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1. Abstract 

Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the 

progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in 

most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a 

cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It 

is therefore imperative to utilise and optimise cellular models and experimental techniques 

appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease 

phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing 

experimental approaches to assess mitochondrial function in in vitro cellular models of 

neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption 

rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the 

mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics 

of Neurodegenerative Diseases (CeBioND) consortium (www.cebiond.org), we are performing cross-

disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial 

bioenergetic dysfunction in cellular models of Alzheimer’s, Parkinson’s and Huntington’s diseases. 

Here we provide detailed guidelines and protocols as standardised across the five collaborating 

laboratories of the CeBioND consortium, with additional contributions from other experts in the field. 

 

2. Bullet Points 

• It is important to utilise and optimise appropriate cellular models and experimental techniques 

to determine the contribution of mitochondrial dysfunction to neurodegenerative disease. 

• Here, we provide guidelines on techniques to investigate mitochondrial function in cellular 

models of neurodegenerative diseases, including detailed protocols for the measurement of 

oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse 

fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. 

• The protocols and guidelines provided here will enable analysis of primary and secondary 

mitochondrial dysfunction in neurodegenerative diseases, allowing experimental comparison 

between laboratories and optimising translation of in vitro findings to in vivo studies. 
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3. Introduction 

Neurodegenerative diseases (NDs) comprise a spectrum of heterogeneous pathologies involving the 

progressive dysfunction, degeneration, and death of neurons, leading to incurable and debilitating 

conditions. Although some genetic factors have been identified, the underlying pathophysiology 

behind familial and sporadic NDs remains poorly understood. Of note, nearly all NDs exhibit 

impaired mitochondrial energy metabolism (Johri and Beal, 2012, Pathak et al., 2013, Lin and Beal, 

2006). For example, studies have repeatedly demonstrated reduced expression and impaired activity 

of respiratory chain Complex I in Parkinson’s disease (PD), Complex IV in Alzheimer’s disease 

(AD), and Complexes II and III in Huntington’s disease (HD), and reduced activity of α-ketoglutarate 

dehydrogenase in both AD and PD (Yin et al., 2014). Drug-induced models of NDs further link 

respiratory complex deficiency with disease – rotenone and MPTP (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine), both inhibitors of Complex I, cause Parkinson-related pathology in animal 

models (Martinez and Greenamyre, 2012), and 3-nitropropionic acid (3-NP), a Complex II inhibitor, 

produces a HD phenotype in mice (Brouillet et al., 1999). Several gene mutations associated with 

NDs affect proteins that contribute to mitochondrial homeostatic regulation and function (Error! 

Reference source not found.). Whether these mitochondria-associated dysfunctions are sufficient to 

cause neurodegenerative pathogenesis, however, remains uncertain, as they may also evolve 

secondary to a different underlying pathology (Polyzos and McMurray, 2017). Indeed, a decline in 

mitochondrial function may be a natural process of ageing, but may usually be compensated for by 

adaptive changes (Yin et al., 2014, Swerdlow et al., 2014, Raefsky and Mattson, 2017). A loss of 

these compensatory mechanisms, or a ‘second trigger’ (such as genetic predisposition, 

endogenous/exogenous toxins or chronic excitotoxicity), may convert any natural subclinical decline 

into a clinically relevant neurodegenerative phenotype (‘dual/two/double-hit’ hypotheses (Sulzer, 

2007, Zhu et al., 2007)). Clearly, extensive work is still required to thoroughly investigate the cause 

and impact of mitochondrial dysfunction in NDs. 

It is currently difficult to compare and contrast the vast volumes of experimental research in cellular 

models of NDs due to methodological differences – cell and neuron type, age, method of preparation 

and culture, equipment/assays, experimental set-up, outputs measured – as well as due to limited 

detail in method reporting. These discrepancies may compound the difficulties in translating 

experimental findings from in vitro cellular models to in vivo or human studies. Here, we provide 

guidelines on several experimental methods to assess mitochondrial dysfunction in in vitro cellular 

models of NDs, with the goal of reducing methodological differences between research laboratories. 

The CeBioND consortium (www.cebiond.org) is performing cross-disease analyses to investigate 

mitochondrial bioenergetic dysfunction in cellular models of AD, PD and HD. Within this 

consortium, we standardised single-cell fluorescence protocols (TMRM, NAD(P)H autofluorescence) 
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and oxygen consumption rate measurements across five collaborating laboratories. These protocols 

are detailed here. For this consensus review, we recruited several experts from the field of 

mitochondrial research to contribute details on additional techniques for a thorough evaluation of 

mitochondrial function and dysfunction. Collectively, we have developed guidelines that suit most 

biological laboratories and that provide for a standardised, holistic assessment of mitochondrial 

function in cellular models of a variety of NDs. 

Table 1: Proteins/genes known to be mutated in Alzheimer’s disease (AD), Parkinson’s disease (PD), 

Frontotemporal dementia (FTD), Huntington’s disease (HD) and Amyotrophic Lateral Sclerosis 

(ALS). Several of these genes (PSEN1/2; SNCA, DJ-1, LRRK2, Parkin, PINK-1; MAPT; Htt; SOD1, 

FUS, TARDP, and CHCHD10) encode proteins that regulate mitochondrial homeostasis and function 

to varying degrees (Martinez and Greenamyre, 2012, Gao et al., 2017, Schon and Przedborski, 2011, 

Lin and Beal, 2006). Listed genes are commonly targeted in transgenic animal models - see 

http://www.neurodegenerationresearch.eu/initiatives/jpnd-alignment-actions/animal-and-cell-

models/, http://www.alzforum.org/research-models, (Gotz and Ittner, 2008, Harvey et al., 2011), and 

references therein for further details. The ALS-associated genes FUS, TARDBP, C9orf72 and 

CHCHD10 are also associated with FTD. 

Disease Protein (Gene) 

AD Amyloid precursor protein (APP) 

Apolipoprotein E (APOE) 

Microtubule associated protein tau (MAPT) 

Presenilin (PSEN1/2) 

PD α-synuclein (SNCA) 

DJ-1 (DJ-1/PARK7) 

Leucine-rich repeat kinase 2 (LRRK2) 

Parkin (Parkin) 

PTEN-induced kinase 1 (PINK-1) 

FTD Microtubule associated protein tau (MAPT) 

HD Huntingtin (Htt/IT15) 

ALS Superoxide Dismutase (SOD-1) 

DNA/RNA binding protein Fused in Sarcoma (FUS) 

(TAR)-DNA-binding protein 43 (TARDBP) 

C9orf72 (C9orf72) 

Coiled-coil-helix-coiled-coil-helix domain-

containing protein 10 (CHCHD10) 
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4. Mitochondrial bioenergetic processes 

The components of mitochondrial bioenergetics are described in most biochemistry textbooks, and we 

provide only a brief introduction here. Although mitochondria are crucially involved in apoptosis, 

calcium signalling, lipid biosynthesis, synthesis of haem and iron sulphur centres, carbohydrate and 

fatty acid metabolism, and redox homeostasis, the most celebrated function of mitochondria is 

oxidative phosphorylation (OxPhos), the oxygen-dependent production of ATP driven by an 

electrochemical gradient across the inner mitochondrial membrane. Neurons are heavily dependent on 

OxPhos, especially in times of increased energy demand (Connolly et al., 2014, Herrero-Mendez et 

al., 2009), and are therefore highly sensitive to loss of substrate or other impairments in the processes 

underlying OxPhos (Kann and Kovacs, 2007). 

Mitochondrial ATP synthesis is driven by the maintenance of a proton circuit comprising the 

respiratory/electron transport chain, the F1Fo ATP synthase, and proton leaks. The multi-subunit 

complexes of the respiratory chain (forming the respirasome) reside within the inner mitochondrial 

membrane and consist of Complex I (NADH:ubiquinone oxidoreductase/NADH dehydrogenase), 

Complex II (succinate-ubiquinone oxidoreductase/succinate dehydrogenase), Complex III (ubiquinol-

cytochrome c oxidoreductase) and the O2 consuming Complex IV (cytochrome c oxidase). Protons 

(H+) pumped out of the mitochondrial matrix by these respiratory complexes, coupled with electron 

transport through the complexes, maintain the electrochemical proton-motive force (Δp) which 

comprises a H+ concentration gradient (ΔpHm) and an electrical gradient (the mitochondrial 

membrane potential, Δψm) across the inner membrane (Mitchell and Moyle, 1969, Nicholls and 

Ferguson, 2013). These gradients allow H+ to flow back into the matrix through the F1Fo ATP 

synthase, with the resultant synthesis of ATP from ADP and phosphate. The H+ circuit can also be 

completed by inducible or non-inducible H+ leaks across the inner membrane, bypassing the F1Fo ATP 

synthase (Jastroch et al., 2010). Mitochondrial NADH, generated by the tricarboxylic acid (TCA) 

cycle within the mitochondrial matrix or via the import of NADH-derived reducing equivalents driven 

by the malate-aspartate shuttle, serves as an electron donor for the respiratory chain. The activity of 

Complex II, which, through the oxidation of succinate to fumarate reduces ubiquinone to ubiquinol, 

also enables electron transfer to Complex III. Reactive oxygen species (ROS), produced in 

mitochondria by the TCA cycle and respiratory chain, are vital second messengers, but their 

overproduction can lead to oxidative stress. 
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5. Methods to assess mitochondrial dysfunction in cellular models of 

neurodegenerative diseases 

Here we provide detailed guidelines on experimental techniques to investigate mitochondrial 

bioenergetics in in vitro cellular models, including specific protocols to measure the oxygen 

consumption rate, the mitochondrial membrane potential and mitochondrial NAD(P)H. Analysis of 

mitochondrial transport, network morphology, fusion/fission, mitophagy and biogenesis, factors that 

are also altered in NDs (Johri and Beal, 2012, Gao et al., 2017, Schon and Przedborski, 2011, 

Aouacheria et al., 2017), are beyond the scope of the present work. While cellular models are not 

optimal experimental systems, as they often lack the multi-cellular environment of intact in vivo 

models, they provide a relatively simple environment within which complex molecular interactions 

can be thoroughly studied at a population and single-cell level.  

 

5.1. Cellular models (experimental systems) of neurodegenerative diseases 

The anatomical, neurochemical and metabolic uniqueness of primary neuron cultures derived from 

rodents (mice and rats) offer a currently unparalleled platform for the study of the molecular 

mechanisms of neurodegeneration. Primary neurons can be cultured from wild-type or transgenic 

animals to generate relatively homogenous neuronal populations for study in vitro (Error! Reference 

source not found.). Protocols for the preparation and culture of various neuronal populations are 

available (Hilgenberg and Smith, 2007, Sciarretta and Minichiello, 2010, Fairbanks et al., 2013). 

Primary neurons from specific brain regions may be the ideal cellular model (e.g. dopaminergic 

neurons for PD, hippocampal neurons for AD, striatal neurons for HD, motor neurons for ALS), but 

are less abundant and not always easy to prepare nor culture. Variations in the preparation and culture 

of primary neuron cultures, such as the age and sex of the animals, seeding density, days in vitro, 

media/buffer composition and substrate availability, may alter neuronal physiology, mitochondrial 

function and viability, and contribute to heterogeneity in experimental results (Kleman et al., 2008, 

Zhu et al., 2012, Surin et al., 2012, Fairbanks et al., 2013, Biffi et al., 2013).  
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Figure 1: Immunofluorescent labelling and fluorescent images of cortical neurons prepared from 

post-natal wild-type mice. A) After 10 days in vitro (DIV), cultures were stained with antibodies 

against the neuron-specific NF200 (red) and the astrocyte-specific GFAP (green), and with the DNA 

dye Hoechst (blue). Even when moved to a serum-free media quickly after dissociation, neuronal 

cultures contain a small proportion of astrocytes and other cell types (such as fibroblasts and 

endothelial cells). Neurons can be morphologically identified when performing single-cell 

experiments (Abramov et al., 2007), but regular and careful characterisation of cultures is important 

for cell population assays. B) Cortical neurons (after 6 DIV) transfected with a mitochondrial red 

fluorescent protein highlight the intricate mitochondrial network throughout the neuron. 

