calibrated by Re(e−iθ0volL), and hence is area-minimising in its homology class.
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We also consider the Liouville form λ on Cn defined by

λ :=
n∑
j=1

x j dy j − y j dx j .

A simple calculation verifies that dλ = 2ω. If there exists some function β such that
λ|L = dβ then we say that L is exact. In this paper we will be more interested in local
exactness, that is when the Liouville form λ only has a primitive in some open set. It
can be shown that any smooth Lagrangian is locally exact.

The following remarkable property of smooth Lagrangians relates the Lagrangian
angle and mean curvature vector (see for example [16])

�H = J∇θ.

Consequently we see that the smooth minimal Lagrangians are exactly the smooth
special Lagrangians.

A Lagrangian mean curvature flow in Cn is a mean curvature flow (Lt )0≤t<T with
L0 Lagrangian. As proved by Smoczyk [15], it turns out that the Lagrangian condition
is preserved by the mean curvature flow.

3 Evolution equations and monotonicity formulas

In this sectionwe compute evolution equations for different geometric quantities under
the flow, and then use these to prove a local monotonicity formula for a primitive of
the expander equation.

Lemma 3.1 Let (Lt )0≤t<T be a Lagrangianmean curvature flow inCn. The following
evolution equations hold.

(i) dθt
dt = �θt , where θt is the Lagrangian angle for Lt . Note that since only deriv-
atives of θt appear here, this does not require the assumption that the flow is
zero-Maslov.

(ii) In an open set where the flow is zero-Maslov and exact with βt a primitive for
the Liouville form, dβt

dt = �βt − 2θt .

(iii)
(
dρ(x0,t0)

dt + �ρ(x0,t0)

)
− | �H |2ρ(x0,t0) = −

∣∣∣ �H − (x0−x)⊥
2(t0−t)

∣∣∣2 ρ(x0,t0).

Remark In particular, from part (iii) we have

(
dρ(x0,t0)

dt
+ �ρ(x0,t0)

)
− | �H |2ρ(x0,t0) ≤ 0

Proof (i) Differentiating the holomorphic volume form � and using Cartan’s formula
we have
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d�

dt
= L �H� = d( �H��) = d(ieiθt∇θt�volLt )

= ieiθt d(∇θt�volLt ) − eiθt dθt ∧ (∇θt�volLt )

= ieiθt div(∇θt )volLt − eiθt dθt ∧ (∇θt�volLt ).

On the other hand

d�

dt
= d

dt

(
eiθt volLt

)
= ieiθt

dθt

dt
volLt + eiθt

d

dt
volLt .

Comparing real and imaginary parts we have (i).
(ii) Using Cartan’s formula again and denoting the Liouville form by λt , we have

d

(
dβt

dt

)
= L �Hλt = d( �H�λt ) + �H�dλt

= d( �H�λt ) + J∇θt�2ω
= d( �H�λt ) − 2dθt .

Hence

d

(
dβt

dt
− �H�λt + 2θt

)
= 0.

By possibly adding a time-dependent constant to βt this implies

dβt

dt
= �H�λt − 2θt .

Hence it only remains to show that �H�λt = �βt . We first show that ∇βt = (J x)T .
Indeed we have dβt = λt , thus for a tangent vector τ

〈∇βt , τ 〉 = dβt (τ ) = λt (τ ) = 〈J x, τ 〉 = 〈(J x)T , τ 〉.

With this in hand we now choose normal coordinates at a point x , and denote the
coordinate tangent vectors by {∂1, . . . , ∂n}. Then we calculate

∇i∇ jβt = 〈∇i (J x)
T , ∂ j 〉 = ∂i 〈J x, ∂ j 〉 − 〈(J x)T , D∂i ∂ j 〉

= 〈J∂i , ∂ j 〉 + 〈J x, D∂i ∂ j 〉 − 〈(J x)T , D∂i ∂ j 〉
= ω(∂i , ∂ j ) + 〈(J x)⊥, D∂i ∂ j 〉
= 〈J x, hi j 〉,

where hi j is the second fundamental form. Taking the trace of each side we have

�βt = 〈J x, �H 〉 = �H�λt .
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(iii) We may assume without loss of generality that x0 = 0 and t0 = 0, and we will
suppress the subscripts of ρ. We first calculate

∂ρ

∂t
=

(
− n

2t
− |x |2

4t2

)
ρ

∂ρ

∂xi
= xi

2t
ρ

∂2ρ

∂xi∂x j
=

(
δi j

2t
+ xi x j

4t2

)
ρ.

Then we have

∂ρ

∂t
+ div(Dρ) =

(
− n

2t
− |x |2

4t2

)
ρ +

n+k∑
i, j=1

pi j
∂2ρ

∂xi∂x j

=
(

− n

2t
− |x |2

4t2

)
ρ +

n+k∑
i, j=1

pi j
(

δi j

2t
+ xi x j

4t2

)
ρ

=
(

− n

2t
− |x |2

4t2

)
ρ + n

2t
ρ + |xT |2

4t2
ρ = −|x⊥|2

4t2
,

where pi j denotes the matrix of the projection onto TxM . We therefore calculate

(
d

dt
+ �

)
ρ = ∂ρ

∂t
+ 〈Dρ, �H〉 + div(∇ρ)

= ∂ρ

∂t
+ div(Dρ) + 2〈Dρ, �H〉

= ∂ρ

∂t
+ div(Dρ) −

∣∣∣∣ �H − x⊥

2t

∣∣∣∣
2

ρ + |x⊥|2
4t2

ρ + | �H |2ρ

= −
∣∣∣∣ �H − x⊥

2t

∣∣∣∣
2

ρ + | �H |2ρ,

which establishes the claim. ��
Remark From the above evolution equations we see that both the zero-Maslov con-
dition, and local exactness are preserved by the flow. Indeed that the zero-Maslov
condition is preserved follows easily, and for local exactness we observe

dλt

dt
= L �Hλt = d( �H�λt ) + �H�dλT

= d( �H�λt ) + J∇θt�2ω
= d( �H�λt ) − 2dθt .

So by the fundamental theorem of calculus we have

λt = λ0 +
∫ t

0

dλs

ds
ds,

where the right hand side is exact if λ0 is.
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Let φ be a cut-off function supported on B3 with 0 ≤ φ ≤ 1, φ ≡ 1 on B2 and the
estimates |Dφ| ≤ 2 and |D2φ| ≤ C . We then have the following lemma.

Lemma 3.2 Suppose that (Lt ) are exact in B3 and define αt := βt + 2tθt . Then

d

dt

∫
Lt

φα2
t ρdμ ≤ −

∫
Lt

φ|2t �H − x⊥|2ρdμ + C
∫
Lt∩(B3\B2)

α2
t ρdμ.

where C = C(φ).

Remark Note that it follows from Lemma 3.1 that

d

dt
αt = �βt − 2θt + 2θt + 2t�θt = �αt .

This is the motivation for why wemight expect αt to satisfy some sort of monotonicity
formula in the first place.

Proof We calculate

(
d

dt
− �

)
φ = ∂φ

∂t
− divDφ = −�R2nφ + tr(T L)⊥ D

2φ ≤ CχB3\B2 ,

where χB3\B2 denotes the indicator function on B3\B2. Then

(
d

dt
− �

)
(φα2

t ) = φ

(
d

dt
− �

)
α2
t + α2

t

(
d

dt
− �

)
φ − 2〈∇φ,∇α2

t 〉

≤ 2φαt

(
d

dt
−�

)
αt−2φ|∇αt |2+Cα2

t χB3\B2 −4αt 〈∇φ,∇αt 〉.

Using Young’s inequality we estimate the last term on the set {φ > 0} as follows

−4αt 〈∇φ,∇αt 〉 ≤ 4|Dφ||αt ||∇αt | ≤ φ|∇αt |2 + 4|Dφ|2
φ

α2
t ≤ φ|∇αt |2 + Cα2

t χB3\B2 ,

where we used that
|Dφ|2

φ
≤ 2max |D2φ| ≤ C.

This is true of any compactly supported smooth (or even C2) function. Thus we arrive
at (

d

dt
− �

)
φα2

t ≤ −φ|∇αt |2 + Cα2
t χB3\B2 .
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We now just differentiate under the integral and use Green’s identity to get

d

dt

∫
Lt

φα2
t ρdμ =

∫
Lt

ρ
d(φα2

t )

dt
+ φα2

t
dρ

dt
− | �H |2φα2

t ρdμ

=
∫
Lt

φα2
t �ρ − ρ�(φα2

t )dμ +
∫
Lt

ρ
d(φα2

t )

dt
+ φα2

t
dρ

dt

− | �H |2φα2
t ρdμ

=
∫
Lt

ρ

(
d

dt
− �

)
(φα2

t ) +
((

d

dt
+ �

)
ρ − | �H |2ρ

)
φα2

t dμ

≤ −
∫
Lt

φρ|∇αt |2dμ + C
∫
Lt∩(B3\B2)

α2
t ρdμ.

So we are left with precisely the desired inequality since ∇αt = ∇βt + 2t∇θt =
J x⊥ − 2t J �H . ��

4 Stability of self-expanders

In this section we prove a dynamic stability result for Lagrangian self-expanders.
More specifically we show that if a Lagrangian submanifold is asymptotic to some
pair of planes and is almost a self-expander in a weak sense, then the submanifold
is actually close in a stronger topology to some self-expander. Let P1, P2 ⊂ C

n be
Lagrangian planes intersecting transversally such that neither P1+ P2 nor P1− P2 are
area minimising. We denote by P := P1 + P2. We will need the following uniqueness
result, provedbyLotay andNeves [10] in dimension2 and Imagi et al. [6] in dimensions
3 and higher.

Theorem 4.1 There exists a unique smooth, zero-Maslov class Lagrangian self-
expander asymptotic to P.

Theorem 4.2 Fix R, r , τ > 0, α, ε0 < 1, and C, M < ∞. Let 	 be the unique
smooth zero-Maslov Lagrangian self-expander asymptotic to P. Then for all ε > 0
there exists R̃ ≥ R, η, ν > 0 each dependent on ε0, ε, r , R, τ , α, C, M and P such
that if L is a smooth Lagrangian submanifold which is zero-Maslov in BR̃ and

(i) |A| ≤ M on L ∩ BR̃,
(ii)

∫
L ρ(x,0)(y,−r2)dHn ≤ 1 + ε0 for all x and 0 < r ≤ τ ,

(iii)
∫
L∩BR̃

| �H − x⊥|2dHn ≤ η,

(iv) The connected components of L ∩ A(r, R̃) (where A(r, R̃) := BR̃\Br ) are in
one to one correspondence with the connected components of P ∩ A(r, R̃) and

dist(x, P) ≤ ν + Cexp

(−|x |2
C

)
,

for all x ∈ L ∩ A(r, R̃);
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then L is ε-close to 	 in C1,α(BR̃).

Proof Seeking a contradiction, suppose that the result were not true. Then there would
exist sequences νi ↘ 0, ηi ↘ 0, Ri → ∞ and Li such that each Li is a smooth
Lagrangian submanifold of Cn that is zero-Maslov in BRi , satisfying

(1) |ALi | ≤ M on Li ∩ BRi ,
(2)

∫
Li

ρ(x,0)(y,−r2)dHn ≤ 1 + ε0 for all x and 0 < r ≤ τ ,

(3)
∫
Li∩BRi

| �H − x⊥|2dHn ≤ ηi

(4) The connected components of Li ∩ A(r, Ri ) are in one to one correspondence
with the connected components of P ∩ A(r, Ri ) and

dist(x, P) ≤ νi + C exp

(−|x |2
C

)

for all x ∈ Li ∩ A(r, Ri ),
(5) Li is not ε-close to 	 in C1,α(BRi ).

