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Abstract 
 

Recent years have witnessed a dramatic expansion in our understanding of gene control.  

It is now widely appreciated that the spatial organization of the genome and the manner in 

which genes and regulatory elements are embedded therein has a critical role in 

facilitating the regulation of gene expression. The loop structures that underlie 

chromosome organization are anchored by cohesin complexes. Several components of 

the cohesin complex have multiple paralogs, leading to different levels of cohesin complex 

variants in cells. Here we review the current literature around cohesin variants and their 

known functions. We further discuss how variation in cohesin complex composition can 

result in functional differences that can impact genome organization and determine cell 

fate. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   3	
  

Cohesin introduction 
Cohesin is an ancient and essential ring-shaped protein complex with fundamental 

roles in chromosome topology throughout the cell cycle. Cohesin is best known for its 

essential role in mediating sister chromatid cohesion in trans after DNA replication in S/G2 

phases. Sister chromatid cohesion is maintained until the onset of anaphase, at which 

point cohesin is fully removed from chromatin and sister chromatids can segregate into 

daughter nuclei [1]. Cohesin is reloaded onto chromosomes during early G1 of the next cell 

cycle where it acts as a fundamental regulator of spatial genome architecture. Cohesin 

functions by forming or stabilizing long-range chromatin loops in cis, from CTCF, Mediator 

complex, and transcription factor binding sites [2-8]. Cohesin-anchored chromatin loops 

were first described at specific loci to physically tether regulatory elements to gene 

promoters [9-11] and have since been shown to be widely distributed throughout the 

genome [12-18]. Both gene-loops and larger-scale chromosomal domain loops are 

anchored by cohesin, together creating an extensive network of long-range contacts and 

thereby defining global chromosome topology.  

To facilitate this diversity of cellular functions, cohesin’s interactions with 

chromosomes are tightly regulated. The loading [19, 20], stabilization [21, 22] and removal 

[23-25] of cohesin from chromosomes have been intensely studied, revealing a myriad of 

cohesin-associated proteins and post-translational modifications (PTM) of the complex 

subunits as having regulatory functions [26, 27]. In this context it is known that within 

somatic vertebrate cells there are multiple paralogs of several components of the complex, 

which could lead to a wide array of cohesin complex variants. How such variants and their 

relative levels in different cells could contribute to cohesin’s diverse functions, and 

specifically its roles in genome organization, is poorly understood.   

Most of the regulatory mechanisms for removal and stabilization of cohesin have 

only been considered in the context of cohesin’s sister chromatid cohesion function.  How 

the cohesin-associated proteins, PTMs and variants contribute to cohesin’s well 

established functions in genome organization remains to be elucidated. Here we will 

review the current literature around cohesin variants and their known functions. We further 

discuss the potential impact that varying cohesin composition could have on regulation of 

genome structure, gene expression and cell fate by taking inspiration from other 

chromatin-associated complexes that regulate these fundamental processes. 
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Cohesin complex variants 
The core cohesin complex consists of two SMC (Structural Maintenance of 

Chromosomes) proteins, Smc1 and Smc3, and the alpha-kleisin protein, Scc1/Rad21. 

Smc proteins assume a unique structure (reviewed in [28]). They consist of two globular 

domains separated by 50 nm long rod-shaped antiparallel coiled coils. One of the globular 

domains is an ATP-binding domain built from N- and C- termini of the protein. The second, 

so-called ‘hinge’ domain, engages in heterotypic interactions with the other Smc protein in 

the complex, forming a V-shaped heterodimer. This heterodimer interacts with 

Scc1/Rad21, forming a tripartite ring that encircles and physically tethers newly replicated 

sister chromatids in trans during S-phase [29, 30] and is thought to similarly stabilize 

chromatin loops in cis that are essential for gene regulation during G1 phase.  

In somatic cells of all organisms studied so far, each of these core subunits is 

encoded by a single gene [1]. In contrast, there are two paralogs of the HEAT repeat-

containing SA (Stag) subunit of the complex in somatic cells of human, mouse, 

Drosophila, and Xenopus (but not in S. cerevisiae and S. pombe) - SA1 and SA2 [31, 32]. 