 

Brain-derived cell lines, such as the human SH-SY5Y or the rodent PC12, N2a and HT22, can be 

differentiated to a post-mitotic neuronal state (Constantinescu et al., 2007, Greene and Tischler, 1976, 

Tremblay et al., 2010), but they do not exhibit a true neuronal phenotype (e.g. they lack functional 

NMDA receptors even after differentiation), and their bioenergetics and neurotoxic properties differ 

from primary neurons (LePage et al., 2005). Although their ease of culturing and transfection make 

them a feasible compromise between convenience and scientific relevance, findings in these cellular 

models should be complemented with experiments in primary cultures or in vivo models. Neurons can 

also be differentiated from proliferative cell types, such as neural progenitor cells (NPCs) from the 

sub-ventricular zone of adult mice. More recently, cellular models of disease have been derived from 

patient cells. Dopaminergic, motor, striatal and forebrain neurons derived from induced pluripotent 

stem cells (iPSCs) reprogrammed from human fibroblasts have been used to investigate PD, ALS, HD 
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and AD, respectively (Hung et al., 2017), although iPSCs still require expensive and labour-intensive 

techniques. It is important to use isogenically-corrected iPSCs as a control when studying the effects 

of genetic mutations on mitochondrial properties; CRISPR/Cas9, TALEN or other techniques can be 

used to correct the mutation (Ryan et al., 2013). 3-D culture models developed using neural cells can 

recapitulate multiple aspects of ND pathologies (Choi et al., 2016). Primary astrocyte, microglia and 

associated cell cultures are also relevant cellular models, specifically to study non-cell autonomous 

and inflammatory processes, which may contribute significantly to the progression of NDs 

(Schlachetzki et al., 2013). 

The experimental methods described herein focus on primary neuronal cultures, but can be performed 

in most cellular models. Decisions on specific cellular models and experimental design depend on the 

research question and on the available equipment, reagents, and expertise. Regardless, conditions 

should remain as similar as possible for all experiments within a study, and matched experiments 

(control and treated, or wild-type and transgenic littermates) should always be performed, ideally on 

the same day. Maintaining consistency both within a study and across platforms will facilitate inter-

experiment comparison.  

For live cell imaging, neurons should be equilibrated in ‘experimental buffer’ for at least 30 minutes - 

we find that (in mM) 120 NaCl, 3.5 KCl, 0.4 KH2PO4, 5 NaHCO3, 20 HEPES, 1.2 Na2SO4, at pH 7.4 

(slightly higher than normal brain extracellular pH of ~7.2-7.3) works well for experiments on 

primary cortical and other central neurons, supplemented with 1-2 mM MgCl2 to reduce neuronal 

activity, 1.2 mM CaCl2, and the desired energy substrate (e.g. glucose, pyruvate, lactate, glutamine). 

The type and concentration of energy substrate will critically determine metabolic behaviour, and 

similar measurements performed with different substrates are not directly comparable. Neurons 

should be equilibrated at 37 °C, in the dark if utilising fluorescent reporters, and with no CO2 if the 

buffer contains HEPES or equivalent.  
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Table 2: Drugs targeting the mitochondrial bioenergetic machinery. Concentrations are guidelines only for primary neurons, and should be optimised for 

each cell type or experimental setting. Changes to the experimental buffer, such as the inclusion of bovine serum albumin, can alter some of the effective drug 

concentrations by more than 4-fold (Jekabsons and Nicholls, 2004, Clerc and Polster, 2012). High protonophore concentrations collapse the mitochondrial 

membrane potential (and may also depolarise the plasma membrane potential (Nicholls, 2006)), while low concentrations induce maximal respiration (this 

requires titration to determine the optimal concentration for each experimental set-up (Brand and Nicholls, 2011, Dranka et al., 2011)). References for 

concentrations were obtained from experiments in primary neurons: (Duan et al., 2000, Ward et al., 2000, Bizat et al., 2005, Abramov et al., 2007, Brennan 

et al., 2009, Chinopoulos et al., 2010, Llorente-Folch et al., 2013, Rueda et al., 2015). 3-NP – 3-Nitropropionic acid, FCCP – Carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone, CCCP – Carbonyl cyanide m-chlorophenylhydrazone, DNP – 2,4-dinitrophenol. 

Target Drug Concentrations 

(primary neurons) 

Off-target effects 

Complex I inhibition Rotenone 1-2 µM Microtubules 

Complex II inhibition 3-NP 0.1-1 mM  

Complex III inhibition Antimycin A 1-3 µM Aspecific permeabilisation of the inner mitochondrial membrane 

Stigmatellin 1-3 µM Also inhibits Complex I at high concentrations 

Myxothiazol 1-5 µM Also inhibits Complex I at high concentrations 

Complex IV inhibition Cyanide (NaCN, KCN) 1-5 mM Haem-containing enzymes; formation of thiocyanate adducts 

Sodium Azide 1-5 mM Interacts with active groups from catalase and nitrogen-based structures 

F1Fo ATP Synthase 

inhibition 

Oligomycin 1-5 µg/ml 

(1-6 µM)* 

 

Protonophore (increases 

proton leak; uncouples 

mitochondria) 

FCCP High: 10 µM 

Low: 0.3-1 µM 

 

CCCP High: 10 µM 

Low: 0.3-1 µM 

Inhibits lysosomes and autophagy 
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DNP Low: 0.1-0.5 mM  

* Oligomycin concentrations are often listed as µg/ml, as commercial preparations are a mixture of compounds with different individual molecular weights. 
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5.2. Measurement of the oxygen consumption rate (OCR) 

Oxygen consumption is an excellent read-out for mitochondrial respiratory activity. Measurement of 

the oxygen consumption rate (OCR) is the current experiment of choice to determine underlying 

mitochondrial dysfunction (Brand and Nicholls, 2011, Dranka et al., 2011). Although Complex IV is 

the only oxygen consumer within the proton circuit, appropriate pharmacological manipulation can 

isolate different respiratory states and facilitate modularised assessment of the complete circuit, 

including basal respiration, maximal respiration, proton leak and ATP turnover (

 

Figure 2). 

The OCR has been extensively studied in various cellular models of NDs (Polyzos and McMurray, 

2017, Rhein et al., 2009, Chakraborty et al., 2016). It can be measured in isolated mitochondria or 

permeabilised cells following a slightly altered protocol to the one described below (initial addition of 

ADP, phosphate and substrate to initiate pure ‘State 3’ respiration (Brand and Nicholls, 2011)), or in 

intact cells or brain slices. Mitochondria isolation is a delicate procedure that provides a precise and 

controllable model at the expense of physiological relevance, while brain slices, which maintain intact 

neuronal networks, constitute a more complete biological system. In whole cells, optimised 

permeabilisation of the plasma membrane allows controlled supply of substrate to mitochondria, 

providing a more controllable model without complete loss of the cytosolic milieu (Clerc and Polster, 

2012, Salabei et al., 2014). The measurement of OCR in permeabilised cells or isolated mitochondria 

provided with different substrates (e.g. the provision of glutamate/malate to drive flux through 

Complex I, or succinate to drive flux through Complex II) can isolate specific complex activity and 

help to identify the molecular origin of a mitochondrial defect (Salabei et al., 2014). 
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Figure 2: Schematic of standard experimental protocol to investigate the contribution of components 

of the mitochondrial respiratory chain to the oxygen (O2) consumption rate (OCR). Mitochondrial 

function can be thoroughly investigated in intact cells by measuring the OCR during sequential 

addition of mitochondrial respiratory inhibitors (marked with grey triangles). The different stages of 

the experiment (i)-(iv) and the measured parameters (a)-(f) are described in Protocol 1. The optimal 

FCCP/CCCP concentration to induce maximal respiration should be determined for each 

experimental setting (details in Protocol 1), and it is advisable to also assess maximal respiratory 

capacity in the absence of oligomycin. The addition of pharmacological compounds or fuel substrates 

prior to oligomycin (not shown here) can capture further detail regarding the OCR. Rot, Rotenone; 

AA, Antimycin A; Oligo, Oligomycin. * Respiration in (b) is predominantly driven by proton leak, but 

also by substrate oxidation. 

 

5.2.1. Experimental set-up 

Conventional Clark-type oxygen electrode chambers (e.g. Hansatech Oxygraph), which can measure 

oxygen (O2) in large numbers of cells, isolated mitochondria or tissue homogenates in suspension 

(Barrientos et al., 2009), have been replaced more recently by cell respirometers, which perfuse buffer 

over live, attached cells within a sealed chamber, a set-up more suitable for use with primary neurons 

(Jekabsons and Nicholls, 2004, Clerc and Polster, 2012). Chambers mounted on fluorescence 

microscopes allow simultaneous measurement of other fluorescent indicators (Jekabsons and 

Nicholls, 2004). The multi-well plate reader from Agilent Technologies (Seahorse XF Flux Analyser) 
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can simultaneously measure both the OCR and the extracellular acidification rate (ECAR; a read-out 

that allows calculation of lactate release under certain conditions and therefore the rate of anaerobic 

glycolysis - more details are provided at the end of Section 5.2.2), although experiments are expensive 

and limited to non-perfused cell population measurements (Zhang and Trushina, 2017). The Oroboros 

Oxygraph-2k system (O2k; Oroboros Instruments) can measure O2 consumption in cell suspensions 

simultaneously to other parameters such as the mitochondrial membrane potential or the ADP-ATP 

exchange rate mediated by the adenine nucleotide translocator (ANT) (Chinopoulos et al., 2014), but 

it is labour intensive and low-throughput. An overview of these two commercial systems is provided 

in (Horan et al., 2012). Luxcel Bioscience’s MitoXpress® Xtra plate-reader assay allows population-

level O2 measurements to be multiplexed with other reporters, such as indicators of cell viability (Will 

et al., 2006). 

Regardless of equipment, the OCR is generally inferred by measuring the levels of dissolved O2 in the 

chamber/well over time, using polarographic O2-sensing electrodes or fluorescent/phosphorescent 

reporters. The Seahorse system, for instance, utilises solid-state fluorescence-based sensors to 

measure extracellular O2 levels within a sealed chamber for 2-6 minutes. The chamber is then 

unsealed (allowing the O2 to re-equilibrate to atmospheric levels) and re-sealed to repeat the 

measurement. Intracellular O2-sensing probes include nanoparticles based on the phosphorescent dye 

Pt(II)-tetrakis(pentafluorophenyl)porphine (PtTFPP; MitoXpress®-Intra, Luxcel Biosciences), which 

require phosphorescence lifetime measurements and can be detected at single-cell level or on plate 

readers with time-resolved fluorescence/phosphorescence detection. This probe can provide 

quantitative intracellular O2 measurements in neurons and brain slices (Dmitriev et al., 2015, 

Kondrashina et al., 2015).  

 

5.2.2. Experimental protocol 
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We here describe the most commonly deployed experimental protocol to thoroughly investigate 

mitochondrial bioenergetic function by measuring the OCR in intact primary neurons (

 

Figure 2 and Protocol 1). This protocol can be followed independently of the measurement technique. 

 

Protocol 1: Investigating mitochondrial function in primary mouse cortical neurons by measuring the 

oxygen consumption rate in the presence of various inhibitors of the mitochondrial respiratory chain. 

• Primary cortical neurons preparation and culture 

• Prepare cortical neurons from post-natal (day 0-1) or embryonic (day 16-18) mice of 
either sex (Hilgenberg and Smith, 2007, Sciarretta and Minichiello, 2010). 

• Seed neurons at appropriate density on pre-washed, poly-D-lysine (and/or laminin)- 
coated dishes suitable for OCR measurements (e.g. 100,000-300,000 cortical 
neurons/well in 24-well Seahorse cell culture microplates if using Seahorse XF Flux 
Analyser). 

• Culture neurons in appropriate media. Neurobasal medium 21103-049 is commonly 
used, supplemented with 0.5 mM L-glutamine and 2 % B27. It should be noted that this 
media contains supraphysiological glucose levels (25 mM). 

• Perform experiments after at least 8 days in vitro. 
• Performing the experiment 

• Exchange culture media for appropriate ‘experimental buffer’ (wash neurons once to 
ensure complete exchange). Example buffer composition (in mM): 120 NaCl, 3.5 KCl, 
0.4 KH2PO4, 5 NaHCO3, 20 HEPES, 1.2 Na2SO4, pH 7.4 (NaOH), supplemented with 
1.2 CaCl2, 1-2 MgCl2 and desired substrate (e.g. 2.5-5 mM glucose). Equilibrate cells for 
1 h at 37 °C with no CO2. 