By virtue of (1), (4), and a suitable interpolation inequality, it follows that for some
ρ > 0, outside of Bρ , Li and 	 are both ε/4-close to P in C1,α . Hence, in order that
(5) is satisfied, we conclude that for large i , Li is not ε-close to 	 in C1,α(Bρ).

On the other hand, by (1) and (2) wemay extract a subsequence of Li that converges
in C1,α

loc for all α < 1 to some limit L∞, a C1,1 zero-Maslov Lagrangian submanifold.
The estimate (2) passes to the limit and tells us that L∞ has unit multiplicity every-
where, and bounded area ratios. Since L∞ is C1,1 we can define mean curvature in a
weak sense, and (3) implies

∫
L∞

| �H − x⊥|2dHn = 0.

By standard Schauder theory for elliptic PDE, this immediately implies that L∞ is in
fact smooth and satisfies the expander equation in the classical sense. Consequently
L∞ is a smooth, zero-Maslov class Lagrangian submanifold, and (4) implies that L∞
is asymptotic to P . Theorem 4.1 then implies that L∞ = 	, which contradicts (5). ��

5 Main theorem

Suppose, as in the previous section, that P := P1 + P2 is a pair of transversely
intersecting Lagrangian planes such that neither P1 + P2 nor P1 − P2 are minimising,
and that 	 is a zero-Maslov Lagrangian self-expander asymptotic to P . We assume
the existence of a family (Ls)0<s≤c of compact Lagrangians, each exact and zero-
Maslov in B4 satisfying the following properties. The existence of such a family will
be established in Sect. 7.

(H1) The area ratios are uniformly bounded, i.e. there exists a constant D1 such that

Hn(Ls ∩ Br (x)) ≤ D1r
n ∀r > 0, ∀s ∈ (0, c], ∀x .
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1484 T. Begley, K. Moore

(H2) There is a constant D2 such that for every s and x ∈ Ls ∩ B4

|θ s(x)| + |βs(x)| ≤ D2(|x |2 + 1),

where θ s and βs are, respectively, the Lagrangian angle of Ls and a primitive
for the Liouville form on Ls .

(H3) For any α ∈ (0, 1), the rescaled manifolds L̃s := (2s)−1/2Ls converge in C1,α
loc

to 	. Moreover the second fundamental form of L̃s is bounded uniformly in s
and without loss of generality we can assume that

lim
s→0

(θ̃ s + β̃s) = 0

locally on L̃s . (Note that L̃s is exact in the ball B4(2s)−1/2 so we can make sense

of β̃s in the limit.)
(H4) The connected components of P∩ A(r0

√
s, 4) are in one to one correspondence

with the connected components of Ls ∩ A(r0
√
s, 4), and each component can

be parametrised as a graph over the corresponding plane Pi

Ls ∩ A(r0
√
s, 3) ⊂ {x + us(x)|x ∈ P ∩ A(r0

√
s, 3)} ⊂ Ls ∩ A(r0

√
s, 4),

where the function us : P ∩ A(r0
√
s, 3) → P⊥ is normal to P and satisfies the

estimate

|us(x)| + |x | ∣∣∇us(x)
∣∣ + |x |2|∇2

us(x)| ≤ D3

(
|x |2 + √

2se−b|x |2/2s) ,

where ∇ denotes the covariant derivative on P , and b > 0.

We will denote by (Ls
t )t∈[0,Ts ) a smooth solution of Lagrangian mean curvature flow

with initial condition Ls . For x0 ∈ R
2n and t > 0 we define

�(x0, t)(x) := ρ(x0,0)(x,−t) = 1

(4π t)n/2 exp

(
−|x − x0|2

4t

)

We introduce a slightly modified notion of the Gaussian density ratios, which we will
continue to refer to as the Gaussian density ratios, of Ls

t at x0, denoted �s
t (x0, r) and

defined as

�s
t (x0, r) :=

∫
Ls
t

�(x0, r
2)dHn =

∫
Ls
t

1

(4πr2)n/2 e
−|x−x0|2/4r2dHn(x), (5.1)

defined for t < Ts . The monotonicity formula of Huisken tells us that

�s
t (x0, r) = �s(x0, t + r2, r) ≤ �s(x0, t + r2, ρ) =

∫
Ls
t+r2−ρ2

�(x0, t + r2)dHn,
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for all ρ ≥ r . In particular choosing ρ2 = t + r2 we have

�s
t (x0, r) ≤

∫
Ls

�(x0, t + r2)dHn .

We also define

L̃s
t = Ls

t√
2(s + t)

.

We will denote by �̃s
t (x0, r) the Gaussian density ratios of (L̃s

t ), that is

�̃s
t (x0, r) :=

∫
L̃s
t

�(x0, r)dHn .

One of the primary reasons for modifying the Gaussian density ratios is that our new
ratios behave well under the above rescaling. Indeed we can calculate

�s
t (x0, r) = �̃s

t

(
x0√

2(s + t)
,

r√
2(s + t)

)
.

The primary goal of this section is now to prove the following result.

Theorem 5.1 Let ε0 > 0. There are s0, δ0 and τ depending on D1, D2, D3, 	 and r0
such that if

t ≤ δ0, r
2 ≤ τ t and s ≤ s0,

then
�s

t (x0, r) ≤ 1 + ε0

for every x0 ∈ B1.

We start by proving estimates like the one in the above theorem hold for a short
time or far from the origin.

Lemma 5.2 (Far from the origin estimate) Let ε0 > 0. There are δ1 > 0, K0 < ∞
such that if r2 ≤ t ≤ δ1 and s > 0, then

�s
t (x0, r) ≤ 1 + ε0,

for all x0 ∈ A(K0
√
2t, 1).

Proof We first claim that there is a K0 < ∞ such that if y0 ∈ R
2n has |y0| ≥ K0,

then for any λ > 0 and s we have

∫
λ(Ls∩B3(0))

�(y0, 1)dHn ≤ 1 + ε0/2.
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1486 T. Begley, K. Moore

Indeed if this were not the case, then there would exist sequences yi , λi and si with
|yi | → ∞ such that

∫
λi (Lsi ∩B3(0))

�(yi , 1)dHn ≥ 1 + ε0/2. (5.2)

First we note that λi must be unbounded since, for some universal constant C we have

∫
λi (Lsi ∩B3(0))

�(yi , 1)dHn ≤
∫

λi (Lsi ∩B3(0))

1

(4π)n/2 e
−|yi |2/8e3|x |2/4dHn

≤ e−|yi |2/8λni
∫
Lsi ∩B3

1

(4π)n/2 e
9λ2i /4dHn

≤ Cλni e
−|yi |2/8+cλ2i Hn(Lsi ∩ B3(0))︸ ︷︷ ︸

≤D13n

,

so it is easily seen that if λi were bounded then (5.2) would fail for large i . Next from
the estimate (H4) we have that

|∇2
u j
s (x)| ≤ C

(
1 +

√
2s

|x |2 e
−b|x |2/2s

)
,

for every x ∈ A(r0
√
2s, 4) and hence

|A| ≤ C

(
1 + 1√

2s
e−b|x |2/2s

)

on B3 ∩ Ls , since on Br0
√
2s we have |A| ≤ C(2s)−1/2 where C is a curvature bound

for 	. We rescale and define

L̂i := λi L
si σi := λ2i si ,

so that on L̂i we have the estimate

|A| ≤ C

λi

(
1 + 1√

si
e−b|x |2/2λ2i si

)
= C

(
λ−1
i + σ

−1/2
i e−b|x |2/2σi

)
.

Consequently |A| → 0 uniformly on compact sets centred at yi , so it follows that
locally L̂i − yi converges to a plane, but this contradicts (5.2).

We next observe that (H1) ensures that we may choose δ1 > 0 small enough such
that for any x0 ∈ B1(0) and l ≤ 2

√
δ1 we have

∫
Ls\B3

�(x0, l)dHn ≤ ε0/2
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By the monotonicity formula we have that for any r2, t ≤ δ1

�s
t (x0, r) ≤

∫
Ls

�(x0, r
2 + t)dHn

=
∫
Ls\B3

�(x0, r
2 + t)dHn +

∫
Ls∩B3

�(x0, r
2 + t)dHn

≤ ε0/2 +
∫

(r2+t)−1(Ls∩B3)
�

(
x0√
r2 + t

, 1

)
dHn

≤ 1 + ε0

provided that |x0| ≥ K0
√
r2 + t , so imposing the additional requirement that r2 ≤ t

this gives precisely the desired result. ��
Remark We observe that increasing K0 will only weaken the hypotheses, and so we
may do so freely if necessary without changing the conclusions. This will be important
in the next lemma, and also in the proof of the main theorem where we will assume
that K0 is at least 1.

Lemma 5.3 (Short-time estimate) Let ε0 > 0. There are s1 > 0 and q1 ∈ (0, 1) such
that if s ≤ s1, r2 ≤ q1s and t ≤ q1s then

�s
t (x, r) ≤ 1 + ε0, (5.3)

for all x ∈ B1.

Proof Fix α ∈ (0, 1) and let q1 = q1(	, ε0, α) be as in Lemma 8.2. We may assume
without loss of generality that q1 < 1. By Lemma 5.2 we need only prove the estimate
for x ∈ BK0

√
2t . We fix α ∈ (0, 1) and seek to apply Lemma 8.2 with R = K0

√
q1+1,

which we can assume is at least 2 by increasing K0, and the rescaled flow L̂ t :=
(2s)−1/2Ls

2st . This is a mean curvature flow with initial condition L̃s . By (H3) we

know that L̃s → 	 in C1,α
loc . In particular, letting ε = ε(ε0, 	, α) from Lemma 8.2, if

s is small enoughwe can ensure that L̃s is ε-close to	 inC1,α(BR(0)). The conclusion
of Lemma 8.2 then says that for r2, t ≤ q1 and x ∈ BK0

√
q1 we have

�̂s
t (x, r) =

∫
L̂s
t

�(x, r2)dHn =
∫
Ls
2st

�(2sx, 2sr2)dHn ≤ 1 + ε0,

or in other words
�s

t (x, r) ≤ 1 + ε0,

for all r2, t ≤ q1s and x ∈ BK0
√
2sq1 . However since t ≤ q1s this holds for all

x ∈ BK0
√
2t . ��

The next lemma shows that in an annular region, and for short times, we retain
control on both the distance to P and the Gaussian density ratios that is uniform in s.
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1488 T. Begley, K. Moore

Lemma 5.4 (Proximity to P = P1 + P2) There are constants C1, and r1 such that
for any ν > 0 there are s2, δ2 > 0 such that the following holds. If s ≤ s2 and t ≤ δ2
then we have the estimate

dist(y0, P) ≤ ν + C1e
−|y0|2/C1 ∀y0 ∈ L̃s

t ∩ A(r1, (s + t)−1/8),

and if in addition r ≤ 2, then

�̃s
t (y0, r) ≤ 1 + ε0

2
+ ν ∀y0 ∈ A(r1, (s + t)−1/8).

Remark Note in particular that r1 does not depend on ν, which will be important later.

Proof We consider t ≤ δ2 and s ≤ s2 (both δ2 and s2 to be chosen) and define

l := t

2(s + t)
	(s,t) := Ls

√
2(s + t)

.