The association of SA1 and SA2 to cohesin is mutually exclusive and therefore gives rise 

to two variants of the complex in somatic cells - SA1-cohesin and SA2-cohesin (Figure 

1a). Existing evidence suggests that the SA proteins mediate the interaction between 

cohesin and CTCF via a coiled-coil domain within SA that is nearly perfectly conserved 

between the two paralogs (see Figure 1b) [33]. Similarly, another HEAT-repeat containing 

protein, Pds5 interacts with the cohesin complex and exists as two isoforms, Pds5A and 

Pds5B (also known as APRIN [34]). Pds5 proteins regulate the association between 

cohesin and chromatin by stabilizing it in the absence of the unloading protein WAPL, and 

promoting dissociation from chromatin in the presence of WAPL [35-39]. Like SA proteins, 

Pds5A and B associate with cohesin in a mutually exclusive manner [40]. Therefore, the 

cohesin complex is able to exist in at least four distinct variants in somatic cells: SA1-

Pds5A-cohesin, SA1-Pds5B-cohesin, SA2-Pds5A-cohesin, and SA2-Pds5B-cohesin 

(Figure 1a). Additional variants of some of the core complex genes, such as Smc1b, 

Rad21L, and SA3, are expressed in human, mouse and Xenopus meiotic cells and play a 

crucial role in pairing and segregation of chromosomes in meiosis [41]. These 

observations emphasize the complexity of cohesins’ association with chromatin and 

highlight the need to understand such complexity with respect to cohesin’s many 

functions.   
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Cohesin complex variants – do they matter? 
Diversifying composition is a common way for cells to fine-tune functions of 

complexes. Clear examples come from condensin, a complex structurally similar to 

cohesin, as well as other chromatin-associated complexes that, like cohesin, play a role in 

regulation of gene expression and genome structure (see below).  

Condensin complexes play a major role in sister chromatid cohesion. Condensin I 

and II share the same SMC family proteins (Smc2 and Smc4) but differ in their kleisin and 

HEAT repeat containing subunits (reviewed in [42]). These structural distinctions result in 

differential subcellular localization, distinct dynamic properties, and ultimately different 

functions of the complexes [43-46]. Interestingly, the relative amounts of the two 

complexes present in a cell seem to have an impact on chromosome morphology [46, 47]. 

In Xenopus leavis egg extracts, where there is about five times more of condensin I 

compared to condensin II, chromosomes appear long and thin, whereas HeLa cells, where 

the ratio of the two complexes is about 1:1, have short and thick chromosomes [46]. 

Depletion of condensin I results in shortening and thickening of chromosomes, and 

depletion of condensin II in their elongation [47, 48].  

Similar observations have been made for cohesin. In Xenopus egg extracts, SA1-

cohesin is the dominant complex, whereas SA2-cohesin dominates in HeLa cells and 

Xenopus somatic cells [31] (Figure 2a). This implies that expression of SA subunits might 

be differentially regulated - although to date, little is known about regulation of expression 

of the cohesin genes themselves. The two complexes also seem to be functionally distinct. 

SA1-cohesin mediates telomeric cohesion, whereas SA2-cohesin controls cohesion at 

centromeric regions [49, 50] (Figure 2b). Chromatin immunoprecipitation (ChIP) in primary 

mouse embryonic fibroblasts (MEFs) showed that the two proteins also have some unique 

binding sites. SA1-cohesin is enriched much more strongly around transcriptional start 

sites compared to SA2-cohesin, and plays a role in regulation of gene expression that 

SA2-cohesin cannot compensate for [51] (Figure 2c). Interestingly, it is not clear at present 

if there is any connection between these distinct functions of individual complexes, 

although future studies may shine some light on this topic. 