• Different components of the proton circuit exert varied control over mitochondrial O2 
consumption. Sequential addition of specific mitochondrial inhibitors isolates these 
components. Such an experiment involves several stages ((i) – (iv); refer to 
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• Figure 2): 
• (i) The initial OCR is a measure of mitochondrial (a) and non-mitochondrial (f) O2 

consumption, and is predominantly driven by ATP turnover (proton flow through the 
F1Fo ATP synthase), and to a lesser extent by proton leak and substrate oxidation 
(activity of the respiratory complexes). Differences in basal O2 consumption (in the same 
cellular microenvironments) can suggest; 1) altered ATP consumption, 2) altered ATP 
synthesis (F1Fo ATP synthase activity), 3) disrupted transport of adenine nucleotides 
(ANT) or phosphate between matrix and cytoplasm, 4) altered synthesis or consumption 
of reducing equivalents within the matrix by substrate oxidation or the respiratory chain, 
respectively, 5) disrupted substrate supply to the matrix, or 6) disrupted non-
mitochondrial O2 consumption. Measurement of the additional parameters below can 
further elucidate the contributing factors. 

• (ii) Inhibiting the F1Fo ATP synthase with oligomycin allows the measurement of 
oligomycin-sensitive respiration driven by ATP turnover. Following oligomycin 
addition, the remaining mitochondrial O2 consumption is predominantly controlled by 
the proton leak across the inner membrane, and to a lesser extent by substrate oxidation. 
As proton leak itself is voltage-dependent and oligomycin generally hyperpolarises 
mitochondria, these measurements will tend to over/underestimate the contribution of the 
proton leak/ATP turnover, respectively, to O2 consumption. Such errors may 
significantly impact findings if comparing systems with only subtle differences between 
them (Brand and Nicholls, 2011, Dranka et al., 2011). Differences in the oligomycin-
resistant respiration rate can indicate; 1) disrupted proton leak (accompanied by 
mitochondrial membrane depolarisation), 2) altered substrate oxidation (accompanied by 
mitochondrial membrane hyperpolarisation), or 3) disrupted non-mitochondrial O2 
consumption.  

• (iii) Addition of an uncoupler (such as FCCP, CCCP or DNP) creates a proton short-
circuit across the mitochondrial inner membrane, decreasing the proton-motive force and 
allowing respiration to increase. In this state, substrate oxidation is the dominant 
controller of O2 consumption. This is considered to be maximal respiratory capacity, 
although this measurement critically depends on the concentration of the uncoupler. 
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Excess uncoupler can inhibit respiration and collapse the proton-motive force, disrupting 
transport processes facilitated by Δψm (e.g. the malate/aspartate shuttle, Ca2+ transport) or 
ΔpH (uptake of several metabolites). Cell density and buffer composition can also affect 
the concentration required to induce maximal respiration (albumin, for instance, can 
sequester FCCP). Vitally, therefore, the uncoupler concentration should be optimised for 
each experimental set-up – adding just enough to stimulate uncontrolled respiration while 
limiting any decrease in Δψm (Error! Reference source not found.; (Brand and 
Nicholls, 2011)). Discrepancies in maximal respiratory capacity can indicate dysfunction 
in the respiratory complexes, or in mitochondrial substrate uptake/supply (processes 
upstream of the respiratory chain) if measured in intact cells. Be aware that cellular 
function relies heavily on adequate mitochondrial ATP production, and that the switch to 
glycolysis on addition of oligomycin can induce energy failure to such an extent that, 
regardless of uncoupler concentration, subsequent respiration levels are not an accurate 
measure of maximum respiratory capacity (Ruas et al., 2016). It is therefore advisable to 
also assess maximal respiratory capacity in the absence of oligomycin. 

• (iv) Finally, inhibition of the respiratory complexes (commonly rotenone + antimycin A 
to inhibit complexes I and III, respectively, although antimycin A is likely sufficient 
(Dranka et al., 2011)) measures O2 consumption driven by non-mitochondrial processes, 
such as cytoplasmic NAD(P)H oxidases. 

• The addition of pharmacological compounds or fuel substrates prior to oligomycin can 
capture further detail (Dranka et al., 2011). Compounds to induce varying degrees of 
neuronal stimulation, such as gramicidin (permeabilises plasma membrane), carbachol 
(acetylcholine receptor antagonist), or veratridine (inhibitor of Na+ channel inactivation) 
(Llorente-Folch et al., 2013), increase ATP demand and introduce a ‘second hit’ that may 
be required to unveil underlying deficiencies not apparent in the basal, resting state. 
Addition of alternative fuel substrates such as lipids or amino acids can help to 
investigate fuel dependence and metabolic flexibility. 

• Experiment analysis 

• Measurement of the OCR in this way allows calculation of several experimental 
parameters ((a) – (f) in 
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• Figure 2), detailed below. 
• The average OCR during stage (iv), non-mitochondrial O2 consumption (f), is subtracted 

from the average OCR during all other stages to determine ‘basal respiration’ (a), ‘proton 
leak’ (b), and ‘maximal respiration’ (d). Subtraction of non-mitochondrial O2 
consumption also removes any background signal (Clerc and Polster, 2012). 

• ATP turnover, assessed as oligomycin-sensitive respiration (c), is calculated as (a) – (b). 
• Spare respiratory capacity (e), also known as respiratory reserve, is calculated as (d) – 

(a), and is a measure of the cell’s ability to respond to an increase in energy demand. 
• The calculation of ratios from these parameters can be informative, and provides a form 

of internal normalisation. The coupling efficiency between ATP turnover and basal 
respiration is calculated as (c)/(a). The cell respiratory control ratio (RCR; similar but 
not identical to the RCR measured in isolated mitochondria) is calculated as (d)/(b) 
(Brand and Nicholls, 2011). A higher RCR generally indicates more coupled 
mitochondria and more efficient ATP synthesis (Clerc and Polster, 2012). The 
bioenergetic health index is calculated as (c*e)/(b*f) (Chacko et al., 2014). 

• Further guidelines for interpretation of OCR measurements can be found in (Brand and 
Nicholls, 2011, Mookerjee et al., 2017, Dranka et al., 2011). 

• Data analysis 

• The measured OCR ([O2]/time) can be normalised to cell number, total protein content or 
to levels of specific proteins of interest, giving final units of [O2]/time/cell number, 
[O2]/time/µg protein or [O2]/time/band density (Dranka et al., 2011, Salabei et al., 2014). 
The OCR can also be normalised to the activity of citrate synthase, a mitochondrial 
matrix TCA cycle enzyme commonly assumed to be a measure of mitochondrial 
abundance (Rhein et al., 2009, Barrientos et al., 2009, Spinazzi et al., 2012). 

• Changes in cell viability, mitochondrial density, or protein levels will impact the 
normalised OCR, and should be reported. In experiments where neurons are exposed to 
toxic manipulations (e.g. glutamate), it may be particularly important to normalise the 
OCR to cell viability throughout the experiment (Jekabsons and Nicholls, 2004). 

• As a guideline for multi-well experiments (e.g. for Seahorse measurements), a minimum 
of 3 individual wells per condition should be included per plate, with experiments 
repeated in 3 independent cultures. Variability between wells and cultures may 
necessitate increased replicates to identify small effects.  

• One-way analysis of variance with repeated measures can be used to test for differences 
between OCR measurements at specific time-points. 

 

For thorough investigation of the cellular metabolic state and bioenergetic capacity, OCR 

measurements can be coupled with those of the extracellular acidification rate (ECAR). While lactate 

release (specifically, protons co-transported with lactate) contributes to ECAR, CO2 formation from 

mitochondrial oxidative decarboxylation and the oxidative pentose phosphate pathway also 

contributes. OCR and ECAR measurements can be combined to calculate lactate release under certain 

conditions (the buffering power of the media must be calculated) (Mookerjee et al., 2015, Mookerjee 

et al., 2016, Mookerjee et al., 2017), but it should be noted that, even after correction, ECAR only 

determines anaerobic glycolysis (i.e. the portion of pyruvate metabolised to lactate), whereas the true 

rate of glycolysis (glucose metabolised to pyruvate) would also include pyruvate metabolised to 
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Acetyl CoA. Algorithms are also available that utilise OCR and ECAR measurements to accurately 

calculate mitochondrial and cytosolic ATP production and consumption, providing information on the 

cellular bioenergetic state, capacity and flexibility (Mookerjee et al., 2015, Mookerjee et al., 2016, 

Mookerjee et al., 2017). 
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5.3. Mitochondrial membrane potential 

The mitochondrial membrane potential (Δψm), defined as the difference in electrical potential between 

the mitochondrial matrix and the cytosol, is commonly considered as a semi-quantitative read-out for 

the full proton-motive force (Δp), as Δψm dominates over ΔpHm (Nicholls and Ferguson, 2013) 

(although changes in ΔpHm do not necessarily parallel with Δψm, (Perry et al., 2011)). While Δψm and 

ΔpHm both contribute to the regulation of ATP synthesis by Δp, Δψm alone provides the charge 

gradient to regulate the transport of Ca2+ and other ions across the mitochondrial membrane (Perry et 

al., 2011). It is important to note that Δψm is not necessarily a good indicator of mitochondrial health, 

as ATP-synthesising mitochondria can have a reduced Δψm to those with ATP synthase switched off. 

These measurements should therefore be interpreted together with measurements of OCR or 

NAD(P)H. Small fluctuations in Δψm can indicate disrupted respiration, ATP synthesis, or ionic 

fluxes across the mitochondrial membrane (Nicholls and Budd, 2000, Nicholls, 2006, Ward et al., 

2007). Marked Δψm depolarisation is generally correlated with neuronal death, and may indicate 

mitochondrial outer membrane permeabilisation during apoptosis or mitochondrial permeability 

transition during ROS or Ca2+-mediated injury. In response to oligomycin, Δψm hyperpolarisation 

indicates that mitochondria were still generating ATP prior to drug exposure (ATP synthase operating 

in forward mode), while immediate depolarisation indicates that mitochondria had been net ATP 

consumers (ATP synthase reversal, where glycolytic ATP maintains Δψm) (Ward et al., 2000, 

Nicholls and Budd, 2000). If depolarisation is preceded by a lag phase, it is likely that oligomycin 

caused secondary mitochondrial dysfunction, often due to mitochondrial Ca2+ overload followed by 

opening of the permeability transition pore (Irwin et al., 2003). Although it is a less sensitive measure 

than the OCR, the magnitude and direction of Δψm fluctuations can provide complementary 

information to OCR experiments (Brand and Nicholls, 2011). The cause of changes in the 
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oligomycin-resistant mitochondrial OCR (

 

Figure 2, (b)), for instance, can be further investigated by measuring Δψm – an increased H+ leak 

would decrease Δψm, while increased substrate oxidation increases Δψm. High concentrations of a 

mitochondrial uncoupler that collapse Δψm (Error! Reference source not found.) are commonly 

added at the end of an experiment as a control for signal specificity. 

5.3.1. Experimental set-up  

Δψm is commonly measured using membrane-permeant, lipophilic, cationic fluorescent probes which 

accumulate in the negatively charged mitochondrial matrix in proportion to Δψm. The magnitude of 

accumulation is described by the Nernst equation (Nicholls and Ferguson, 2013), but can be affected 

by mitochondrial binding of the probe (Perry et al., 2011). The fluorescent signal can be measured by 

flow-cytometry or microplate photometers for fixed end-point or population level analyses, 

respectively. Time-lapse fluorescence imaging in single living cells allows the measurement of 

intrinsic cell-to-cell heterogeneity and has been applied extensively in the investigation of neuronal 

metabolism (Connolly and Prehn, 2015). Δψm can also be monitored in conjunction with other 

fluorescent reporters to obtain simultaneous measurements of multiple cellular parameters. 

All probes are substrates of the multidrug resistance (MDR) transporters. Primary neurons do not 

generally express these transporters, but they are often over-expressed in cultured cell lines and may 

limit mitochondrial loading. Cyclosporin A, an inhibitor of the permeability transition pore (PTP), 

also inhibits MDR transporters, leading to increased mitochondrial probe loading and confounding 

studies investigating the contribution of the PTP to mitochondrial depolarisation (Bernardi et al., 
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2001). This issue can be overcome by using Cyclosporin H, which inhibits MDR transporters but not 

the PTP. 