Clearly l ≤ 1/2 and also from (H4) we have that if s2, δ2 are chosen small enough,
then 	(s,t) ∩ A(r0, 3(s + t)−1/8) is graphical over P ∩ A(r0, 3(s + t)−1/8). Moreover
if v(s,t) is the function arising from this graphical decomposition then we have by
scaling the estimate of (H4) that

|v(s,t)(x)| + |x ||∇v(s,t)(x)| + |x |2|∇2
v(s,t)(x)|

≤ D3

(√
2(s + t)|x |2 +

( √
2s√

2(s + t)

)
e−2b(s+t)|x |2/2s

)

≤ D3

(√
2(s + t)|x |2 + e−b|x |2) .

Let c > 0 be a constant that will be chosen later. If s2(D3, r0, c) and δ2(D3, r0, c) > 0
are small enough and r1(P, c) ≥ max{r0, 1} is chosen to be large enough then we can
ensure that

|v(s,t)(x)| + |x ||∇v(s,t)(x)| ≤ D3

(√
2(s + t)|x |2 + e−b|x |2) ≤ c/2 (5.4)

on A(r1, 3(s+t)−1/8). Indeed x ∈ A(r1, 3(s+t)−1/8) implies that |x |2 ≤ 9(s+t)−1/4,
and so

√
2(s + t)|x |2 ≤ 9

√
2(s2 + δ2)

1/4 can be bounded in terms of s2 and δ2. From
nowonwefix some y0 ∈ L̃s

t ∩A
(
3r1 + 1, (s + t)−1/8

)
. Since y0

√
2(s + t) is a regular

point of (Ls
t ), the monotonicity formula implies

1 ≤ �s
0(y0

√
2(s + t),

√
t) =

∫
	(s,t)

�(y0, l)dHn =: I + J + K ,
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On short time existence of Lagrangian… 1489

where

I :=
∫

	(s,t)\B3(s+t)−1/8

�(y0, l)dHn,

J :=
∫

	(s,t)∩Br1

�(y0, l)dHn,

K :=
∫

	(s,t)∩A(r1,3(s+t)−1/8)

�(y0, l)dHn .

We first estimate I . If |x | ≥ 3(s + t)−1/8 ≥ 3|y0| then

|x − y0|2 ≥ |x |2 − 2|x ||y0| + |y0|2 ≥ |x |2 − 2|x |2
3

+ |y0|2 = |x |2
3

+ |y0|2,
so

�(y0, l) = 1

(4πl)n/2 e
−|x−y0|2/4l ≤ 1

(4πl)n/2 e
−|y0|2/4l e−|x |2/12l

= 3n/2e−|y0|2/4l�(0, 3l).

Therefore by choosing C1 = C1(D1, n) we can estimate

I =
∫

	(s,t)\B3(s+t)−1/8

�(y0, l)dHn ≤ 3n/2e−|y0|2/4l
∫

	(s,t)\B3(s+t)−1/8

�(0, 3l)dHn

≤ 3n/2e−|y0|2/4l
∫

(3l)−1/2	(s,t)
�(0, 1)dHn

≤ C1e
−|y0|2/C1 ,

since l is bounded independent of s and t , and the estimate (H1) is scale invariant, so
in particular is satisfied by (3l)−1/2	(s,t).

Next we estimate J . Similarly as before we find that for |x | ≤ r1 ≤ |y0|/3 we have

|x − y0|2 ≥ |x |2 + |y0|2
3

.

Thus
�(y0, l) ≤ e−|y0|2/12l�(0, l) on Br1 ,

hence by possibly increasing C1 if necessary we have

J =
∫

	(s,t)∩Br1

�(y0, l)dHn ≤ e−|y0|2/12l
∫

	(s,t)∩Br1

�(0, l)dHn ≤ C1e
−|y0|2/C1 .

Finally we deal with K . We denote by ai the orthogonal projection of y0 onto Pi and
by bi the orthogonal projection of y0 onto P⊥

i . We suppose without loss of generality
that
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dist(y0, P) = |b1|.
We will also denote by 	

(s,t)
i the component of 	(s,t) ∩ A(r1, 3(s + t)−1/8) that is

graphical over �i := Pi ∩ A(r1, 3(s + t)−1/8), and by vi(s,t) the corresponding graph
function. Since we have that P1 ∩ P2 = {0} it follows that for some c = c(P) > 0 we
have that |b2| ≥ c|y0|. Notice that since |b2| ≤ |y0| we have that c ≤ 1. Suppose that
x ∈ 	

(s,t)
2 , and denote by x ′ the orthogonal projection onto P2. Then we have

|y0 − x |2 = |a2 + b2 − x ′ − v2(s,t)(x
′)|2 = |a2 − x ′|2 + |b2 − v2(s,t)(x

′)|2.

Moreover by (5.4), if r1 is chosen large enough (and in particular larger than 1),

|v2(s,t)(x ′)| ≤ c

2
≤ c|y0|

2
,

so

|b2 − v2(s,t)(x
′)| ≥ |b2| − |v2(s,t)(x ′)| ≥ c|y0|

2
.

Consequently, denoting by gi j := δi j + Div
2
(s,t) · Djv

2
(s,t) the induced metric on the

graph, we can estimate

∫
	

(s,t)
2

�(y0, l)dHn =
∫

�2

1

(4πl)n/2 exp

(−|a2 − x ′|2 − |b2 − v2(s,t)(x
′)|2

4l

)

√
det(gi j )dx

′

≤ Ce−c2|y0|2/16l
∫
P2

1

(4πl)n/2 e
−|a2−x ′|2/4ldx ′

≤ C1e
−|y0|2/C1 ,

where we used (5.4) to estimate the gradient terms arising in the surface measure.
Combining this with the estimates for I and J we have that

1 ≤
∫

	(s,t)
�(y0, l)dHn ≤

∫
	

(s,t)
1

�(y0, l)dHn + C1 exp

(−|y0|2
C1

)
. (5.5)

Increasing r1 for the last time if necessary, we can ensure that

C1 exp

(−|y0|2
C1

)
≤ 1

2
.

Therefore we have that

1

2
≤

∫
	

(s,t)
1

�(y0, l)dHn ≤ C sup
�1

exp

(
−|b1 − v1(s,t)|2

4l

)
.
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Therefore it follows that |b1 − v1(s,t)|2/4l is bounded on �1 independently of l, s and
t , thus we can estimate

|b1 − v1(s,t)|2
4l

≤ C
(
1 − e−|b1−v1

(s,t)|2/4l
)

,

on �1 where C is independent of s and t . Moreover because the matrix (Div
1
(s,t) ·

Djv
1
(s,t)) has non-negative eigenvalueswe have that

√
det(gi j ) ≥ 1, sowe can estimate

∫
�1

|v1(s,t) − b1|2
4l

exp(−|x ′ − a1|2/4l)
(4πl)n/2 dx ′

≤ C
∫

�1

(
1 − exp

(
−|v1(s,t) − b1|2

4l

))
exp(−|x ′ − a1|2/4l)

(4πl)n/2

√
det(gi j )dx

′

= C

(∫
�1

exp(−|x ′ − a1|2/4l)
(4πl)n/2

√
det(gi j )dx

′ −
∫

	
(s,t)
1

�(y0, l)dHn

)

≤ C

(∫
�1

exp(−|x ′ − a1|2/4l)
(4πl)n/2

√
det(gi j )dx

′ − 1

)
+ C1 exp(−|y0|2/C1)

≤ C
∫

�1

exp(−|x ′ − a1|2/4l)
(4πl)n/2

(√
det(gi j ) − 1

)
dx ′ + C1 exp(−|y0|2/C1),

wherewe used (5.5).Next, from theTaylor expansions for square root and determinant,
we have

√
1 + x = 1+ x/2+ O(x2) and det(I + A) = 1+ tr(A) + O(|A|2), which

implies

√
det(gi j ) − 1 =

(
1 +

n∑
i=1

|Div
1
(s,t)|2 + O(|∇v1(s,t)|4)

)1/2

− 1

≤ n

2
|∇v1(s,t)|2 + O(|∇v1(s,t)|4)

≤ C |∇v1(s,t)|2,

where the last line follows from the fact that |∇v1(s,t)| is bounded on A(r1, 3(s+t)−1/8)

by (5.4). Putting the above two estimates together we find

∫
�1

|v1(s,t) − b1|2
4l

exp(−|x ′ − a1|2/4l)
(4πl)n/2 dx ′

≤ C
∫

�1

|∇v1(s,t)|2
exp(−|x ′ − a1|2/4l)

(4πl)n/2 dx ′ + C1 exp(−|y0|2/C1).

Therefore since

|b1|2 ≤
(
|b1 − v1(s,t)| + |v1(s,t)|

)2 ≤ 2
(
|b1 − v1(s,t)|2 + |v1(s,t)|2

)
,
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we can estimate, by integrating both sides against (4πl)n/2 exp(−|x ′ − a1|2/4l) over
�1

|b1|2 ≤ C1

∫
�1

(|v1(s,t)|2 + |∇v1(s,t)|)
exp(−|x ′ − a1|2/4l)

(4πl)n/2 dx ′ + C1 exp(−|y0|2/C1).

(5.6)
Note that here we used the fact that the integral of (4πl)n/2 exp(−|x ′ − a1|2/4l) over
�1 can be bounded below by a constant, on account of the fact that l is bounded
independently of s and t , and the outer radius in the definition of�1 is bounded below
by 3(s2 + δ2)

−1/8 which, by choice of s2 and δ2, we can assume to be greater than 2r1
say. Since b1 is also constant we rearrange to obtain the above identity. We want to
now control the integral terms on the right hand side. First we observe that |a1| ≥ c|y0|
for some constant depending only on P . This follows from the fact that we assumed
y0 was closer to P1 than P2, and hence lies in some fixed conical neighbourhood of
P1. Moreover for any 0 ≤ l ≤ 1 we have for any x , a1 ∈ R

2n

2b|x + a1|2 + |x |2
4l

= |x |2
(
1

4l
+ 2b

)
+ 2|a1|2b + 4bx · a1

≥ |x |2
(
1

4l
+ 2b

)
+ 2|a1|2b − 16bl + 1

8l
|x |2 − 32b2l

16bl + 1
|a1|2

≥ |x |2
8l

+ 2b|a1|2
16bl + 1

.

Furthermore for x ∈ �1 we have |x | ≥ 1, so by (5.4)

|∇v1(s,t)|2 ≤ |x |2|∇v1(s,t)|2 ≤ C
(
(s + t)|x |2 + e−2b|x |2) .

Hence for some C1 = C1(D1, D3, P) we have

∫
�1

|∇v1(s,t)|2
e−|x ′−a1|2/4l

(4πl)n/2 dx ′ ≤ C1

∫
�1

(
(s + t)|x ′|2 + e−2b|x ′|2) e−|x ′−a1|2/4l

(4πl)n/2 dx ′

≤ C1(s + t) + C1

∫
Rn

e−b|x ′|2 e−|x ′−a1|2/4l

(4πl)n/2 dx ′

≤ C1(s + t) + C1

∫
Rn

e−b|x ′+a1|2 e
−|x ′|2/4l

(4πl)n/2 dx
′

≤ C1(s + t) + C1e
−|a1|2/C1

∫
Rn

e−|x ′|2/8l

(4πl)n/2 dx
′

≤ C1

(
(s + t) + e−|y0|2/C1

)
.

In the first line we used the fact that integrating |x ′|2 against (4πl)n/2 exp(−|x ′ −
a1|2/4l) over Rn can be bounded in terms of the scale l, which we observed earlier is
bounded by 1/2. Similarly, using (5.4) again, we can estimate
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|v1(s,t)|2 ≤ C1

(
(t + s)|x |4 + e−2b|x |2) .