What differences on the molecular level could bring about such functional 

specificity? Despite their overall high degree of homology (~ 70% identical), SA1 and SA2 

have distinct N- and C- termini.  At the N-terminus, SA1 contains an RFX5 DNA-interacting 

AT-hook that has been shown to be essential for the association of SA1 with telomeric 

DNA [52], while this motif is absent in SA2 (Figure 1b). Perhaps there are other properties 
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within the amino acid code that make the variants conduct distinct functions, such as in the 

divergent C-terminus. Such DNA binding AT-hooks seem to also be present in Pds5B but 

not Pds5A, and could bring about similar functional distinctions [53]. Furthermore, despite 

the high degree of conservation in the region of SA proteins that has been mapped to 

interact with CTCF (Figure 1b), biochemical experiments suggest that there could be 

differences in the strength of association between individual SA proteins and CTCF [33]. 

These interactions could further be modulated by posttranslational modifications, or 

differential expression of other factors that regulate them.  

 As mentioned above, the Pds5 component of the complex has multiple paralogs as 

well.  Like SA1 and SA2, Pds5A and Pds5B were shown to have distinct functions. In 

mice, Pds5A and Pds5B mutants have partially different phenotypes, and a double knock-

out has a more severe phenotype than either individual mutant [53, 54].  This suggests 

that two proteins cannot completely compensate for each other, and the authors propose 

that this is due to a dosage effect [54]. It is however also possible that the two proteins 

have distinct functions. For example, Carretero and colleagues have described differential 

roles for Pds5 proteins, whereby Pds5B is specifically required for centromeric cohesion 

and accumulation of AuroraB in the centromeric regions, while both proteins are required 

for arm and telomere cohesion. The authors concluded that distinct cohesin complexes 

may have a different function at different regions along chromosomal arms [55].  

 Given these observations, one can readily imagine that distinct cohesin complexes 

might play very specific roles in different cell types, stages of differentiation, and 

malignancies, with their relative amounts having a profound impact on genome 

organization and chromatin structure.  

 

Context-dependent regulation from variants of other chromatin-associated 
complexes. 

Other cellular complexes with roles in chromatin structure regulation, such as 

Polycomb, are known to have subtypes with distinct functions. For example, Polycomb 

Repressive Complex 1 (PRC1) was shown to have two distinct versions in embryonic stem 

cells, defined by mutually exclusive presence of Cbx7 or RYBP [56]. Much like cohesin-

SA1 and cohesin-SA2, the two PRC1s bind to and regulate distinct sets of genes. Even 

more interesting is the finding that Cbx7 is downregulated upon differentiation, 

concomitant with the upregulation of Cbx2, Cbx4 and Cbx8 [57, 58]. This switch results in 

new PRC1 subtypes, each with a distinct set of targets. Maintenance of pluripotency is 

dependent of Cbx7 expression and its knockdown results in differentiation, whereas 
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lineage commitment depends on Cbx2 and Cbx4  [57, 58]. Moreover, Cbx7 seems to 

suppress expression of Cbx2 and Cbx4 in ES cells, while Cbx2 and Cbx4 repress Cbx7 

upon differentiation (Figure 3a).  

Similarly, the SWI/SNF chromatin remodeling complex is encoded by some 25 

genes which are combined into distinct complexes in different cell types [59]. Of particular 

interest is a switch in composition of the complex as cells differentiate from ES to neural 

lineage. The amount of BAF155 component is reduced, whereas BAF170, which is not 

expressed at all in ES cells, is upregulated [60]. BAF155 and BAF170 have a high degree 

of homology – over 60%, just like SA1 and SA2 and Pds5A and Pds5B, yet seem 

functionally quite distinct. Namely, BAF155 is required for stem cell survival, whereas the 

pluripotent state is incompatible with expression of BAF170 [60]. Another study 

ascertained the difference in ES cells levels of the two proteins, and pointed out that their 

relative levels are different in more differentiated cell types, like MEFs [61]. The same 

study showed that other components of the remodeling complex switch their expression in 

a similar way upon differentiation.  