Tetramethylrhodamine methyl ester (TMRM; Molecular Probes) is one of the most commonly used 

fluorescent reporters of Δψm and is less toxic than TMRE and Rh123 (Scaduto and Grotyohann, 

1999). TMRM can be excited on epi-fluorescence, confocal, or 2-photon microscopes. 2-photon 

imaging on the single mitochondrial level can reduce photo-toxicity and photo-bleaching compared to 

confocal microscopy (Hayakawa et al., 2005). TMRM is predominantly utilised as a single-excitation, 

single emission dye, and is therefore affected by focus drift, laser intensity fluctuations, 

photobleaching or changes in cell/mitochondrial volume. Appropriate light control experiments to 

ensure signal stability are therefore crucial (for a dual-excitation approach in isolated mitochondria, 

see (Scaduto and Grotyohann, 1999)). Without calibration, TMRM provides a qualitative measure of 

Δψm. The kinetics of the TMRM signal depend on the relatively slow equilibration of the probe across 

the plasma membrane (addition of tetraphenylboron can increase the rate of diffusion across 

membranes (Ward et al., 2000)), and the contribution of the plasma membrane potential (Δψp) to the 

TMRM signal (or, indeed, to any cationic probe) cannot be discounted (Ward et al., 2000, Nicholls 

and Budd, 2000, Perry et al., 2011). To overcome this issue, Δψp must be monitored in parallel with 

Δψm, using fluorescent anionic probes such as DiBAC4(3) (ThermoFisher) or a component of the 

Membrane Potential Assay Kit from Molecular Devices (commonly termed plasma membrane 

potential indicator, PMPI) (Nicholls, 2006). Starting from inferred initial values, relative Δψm and Δψp 

values can subsequently be calculated using the Nernst equation in Excel (Ward et al., 2000, Nicholls, 

2006) or MATLAB (Ward et al., 2007). Absolute quantification can be achieved using mathematical 

models (Gerencser et al., 2012), although issues such as dye extrusion from the cell should be 

considered. 

The concentration of TMRM (and other fluorescent cationic probes) is an important consideration in 

experimental design, and can be classified as either ‘quench’ or ‘non-quench’ mode. High 

concentrations are classified as ‘quench’ mode, where densely packed TMRM molecules within the 

mitochondrial matrix are quenched. A transient increase in the whole-cell TMRM signal in this 

instance therefore indicates Δψm depolarisation – the quenched probe leaves the matrix and is 

unquenched, leading to a transiently brighter cellular signal until the probe more slowly re-

equilibrates with the extracellular space. In contrast, TMRM in ‘non-quench’ mode (<~30 nM) 

remains fluorescent within the mitochondrial matrix, and Δψm depolarisation leads to a decrease in the 

fluorescent signal. Non-quench mode is preferable to more reliably estimate slower changes in 

potential and to compare Δψm between populations, as the number of TMRM molecules and their 

fluorescence are roughly linearly related (Nicholls, 2006, Brand and Nicholls, 2011, Perry et al., 

2011). Lower dye concentrations are also more tolerable, and reduce the dye’s impact on 

mitochondrial function (Scaduto and Grotyohann, 1999). However, the TMRM signal in non-quench 
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mode does not distinguish between mitochondrial and plasma membrane potential (see earlier) (Brand 

and Nicholls, 2011). The precise TMRM concentrations for quench or non-quench mode can be 

determined using FCCP – in quench mode, addition of ~10 µM FCCP (to collapse Δψm) induces a 

transient spike in TMRM fluorescence that is absent in non-quench mode (Brand and Nicholls, 2011, 

Nicholls, 2006). It must be emphasised that this transient response means that quench mode must not 

be used in flow-cytometry or to compare two cell populations. 

TMRE (tetramethylrhodamine ethyl ester) and rhodamine 123 (Rh123; Molecular Probes) are other 

cationic fluorescent dyes that can be used to report changes in Δψm, although these dyes may bind to 

the mitochondrial membrane and affect mitochondrial respiration to a greater extent than TMRM 

(Scaduto and Grotyohann, 1999). Rh123 only slowly crosses the plasma membrane and is therefore 

less affected by Δψp over short timescales. Rh123 is therefore commonly used in short-term 

experiments (minutes) where ‘quench’ mode is desired, such as when rapid step changes in Δψm are 

expected (Nicholls, 2006, Perry et al., 2011). In these instances, Rh123 should be removed from the 

media and cells washed before imaging (Hayakawa et al., 2005, Ward et al., 2000). Mitotracker dyes 

are not suitable to monitor Δψm as mitochondrial binding prevents probe redistribution (Bernardi et 

al., 2001). The use of DiOC6 or JC-1 should also be avoided, due to high toxicity, sensitivity to 

loading concentration, and Δψm-independent fluorescence changes (Perry et al., 2011). Practical 

guides on the use of cationic fluorescent probes to monitor Δψm are provided in (Joshi and Bakowska, 

2011, Perry et al., 2011).  

 

5.3.2. Experimental protocol 

In Protocol 2, we provide experimental guidelines to monitor changes in mitochondrial membrane 

potential in primary cortical neurons exposed to mitochondrial respiratory chain inhibitors. Many of 

the steps in this protocol can be generalised to other similar experiments. 

Protocol 2: Utilising live-cell fluorescence microscopy to monitor changes in mitochondrial 

membrane potential (by TMRM) in primary mouse cortical neurons exposed to mitochondrial 

respiratory chain inhibitors.  

• Primary cortical neurons preparation and culture 

• Prepare cortical neurons from post-natal (day 0-1) or embryonic (day 16-18) mice of 
either sex (Hilgenberg and Smith, 2007, Sciarretta and Minichiello, 2010). 

• Seed neurons at appropriate density on pre-washed, poly-D-lysine-coated dishes suitable 
for microscopy (e.g. 1-2x105 cortical neurons/cm2 in 12 or 22 mm aperture glass-
bottomed WillCo dishes (WillCo Wells)). 

• Culture neurons in appropriate media e.g. Neurobasal medium 21103-049 supplemented 
with 0.5 mM L-glutamine and 2 % B27. It should be noted that this media contains 
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supraphysiological glucose levels (25 mM). 
• Perform experiments after at least 8 days in vitro. 

• Imaging set-up 

• On a confocal microscope, TMRM can be excited with a 543 Helium-Neon (HeNe) 
excitation laser (3-5 % of 1 mW), or similar illumination (peak excitation ~550 nm). Its 
peak emission is ~576 nm and can be detected using e.g. a 560 nm long-pass filter.  

• On a 2-photon microscope, TMRM can be excited at ~830 nm (Hayakawa et al., 2005). 
• Dichroic beam splitters and filter wheels in the excitation and emission light path, 

containing filter sets appropriate for TMRM wavelengths, are required. 
• Efforts should be made to reduce phototoxicity – minimise laser excitation power, 

exposure time and imaging frequency. Photobleaching can decrease the fluorescent 
signal and phototoxicity leads to excessive neuronal death. Appropriate vehicle controls 
are necessary to control for effects of phototoxicity on fluorescence. 

• Experiments should be performed at 37 °C, as lower temperatures may alter the TMRM 
equilibration kinetics and/or neuronal physiology. This requires a temperature controlled 
microscope stage, chamber and/or objective lens. 

• Imaging set-up (laser and filter settings, imaging frequency etc.) should remain as similar 

as possible between experiments, to allow inter-experiment comparison. 

• Preparing the cells 

• Exchange culture media for appropriate experimental buffer including 10 nM TMRM 
(non-quench mode; wash neurons once to ensure complete exchange). Example buffer 
composition (in mM): 120 NaCl, 3.5 KCl, 0.4 KH2PO4, 5 NaHCO3, 20 HEPES, 
1.2 Na2SO4, pH 7.4 (NaOH), supplemented with 1.2 CaCl2, 1-2 MgCl2 and desired 
substrate (e.g. 2.5-5 mM glucose). 

• Equilibrate neurons in TMRM for 45-60 min prior to imaging (at 37 °C in the dark, no 
CO2 if using experimental buffer). Baseline recording prior to drug addition can verify 
dye equilibration. 

• The buffer surface can be covered with mineral oil, or the chamber closed, to minimise 
evaporation during experiments. 

• TMRM should be kept in the buffer throughout the experiment, as removal will cause re-
equilibration of the probe across the plasma and mitochondrial membranes, altering the 
fluorescent signal (see (Perry et al., 2011) for potential issues with dye equilibration). In 
contrast to cancer-derived cell lines, the addition of Cyclosporin H or verapamil (to 
inhibit the rhodamine-sensitive MDR transporters) is generally not required in primary 
neurons. 

• Performing the experiment 

• Mount chamber/culture dish on microscope stage. 
• Record baseline fluorescence (usually for ~10 min) to ensure signal stability prior to 

treatment. 
• Image acquisition at 1 min intervals should be acceptable for relatively short-term 

experiments (< 2 h) on an epifluorescence or confocal microscope, dependent on the 
specific imaging set-up. 

• In the absence of a suitable perfusion system, pharmacological compounds can be added 
directly to the buffer on stage. Compounds can be pre-prepared in experimental buffer 
(+TMRM) for ease of mixing. 
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• Testing respiratory complex activity (Figure 3) 
• Suggested drug concentrations are listed in Error! 

Reference source not found.. Drugs can be added 
alone or in combination. 

• Rotenone and antimycin A inhibit Complex I and 
Complex III, respectively. In healthy respiring 
neurons, this inhibits respiration and partially depolarises the mitochondrial membrane 
(TMRM signal decreases in non-quench mode). 

• Oligomycin inhibits ATP synthase. This may depolarise/hyperpolarise the mitochondrial 
membrane (decrease/increase TMRM signal in non-quench mode), depending on the 
prior direction of ATP synthase operation (ATP producing or consuming, respectively) 
(Ward et al., 2000, Nicholls and Budd, 2000).  

• The addition of high concentrations of FCCP (10 µM) at the end of the experiment 
should rapidly collapse Δψm (and TMRM signal) indicating that the TMRM signal during 
the experiment emanated from mitochondria. Such high concentrations also more slowly 
depolarise the plasma membrane (Nicholls, 2006). 

• Vehicle and light control experiments should also be performed. 
• Sufficient time should be allowed between drug additions for the TMRM signal to 

stabilise (up to 30 min). 
• Compounds can also be added as in the standard OCR experiment (to complement these 

measurements) (Protocol 1).  
• Image processing and analysis 

• Image processing can be performed using tools such as MetaMorph (Molecular Images) 
or the open-source ImageJ (https://imagej.nih.gov/ij/). 

• Subtract background signal, identify regions of interest (ROI; e.g. individual cells, or 
mitochondrial-enriched regions), and measure the (thresholded) average signal intensity 
within the ROI. The total fluorescence within the cell soma can be measured, assuming 
mitochondria within the cell respond similarly (relatively homogenous response 
throughout) (Perry et al., 2011), and provided that mitochondrial loading of the probe has 
been verified. 

For each ROI, plot the signal intensity over time (absolute signal intensity, or signal intensity 
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normalised to baseline signal) (  

• Figure 3).  
• Data analysis 

• As a guideline when investigating single-cell behaviour, at least 25 cells from 3 
independent cultures should be analysed, although variability between cells and cultures 
may necessitate increased replicates to identify small effects. Required cell numbers can 
be calculated based on the expected effect size and desired power. 

• The response of each neuron can be treated as an independent event in statistical 
analyses, unless culture-to-culture variability is higher than cell-to-cell variability within 
cultures. 

• One-way analysis of variance with correction for repeated measures can be used to test 
for differences between TMRM measurements at specific time-points. 

• As discussed in the main text, the contribution of Δψp to the TMRM signal can be 
determined by simultaneous use of a Δψp-sensitive probe, allowing relative or absolute 
quantification of Δψm (Ward et al., 2000, Ward et al., 2007, Gerencser et al., 2012, 
Nicholls, 2006). 
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Figure 3: Representative images and time-series data from TMRM (10 nM) measurements in wild-

type mouse cortical neurons exposed to mitochondrial inhibitors. (A) Brightfield and TMRM 

fluorescence images were captured on a Zeiss Axiovert 100 microscope (brightfield and TMRM 

fluorescence are merged in the left-most image, TMRM only in the other images). (B) Time-series 

TMRM fluorescence measurements within the region of interest marked by the white polygon in 

(A)(ii). The precise time-points of the images in (A) are marked (i)-(iii) on the graph. Baseline 

fluorescence was recorded for 10 min pre-treatment and used to normalise the signal. Complex III 

inhibition with antimycin A (1 µM) induced a decrease in TMRM fluorescence, indicating 

mitochondrial membrane depolarisation. Subsequent oligomycin addition (2 µg/ml) further reduced 

TMRM fluorescence, indicating that prior to oligomycin addition the mitochondrial membrane 

potential was being maintained by the F1Fo ATP synthase operating in reverse. The loss of any 

remaining TMRM fluorescence after FCCP addition (10 µM) indicates mitochondrial membrane 

potential collapse.  
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5.4. Mitochondrial NAD(P)H 

Pyridine nucleotides are electron-shuttling agents that act as co-factors in enzymatic reduction-

oxidation (redox) reactions. Nicotinamide adenine dinucleotides (NAD+/NADH and the 

phosphorylated NADP+/NADPH) are pyridine nucleotides that play a central role in mitochondrial 

energy metabolism and in the maintenance of redox status. In neurons, NADH is the principal 

electron donor in the respiratory chain, and is oxidised from NADH to NAD+ at complex I to drive 

mitochondrial OxPhos (Shuttleworth, 2010). Mitochondrial NADH is maintained by the reduction of 

NAD+ to NADH in the TCA cycle and via the import of NADH-derived reducing equivalents driven 

by the malate/aspartate shuttle. NAD+ can also be consumed by Poly (ADP-ribose) polymerase 

(PARP) isozymes and sirtuins (Kahraman et al., 2015, Fang et al., 2016). NADP+/NADPH does not 

contribute directly to mitochondrial OxPhos, but primarily supports the maintenance of reduced 

glutathione (GSH) and thioredoxin pools (Lewis et al., 2014). NADPH is maintained by the activity 

of the NADP-isocitrate dehydrogenase (ICDH) and the NADP-malic enzyme, though the 

mitochondrial NADP+/NADPH pool is often assumed to be largely reduced and invariant compared to 

the mitochondrial NAD+/NADH pool (Nicholls and Budd, 2000). Electrons from NADH and NADPH 

(termed NAD(P)H here) reactions can also be transferred to oxygen molecules (e.g. by NADPH 

oxidases) to generate reactive oxygen species in the form of superoxide (Blacker and Duchen, 2016). 