So an entirely analogous calculation establishes the estimate

∫
�1

|v1(s,t)|2
e−|x ′−a1|2/4l

(4πl)n/2 dx ′ ≤ C1

(
(s + t) + e−|y0|2/C1

)
.

Therefore from (5.6) we have

|b1|2 ≤ C1

(
(s + t) + e−|y0|2/C1

)
,

so choosing s2 and δ2 depending on D1, D2, P, r0, ν and b we have that for all s ≤ s2
and t ≤ δ2 we have

|b1| = dist(y0, P) ≤ ν + C1e
−|y0|2/C1 .

We next want to show that by possibly increasing r1, and decreasing s1 and δ1 if
necessary, that we also have the estimate

�̃s
t (y0, r) ≤ 1 + ε

2
+ ν

for any r ≤ 2. We have

�̃s
t (y0, r) =

∫
L̃s
t

1

(4πr2)n/2 exp

(−|x − y0|2
4r2

)
dHn

=
∫
Ls
t

1

(4π(2(s + t))r2)n/2 exp

(−|x − √
2(s + t)y0|2

4r2(2(s + t))

)
dHn

= �s
t (

√
2(s + t)y0,

√
2(s + t)r).

Applying the monotonicity formula we have

�s
t (

√
2(s + t)y0,

√
2(s + t)r) ≤ �s

0(
√
2(s + t)y0,

√
2(s + t)r2 + t),

so we find, recalling that l = t/2(s + t)

�̃s
t (y0, r) ≤

∫
Ls

1

(4π(2(s + t)r2 + t))n/2 exp

(−|x − √
2(s + t)y0|2

4(2(s + t)r2 + t)

)
dHn

=
∫

	(s,t)

1

(4π(r2 + l))n/2 exp

(−|x − y0|2
4(l + r2)

)
dHn

=
∫

	(s,t)
�(y0, l + r2)dHn .
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1494 T. Begley, K. Moore

Therefore by splitting up the integral as before and estimating exactly analogously we
have

�̃s
t (y0, r) ≤

∫
	

(s,t)
1

�(y0, l + r2)dHn + C1 exp

(−|y0|2
C1

)

≤
∫

�1

exp
(−|x ′−a1|2

4(l+r2)

)
(4π(l + r2))n/2

√
det(gi j dx

′ + C1 exp

(−|y0|2
C1

)

≤ 1 + C1

∫
�1

|∇v1(s,t)|2
exp

(−|x ′−a1|2
4(l+r2)

)
(4π(l + r2))n/2 dx

′ + C1 exp

(−|y0|2
C1

)

≤ 1+C1(s + t)+C1

∫
Rn

e−2b|x ′|2 exp
(−|x ′−a1|2

4(l+r2)
)

(4π(l + r2))n/2 dx+C1 exp

(−|y0|2
C1

)

= 1 + C1(s + t) + C1

∫
Rn

e−2b|x ′+a1|2
exp

( −|x ′|2
4(l+r2)

)
(4π(l + r2))n/2 dx

+ C1 exp

(−|y0|2
C1

)

We want to estimate the exponential terms and pull out an exponential factor in |a1|
so we estimate

2b|x + a1|2 + |x |2
4(l + r2)

≥ |x |2 8b(l + r2) + 1

4(l + r2)
+ 2b|a1|2 − 16b(l + r2) + 1

8(l + r2)
|x |2

− 32b2(l + r2)

16b(l + r2) + 1
|a1|2

= |x |2
8(l + r2)

+ 2b|a1|2
16b(l + r2) + 1

≥ |x |2
8(l + r2)

+ |a1|2
C1

whereweused the fact that l and r are both bounded independently of s and t . Therefore
putting this together we have

�̃s
t (y0, r) ≤ 1 + C1(s + t) + C1e

−|a1|2/C1

∫
Rn

e−|x |2/8(l+r2)

(4π(l + r2))n/2 dx + C1e
−|y0|2/C1

≤ 1 + C1(s + t) + C1e
−|y0|2/C1 .

Evidently an appropriate choice of r1, s2 and δ2 yields the required result. ��
The following twoLemmas show that we have additional control in annular regions,

specifically on normal deviation, curvature, Lagrangian angle and the primitive for the
Liouville form.
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On short time existence of Lagrangian… 1495

Lemma 5.5 Let Fs
t : Ls → R

2n be the normal deformation such that Ls
t = Fs

t (Ls).
We also define F̃s

t := (2(s + t))−1/2Fs
t so that L̃s

t = F̃ s
t (Ls). Then there exist r2, δ3,

s3 and K < ∞ such that if t ≤ δ3 and s ≤ s3 then

∣∣∣F̃ s
0 (x) − F̃ s

t (x)
∣∣∣ ≤ K whenever F̃s

0 (x) ∈ A
(
r2, (s + t)−1/8/4

)
.

Proof By the proximity lemma 5.4 we may choose r2 ≥ 1, δ3 and s3 such that if
t ≤ δ3 and s ≤ s3 then

�s
t (x, r) ≤ 1 + ε0

for all r ≤ 2
√
2(s + t) and x ∈ A

(
r2

√
2(s + t),

√
2(s + t)3/8

)
. Hence by White’s

regularity theorem (Theorem 2.2) we can find a C such that

∣∣∣∣dF
s
t (p)

dt

∣∣∣∣ = | �H | ≤ C√
t
,

whenever Fs
t (p) ∈ A

(
2r2

√
2(s + t),

√
2(s + t)(s + t)−1/8/2

)
. Therefore, choosing

a larger r2 and smaller s3, δ3 if necessary we obtain, by the fundamental theorem of
calculus, ∣∣Fs

t (p) − Fs
0 (p)

∣∣ ≤
∫ t

0

C√
s
ds = 2C

√
t,

whenever

Fs
0 (p) ∈ A

(
r2(2(s + t))1/2, (2(s + t))1/2(s + t)−1/8/4

)
,

which establishes the result. ��
Lemma 5.6 There are δ4 > 0 and s4 > 0 such that for 0 < s ≤ s4 and t < δ4

|As
t (x)| + |θ st (x)| + |βs

t (x)| ≤ D4 ∀x ∈ Ls
t ∩ A(1/3, 3). (5.7)

Proof The estimate is clearly true for t = 0 by assumption (H2).Moreover, by (H4)we
can assume that for s sufficiently small, each of the Ls is the graph of a function with
small gradient in the region A(1/4, 4). Applying Lemma 8.1 we find that Ls remains
graphical with small gradient in A(2/7, 7/2) for some short time, which implies that
|θ st | ≤ C for δ4 chosen small enough.

That |As
t | is bounded follows from Lemma 8.1 and Corollary 8.4, since Lemma 8.1

implies small gradient for a short time, which allows us to apply Corollary 8.4 to get
uniform curvature bounds for some short time in A(1/3, 3).

Since |θ st | and |As
t | are both bounded, we have from the evolution equations of βs

t
(see Lemma 3.1) that ∣∣∣∣dβ

s
t

dt

∣∣∣∣ ≤
∣∣∣〈J x, �H 〉

∣∣∣ + 2|θ st | ≤ C.

Hence for some suitable short time, |βs
t | also remains bounded in A(1/3, 3). ��

123



1496 T. Begley, K. Moore

The last of the technical lemmas in this section uses the monotonicity formula of
Sect. 3 to show that after waiting for a short time dependent on s, we can find times at
which the scaled flow L̃s

t is close to a self-expander in an L2 sense. We later use this
in the proof of the main theorem to get estimates on the density ratios via the stability
result.

Lemma 5.7 Let a > 1. Let q1 be as given by Lemma 5.3, and set q := q1/a. Then
for all η > 0 and R > 0 there exist δ5 > 0, s5 > 0 such that for all s ≤ s5 and
qs ≤ T ≤ δ5 we have

1

(a − 1)T

∫ aT

T

∫
L̃s
t ∩BR

| �H − x⊥|2dHndt ≤ η.

Proof Fix R > 0, η > 0. Suppose s ≤ s5 and qs ≤ T ≤ δ5, with δ5 and s5 yet to be
determined. Furthermore, we set T0 := R2(s + aT ) + aT . Throughout the proof, we
denote by C a constant which depends on a, R and q, but not on T or s. We estimate

1

(a − 1)T

∫ aT

T

∫
L̃s
t ∩BR

| �H − x⊥|2dHndt

= 1

(a − 1)T

∫ aT

T
(2(s + t))−n/2−1

∫
Ls
t ∩BR

√
2(s+t)

|2(s + t) �H − x⊥|2dHndt.

(5.8)

Now supposing that s5 and δ5 are small enough we can ensure that R
√
2(s + t) ≤ 2.

Moreover on BR
√
2(s+t) we have

(T0 − t)n/2ρ0,T0(x, t) = 1

(4π)n/2 exp

(
− |x |2
4(T0 − t)

)

≥ 1

(4π)n/2 exp

(
− R22(s + t)

4(T0 − t)

)
.

Since T0 − t = R2(s + aT ) + aT − t ≥ R2(s + aT ) ≥ R2(s + t), it follows that

(T0 − t)n/2ρ0,T0(x, t) ≥ 1

(4π)n/2 exp

(
−1

2

)
.

Hence we can continue estimating (5.8) using the localized monotonicity formula of
Lemma 3.2 (φ denotes the cut-off function given in that lemma which is 1 on B2 and
0 outside of B3)
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On short time existence of Lagrangian… 1497

(5.8) ≤ C

T

∫ aT

T
(s + t)−(n+2)/2(T0 − t)n/2

∫
Ls
t

φ|2(s + t) �H − x⊥|2ρ0,T0dHndt

≤ C

T

∫ aT

T
(s + T )−(n+2)/2(T0−T )n/2

∫
Ls
t ∩A(2,3)

|βs
t +2(s+t)θ st |2ρ0,T0dHndt

+ C

T
(s + T )−(n+2)/2(T0 − T )n/2

∫
Ls
T

φ|βs
T + 2(s + T )θ sT |2ρ0,T0dHn .

(5.9)

Now using the localized monotonicity a second time we have the estimate

d

dt

∫
Ls
t

φ|βs
t + 2(s + t)θ st |2ρ0,T0dHn ≤ C

∫
Ls
t ∩A(2,3)

|βs
t + 2(s + t)θ st |2ρ0,T0dHn

so

∫
Ls
T

φ|βs
T + 2(s + T )θ sT |2ρ0,T0dHn ≤

∫
Ls
0

φ|βs
0 + 2sθ s0 |2ρ0,T0dHn

+ C
∫ T

0

∫
Ls
t ∩A(2,3)

|βs
t +2(s+t)θ st |2ρ0,T0dHndt,

hence

(5.9) ≤ C

T
(s + T )−(n+2)/2(T0 − T )n/2

∫
Ls
0

φ|2sθ s0 + βs
0|2ρ0,T0dHn

+ C

T
(s + T )−(n+2)/2(T0−T )n/2

∫ aT

0

∫
Ls
t ∩A(2,3)

|2(s+t)θ st +βs
t |2ρ0,T0dHndt.

Now T0 − T ≤ C(s + T ), with C depending only on R and a, so estimating the terms
in front of the integrals we have

(5.9) ≤ C

T (s + T )

∫
Ls
0

φ|2sθ s0 + βs
0|2ρ0,T0dHn

+ C

T (s + T )

∫ aT

0

∫
Ls
t ∩A(2,3)

|2(s + t)θ st + βs
t |2ρ0,T0dHndt

=: A + B.