 

Context-dependent structure from cohesin complex variants 
Cohesin complexes have a central role in the organization of chromosomal domain 

structure. Hi-C datasets have shown that chromosomal domain architecture is tightly 

correlated with cohesin/CTCF binding sites, and that in cells lacking functional cohesin 

complexes, the stability of this architecture is perturbed [12, 13, 62]. The majority of 

studies exploring cohesin’s roles in genome architecture have analyzed structure from the 

perspective of one of the core components (Scc1, Smc1 or Smc3). It is known that at least 

the cohesin-SA1 variant can anchor chromatin loops [63], and given that SA1 and SA2 

occupy distinct binding sites on chromatin [51] it is possible that separate complex variants 

may contribute differently to chromatin loop formation and in so doing mediate functionally 

distinct loops. They may interact with chromatin in different ways (handcuff vs embrace 

models [64]) or they may interact differently with other complexes involved in looping such 

as CTCF, Mediator, and transcription factors. In addition, the variants may themselves 

interact with chromatin in different timescales, impacting the stability of the anchored loop 

(Figure 3b). 

 

Outlook 
These observations prompt us to think about cohesin not as one complex, but 

instead several different complexes with distinct functions. In this review, we discussed 
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how such functional differences could be a consequence of changes in cohesin 

complexes’ composition and/or the relative levels of distinct complexes in different cells 

types and developmental stages. Indeed, other multi-subunit chromatin complexes use 

different variants to regulate gene activity and differentiation.  If and how cohesin complex 

variants function in a similar way and how these variants impact genome organization to 

support cell fate and tumorigenesis, where specific subunits (SA2 [65] and Pds5B [66, 67] 

are found to be commonly mutated, remains to be elucidated.  

While it is clear that cohesin complex diversity exists and may in fact have important 

roles in gene expression and differentiation, how these different variants arise in the first 

place is poorly understood. An understanding of how and when the cohesin genes are 

themselves regulated is long overdue and will inevitably yield new insights. Similarly, 

cohesin has major roles in chromosome topology throughout the cell cycle, yet our 

understanding of how these different functions are connected is insufficient. For example, 

whether (and how) cohesin complexes that mediate cohesion can also contribute to its 

gene expression functions is a major unanswered question in the field. Finally, a central 

role for cohesin in cancer development is emerging. Cohesin proteins have been identified 

as a frequently mutated network across numerous cancers [68, 69]. In this context, it is 

important to consider first the properties of cohesin that make them cancer targets and 

second to understand the impact of complex variants to tumorigenesis.  
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Figure Legends 
 
Figure 1. Cohesin complex variant diversity. a) Four variants of the cohesin complex. 

b) Differences between SA1 and SA2 proteins on the molecular level. Positions of 

conserved domains are depicted, as determined by NCBI Conserved Domain Search 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Conservation between regions of 

the two proteins covered by amino acids 1-90, 90-1080, and 1080-end is shown, as 

calculated by LALIGN programme (http://embnet.vital-it.ch/software/LALIGN_form.html). 

Conservation is represented as percentage of amino acids that are identical between 

given regions. The blue bar indicates the region of SA proteins that was determined to be 

sufficient for interaction with CTCF in ref. 33.  
 
Figure 2. Differences in cellular levels and chromosomal distribution between SA1- 
and SA2-cohesin. a) Different cell types have different levels of cohesin complex variants. 

b) Different variants of cohesin complex mediate cohesion at telomeric and centromeric 

regions. SA1-cohesin mediates telomeric cohesion, whereas SA2-cohesin mediates 

centromeric cohesion. c) Different variants of cohesin complex are distributed differently 

along the chromosome. SA1-cohesin dominates around transcriptional start sites (TSS). 

SA2-cohesin dominates in intergenic regions.  

 
Figure 3. Complex variants contribute to fine-tuning of gene regulation.  a) An 

example of a change in complex composition mediating profound changes in gene 

expression and cell fate. Cbx7 component of Polycomb Repressive Complex 1 (PRC1) is 

downregulated upon differentiation, and Cbx4 and Cbx2 are upregulated. A distinct set of 

genes are regulated by these different variants and associated with distinct cell fates. b) 

Putative examples of how cohesin complex variants may mediate genome structure and 

gene expression. I. SA1-cohesin associates with transcription factors (TFs) at TSSs. II. 

SA2-cohesin modulates genome structure in intergenic regions that are transcriptionally 

silent. III. Differential association of SA1- and SA2-cohesin with CTCF and TFs fine-tunes 

genome structure and gene expression.  
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