Measurement of mitochondrial NAD(P)H can be most informative when linked to Δψm 

measurements, as processes regulating both parameters are tightly linked (Brand and Nicholls, 2011). 

A decrease in mitochondrial NAD(P)H can indicate enhanced respiratory chain activity (increased 

NADH oxidation), reduced TCA cycle activity (decreased NAD+ reduction), or increased NAD+ 

consumption. 

5.4.1. Experimental set-up 

NAD(P)H can be monitored by measuring endogenous autofluorescence, through the use of 

genetically-encoded fluorescent proteins, or by high performance liquid chromatography, labelled 

spectrometry techniques, or commercially available enzymatic assays (e.g. Promega’s NAD/NADH-

GloTM Assay). 

 

Autofluorescence 

Both NADH and NADPH autofluoresce in their reduced, but not in their oxidised state, and produce 

spectrally identical autofluorescence (Chance, 1962). The cellular NAD(P)H autofluorescence 

intensity is considered to be dominated by protein-bound mitochondrial NAD(P)H, as the 

autofluorescence signal co-localises with mitochondrial markers, and NAD(P)H autofluorescence 

intensity is enhanced when the nucleotides are protein-bound and ‘active’ (Shuttleworth, 2010, 

Ogikubo et al., 2011). 
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NAD(P)H autofluorescence can be detected using epifluorescent illumination or confocal 

microscopes equipped with UV lasers. It is excited by near ultraviolet wavelength light (340-360 nm), 

and emission is detected at ~450 nm (excitation/emission spectra similar to Hoechst) (Chance, 1962). 

Low excitation wavelengths are required to distinguish NAD(P)H from flavoprotein autofluorescence 

(which has an excitation peak ~450 nm). While autofluorescence detection is a non-invasive 

approach, excessive exposure of cells to UV wavelength excitation can be highly phototoxic, and 

efforts to reduce exposure are required (e.g. optimising detection sensitivity and reducing laser 

intensity, pixel dwell-time, exposure time and imaging duration/frequency), sometimes resulting in 

detection difficulties or sub-optimal signal-to-noise levels. 2-photon microscopy (excitation peak 

~710 nm; emission ~400-500 nm) has also been used in dissociated cultures (Hayakawa et al., 2005, 

Pardo et al., 2006) and in brain tissue slices (Kasischke et al., 2004, Shuttleworth, 2010). 2-photon 

NAD(P)H excitation wavelengths are phototoxic and also excite flavoprotein autofluorescence 

(Huang et al., 2002). Semi-quantification and comparison of mitochondrial NAD(P)H levels between 

experiments can be achieved by determining the autofluorescence dynamic range between maximal 

and minimal NADH for each sample (neglecting the contribution from NADPH), with maximal 

oxidation induced by an uncoupler such as FCCP, and maximal reduction induced by an effective 

inhibitor of respiration such as cyanide (Blacker and Duchen, 2016, Blacker et al., 2017). 

Fluorescence lifetime imaging microscopy (FLIM) enables semi-quantitative measurements of free 

and protein-bound mitochondrial NAD(P)H and may further identify the relative contribution of 

NADH and NADPH to the autofluorescence signal (Blacker and Duchen, 2016). FLIM measures the 

pixel-by-pixel autofluorescence lifetime on a defined sample area, under 2-photon pulsed excitation, 

by recording the delay between the pulse and fluorescence emission (lifetime) (Chakraborty et al., 

2016). NAD(P)H autofluorescence lifetimes vary based on their binding state - the lifetime of free 

NAD(P)H molecules (~0.4 ns) is shorter than that of the protein-bound, active molecule (~2-4 ns) 

(Blacker and Duchen, 2016). Since the relative amplitude of each lifetime component is proportional 

to its concentration, FLIM analysis can be used to measure the contribution of active NAD(P)H with 

respect to its free counterpart. This is particularly important in the study of respiratory chain processes 

in the mitochondrial compartment. The precise autofluorescence lifetime also depends on the 

fluorophore’s local environment, and FLIM techniques may therefore provide an alternative measure 

of characteristics such as pH (Ogikubo et al., 2011). 

 

5.4.2. Experimental protocol 

Protocol 3: Utilising live-cell fluorescence microscopy to monitor NAD(P)H autofluorescence in 

primary mouse cortical neurons exposed to mitochondrial respiratory chain inhibitors.  
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• Prepare and culture primary cortical neurons as described in Protocol 2, performing 
experiments after at least 8 days in vitro. 

• Imaging set-up 

• The NAD(P)H autofluorescence peak excitation wavelength (~340 nm) and peak 
emission wavelength (~450 nm) are similar to those of Hoechst. An epifluorescence 
microscope therefore requires a transmission curve that includes near UV wavelengths. 
On a confocal microscope, NAD(P)H autofluorescence can be excited with a UV 
excitation laser (364 nm Argon Gas Ion laser or 355 nm or 375 nm DPSS laser). The 2-
photon excitation peak of NAD(P)H autofluorescence ~710 nm. 

• Dichroic beam splitters and filter wheels in the excitation and emission light path, 
containing filter sets appropriate for NAD(P)H autofluorescence, are required e.g. a 
450 nm band-pass filter (30/40 nm bandwidth). It is essential to use a band-pass filter 
(rather than a long-pass filter) to minimise contamination of the signal by flavoprotein 
autofluorescence. 

• Phototoxicity is a major concern when exciting neurons at near UV wavelengths – 
minimise laser excitation power, exposure time, imaging frequency and imaging 
resolution. The use of UV filters (e.g. neutral density UV filter) can also be considered. 
Appropriate control experiments should be performed. See also (Blacker et al., 2017). 

• As for TMRM experiments, autofluorescence imaging should ideally be performed at 
37 °C. 

• Imaging set-up (laser and filter settings, imaging frequency etc.) should remain as similar 
as possible between experiments, to allow inter-experiment comparison. 

• Preparing the cells 

• Exchange culture media and equilibrate neurons as for Protocol 2 (simultaneous 
monitoring of TMRM is also possible).  

• Performing the experiment 

• Neurons can be imaged as described in Protocol 2 (with settings specific to detect 
autofluorescence), although extra care is needed to reduce phototoxicity when exciting 
and detecting NAD(P)H autofluorescence, so imaging frequency and experiment 
duration may need to be reduced. NAD(P)H autofluorescence can equilibrate relatively 
rapidly (within 5 min, Figure 4) following drug addition. 

• Testing respiratory complex activity 
• Suggested drug concentrations are listed in Error! Reference source not found..  
• Oligomycin inhibits ATP synthase and thereby 

reduces the flux through the respiratory chain. In 
healthy, unimpaired neurons this decreases NADH 
consumption and increases autofluorescence (Figure 
4). 

• Mitochondria uncoupling (low  concentrations of 
e.g. FCCP/CCCP, see Table 2) increases NADH oxidation, decreasing autofluorescence 
((Blacker and Duchen, 2016), Figure 4). 

• Inhibition of respiration with rotenone or antimycin A reduces NADH oxidation and 
increases NAD(P)H autofluorescence (Blacker and Duchen, 2016). 

• Standard calibration of the NAD(P)H autofluorescence dynamic range is performed by 
inducing maximal NADH oxidation with an uncoupler (e.g. FCCP/CCCP), followed by 
maximal reduction induced by an inhibitor of respiration such as cyanide or antimycin A.  
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• Alternative substrates, modulators or compounds can be 
added to analyse additional aspects of NAD(P)H processing. 

• Vehicle control experiments should also be performed. 
• Image processing and analysis 

• Perform image processing and analysis similar to that 
described in Protocol 2. 

• Subtract background signal from the image.  
• Identify regions of interest (ROI) for analysis. Areas of brightest autofluorescence can be 

considered areas of high mitochondrial density (Figure 4). Selecting a ROI within these 
areas minimises background signal, which can dilute the dynamic range of the 
autofluorescence signal. 

• Measure the average signal intensity within the ROI – for autofluorescence 
measurements, thresholding may reduce the signal dynamic range. 

• For each ROI, plot the signal intensity over time (absolute signal intensity, or signal 
intensity normalised to baseline signal) (Figure 4).  

• Data analysis 
• Analyse the autofluorescence signal in single neurons as described in Protocol 2. 

 

 

Figure 4: Representative images and time-series data from NAD(P)H autofluorescence measurements 

in wild-type mouse cortical neurons exposed to mitochondrial inhibitors. (A) Brightfield and 

NAD(P)H autofluorescence images were captured on a Zeiss Axiovert 100 microscope. (B) Time-

series autofluorescence measurements from the region of interest marked within a white polygon in 

(A)(iii). The precise time-points of the images in (A) are marked (i)-(iv) on the graph. Baseline 

fluorescence was recorded for 5 min pre-treatment and used to normalise the signal. Inhibition of the 

F1Fo ATP synthase with oligomycin (2 µg/ml) reduced NADH consumption by the respiratory chain, 
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leading to an increase in the autofluorescence signal. Subsequent mitochondrial uncoupling with 

FCCP (0.5 µM) increased respiratory NADH oxidation, decreasing autofluorescence. 

 

Flavoprotein autofluorescence provides a similar, though not identical, measure of mitochondrial 

metabolism, and can be especially useful in the absence of available UV excitation or as a 

complementary measure to NAD(P)H autofluorescence. FAD+ is reduced to FADH2 in the TCA 

cycle, and FADH2 is oxidised to FAD+ via the activity of Complex II in the respiratory chain. As 

flavoproteins autofluoresce in their oxidised (FAD+), but not in their reduced (FADH2) form, signal 

fluctuations are expected to be inverted compared to NAD(P)H autofluorescence. The flavoprotein 

peak excitation wavelength is ~450 nm, while emission is detected ~510 nm (Huang et al., 2002, 

Shuttleworth, 2010, Chakraborty et al., 2016).  

 

Fluorescent Reporter Proteins 

Genetically-encoded fluorescent reporters and their use in biological research are introduced in 

Section 5.6  “Fluorescent reporters of mitochondrial ATP, calcium (Ca2+) and pH”. Fluorescent 

proteins (FPs) to measure mitochondrial NADH or NADH:NAD+ have an improved signal to noise 

ratio and are less phototoxic than autofluorescence detection methods, but are slower acting, can 

contribute to NAD(P)H buffering, and require transfection and mitochondrial targeting (San Martin et 

al., 2014). 

Current genetically-encoded fluorescent reporters of NADH or of the NADH:NAD+ ratio contain the 

bacterial Rex protein, a transcription factor that, when bound to NADH, undergoes a conformational 

change (Bilan et al., 2014, Bilan and Belousov, 2016). Frex variants are dual excitation reporters of 

NADH, comprising a circularly permuted yellow FP (cpYFP) inserted between two Rex proteins, that 

have been successfully targeted to mitochondria (Frex-Mit/C3L194K) (Zhao et al., 2011b). RexYFP, 

comprising cpYFP inserted into a Rex homolog, is significantly smaller than Frex, and has also been 

successfully utilised to report the mitochondrial NAD+:NADH ratio (Bilan et al., 2014). SoNar, a 

highly sensitive cpYFP and Rex-based reporter of NADH and NAD+ levels, has yet to be targeted to 

mitochondria (Zhao et al., 2015). The use of cpYFP, however, is limited by its pH sensitivity, and any 

cpYFP reporters need to be used in conjunction with a pH reporter. 