We first estimate B. Notice that by Lemma 5.6 we have

|2(s + t)θ st + βs
t |2 ≤ (

2(s + t)|θ st | + |βs
t |

)2 ≤ C((s + t) + 1)2.
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1498 T. Begley, K. Moore

Hence, we can estimate

B ≤ C((s + aT ) + 1)2

T (s + T )

∫ aT

0

∫
Ls
t ∩A(2,3)

ρ0,T0dHndt

≤ C((s + aT ) + 1)2

T (s + T )

∫ aT

0

∫
Ls
t ∩A(2,3)

|x |4ρ0,T0dHndt

= C((s + aT ) + 1)2

T (s + T )

∫ aT

0
(T0 − t)2

∫
(T0−t)−1/2(Ls

t ∩A(2,3))
|x |4ρ0,1dHndt

≤ C((s + aT ) + 1)2

T (s + T )
T 3
0 sup

t∈[0,aT ]

∫
(T0−t)−1/2(Ls

t ∩A(2,3))
|x |4 exp

(
−|x |2

4

)
dHn .

(5.10)

We note that T0 ≤ (R2(1/q +a)+a)T = CT , T0 ≤ C(s + T ) and T0 ≥ R2(s +aT )

so we can estimate

(5.10) ≤ C(T0 + 1)2T0 sup
t∈[0,aT ]

∫
(T0−t)−1/2Ls

t ∩A(2,3)
|x |4 exp

(
−|x |2

4

)
dHn

≤ C(T0 + 1)2T0,

where we can estimate the supremum by a uniform constant because Ls
t all have

bounded area ratios with a uniform constant. Moreover T0 ≤ R2δ5(1/q + a) + aδ5
so that by possibly decreasing δ5 we can ensure that B ≤ η/2.

We next estimate A,

A ≤ C

T (s + T )

∫
Ls
0∩B3

|2sθ s0 + βs
0|2ρ0,T0dHndt. (5.11)

First recall that if βs is primitive for the Liouville form on some Ls , then βs
l := l−2βs

is primitive for the Liouville form on l−1Ls . From here on we supress the subscript 0
of the βs and θ s since we only ever integrate over the manifolds Ls

0, and we instead
use a subscript l to denote the rescaling factor of the βs . We define

l := √
2(s + T ) σ := s

s + T

then

(5.11) = C(s + T )

T

∫
l−1(Ls

0∩B3)
|σθ s + βs

l |2ρ0,l−2T0dHndt

≤ C
∫
l−1(Ls

0∩B3)
|σθ s + βs

l |2ρ0,l−2T0dHn,
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On short time existence of Lagrangian… 1499

since T ≥ qs, so we can absorb (s + T )/T into the constant. Define

F(s, T ) :=
∫
l−1(Ls

0∩B3)
|σθ s + βs

l |2ρ0,l−2T0dHn .

Notice that from the definition of T0 we can find C > 0 independent of T and s such
that l−2T0 ∈ [C−1,C]. We want to show that by possibly again decreasing s5 and δ5,
we can ensure

F(s, T ) ≤ η/2.

Seeking a contradiction, suppose that this is not the case. Then we can find sequences
si and Ti both converging to 0 with qsi ≤ Ti and such that

F(si , Ti ) > η/2.

After possibly extracting a subsequence which we don’t relabel, we may assume that
l−2
i T0 → T1. We split the rest of the proof into two cases.
Case 1 Suppose that (after possibly extracting a further subsequence) we have that
σi → σ > 0. Then by (H3) we have

l−1
i Lsi

0 = σ
1/2
i L̃si

0 → σ 1/2	

in C1,α . Therefore we have

lim
i→∞ F(Ti , si ) = lim

i→∞

∫
σ
1/2
i L̃

si
0 ∩l−1

i B3
|σiθ si + β

si
li

|2ρ0,l−2
i T0

dHn

= lim
i→∞ σ 2

i

∫
L̃
si
0 ∩(2si )−1/2B3

|θ̃ si + β̃si |2ρ0,l−2
i σ−1

i T0
dHn = 0,

because |θ̃ si + β̃si | is bounded by D2(1+ |x |2) on B3(2si )−1/2 , which means that since

l−2
i σ−1

i T0 → σ−1T1 > 0 the contribution to the integral outside some fixed large ball
is small uniformly in i . Moreover by (H3) we have limi→∞ |θ̃ si + β̃si |2 = 0 locally,
so inside this large ball the integral can be made as small as desired.
Case 2 Suppose now that after possibly passing to subsequence, which we do not
relabel, we have σi → 0. Then, with r0 defined as in property (H4) of the family Ls ,
we find

lim
i→∞

∫
l−1
i (L

si
0 ∩Br0

√
si )

|σiθ si + β
si
li

|2ρ0,l−2
i T0

dHn

= lim
i→∞

∫
σ
1/2
i L̃

si
0 ∩Br0

√
σi /2

|σiθ si + β
si
li

|2ρ0,l−2
i T0

dHn

= lim
i→∞ σ 2

i

∫
L̃
si
0 ∩Br0/

√
2

|θ̃ si + β̃si |2ρ0,σ−1
i l−1

i T0
dHn = 0,
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1500 T. Begley, K. Moore

because |θ̃ si + β̃si |2 → 0 locally, and ρ is bounded. So to estimate limi→∞ F(Ti , si )
we need only control the integral in the annulus A(r0

√
σi/2, 3l

−1
i ). We first notice

that by (H4), provided i is large enough, l−1
i Lsi ∩ A(r0

√
σi/2, 3l

−1
i ) is graphical over

P , and if vi is the function arising from this decomposition we have the estimate

|vi (x ′)| + |x ′||∇vi (x
′)| + |x ′|2|∇2

vi (x
′)| ≤ D3

(
li |x ′|2 + σ

1/2
i e−b|x ′|2/2σi

)
.

In the graphical region, the normal space to the graph is spanned by the vectors
n j := (−∇v

j
i , e j ) for j = 1, . . . , n where e j denotes the vector in R

n whose j th

entry is 1, and all other entries are 0, and v
j
i is the j th coordinate of vi . Then given an

orthonormal basis for the normal space ν1, . . . , νn we have ν j = ∑n
k=1 α jknk , where

α jk are fixed real numbers denoting the coefficients in the basis expansion of ν j in
terms of the nk . It then follows that

|x⊥| ≤ C
n∑
j=1

|〈x, n j 〉|,

where C depends only on the α jk . Now

〈x, n j 〉 =
〈
(x ′, vi (x ′)), (−∇v

j
i , e j )

〉

= −
〈
x ′,∇v

j
i (x

′)
〉
+ v

j
i (x

′)

from which it follows that

|x⊥| ≤ C
(|vi (x ′)| + |x ′||∇vi (x

′)|) .

Therefore
|∇β

si
li

| = |x⊥| ≤ C
(
li |x ′|2 + σ

1/2
i

)
. (5.12)

Using this estimate we can control β
si
li

independently of i on the annular region

A(r0
√

σi/2, 3l
−1
i ) ∩ l−1

i Lsi . Indeed suppose that x ∈ A(r0
√

σi/2, 3l
−1
i ) ∩ l−1

i Lsi ,
then there is a corresponding x ′ ∈ A(r0

√
σi/2, 3l

−1
i ) ∩ P such that x = x ′ + vi (x ′).

Define

x ′
i := r0

√
σi√
2

x ′

|x ′| and xi := x ′
i + vi (x

′
i ).

Note that xi of course depends on the original choice of x as well as i . We may now
define a curve in l−1

i Lsi by setting

γ (t) := x ′
i + t (x ′ − x ′

i ) + vi (x
′
i + t (x ′ − x ′

i )).
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By the fundamental theorem of calculus we can write

β
si
li

(x) = β
si
li

(xi ) +
∫ 1

0

d

dt
β
si
li

(γ (t))dt

≤ β
si
li

(xi ) +
∫ 1

0
|∇β

si
li

(γ (t))||γ ′(t)|dt,

and furthermore
|γ ′(t)| ≤ |x ′ − x ′

i | + |∇vi ||x ′ − x ′
i | ≤ C |x |

so

β
si
li

(x) ≤ β
si
li

(xi ) + C |x |
∫ 1

0
li |x ′

i + t (x ′ − x ′
i )|2 + σ

1/2
i dt

≤ β
si
li

(xi ) + C
(
li |x |3 + σ

1/2
i

)
.

Now β
si
li

(xi ) = σi β̃
si (σ

1/2
i xi ), moreover since |xi | is bounded independently of i or

the original choice of |x | we have from property (H3) of Ls that

lim
i→∞ β̃si

(
σ
1/2
i xi

)
+ θ̃ si

(
σ
1/2
i xi

)
= 0

uniformly in x . Thus

lim
i→∞ β

si
li

(xi ) = − lim
i→∞ σi θ̃

si
(
σ
1/2
i xi

)
= 0

uniformly in x as θ̃ si is bounded and σi → 0. Therefore we may bound the term
β
si
li

(xi ) by some sequence bi with bi → 0. Consequently we have the estimate

|βsi
li

(x)| ≤ C
(
li |x |3 + σ

1/2
i |x |

)
+ bi

on A
(
r0

√
σi/2, 3l

−1
i

)
∩ l−1

i Lsi , hence

lim
i→∞ F(Ti , si ) = lim

i→∞

∫
l−1
i Lsi ∩A

(
r0

√
σ/2,3l−1

i

) |σiθ si + β
si
li

|2ρ0,l−2
i T0

dHn

= lim
i→∞

∫
l−1
i Lsi ∩A

(
r0

√
σ/2,3l−1

i

) |βsi
li

|2ρ0,l−2
i T0

dHn

≤ lim
i→∞C

(
l2i + σi + b2i

) ∫
l−1
i Lsi

(|x |6 + |x |2 + 1)ρ0,l−2
i T0

dHn = 0,

where we again used the fact that l−2
i T0 → T1 > 0, so that outside of some large ball

the contribution to the integral is very small. This limit being zero is a contradiction,
so we are done. ��

123



1502 T. Begley, K. Moore

We may now embark on the proof of Theorem 5.1. Changing scale, to prove the
main theorem it would in fact suffice to show the following (which is very slightly
stronger due to the bound on the scale of the density ratios),

Theorem (Rescaledmain theorem) There exist s0, δ0 and τ such that if t ≤ δ0, r2 ≤ τ

and s ≤ s0, then
�̃s

t (x0, r) ≤ 1 + ε0

for all x0 with |x0| ≤ (2(s + t))−1/2.

Let q1 be defined as in Lemma 5.3, and recall that q1 < 1. If we set τ := q1/(2(q1+
1)), then the rescaled version of Lemma 5.3 implies

Lemma (Rescaled short-time existence) If s ≤ s1, t ≤ q1s and r2 ≤ τ then

�̃s
t (y0, r) ≤ 1 + ε0

|y0| ≤ (2(s + t))−1/2.

Similarly the rescaled Lemma 5.2 tells us that

Lemma (Rescaled far from origin) If r2 ≤ τ and q1s ≤ t ≤ δ1

�̃s
t (y0, r) ≤ 1 + ε0

whenever K0 ≤ |y0| ≤ (2(s + t))−1/2.

Thus to prove the rescaled main theorem, it suffices to show that for appropriately
chosen s0, δ0 and τ the following holds true: if r2 ≤ τ , s ≤ s0, t ≤ δ0 and t ≥ q1s
then

�̃s
t (y0, r) ≤ 1 + ε0

whenever |y0| ≤ K0. This is what we now show.

