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Introduction: In the complex network model of the human brain, it is often noted that a subset of nodes play a central 
role in network architecturerefs. Hub nodes, for example, exhibit high degree properties, and are thus important for network 

integration; however, local damage to hub nodes may have a disproportionate effect on network resilience to injury. 

The "rich club" phenomenonref proposes a description in which hub nodes are densely interconnected with fewer 

connections to lower degree nodes. The regions that form these rich clubs can be classified as a subnetwork, offering high 

communication efficiency and some level of network resilience to the failure of a hub node.  

The identification of "important" nodes in a network is non-trivial though, and there exist alternative methods of extracting 

salient regions. Recently, the concept of principal networksref was introduced. Principal network analysis (PNA) involves 

the eigendecomposition of the association matrix, A, into its canonical form (𝐴 = 𝑄Λ𝑄−1). The eigenvector element 𝑄𝑖𝑗, 

or loading, represents the influence of node 𝑖 on principal network (PN) 𝑗. PNs are subsequently formed from nodes with 

similar connectivity properties. 

In this work we examine the agreement between two independent techniques, namely rich club analysis and PNA, used 
for extracting subnetworks based on key nodes from cortical thickness data. 

Methods: T1-weighted images were acquired on 46 healthy controls (26 females; mean age 34 ± 8.6 years); imaging 

parameters and hardware specifications are given in Figure 1. The thickness of 𝑁 = 103 parcellatedgif ref cortical regions 

was computedants ref; correspondences between cortical region indices and anatomical names are given in Figure 2. An 

association matrix, or network, 𝐴, was generated using correlations in cortical thickness (Figure 3a). 

Subnetworks defined using PNA, 𝑆𝑝𝑛𝑎
𝑗

, were generated such that |𝑄𝑖𝑗| > 0, with 𝑖 = {1, … , 𝑁} and 𝑗 = {1,2,3}, at 5% 

significance level, as determined from 1000 bootstrapped samples of 𝐴 with replacement. Nodes were ranked according 

to loading magnitude. 

For the rich club subnetwork, 𝑆𝑟𝑐 , normalised weighted rich club coefficients 𝜑𝑛𝑜𝑟𝑚(𝑘)
rc ref were generated over the 

degree range 1 < 𝑘 < 𝑘𝑚𝑎𝑥, where 𝑘𝑚𝑎𝑥 was the maximum nodal degree in 𝐴. Normalisation was performed using the 

rich club coefficient averaged over 1000 randomly generated networksbct ref. The subnetwork was defined from the nodes 

that formed the most selective rich club (greatest possible degree threshold) within the rich club regime, defined by the 

range of 𝑘 in which 𝜑𝑛𝑜𝑟𝑚(𝑘) > 1 and is increasing. Nodes were ranked according to their strength in 𝑆𝑟𝑐 . 

Results: Figures 3b-e and 4a-e display the derived subnetworks. Subnetwork 𝑆𝑝𝑛𝑎
1  was dominated by nodes with strong 

positive edges, while nodes with positive and negative edge weights featured in 𝑆𝑝𝑛𝑎
2 , 𝑆𝑝𝑛𝑎

3  and 𝑆𝑟𝑐 . 

Comparing the nodes in subnetworks 𝑆𝑝𝑛𝑎
1 , 𝑆𝑝𝑛𝑎

2  and 𝑆𝑝𝑛𝑎
3  with 𝑆𝑟𝑐  we find that: 71% of 𝑆𝑝𝑛𝑎

1  nodes featured in 𝑆𝑟𝑐; 100% 

of 𝑆𝑝𝑛𝑎
2  nodes featured in 𝑆𝑟𝑐; 17% of 𝑆𝑝𝑛𝑎

3  nodes featured in 𝑆𝑟𝑐 . Of the 43 nodes in subnetworks 𝑆𝑝𝑛𝑎
1 , 𝑆𝑝𝑛𝑎

2  and 𝑆𝑝𝑛𝑎
3  

combined, there was 60% agreement with the highest ranked 43 nodes in 𝑆𝑟𝑐  (Figure 5).  