Peredox, consisting of two FPs (T-Sapphire and mCherry) and a Rex dimer, reports the free cytosolic 

NADH:NAD+ ratio with a high affinity for NADH (Hung et al., 2011). Peredox is mostly pH 

insensitive, but thus far has not been successfully utilised to measure mitochondrial NADH:NAD+, 

likely due to its sub-optimal sensitivity range (NADH:NAD+ ratios are estimated to be >20 fold 
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higher in the mitochondria than in the cytoplasm (Hung et al., 2011)). Genetically-encoded reporters 

of mitochondrial NAD+ and NADPH have also been developed recently (Cambronne et al., 2016, Tao 

et al., 2017). Because of the predominance of NAD+ over NADH, small changes in NAD+ could be 

missed using ratio reporters, making NAD+ sensors a promising development, especially considering 

the recent interest in ageing and NAD+-dependent sirtuin activity (Fang et al., 2016, Cambronne et al., 

2016). 
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5.5. Respiratory complex activity and subunit expression 

Reduced expression or activity of respiratory complexes has been reported in most NDs, as described 

earlier. These changes, however, may not necessarily translate into compromised mitochondrial 

function, due to variations in rate-limiting factors, the distribution of control along the respiratory 

chain or the presence of compensatory mechanisms (e.g. between Complex I and II) (Brand and 

Nicholls, 2011). For this reason, assays measuring subunit expression or complex activity may be 

more usefully employed to investigate the specific molecular origin of a known mitochondrial defect, 

rather than as a general measure of mitochondrial bioenergetic function. Such investigations may be 

complemented by OCR measurements in permeabilised cells or isolated mitochondria, where the 

provision of different substrates can isolate specific complex activity. 

 

5.5.1. Experimental Protocol 

Protein levels of specific subunits of the respiratory complexes (Complexes I-IV and the F1Fo ATP 

synthase) can be assessed by Western Blotting with individual antibodies or commercially available 

antibody cocktails (e.g. MitoProfile® from Mitosciences, Abcam). As some antibodies bind to 

auxiliary rather than catalytic subunits, altered subunit expression in these instances may not 

correspond to altered complex activity. 

The activity of the respiratory complexes can be measured via histochemical staining of fresh frozen 

brain tissue (e.g. cytochrome c oxidase (COX) and/or succinate dehydrogenase (SDH) staining; (Ross, 

2011), with in-gel enzymatic histochemical reactions (Jung et al., 2000), or with spectrophotometric 

assays (commercially available kits, or see below). Complex activity can be measured in tissues, cells, 

mitochondria-enriched fractions or isolated mitochondria. Activity has also been measured in pre-

synaptic nerve terminals (synaptosomes) (Sipos et al., 2003), but these preparations can be hampered 

by heterogeneity (Nicholls, 2006). Although isolating mitochondria from cellular homogenates is a 

delicate and time-consuming procedure and experimental data can vary based on the quality of the 

isolation, it is nevertheless required for many assays to reduce the confounding contribution of non-

mitochondrial enzymes (Spinazzi et al., 2012) and to increase assay sensitivity. Measurement of 

respiratory complex activity also requires appropriate disruption of the mitochondrial membrane. 

Spectrophotometric assays involve mixing the mitochondrial content with electron donors and 

acceptors appropriate for the complex being studied, and measuring the change in absorbance at the 

appropriate wavelength for the specific electron donor/acceptor (Table 3). The activity of the ANT 

can also be measured in permeabilised cells (Chinopoulos et al., 2014). 
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Table 3: Description of spectrophotometric enzymatic assays to measure respiratory complex activity. 

Protocols for a variety of assays can be found on manufacturers’ websites for commercially available 

assays (e.g. the MitoToxTM suite from MitoSciences, or MitoCheck® from Cayman), and in various 

publications (e.g. (Sipos et al., 2003, Barrientos et al., 2009, Spinazzi et al., 2012)). Respiratory chain 

complex activities can be normalised to the amount of protein in the sample, or to citrate synthase 

activity (Barrientos et al., 2009, Spinazzi et al., 2012). 

Respiratory complex 

(synonyms) 

Enzymatic assay description 

Complex I 

(NADH:ubiquinone 

oxidoreductase, NADH 

dehydrogenase, 

EC 1.6.5.3) 

In catalysing the oxidation of NADH to NAD+, Complex I transfers 

electrons from NADH to ubiquinone (coenzyme Q10). Assays to measure 

Complex I activity therefore utilise NADH as the electron donor, and a 

ubiquinone analog (e.g. coenzyme Q1 or decylubiquinone, DB) as the 

electron acceptor. Activity is determined by measuring the rate of 

oxidation of NADH to NAD+, or less frequently by measuring the rate of 

reduction of the ubiquinone analog. The rate of NADH oxidation is 

measured by tracking the decrease in absorbance of the sample at 340 nm, 

or DB reduction can be followed at 247-272 nm. The majority of 

Complex I activity should be rotenone-sensitive. 

Complex II (succinate-

ubiquinone 

oxidoreductase, 

succinate 

dehydrogenase) 

Complex II oxidises succinate to fumarate, while reducing ubiquinone to 

ubiquinol. In this assay, succinate is used as the electron donor with 

dichlorophenolindophenol (DCPIP) the electron acceptor. Complex II 

activity can be measured by following the decrease in absorbance at 

600 nm caused by the reduction of DCPIP. Complex II activity should be 

sensitive to malonate. Rotenone and antimycin A are usually added to 

minimise the endogenous ubiquinone accepting electrons from Complex 

II (and the resultant underestimation of Complex II activity). 

Complex III (ubiquinol-

cytochrome c 

oxidoreductase, 

EC 1.10.2.2) 

In catalysing the reduction of cytochrome c, complex III transfers 

electrons from ubiquinol to cytochrome c. A ubiquinone analog (such as 

DB) is therefore used as the electron donor, while cytochrome c is used as 

the electron acceptor. Complex III activity is measured by following the 

increase in absorbance at 550 nm caused by the reduction of cytochrome 

c. The rate of oxidation of the ubiquinone analog can also be monitored. 

The majority of Complex III activity should be sensitive to antimycin A. 

Cyanide (CN) or another Complex IV inhibitor should be added to 

prevent cytochrome c oxidation. 

Combined complex I The rate of reduction of cytochrome c (electron acceptor), using NADH 
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and complex III 

(NADH-cytochrome c 

oxidoreductase) 

as the electron donor (Complex I substrate), is measured by monitoring 

the increase in absorbance at 550 nm. CN or another Complex IV 

inhibitor should be added to prevent cytochrome c oxidation. 

Combined complex II 

and III (succinate-

cytochrome c 

oxidoreductase) 

The rate of reduction of cytochrome c (electron acceptor), using succinate 

as the electron donor (Complex II substrate), is measured by tracking the 

increase in absorbance at 550 nm. CN or another Complex IV inhibitor 

should be added to prevent cytochrome c oxidation. 

Complex IV 

(cytochrome c oxidase, 

EC 1.9.3.1) 

Complex IV transfers electrons from cytochrome c to molecular oxygen, 

converting oxygen to water. To measure Complex IV activity, reduced 

cytochrome c (ferrocytochrome c) is used as the electron donor. Complex 

IV activity is measured by the decrease in absorbance at 550 nm, caused 

by oxidation of cytochrome c. The majority of complex IV activity is 

sensitive to potassium cyanide (KCN). 

F1Fo ATP synthase  The activity of the F1Fo ATP synthase (assayed as the reverse ATPase 

activity) is more difficult to measure, due to a high level of oligomycin-

resistant ATPase activity (Spinazzi et al., 2012). Assays can be performed 

that infer the reverse activity of ATP synthase (ATP hydrolysis to ADP) 

by measuring the lactate dehydrogenase-driven oxidation of NADH to 

NAD+. These reactions are coupled by the activity of pyruvate kinase 

which supplies pyruvate to fuel lactate dehydrogenase while generating 

ATP to fuel the ATP synthase reverse activity. Enzyme activity is 

measured by tracking the decrease in absorbance at 340 nm caused by 

NADH oxidation (Barrientos et al., 2009). 

 

5.5.2. Experimental analysis 

Enzymatic activity ("#$%.#'"().#*()) is calculated using the Beer-Lambert law 

,"-.#/0'1	/10'3'0.	 = 	∆678$97/"1:.#'"
()	;	1000

:>	;	?	;	@9$0:'"	1$"1.
 

where  eλ  = extinction coefficient (mM-1.cm-1)  
= ~6.2 for NADH @ 340 nm, ~20 for DCPIP @ 600 nm, ~19 for reduced 
cytochrome c – oxidised cytochrome c @ 550 nm (difference extinction 
coefficient) (Spinazzi et al., 2012, Barrientos et al., 2009) 

 V  = volume of sample (ml) 

 Protein conc. = protein concentration of sample (mg.ml-1) 
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5.6. Fluorescent reporters of mitochondrial ATP, calcium (Ca2+) and pH 

Mitochondrial ATP, Ca2+ and pH, as well as other metabolites and ions, can be monitored using 

fluorescent dyes or genetically-encoded fluorescent reporters. Genetically-encoded fluorescent 

reporters generally comprise one or two fluorescent proteins (FPs) connected to a peptide/protein 

whose conformation is altered by the target molecule or event (Tantama et al., 2012, San Martin et al., 

2014). For example, the conformation of the peptide/protein may be altered when bound by a certain 

ligand (e.g. ATP or glucose), or cleaved or phosphorylated by an enzyme (e.g. caspases or AMPK). 

This conformational change alters the fluorescent properties of the reporter, providing a detectable 

measure of the concentration of the ligand, or the activity of the enzyme. Caveats for all genetically-

encoded fluorescent reporters include; sensitivity to environmental factors such as pH (can be 

corrected for with simultaneous use of a pH sensor), buffering of the target molecule (especially 

relevant for low abundance molecules), non-specificity (availability of negative controls is important), 

and the functional impact of the introduction of an exogenous, sometimes large, protein (Tantama et 

al., 2012). 

Förster resonance energy transfer (FRET)-based fluorescence reporters commonly comprise two FPs 

connected by a linker peptide/protein, with the emission spectra of one FP (donor) overlapping the 

excitation spectra of the other (acceptor). With both FPs in close physical proximity (< ~10 nm), 

FRET occurs from the donor to the acceptor (energy transferred from the donor excites the acceptor), 

reducing the donor, and increasing the acceptor, fluorescence intensity (Figure 5). Since FRET is 

proportional to the 6th power of the distance between the FPs, any conformational change in the linker 

protein that minimally alters the distance between and/or the orientation of the FPs, can induce 

considerable FRET changes. The occurrence of FRET actually affects several fluorescence 

parameters, such as the emission intensity of the FPs at constant excitation, and their fluorescence 

decay time. The former has been used most frequently because of its relative simplicity to measure, 

limited cost, and high velocity of image acquisition. Fluorescence decay or lifetime imaging 

microscopy (FLIM) instead requires a dedicated apparatus, but it offers the advantage of being 

relatively insensitive to some experimental conditions such as focus drift, bleaching, or excitation 

light fluctuation. This technique is utilised in Enhanced Acceptor Fluorescence (EAF), where both 

fluorophores are excited at the same wavelength (~480 nm for GFP-YFP pairs) and the average 

lifetime of the emitted fluorescence is measured (Harpur et al., 2001). As YFP has a longer lifetime 

than GFP, the average lifetime will increase when the two FPs are in close enough proximity for 

FRET to occur (more YFP contributing to the average lifetime). Ratiometric measurements (such as 

provided by FRET-based reporters) facilitate intra-experimental normalisation and reduce the effects 

of volume changes, focus drift and reporter concentration. Fluorescent reporters can be multiplexed to 

allow simultaneous monitoring of multiple processes (e.g. cyan FP (CFP)/YFP FRET-based reporters 

in conjunction with red fluorescent reporters, such as TMRM (Connolly et al., 2014)). 
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Figure 5: Schematic of ATeam, a FRET-based reporter of ATP (Imamura 2009). The reporter 

comprises a linker protein (ε-subunit of a bacterial F1Fo ATP synthase) inserted between a donor 

CFP and acceptor YFP (enhanced CFP and Venus). ATP binding induces a conformational change in 

the linker protein, increasing FRET between the two FPs and altering the emitted fluorescence. 