Proof of Theorem 5.1. For each s we define

Ts := sup
{
T |�̃s

t (y0, r) ≤ 1 + ε0 ∀r2 ≤ τ, t ≤ T, |y0| ≤ K0

}
.

We now claim that we can find δ0 > 0 and s0 > 0 such that Ts ≥ δ0 for all s ≤ s0.
Indeed, with τ = q1/(2(q1 + 1)) as above, we choose a > 1 with a < (1 + 2τ). Let
C0 be the constant of White’s local regularity theorem (Theorem 2.2), and set

C̃ := C0

√
2(a + 3)√
q1(a − 1)

. (5.13)

We next let r3 := max{r0, r1, r2, 1}, where r0, r1, and r2 are as in, respectively, the con-
struction of the approximating family, Lemmas 5.4 and 5.5. Let R := √

1 + 2q1K0+r3
and note that R ≥ 2. Next fix α ∈ (0, 1) as in the proof of Lemma 5.3, and
ε = ε(	, ε0, α) as given by Lemma 8.2. We apply the stability result, Theorem 4.2
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with R = R; r = r3; C = max{C1,C} the constants from Lemma 5.4, and the
construction of the approximating family respectively; M = C̃ ; τ = τ ; 	 = 	 and
ε = ε. Thus we obtain R̃ ≥ R, η > 0 and ν ≥ 0 as in the theorem. Apply Lemma 5.7
with η = η/2 and R = R̃. This gives s5 and δ5 such that the lemma holds. Next apply
Lemma 5.4 with ν to obtain s2 and δ2. We now let s0 := min{s1, s2, s3, s4, s5} and
δ0 := min{δ1, δ2, δ3, δ4, δ5}. We finally possibly decrease s0 and δ0 slightly to ensure
that

(s0 + δ0)
−1/8 ≥ 2R̃.

This will ensure that in the annular region A(r3, R̃) we have all of the estimates of
the intermediate lemmas of this section. We now claim that these s0 and δ0 are the
required constants. Specifically we claim that for all s ≤ s0 we have Ts ≥ δ0. Indeed,
suppose that this were not the case and that for some s ≤ s0 we have Ts < δ0. Our
goal is to show that the hypotheses of Theorem 4.2 are satisfied by L̃s

t for some t
close to Ts , so that we can conclude L̃s

t is C
1,α close to 	. Lemma 8.2 will then give

density ratio bounds for times past Ts , resulting in a contradiction. To this end we
define T := Ts/a, then since T < Ts we have for all t ∈ [T, Ts)

�̃s
t (x, r) ≤ 1 + ε0,

for all r2 ≤ τ and x ∈ BK0 . In fact, as has already been observed, the same is true for
all |x | ≤ (s + t)−1/8, so in particular for all |x | ≤ 2R̃. Let L̂s

l denote the Lagrangian
mean curvature flow with initial condition L̃s

T . Let σ
2 = 2(s + T ), then we can write

L̃s
T = σ−1Ls

T . Then we may write L̂s
l as

L̂s
l = σ−1Ls

T+σ 2l =
√
2(T + s + σ 2l)√

2(T + s)
L̃2
T+s+σ 2l = √

1 + 2l L̃s
T+σ 2l .

This implies the density ratio control

�̂s
l (x, r) ≤ 1 + ε0,

for all l such that T +σ 2l ∈ [T, Ts), r2 ≤ τ and x ∈ B2R̃ . By White’s local regularity
theorem (Theorem 2.2) we get curvature bounds of the form

| Âs
l | ≤ C0√

l
l ≤ τ, on BR̃,

or, scaled back to the original scale this means

|As
t | ≤ C0√

t − T
, (5.14)

on B
σ R̃ for all t < Ts with T ≤ t ≤ T + 2(s + T )τ = (1 + 2τ)T + 2τ s. Notice in

particular that
Ts = aT ≤ (1 + 2τ)T + 2τ s,

123



1504 T. Begley, K. Moore

so the above estimate always holds up to time Ts . Let t0 := T (a + 1)/2. Then from
(5.14) we see

|As
t0 | ≤ C0√

t0 − T
= C0

√
2√

(a − 1)T
=

C0

√
2(a+3)
a−1√

(a + 3)T
=

C0

√
2(a+3)
a−1√

2(t0 + T )
.

Recall that T ≥ q1s and q1 < 1 so

|As
t0 | ≤

C0

√
2(a+3)
a−1√

2(t0 + q1s)
≤ C̃√

2(t0 + s)
,

on B
σ R̃ , where C̃ is defined as in (5.13). Similarly, if t > 0 is such that t0 + t ≤ Ts

then

|As
t0+t | ≤ C0√

t0 + t − T
≤ C0

√
2√

(a − 1)T + t
≤ C̃√

2(t0 + t + s)
.

In other words, for each t ∈ [t0, Ts) we have

|As
t | ≤ C̃√

2(s + t)
on B

σ R̃,

which implies that for each t ∈ [t0, Ts) we have

| Ãs
t | ≤ C̃ on BR̃ .

This means that L̃s
t satisfies condition (i) of Theorem 4.2 with M = C̃ and R̃ = R̃ for

every t ∈ [t0, Ts). Next, applying Lemma 5.7, we may select t1 ∈ [t0, Ts) with
∫
L̃s
t1

∩BR̃

| �H − x⊥|2dHn ≤ η.

So L̃s
t1 also satisfies condition (iii) of Theorem 4.2. Condition (iv) of Theorem 4.2

holds for L̃s
t1 by Lemma 5.4, and condition (ii) holds by definition of Ts as t1 < Ts .

Hence Theorem 4.2 implies that L̃s
t1 is ε-close to 	 in C1,α(BR̃). Redefine L̂s

l to be

the Lagrangian mean curvature flow with initial condition L̃s
t1 . As before we know

that we can write
L̂s
l = √

1 + 2l L̃s
t1+2(s+t1)l

.

Then Lemma 8.2 applied to L̂s
l says that

�̂s
l (x, r) ≤ 1 + ε0 r2, l ≤ q1
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for |x | ≤ R̃ − 1. Since R̃ ≥ R = √
1 + 2q1K0 + r3 and r3 ≥ 1, this means that the

same is true for |x | ≤ √
1 + 2q1K0. Rescaling, this is equivalent to

�̃s
t1+2(s+t1)l

(
x√

1 + 2l
,

r√
1 + 2l

)
≤ 1 + ε0,

for r2, l ≤ q1 and |x | ≤ √
1 + 2q1K0. Or in other words

�̃s
t (x, r) ≤ 1 + ε0,

for r2 ≤ q1/(1 + 2q1) = τ , |x | ≤ K0 and t1 ≤ t ≤ (1 + 2q1)t1 + 2q1s. However,
(1 + 2q1)t1 + 2q1s > at1 > aT = Ts , which contradicts the definition of Ts . ��

6 Short-time existence

In this section we prove the following short time existence result using Theorem 5.1.

Theorem 6.1 Suppose that L ⊂ C
n is a compact Lagrangian submanifold ofCn with

a finite number of singularities, each of which is asymptotic to a pair of transversally
intersecting planes P1 + P2 where neither P1 + P2 nor P1 − P2 are area minimizing.
Then there exists T > 0 and a Lagrangian mean curvature flow (Lt )0<t<T such that
as t ↘ 0, Lt → L as varifolds and in C∞

loc away from the singularities.

Proof For simplicity we suppose that L has only one singularity at the origin. The
case where L has more than one follows by entirely analogous arguments. By standard
short time existence theory for smooth compact mean curvature flow, for all s ∈ (0, c]
there exists a Lagrangian mean curvature flow (Ls

t )0≤t≤Ts with Ts > 0. We claim
that there exists a T0 > 0 such that Ts ≥ T0 for all s sufficiently small, and that
furthermore, we have interior estimates on |A| and its higher derivatives for all t > 0,
which are independent of s. By virtue of Lemma 8.1, we can apply Corollary 8.4 on
small balls everywhere outside B1/3 to get uniform curvature bounds outside of B1/2
up to time min{Ts, δ} where δ > 0 is independent of s. Uniform estimates on the
higher derivatives then immediately follow by standard parabolic PDE theory.

To obtain the desired bounds on B1/2 we use Theorem 5.1. Let ε0 > 0 be the
constant of Brian White’s local regularity theorem. Then Theorem 5.1 says that there
exist s0, δ0 and τ such that for all s ≤ s0, t ≤ δ0, r2 ≤ τ t and x0 ∈ B1/2 we have

�s
t (x0, r) = �s(x0, t + r2, r) ≤ 1 + ε0.

This implies that for all s ≤ s0, t ≤ δ0 and r2 ≤ τ t we have �s(x0, t, r) ≤ 1 + ε0.
We now fix s ≤ s0, t0 < min{δ0, Ts}, and ρ ≤ min{1/4,√t0}. Then it follows that
B2ρ(x0) ⊂ B1, and furthermore that

�s(x, t, r) ≤ 1 + ε0
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for all r ≤ τρ2, and (x, t) ∈ B2ρ(x0) × (t0 − ρ2, t0]. Then it immediately follows
from White’s theorem that

|As
t (x)| ≤ C√

t − t0 + ρ2

for all (x, t) ∈ Bρ(x0) × (t0 − ρ2, t0], where C depends only on τ and ε0. These
estimates are then uniform in s for s ≤ s0. Moreover, these curvature bounds, along
with those outside of the ball B1/2, imply that Ts ≥ min{δ, δ0}.

Because the estimates are independent of s, they pass to the limit in the varifold
topology when we take a subsequential limit of the flows and so we obtain a limiting
flow (Lt )0<t<T0 , for which Lt → L as varifolds.

Note that away from the singularities, we can obtain uniform curvature estimates
on |A| thanks to Corollary 8.4, so it follows that (Lt ) attains the initial data L in C∞

loc
away from the singular points. ��

7 Construction of approximating family

In this section, we consider a Lagrangian submanifold L of Cn with a singularity
at the origin which is asymptotic to the pair of planes P considered in Sect. 4. We
approximate L by gluing in the self-expander 	 which is asymptotic to P at smaller
and smaller scales in place of the singularity. We will show that this yields a family
of compact Lagrangians, exact in B4, which satisfy the hypotheses (H1)-(H4) given
in Sect. 5 which are required to implement the analysis in that section.

Since L is conically singular we may write L ∩ B4 as a graph over P ∩ B4 (possibly
rescaling L so that this is the case). We may further apply the Lagrangian neighbour-
hood theorem (its extension to cones was proved by Joyce, [7, Theorem4.1]), so that
we may identify L ∩ B4 with the graph of a one-form γ on P . Recall that the man-
ifold corresponding to the graph of such a one-form is Lagrangian if and only if the
one-form is closed.

Moreover, since we have assumed that L is exact inside B4, there exists u ∈
C∞(P ∩ B4) such that du = γ . Since we know that γ must decay quadratically,
we can choose a primitive for γ which has cubic decay, i.e.,

|∇ku(x)| ≤ C |x |3−k . (7.1)

We saw in Theorem 4.1 that there exists a unique, smooth zero-Maslov self-expander
asymptotic to P . We may also identify the self-expander outside a ball of radius r0
with the graph of a one-form over P and, since a zero-Maslov class Lagrangian self-
expander is globally exact, there exists a function v ∈ C∞(P\Br0) such that the
self-expander is described by the exact one-form ψ = dv on P\Br0 . Further, Lotay
and Neves proved [10, Theorem 3.1]

‖v‖Ck (P\Br ) ≤ Ce−br2 for all r ≥ r0. (7.2)
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We will glue 	s := √
2s	 into the initial condition L to resolve the singularity. Our

newmanifold, Ls , will be the rescaled self-expander	s inside Br0
√
2s , the manifold L

outside B4 andwill smoothly interpolate between the two on the annulus A(r0
√
2s, 4).