Discussion: Several nodes common to 𝑆𝑟𝑐  and 𝑆𝑝𝑛𝑎
1 , such as the precuneus, angular gyrus and temporal gyri, correspond 

to core regions of the default mode network (DMN), which is a highly interconnected area likely to contain hub nodesref 

with similar connectivity properties. Nodes unique to individual subnetworks were defined by the analysis technique: 

nodes similarly connected by strong positive correlations were retained in 𝑆𝑝𝑛𝑎
1 , while in 𝑆𝑟𝑐  positive and negative 

correlations were retained because both can feature in hub nodes. The primarily anti-correlated nodes in 𝑆𝑟𝑐  notably 

appeared in the lower order PNs 𝑆𝑝𝑛𝑎
2  and 𝑆𝑝𝑛𝑎

3 , reflecting the characteristic property of PNA to group together nodes 

with similar connectivity attributes. 

A limitation on the generation of subnetworks using either technique was their inherent dependency on the inclusion 

criteria for salient nodes. Bootstrapping the association matrix in PNA provided a more statistically robust set of nodes 

compared to the simple threshold proposed in the original methodref. The degree threshold applied in rich club analysis 

affected the subnetwork size and therefore the featured anatomical regions; future studies could evaluate subnetworks 
generated over a range of degree thresholds within the rich club regime.  

Conclusions: Subnetworks created using two unrelated techniques for identifying nodes influential in overall network 

characteristics shared 60% of their 43 highest ranked nodes, several of which belong to the DMN. This suggests that there 

is a core subset of nodes that are important independently of how “importance” is modelled. The remaining nodes unique 

to each subnetwork ultimately depend on the biophysical meaning of the analysis technique. 
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Figure 1: MR acquisition parameters. 

 



 

Figure 2: Correspondences between node indices and brain regions. 

 



 

 

Figure 3: Matrix visualisations of the networks and subnetworks; the colourbar represents Pearson’s correlation 

coefficient between nodes. Nodes in subnetworks b-d are ranked, with the most “important” bottom left. a). Full 

association network 𝐴, containing 103 parcellated cortical regions; b). Subnetwork 𝑆𝑟𝑐 , with 47 nodes; c). Subnetwork 

𝑆𝑝𝑛𝑎
1 , with 28 nodes; d). Subnetwork 𝑆𝑝𝑛𝑎

2 , 9 nodes; e). Subnetwork 𝑆𝑝𝑛𝑎
3 , 6 nodes. Subnetwork 𝑆𝑝𝑛𝑎

1  is dominated by 

strong positive connections; subnetworks 𝑆𝑝𝑛𝑎
2  and 𝑆𝑟𝑐  contain both positively and negatively correlated nodes.  

 

 

 

Figure 4: Graphical representation of nodes in each subnetwork. Edge colours represent Pearson’s correlation coefficient 

between nodes: deep red (blue) edges denote strong positive (negative) correlations.  Image orientation follows the 

radiological convention: (image top left is brain anterior right). a). Subnetwork 𝑆𝑟𝑐 , highest ranked 43 nodes; b). 

Subnetwork 𝑆𝑝𝑛𝑎
1 ; c). Subnetwork  𝑆𝑝𝑛𝑎

2 ; d). Subnetwork  𝑆𝑝𝑛𝑎
3 ; e). Combined subnetworks  𝑆𝑝𝑛𝑎

1 , 𝑆𝑝𝑛𝑎
2  and 𝑆𝑝𝑛𝑎

2 , 43 

nodes. 

 

 

 



 

 

Figure 5: Anatomical regions common to 𝑆𝑝𝑛𝑎
1  and 𝑆𝑟𝑐  (top set), to 𝑆𝑝𝑛𝑎

2  and 𝑆𝑟𝑐  (middle set), and to 𝑆𝑝𝑛𝑎
3  and 𝑆𝑟𝑐  (bottom 

set). It is interesting to note the laterality of the common regions, particularly between 𝑆𝑝𝑛𝑎
1 and 𝑆𝑟𝑐 . It is possible that this 

is explained in part by the PNA identifying regions in the dominant hemisphere of the primarily right-handed cohort. 

 

 

 