Ratiometric measurements are obtained by calculating the FRET ratio (CFP/YFP). The acceptor YFP 

can also be laser-excited at ~488 nm. Fluorescent emissions from both FPs should be monitored, to 

ensure that any ratio change is due to altered FRET (opposite changes in the fluorescence of the 

individual FPs), rather than other sources (such as increased auto-fluorescence). Image reproduced 

with permission from (Connolly et al., 2014). 

 

Genetically-encoded fluorescent reporters can be transfected into primary neurons using a variety of 

techniques, such as lipofection, Ca2+ phosphate co-precipitation or Amaxa nucleofection (Lonza) 

(Karra and Dahm, 2010). Many of these techniques, however, are hampered by high toxicity and low 

transfection efficiency in primary cells. Lenti- or adeno-viral approaches can improve transduction 

efficiency (Karra and Dahm, 2010). Fluorescent reporters can be modified to target the reporter to the 

mitochondrial membrane, matrix or inter-membrane space. Targeting fluorescent reporters to 

mitochondria, however, is not without challenges – the size or complexity of the reporter may limit its 

ability to translocate into mitochondria, the increased basicity of mitochondria (~pH 8) may impact 

reporter function, and mitochondrial metabolites may affect reporter readout (Tantama et al., 2012, De 

Michele et al., 2014). Mitochondrial localisation of transfected reporters (and fluorescent dyes) should 

be verified, by e.g. co-localisation with an established mitochondrial marker. It is also good practice 

to confirm that the mitochondrial targeting of the fluorescent reporter does not disrupt mitochondrial 

respiratory function, by e.g. measuring OCR according to Protocol 1. 

Accurate calibration of a fluorescent reporter can sometimes provide absolute quantification of 

metabolite, ion or protein concentrations. Nevertheless, changes in steady-state concentration can be 

due to any number of processes, including altered import, export, synthesis or consumption - 

experiments are required to further delineate the contributing factors. 
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5.6.1. Mitochondrial ATP 

The ATeam FRET-based reporters of ATP concentration (Imamura et al., 2009) comprise the ATP-

binding ε subunit of the bacterial F1Fo ATP synthase from Bacillus subtilis inserted between CFP and 

YFP variants (msECFP and cpVenus). Specific and reversible binding of ATP to the ε subunit induces 

a conformational change in the ATeam reporter, increasing the FRET-induced fluorescence intensity. 

The ATeam AT1.03 subtype, with a dissociation constant (Kd) of 3.3 mM for ATP at 37 °C, can 

detect ATP fluctuations in the mM range (less sensitive to smaller changes), and can be used with the 

mutated AT1.03R122K/R126K negative control (Imamura et al., 2009). This affinity is highly 

temperature dependent, varying five-fold over a range of 10 °C (Imamura et al., 2009). AT1.03 

fluorescence is stable over physiological pH (7.1-8.5; mitochondrial pH ~8.0), but changes outside 

this range may affect fluorescence. ATeam variants have been localised to mitochondria 

(mitoATeam) and successfully utilised in neurons (Imamura et al., 2009, Barsukova et al., 2011). The 

red-shifted mitoGO-ATeam, comprising GFP and orange FP variants (cp173-mEGFP and mKOk), is 

less phototoxic, less sensitive to pH and enables multiplexing with UV excitable probes, such as the 

fluorescent Ca2+ indicator Fura-2 (the excitation spectra of CFP, used in the ATeam reporter, is in the 

UV range) (Nakano et al., 2011, Rueda et al., 2015). 

The ATP/ADP ratio is a more complete measure of cellular energy status than ATP alone (Tantama et 

al., 2013). The PercevalHR reporter is a dual-excitation fluorescent reporter of the ATP/ADP ratio 

that can reliably detect ratios from ~0.4-40 (Berg et al., 2009, Tantama et al., 2013), with ATP/ADP 

~10 in cultured neurons at rest (Katsura et al., 1993). However, PercevalHR is sensitive to pH 

changes within the physiological range (6.7-7.8), requiring simultaneous pH monitoring, and to our 

knowledge has not yet been successfully utilised in mitochondria. pH sensitivity is especially 

problematic in neurons, where intracellular acidification often occurs with decreases in ATP, such as 

during excitotoxicity. Other fluorescence-based ATP sensors, such as the dual-excitation, single FP 

ATeam variant, QUEEN-2m (Yaginuma et al., 2014), and a potential EAF-based ATP biosensor 

(developed in (Zadran et al., 2013), although lifetime measurements were not performed), have yet to 

be targeted to mammalian mitochondria. 

A bioluminescence energy transfer (BRET) probe (BTeam) has recently been developed (Yoshida et 

al., 2016). Bioluminescence-based probes avoid the excitation light required for fluorescence-based 

imaging, but emitted bioluminescence is generally weaker than fluorescent signals (necessitating 

lengthy exposure) and the technique requires the addition of a luciferase substrate (furimazine in the 

case of BTeam,). BTeam comprises the same ATP-binding ε subunit as the ATeam probe, inserted 

between a non-ATP-consuming NanoLuciferase (NLuc; emission peak ~455 nm), and a YFP variant 

(mVenus). Changes in the BRET ratio (YFP/Nluc) can report ATP fluctuations between 0-10 mM, 

and the probe can be targeted to mitochondria (mit-BTeam). Similar to the ATeam probe, BTeam 



41 
 

measurements are stable within physiological pH (7.1-8.3) but are sensitive to temperature changes 

(Yoshida et al., 2016). 

Mitochondrial ATP can also be measured in isolated mitochondria using a number of single 

time-point techniques, such as luciferase bioluminescence assays (which also exhibit pH sensitivity), 

high performance liquid chromatography (HPLC), or 31P NMR (Rajendran et al., 2016).  

 

Table 4: Genetically-encoded fluorescent reporters of ATP that have been successfully targeted to 

neuronal mitochondria. Publications refer to the work that originally generated the probe and studies 

where the probe was utilised in neuronal mitochondria.  

Reporter name Reporter 

detail 

Excitation/emission 

wavelengths (nm) 

Dissociation 

constant (Kd) 

References  

mitoATeam 

(mitAT1.03) 

CFP-YFP 

FRET 

CFP (mECFP): 435/475 

YFP (cpVenus): 515/527 

3.3 mM (Imamura et al., 2009, 

Barsukova et al., 2011) 

Mit GO-

ATeam 2 

GFP-OFP 

FRET 

GFP (mEGFP): 470/510 

OFP (mKOk): 550/560 

2.3 mM (Nakano et al., 2011, 

Rueda et al., 2015) 
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5.6.2. Mitochondrial Ca2+ 

Mitochondria play a major role in Ca2+ signalling and homeostasis through its uptake, sequestration, 

and release (De Stefani et al., 2016). Thanks to the large electrochemical gradient across its inner 

membrane (proton-motive force), mitochondria can import huge amounts of Ca2+ through the 

mitochondrial Ca2+ uniporter (MCU) complex, and serve as buffers in periods of high cytoplasmic 

Ca2+ such as during neuronal excitation or excitotoxicity (Nicholls and Budd, 2000, Qiu et al., 2013). 

Within mitochondria, Ca2+ regulates substrate import, several TCA cycle dehydrogenases, 

components of the respiratory chain and ATP synthesis, coupling neuronal excitation/activity with 

bioenergetics (Kann and Kovacs, 2007, Llorente-Folch et al., 2015). Ca2+ is released from neuronal 

mitochondria primarily through the Na+/Ca2+ exchanger NCLX (Kann and Kovacs, 2007, Palty et al., 

2010, De Stefani et al., 2016). Excessive mitochondrial Ca2+, however, can be toxic, contributing to 

increased ROS production, activation of the mitochondrial permeability transition pore, delayed Ca2+ 

deregulation and neuronal death (Pivovarova and Andrews, 2010). Such mitochondrial Ca2+ overload 

and subsequent dysfunction have been implicated in neurodegeneration (Bezprozvanny and Mattson, 

2008).  

In the following discussion, it must be borne in mind that fluorescent indicators monitor free, rather 

than total, Ca2+. Under conditions of high matrix loading, for example when modelling excitotoxicity, 

formation of a Ca2+-phosphate complex can mean that, although total matrix Ca2+ can approach 1 M, 

free Ca2+ is in the low µM range. Electron probe microanalysis or 45Ca2+ studies are needed to monitor 

total Ca2+ concentration. It is also important to remember that these reporters act as Ca2+ buffers, and 

may alter the endogenous ion dynamics (Grienberger and Konnerth, 2012).  

Several fluorescent reporters are available to measure free mitochondrial Ca2+ (Table 5). The 

positively charged fluorescent Ca2+ indicator Rhod-2 (and its analogs) are imported by mitochondria, 

but accumulate only incompletely and can alter intracellular Ca2+ dynamics (Kann and Kovacs, 2007, 

Pozzan and Rudolf, 2009, Rysted et al., 2017). Although such reporters do not require transfection, 

they have generally been superseded by genetically-encoded Ca2+ indicators that can be targeted to 

mitochondria. 

Cameleons are FRET-based Ca2+ sensors comprising two FPs (the more recent ‘yellow cameleons’ 

(YC) utilise eCFP and cpVenus (Nagai et al., 2004)) connected by a Ca2+-binding protein, calmodulin 

(CaM), and a CaM-binding peptide of myosin light-chain kinase, M13. CaM-Ca2+ binding leads to a 

CaM-M13 interaction that induces a conformational change in the reporter, altering the FRET 

efficiency and emitted fluorescence (Miyawaki et al., 1999). Cameleons have been optimised for 

brightness and increased dynamic range (YC3.60; (Nagai et al., 2004)), and to reduce off-target 

interactions (D3cpv; (Palmer et al., 2006)). Replacing CaM with troponin C can also reduce off-target 

binding in neurons (Grienberger and Konnerth, 2012). The mitochondria-targeted 4mtD2cpv – 
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4mtD4cpv series of Cameleons with varying Ca2+ affinities (Palmer et al., 2006) have been 

successfully used in primary neurons (Qiu et al., 2013). 

Smaller, single protein-based Ca2+ indicators may localise more easily to mitochondria (De Michele et 

al., 2014). Aequorin, a jellyfish protein that bioluminesces in a Ca2+-dependent manner, can be 

localised to neuronal mitochondria (mtAEQ) (Rizzuto et al., 1992, Bonora et al., 2013), but its low 

luminescence intensity limits its utility in single-cell measurements (Pozzan and Rudolf, 2009). Other 

single FP-based Ca2+ indicators that have been successfully imaged in neuronal mitochondria (Table 

5) include the cpYFP-based Pericam (Nagai et al., 2001) and multiple variants of GCaMP and 

RCaMP (Nakai et al., 2001, Chen et al., 2011, Qiu et al., 2013, Akerboom et al., 2013). GECO Ca2+ 

reporters (Zhao et al., 2011a), variants of GCaMP3, have been used extensively to measure 

mitochondrial Ca2+ in neurons (Llorente-Folch et al., 2013, Wu et al., 2014, Rueda et al., 2015, 

Rysted et al., 2017). CEPIA probes are GCaMP2 variants that can be localised to mitochondria 

(Suzuki et al., 2014). Luminescence-based methods (BRET) are also promising (Suzuki et al., 2016). 

Mitochondria-targeted reporters can be co-expressed with fluorescent Ca2+ indicators designed for 

other subcellular locations (e.g. endoplasmic reticulum or cytoplasm) to simultaneously monitor Ca2+ 

flux between cellular compartments (Wu et al., 2014, Rysted et al., 2017). 

These and other Ca2+ reporters are extensively reviewed elsewhere e.g. (Pendin et al., 2015, Rysted et 

al., 2017). The final choice of reporter depends on the probe’s affinity, dynamic range and available 

equipment. Reporters should be calibrated to identify their dynamic range in the specific experimental 

setting – this involves determining Fmax/Fmin or Rmax/Rmin for non-ratiometric and ratiometric dyes, 

respectively, where Fmax (Rmax) is the fluorescence intensity (ratio) at saturating Ca2+ concentrations, 

and Fmin (Rmin) is the fluorescence intensity (ratio) at minimal/zero Ca2+ concentrations (Palmer et al., 

2006, Rudolf et al., 2003). Ionomycin, typically used for Fmax/Fmin determination, will take longer to 

saturate reporters localised within mitochondria. These values can be used, along with the reporter’s 

dissociation constant (Kd), to calculate relative Ca2+ concentrations (Rudolf et al., 2003, Rysted et al., 

2017). 