To do this, we will glue together the primitives of the one-forms corresponding to
these manifolds, before taking the exterior derivative. This gives us a one-form that
will describe Ls on the annulus A(r0

√
2s, 4), which ensures Ls is still Lagrangian and

is exact in B4. We will then show that this family satisfies the properties (H1)-(H4).
Let ϕ : R+ → [0, 1] be a smooth function satisfying ϕ ≡ 1 on [0, 1] and ϕ ≡ 0 on

[2,∞). Consider the one-form given by, for r0
√
2s ≤ |x | ≤ 4, 0 < s ≤ c

γs(x) = dws(x) = d
[
ϕ(s−1/4|x |)2sv(x/

√
2s) + (1 − ϕ(s−1/4|x |))u(x)

]
, (7.3)

where we have that r0
√
2s < s1/4 < 2s1/4 < 4 holds for all s ≤ c. Notice that

in particular we must have c < 1. Then γs(x) ≡ ψs(x) := √
2sψ(x/

√
2s), the

one-form corresponding to the rescaled self-expander 	s for |x | < s1/4 and γs ≡ γ

for |x | > 2s1/4. Notice that since γs is exact, it is closed and therefore its graph
corresponds to an exact Lagrangian.

We define the smooth exact Lagrangian Ls by

• Ls ∩ Br0
√
2s = 	s ∩ Br0

√
2s ,

• Ls ∩ A(r0
√
2s, 4) =graph γs ,

• Ls\B4 = L\B4.

We will now show that Ls satisfies (H1)-(H4).
For (H1), notice that both the self-expander and the initial condition individually

satisfy (H1), and so for the rescaled self-expander, we have that

Hn(	s ∩ BR) = Hn((
√
2s	) ∩ BR) = (2s)n/2Hn(	 ∩ BR/

√
2s)

≤ (2s)n/2D1

(
R√
2s

)n

= D1R
n .

Since Ls interpolates between 	s and L on a compact region, Ls satisfies (H1).
We see that (H2) is satisfied because the Lagrangian angle of the initial condition

L and the self-expander 	 are bounded, as is that of the rescaled self-expander 	s

by Lemma 3.1 (i) and the maximum principle, since the Lagrangian angle of P is
locally constant. When we interpolate between the two, we may consider the formula
for the Lagrangian angle of a Lagrangian graph, as seen in [1, p. 5]. This tells us
that a Lagrangian graph inCn (overRn) given by (x1, ..., xn, u1(x), ..., un(x)), where
u : Rn → R, ui := ∂u

∂xi
, has Lagrangian angle

θ =
∑

arctan λi ,

where the λi ’s are the eigenvalues of the Hessian of u. Since the eigenvalues of the
Hessian of u are some non-linear function of the second derivatives of u, if the C2

norm of u is small we have that the Lagrangian angle of the graph is close to that of
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1508 T. Begley, K. Moore

the Lagrangian angle of the plane that u is a graph over. So we can uniformly bound
the Lagrangian angle of the graph. Since in our case, the Lagrangian angle of γs is
given by the sum of arctangents of the eigenvalues of the Hessian of the function ws ,
and, as we will show when we prove (H4), the C2 norm ofws is small, this means that
we can uniformly bound the Lagrangian angle of the graph γs , and so the Lagrangian
angle of Ls .

On the initial condition, since λ = J x , we have that dβL = λ|L = (J x)T .
Therefore, βL is bounded quadratically, and so is the primitive for the Liouville
form of Ls\B(2s1/4). On the self-expander, applying the maximum principle to
Lemma 3.1 (ii), we have βs (the primitive of λ|	s ) is bounded by βP , and so
|βs(x)| ≤ |βP (x)| ≤ C |x |2 for |x | < s1/4. So it remains to check this still holds
where we interpolate. We perform a calculation similar to that in the proof of Lemma
3.1 (ii). We have that, for Ls

t the manifold described by the graph of the one-form
tdws ,

d

dt
λ|Ls

t
=: LJ∇wsλ|Ls

t
= d(J∇ws�λ|Ls

t
) + J∇ws�dλ|Ls

t
.

Since dλ = ω and J∇ws�ω = dws and possibly adding constant to βs
t dependent on

s and t , we have that

dβs
t

dt
= −2ws + 〈x,∇ws〉|Ls

t
,

where dβs
t is equal to the restriction of the Liouville form λ to graph of tγs . Integrating,

we find that

βs = βP − 2ws +
∫ 1

0
〈x,∇ws〉|Ls

t
dt,

where βP is the primitive for λ on P . Now, ws is bounded independently of s by
D(1 + |x |2), using (7.1) and (7.2), as is 〈x,∇ws〉, using Cauchy–Schwarz and the
estimates (7.1) and (7.2) so we find that βs is bounded independently of s on the
annulus A(s1/4, 2s1/4). Therefore, we have that

|θ s(x)| + |βs(x)| ≤ D2(|x |2 + 1).

and so (H2) is satisfied.
To show that (H3) is satisfied, recall that we define Ls as Ls ∩ Br0

√
2s = 	s ∩

Br0
√
2s , L

s\B4 = L\B4 and we interpolate smoothly between the two, which exactly

happens when s1/4 ≤ |x | ≤ 2s1/4. Therefore when we rescale by 1/
√
2s, we have

that L̃s ∩ Br0 ≡ 	. So it remains to check convergence outside this ball.
On the annulus r0 ≤ |x | ≤ 4/

√
2s, L̃s is identified with the graph of the following

one-form

γ̃s(x) = d

[
ϕ(s1/4|x |)v(x) + (1 − ϕ(s1/4|x |))u(

√
2sx)

2s

]
.
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From this expression, noticing that

u(
√
2sx)

2s
≤ C

(2s)3/2x3

2s
= C

√
2sx,

we see that as s → 0, γ̃s → dv = ψ , the one-form whose graph is identified with 	.
This says that, outside Br0 , L̃

s → 	 as s → 0 smoothly. Therefore we actually have
stronger than the required C1,α

loc convergence.
Finally, we check that the second fundamental form of L̃s is uniformly bounded

in s. We have that the second fundamental form of 	 must be bounded, and if A
is the second fundamental form of L , rescaling L by 1/

√
2s means that the second

fundamental form scales by
√
2s. Since

√
2s < 1, we can uniformly bound both

second fundamental forms so that L̃s , which is a combination of both	 and 1/
√
2sL ,

has second fundamental form uniformly bounded in s.
To see (H4), first notice that since we can write Ls ∩ A(r0

√
2s, 4) as a graph over

P ∩ A(r0
√
2s, 4), we have that Ls has the same number of connected components as

P in the annulus A(r0
√
2s, 4). We now must estimate γs . Firstly, note that we have

|∇k(v(x/
√
2s))| ≤ |(2s)−k/2(∇kv)(x/

√
2s)| ≤ C(2s)−k/2e−b|x |2/2s, (7.4)

where we have used (7.2).
We will need different estimates on 2s∇2v(x/

√
2s) and 2s∇3v(x/

√
2s), which we

find as follows.

|2s∇2v(x/
√
2s)| ≤ Ce−b|x |2/2s = C

√
2s

|x |
|x |√
2s

e−b|x |2/2s

= C

√
2s

|x | e−b̃|x |2/2s |x |√
2s

e−b̃|x |2/2s ≤ C̃

√
2s

|x | e−b̃|x |2/2s, (7.5)

where b̃ = b/2 and C̃ = Ce−1/2/
√
b, since the function y �→ ye−by2/2 is bounded

independently of y (by e−1/2/
√
b) on R, and so C̃ is independent of s.

A similar calculation, this time noticing the uniform boundedness of the function
y �→ ye−by/2 for y > 0 we can show that

|2s∇3v(x/
√
2s)| ≤ C

√
2s

|x |2 e
−b|x |2/2s, (7.6)

where we make C (which remains independent of s) larger if necessary and b smaller
(which does not affect the previous estimates).

We have, using the definition in (7.3),

|γs | = |∇ws | = |ϕ′(s−1/4|x |)2s3/4v(x/
√
2s) + ϕ(s−1/4|x |)2s∇[v(x/

√
2s)]

− s−1/4ϕ′(s−1/4|x |)u(x) + (1 − ϕ(s−1/4|x |))∇u(x)|,
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1510 T. Begley, K. Moore

and, using that s3/4 = √
ss1/4 <

√
s since s < 1, (7.1) and (7.4) imply that

|γs | ≤ √
2sCe−b|x |2/2s + √

2sCe−b|x |2/2s + C |x |3−1 + C |x |2

≤ C
[√

2se−b|x |2/2s + |x |2
]
, (7.7)

where we have made C larger.
Now consider

|∇γs | = |∇2ws | = |ϕ′′(s−1/4|x |)2s1/2v(x/
√
2s) + ϕ′(s−1/4|x |)4s3/4∇[v(x/

√
2s)]

+ ϕ(s−1/4|x |)2s∇2[v(x/
√
2s)] − s−1/2ϕ′′(s−1/4|x |)u(x)

− 2s−1/4ϕ′(s−1/4|x |)∇u(x) + (1 − ϕ(s−1/4|x |))∇2u(x)|

Using that on the support of ϕ′ and ϕ′′ we have (s < 1)
√
s < s1/4 ≤ √

2
√
2s/|x |,

and applying the estimates (7.4) and (7.5)

|∇γs | ≤ C

[(√
2s

|x | +
√
2s

|x | +
√
2s

|x |

)
e−b|x |2/2s + |x |3−2 + |x |2−1 + |x |

]

≤ C

[√
2s

|x | e−b|x |2/2s + |x |
]

. (7.8)

Finally, performing a similar computation to those above and combining (7.4), (7.5)
and (7.6) we find that

|∇2γs | ≤ C

[√
2s

|x |2 e
−b|x |2/2s + 1

]
. (7.9)

Combining (7.7), (7.8) and (7.9), we have that

|γs | + |x ||∇γs | + |x |2|∇2γs | ≤ D3

(
|x |2 + √

2se−b|x |2/2s) ,

where D3 is a constant independent of s. Therefore (H4) is satisfied.
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Appendix

We collect in the appendix a few technical results about Mean curvature flow in high
codimension that were used throughout the paper. The first is a graphical estimate.
Specifically, if the initial manifold can be written locally as a graphwith small gradient
in some cylinder, then the submanifold remains graphical in a smaller cylinder and
we retain control on the gradient. To state this more rigorously we first introduce
some notation. The notation and statement of the result are as in [5]. Given any point
x ∈ R

n+k wewrite x = (x̂, x̃), where x̂ is the projection ontoRn and x̃ is the projection
onto R

k . We define the cylinder CR(x0) ⊂ R
n+k by

Cr (x) = {x ∈ R
n+k ||x̂ − x̂0| < r, |x̃ − x̃0| < r}.

Furthermore, we write Bn
r (x0) = {(x̂, x̃0) ∈ R

n+k ||x̂ − x̂0| < r}.
Lemma 8.1 Let (Mn

t )0≤t<T be a smooth mean curvature flow of embedded n-
dimensional submanifolds in R

n+k with area ratios bounded by D. Then for any
η > 0, then there exists ε, δ > 0, depending only on n, k, η, D, such that if x0 ∈ M0
and M0 ∩C1(x0) can be written as graph(u), where u : Bn

1 (x0) → R
k with Lipschitz

constant less than ε, then

Mt ∩ Cδ(x0) t ∈ [0, δ2) ∩ [0, T )

is a graph over Bn
δ (x0) with Lipschitz constant less than η and height bounded by ηδ.

The proof can be found in [5]
Next we prove that if an initial manifold M is close to some smooth manifold 	 in

C1,α , then one gets estimates on the density ratios that are independent of M .

Lemma 8.2 Let 	 be a smooth manifold with bounded curvature and let (Mt )t∈[0,T )

be a solution ofmean curvature flow.Fix ε0 > 0,α < 1. There are ε = ε(	, ε0, α) > 0
andq1 = q1(	, ε0, α) > 0 such that for every R ≥ 2, if M0 is ε-close to	 inC1,α(BR)

then for every r2, t ≤ q1 and y ∈ BR−1 we have

�t (y, r) ≤ 1 + ε0.

Proof This follows immediately from Lemma 8.1. Indeed the curvature bound on 	

means that there is a uniform radius r such that for any x ∈ 	, 	 ∩ Cr (x) is (after
maybe rotating) a graph with small gradient over the tangent plane to 	 at x . By
requiring that ε is small enough we can therefore ensure that any M0 which is ε-close
to 	 in C1,α(Br (x)) is also a graph with small gradient. It only remains to apply
Lemma 8.1. ��

Local curvature estimates for high codimension graphical MCF

In [2] Ecker and Huisken proved celebrated curvature estimates for entire graphs
moving by mean curvature in codimension one, they then localised these in [3] to
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1512 T. Begley, K. Moore

prove interior estimates for hypersurfaces moving by mean curvature flow. Analogous
results in higher codimension have been proved by Mu-Tao Wang in [17] and [18]
respectively. In light of examples of Lawson and Osserman [9] one needs to assume an
additional ‘K local Lipschitz condition’, such a condition is in fact satisfied by anyC1

manifold at small enough scales, so for our purposes therewill be no problems applying
the estimates. We would like to use the estimates derived in [18] without the time
localisation, so we will briefly outline the changes to the proof, though all calculations
remain analogous to those used by Wang or Ecker-Huisken. We first introduce the
notation used byWang in [17,18]. We consider a mean curvature flow (Mt )t∈[0,T ) and
suppose that locally Mt is given by the graph of some function ut : U ⊂ R

n → R
k

over Rn . As shown by Wang, if we define ∗� to be the Jacobian of the projection of
Mt onto R

n , then one can calculate that

∗� = 1√
det(δi j + Diut · Djut )

= 1√∏n
i=1(1 + λ2i )

,

where λi are the eigenvalues of
√

(dut )T dut . Moreover, for ε > 0 small (depending
only on the dimensions n and k), we have that if

det(δi j + Diut · Djut ) < 1 + ε,

(this is precisely the K local Lipschitz condition of [18] with K = 1/(1 + ε)) then
∗� satisfies the evolution inequality

d

dt
∗ � ≥ � ∗ � + 1

2
∗ �|A|2.

Indeed this follows immediately from calculations in the proof of Theorem B in [17].
To simplify notation slightly we define η := ∗�, then one can estimate (following
[17])

d

dt
ηp ≥ �ηp +

( p

2
− p(p − 1)nε

)
ηp|A|2.

We also recall the evolution of the second fundamental form under mean curvature
flow yields the differential inequality

d

dt
|A|2 ≤ �|A|2 − 2|∇|A||2 + C |A|4,

where C is a dimensional constant. We see that these estimates precisely tell us that
we are in the correct setting to apply Lemma 4.1 of [18] with the choices h = |A| and
f = ηp. Following the proof of Lemma 4.1 we find that with ϕ defined as

ϕ(x) := x/(1 − κx)
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with κ > 0 to be determined, we have the following evolution inequality for g =
ϕ(η−2p)|A|2

(
d

dt
− �

)
g ≤ −2Cκg2 − 2κ

(1 − κη−2p)2
|∇η−p|2g − 2ϕη3p∇η−p · ∇g.

We then introduce the cut-off function ξ := (R2 − r)2 where R > 0 is a fixed radius
and r(x, t) satisfies

∣∣∣∣
(
d

dt
− �

)
r

∣∣∣∣ ≤ c(n, k) |∇r |2 ≤ c(n, k)r,

then following [3] we arrive at

(
d

dt
− �

)
gξ ≤ −Cκξg2 − 2(ϕη3p∇η−p + ξ−1∇ξ) · ∇(gξ)

+ c(n, k)

((
1 + 1

κη−2p

)
r + R2

)
g.

It is possible now to also localise in time as in [3], which would get us to the estimates
in [18], but for our purposes this is unnecessary, so instead we now suppose that
m(T ) := sup0≤t≤T sup{x∈Mt |r(x,t)≤R2} gξ is attained at some time t0 > 0, then at a
point where m(T ) is attained we have

Cκξg2 ≤ c(n, k)

(
1 + 1

κη−2p

)
R2g.

Multiplying by ξ/Cκ we have

m(T ) ≤ c(n, k)

Cκ

(
1 + 1

κη−2p

)
R2.

We now choose

κ := 1

2
inf

{x∈Mt |r(x,t)≤R2 t∈[0,T ]}
η2p.

We also fix θ ∈ (0, 1) and observe that in the set {x ∈ Mt |r(x, t) ≤ θR2, t ∈ [0, T ]}
we have ϕ ≥ 1 (since η−2p ≥ 1) and ξ ≥ (1 − θ)2R4 so

|A|2(1 − θ)2R4 ≤ gξ ≤ c(n, k)

Cκ

(
1 + 1

κη−2p

)
R2.

Finally as η−2p ≥ 1 and κ ≤ 1/2 we have that (1+ 1/κη−2p) ≤ 2/κ , so the estimate

|A|2 ≤ c(n, k)

κ2R2(1 − θ)2
= c(n, k)

R2(1 − θ)2
sup

{x∈Mt |r≤R2 t∈[0,T ]}
η−4p,
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holds in the set {x ∈ Mt |r(x, t) ≤ θR2, t ∈ [0, T ]}. The preceding discussion
establishes the following theorem

Theorem 8.3 (High codimension interior estimate) Let R > 0 and suppose that
KR2 := {(x, t) ∈ Mt |r(x, t) ≤ R2} is compact and can be written as a graph over
some plane for t ∈ [0, T ]. Suppose further that if the graph function is denoted by u,
that

det(δi j + Diu · Dju) < 1 + ε,

where ε > 0 depends only on n and k. Then for any t ∈ [0, T ] and θ ∈ (0, 1) we have

sup
K

θR2

|A|2 ≤ max

{
c(n)

R2(1 − θ)2
sup
KR2

η−4p, sup
{x∈M0|r≤R2}

|A|2ϕ(η−2p)

(1 − θ)2

}
. (8.1)

If we denote by ·T projection onto the plane over which Mt is graphical, then it’s
easy to see that (

d

dt
− �

)
|xT | = 0

for x = F(p, t) some point in Mt . Therefore, defining r(x, t) := |xT |2 we have
∣∣∣∣
(
d

dt
− �

)
r

∣∣∣∣ = 2|(∇x)T |2 ≤ c(n, k),

|∇r |2 = 4|xT |2|(∇x)T |2 ≤ c(n, k)r.

With this choice of r we have the following corollary

Corollary 8.4 Under the assumptions of Theorem 8.3, with the particular choice
r(x, t) = |xT |2 we have the estimate

sup
BθR(y0)×[0,T ]

|A|2≤min

{
c(n, k)

R2(1 − θ)2
sup

BR(y0)×[0,T ]
η−4p, sup

{BR(y0)×{0}}
|A|2ϕ(η−2p)

(1 − θ)2

}
,

(8.2)
where BR(y0) denotes a ball centred at y0 with radius R in the plane.

References

1. Chau, A., Chen, J., He, W.: Lagrangian mean curvature flow for entire Lipschitz graphs. Calc. Var.
Part. Differ. Equ. 44(1–2), 199–220 (2012)

2. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. (2) 130(3), 453–471
(1989)

3. Ecker, K., Huisken, G.: Interior estimates for hypersurfaces moving by mean curvature. Invent. Math.
105(3), 547–569 (1991)

4. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31(1),
285–299 (1990)

123



On short time existence of Lagrangian… 1515

5. Ilmanen, T., Neves, A., Schulze, F.: On short time existence for the planar network flow (2014).
arXiv:1407.4756

6. Imagi, Y., Joyce, D., Oliveira dos Santos, J.: Uniqueness results for special Lagrangians and Lagrangian
mean curvature flow expanders in Cm (2014). arXiv:1404.0271

7. Joyce, D.: Special Lagrangian submanifolds with isolated conical singularities. V. Survey and appli-
cations. J. Differ. Geom. 63(2), 279–347 (2003)

8. Joyce, D.: Conjectures on bridgeland stability for Fukaya categories of Calabi–Yau manifolds, special
Lagrangians, and Lagrangian mean curvature flow (2014). arXiv:1401.4949

9. Lawson Jr., H.B., Osserman, R.: Non-existence, non-uniqueness and irregularity of solutions to the
minimal surface system. Acta Math. 139(1–2), 1–17 (1977)

10. Lotay, J.D., Neves, A.: Uniqueness of Langrangian self-expanders. Geom. Topol. 17(5), 2689–2729
(2013)

11. Neves, A.: Singularities of Lagrangian mean curvature flow: zero-Maslov class case. Invent. Math.
168(3), 449–484 (2007)

12. A.Neves.Recent progress on singularities of Lagrangianmean curvature flow. In: Surveys inGeometric
Analysis and Relativity. Adv. Lect. Math. (ALM), vol. 20, pp. 413–438. Int. Press, Somerville (2011)

13. Neves, A.: Finite time singularities for Lagrangian mean curvature flow. Ann. Math. (2) 177(3), 1029–
1076 (2013)

14. Schoen, R., Wolfson, J.: Mean Curvature Flow and Lagrangian Embeddings (2002) (Preprint)
15. Smoczyk, K.: A canonical way to deform a Lagrangian submanifold (1996). arXiv:dg-ga/9605005
16. Thomas, R.P., Yau, S.-T.: Special Lagrangians, stable bundles and mean curvature flow. Commun.

Anal. Geom. 10(5), 1075–1113 (2002)
17. Wang, M.-T.: Long-time existence and convergence of graphic mean curvature flow in arbitrary codi-

mension. Invent. Math. 148(3), 525–543 (2002)
18. Wang, M.-T.: The mean curvature flow smoothes Lipschitz submanifolds. Commun. Anal. Geom.

12(3), 581–599 (2004)
19. White, B.: A local regularity theorem for mean curvature flow. Ann. Math. (2) 161(3), 1487–1519

(2005)
20. Wolfson, J.: Lagrangian homology classeswithout regularminimizers. J. Differ. Geom. 71(2), 307–313

(2005)

123

http://arxiv.org/abs/1407.4756
http://arxiv.org/abs/1404.0271
http://arxiv.org/abs/1401.4949
http://arxiv.org/abs/dg-ga/9605005

	On short time existence of Lagrangian mean curvature flow
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Mean curvature flow
	2.2 Lagrangian submanifolds and Lagrangian mean curvature flow

	3 Evolution equations and monotonicity formulas
	4 Stability of self-expanders
	5 Main theorem
	6 Short-time existence
	7 Construction of approximating family
	Acknowledgements
	Appendix
	Local curvature estimates for high codimension graphical MCF

	References