44 
 

Table 5: Several genetically-encoded fluorescent and bioluminescent reporters of Ca2+ with varying affinities (Kd) that have been successfully targeted to 

neuronal mitochondria. Publications refer to the work that originally generated the probe and/or studies where the probe was utilised in neuronal 

mitochondria. Multiple mitochondria-localised Ca2+ reporters based on GCaMP have been generated. 

Reporter 

name 

Reporter detail Excitation, emission 

wavelengths (nm) 

Dissociation 

constant, Kd (µM) 

References  

Rhod-2 Fluorescent molecule λex ~557 

λem ~581 

0.6* (Qiu et al., 2013) 

4mtD2cpv 

4mtD3cpv 

4mtD4cpv 

Yellow cameleon 

(FRET) 

CFP (ECFP): λex/λem 435/475 

YFP (cp173Venus):  

λex/λem 515/527 

4mtD2cpv: 0.1, 7.7 

4mtD3cpv: 0.76 

4mtD4cpv: 49.7 

(Palmer et al., 2006, Qiu et al., 2013) 

mtAEQmut Aequorin 

(bioluminescence) 

λem 465 Varying affinities 

(Bonora et al., 2013) 

(Rizzuto et al., 1992, Bonora et al., 2013) 

Mit-GEM-

GECO-1 

Single FP, dual 

emission, ratiometric 

λex 390 

λem 455, 511 

0.34 (Zhao et al., 2011a, Llorente-Folch et al., 

2013, Rueda et al., 2015) 

Mito-LAR-

GECO1.2 

Single FP (RFP) λex 557 

λem 584 

12 (Wu et al., 2014) 

mito-

GCaMP2 

Single FP (cpEGFP) λex 489 

λem 509 

0.2 (Nakai et al., 2001, Chen et al., 2011, Qiu 

et al., 2013) 

mt-RCaMP Single FP (cp-mRuby) λex 570 

λem 590 

1.6 (Akerboom et al., 2013) 

mtPericam Dual-excitation, 

ratiometric 

λex 415, 494 

λem 515 

1.7 (Nagai et al., 2001, Barsukova et al., 

2011) 

* Rhod-2 analogs have varying affinities.
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5.6.3. Mitochondrial pH (pHmito) 

Knowledge of the mitochondrial matrix pH and ΔpHm (pHmito – pHcyto), in conjunction with Δψm, 

allows calculation of the proton-motive force (Δp), with ΔpHm contributing ~20-30 % of Δp (Perry et 

al., 2011). ΔpHm regulates the flux of several metabolites across the mitochondrial membrane (Santo-

Domingo and Demaurex, 2012), and changes in pHmito often occur with energy metabolism 

fluctuations. pHmito measurements can also be used to correct for experiments involving genetically-

encoded FPs or other reporters exhibiting pH-sensitivity. Conversely, many pH-sensitive FPs have 

themselves been adapted for use as direct pH sensors (Bencina, 2013). For pHmito measurements, 

reporters with a high acid dissociation constant (pKa >7.5) are required, appropriate for the higher pH 

of mitochondria (more alkaline) compared to the cytosol (Santo-Domingo and Demaurex, 2012, 

Bencina, 2013). 

Although pH-sensitive fluorescent dyes exist (e.g. SNARF, BCECF), they are not specifically 

targeted to mitochondria, necessitating the concomitant use of a fluorescent mitochondrial marker 

(Santo-Domingo and Demaurex, 2012). pHmito is more commonly measured using genetically-

encoded FPs. YFP variants can be used to measure pHmito, as YFP is more pH-sensitive than GFP. 

Single FP reporters using EYFP, for example, have been targeted to the mitochondrial intermembrane 

space (MIMS-EYFP) and matrix (mt-YFP, mitoYFP) in neurons (Porcelli et al., 2005, Bolshakov et 

al., 2008, Barsukova et al., 2011). The pH indicator pHluorin (Miesenbock et al., 1998) has also been 

targeted to mitochondria (Vijayvergiya et al., 2004). The pKa of EYFP and pHluorin (~7 and 7.1, 

respectively), however, are not optimal for measurement of pHmito (Bencina, 2013). 

SypHer, a dual-excitation ratiometric probe (pKa 8.7; excitation 430, 490 nm; emission ~535 nm 

(Poburko et al., 2011)), harnesses the inherent pH sensitivity of cpYFP, and was generated from the 

hydrogen peroxide sensor HyPer. The mitochondria-targeted variant, mitoSypHer, has been used to 

measure neuronal pHmito (Breckwoldt et al., 2016). mtAlpHi (mitochondrial alkaline pH indicator, pKa 

~8.5), is a non-ratiometric, intensity-based pH indicator that has also been targeted to neuronal 

mitochondria (Abad et al., 2004). mtAlpHi was generated from the Ca2+ indicator Camgaroo2, with 

CaM replaced by a Ca2+-insensitive aequorin segment. Other pH-sensitive fluorescent indicators 

suitable for reporting pHmito include pHRed (pKa 7.8), which can also be used for FLIM (Tantama et 

al., 2011), and pHTomato (pKa 7.8; (Li and Tsien, 2012)). 
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Table 6: Genetically-encoded fluorescent reporters of pH that have been successfully targeted to 

neuronal mitochondria. Publications refer to the work that originally generated the probe and studies 

where the probe was utilised in neuronal mitochondria. See text for more details. 

Reporter name Reporter type Excitation, emission 

wavelength (nm) 

pKa References  

MIMS-EYFP Single FP (EYFP) λex ~513 

λem ~530 

~7.0 (Porcelli et al., 2005, 

Bolshakov et al., 2008) 

mt-EYFP, mito-

EYFP 

Single FP (EYFP) λex ~513 

λem ~530 

~7.0 (Porcelli et al., 2005, 

Barsukova et al., 2011) 

mitoSypHer Single FP 

(cpYFP), dual-

excitation, 

ratiometric 

λex ~430, ~490 

λem ~535 

~8.7 (Poburko et al., 2011, 

Breckwoldt et al., 2016) 

mtAlpHi Single FP (EYFP) 

chimera 

λex ~500 

λem ~520 

~8.5 (Abad et al., 2004) 
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5.7. Mitochondrial reactive oxygen species 

Reactive oxygen species (ROS) are a group of reactive molecules derived from oxygen, and include 

superoxide (O2
-), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH). Mitochondria, as the 

primary oxygen consumers within the cell, play a critical role in ROS metabolism, as electrons leaked 

from components of the OxPhos machinery can react with O2 to form superoxide (O2
-) (Dickinson et 

al., 2010, Murphy, 2009). Mitochondria-derived O2
- is rapidly converted (dismutated) to H2O2 by 

superoxide dismutase (SOD2/MnSOD in the mitochondrial matrix; SOD1 in the inter-membrane 

space and cytoplasm), but can also be converted to the toxic reactive nitrogen species, peroxynitrite, 

by reaction with nitric oxide (Murphy, 2009, Polster et al., 2014). H2O2 can in turn create more 

reactive oxygen by-products such as •OH (Polster et al., 2014). Together, ROS are vital second 

messengers and play a key role in redox-dependent signalling, but ROS accumulation, such as 

following hypoxia-ischaemia-reperfusion injury or excitotoxicity, contributes to oxidative stress and 

has been associated with ageing and neurodegeneration (Yin et al., 2014, Lin and Beal, 2006). The 

precise effects of specific ROS and their associated anti-oxidants vary considerably throughout the 

cell (Murphy et al., 2011).  

The primary sources of mitochondrial O2
- are Complexes I and III, and TCA cycle enzymes (Sipos et 

al., 2003, Kann and Kovacs, 2007, Murphy, 2009), while the assembly of Complex I into 

supercomplexes can dictate the rate of ROS formation (Lopez-Fabuel et al., 2016). Increased 

respiration and a hyperpolarised mitochondrial membrane can increase ROS production in neurons 

(Nicholls and Budd, 2000, Bindokas et al., 1996, Garcia et al., 2005). Conversely, inhibition of the 

respiratory complexes can also increase ROS production (Sipos et al., 2003), when the mitochondrial 

membrane potential may be maintained by reverse activity of the F1Fo ATP synthase and ROS are 

generated through electron leaks (Abramov et al., 2007, Brennan et al., 2009). ROS generation is 

therefore strongly regulated by respiration, with the underlying factors disrupting respiration likely 

determining the ROS response (Adam-Vizi and Chinopoulos, 2006, Brand, 2016). 

 

5.7.1. Experimental set-up 

ROS levels can be inferred by imaging redox-sensitive fluorophores or genetically-encoded FPs, by 

measuring the activity of redox-sensitive enzymes such as aconitase, or by detecting probe oxidation 

products using methods such as electron paramagnetic resonance spectroscopy or HPLC (Nicholls 

and Budd, 2000, Dickinson et al., 2010, Polster et al., 2014, Woolley et al., 2013). Recent 

developments in ROS-sensitive measurements involve the use of inert nanoparticles or carbon 

nanotubes (Uusitalo and Hempel, 2012, Woolley et al., 2013), although these approaches have yet to 

be tested in neuronal mitochondria. 
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We strongly stress that current methods for measuring mitochondrial ROS, particularly redox-

sensitive fluorophores, are associated with significant difficulties and limitations that must be 

carefully considered, both when interpreting the existing literature and during experiment design. 

These difficulties are associated with, among others, signal specificity, identifying the intracellular 

origin of ROS, and the rapid turnover of ROS within the cell. If performing experiments, stringent 

control measures must be employed, all findings should be interpreted with caution, and results 

should be confirmed using alternative techniques e.g. (Vincent et al., 2005). Many of these issues 

have been discussed previously (Chen et al., 2010, Zielonka and Kalyanaraman, 2010, Murphy et al., 

2011, Polster et al., 2014), and technical specifications, use guidelines and limitations of several 

redox-sensitive fluorophores and FPs can be found in (Woolley et al., 2013, Booth et al., 2016, Can et 

al., 2017). 

 

Redox-sensitive fluorophores 

Redox sensitive fluorophores can be tracked with live cell microscopy or detected using fixed time-

point techniques such as flow-cytometry or microplate readers. These molecules are frequently 

targeted to mitochondria by using lipophilic cations, taking advantage of the negative potential across 

the mitochondrial inner membrane (Dickinson et al., 2010). This means, however, that any readout 

cannot be reliably attributed to mitochondrial ROS generation in conditions of mitochondrial 

depolarisation (as is commonly the case in studies of neurodegeneration) without some form of 

correction (Polster et al., 2014, Abramov et al., 2007, Brennan et al., 2009). As with all fluorescent 

dyes, and especially for those expected to localise to mitochondria, cells should be allowed to 

equilibrate the dye for at least 30 min prior to imaging. Removal of charge-sensitive fluorophores 

from the media may lead to re-equilibration across membranes and dilution of signal intensity. As the 

fluorescence of ROS-sensitive fluorophores increases over an experiment (due to accumulation of 

irreversibly oxidised dye), the initial measured fluorescence is dependent on loading time (Hempel et 

al., 1999), and laser settings (intensity, gain) should be adjusted for low fluorescence to avoid 

subsequent saturation. The slope of the increase in fluorescence is calculated as a measure of the 

steady-state ROS level over the time measured (Abramov et al., 2007, Nicholls and Budd, 2000). We 

here introduce, and discuss the issues associated with, the most commonly utilised redox-sensitive 

fluorescent probes – an extensive description of other probes is provided in (Woolley et al., 2013).  

The blue-fluorescent dihydroethidium (hydroethidine; HEt) is oxidised by O2
- to the red fluorescent 2-

hydroxyethidium, but can also be oxidised by other ROS to the red fluorescent ethidium and other 

non-fluorescent by-products (Zielonka and Kalyanaraman, 2010, Polster et al., 2014). Conjugating 

HEt to the positively charged, lipophilic triphenylphosphonium cation (TPP+) allows HEt to localise 

to mitochondria (mito-HEt/MitoSOX Red (Invitrogen/ThermoFisher)). MitoSOX is excited at 543 nm 
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and its emission detected at ~585 nm (although ~408 nm excitation may be somewhat more specific 

for 2-hydroxyethidium (Robinson et al., 2008)). Unfortunately, a number of issues exist to confound 

HEt-based mitochondrial ROS measurements. As the fluorescent spectra of 2-hydroxyethidium and 

ethidium overlap, HEt cannot distinguish between different types of ROS without the aid of additional 

techniques such as HPLC (Robinson et al., 2008, Zielonka and Kalyanaraman, 2010). Once oxidised, 

HEt binds to DNA and RNA, which increases its fluorescence. Positively charged HEt oxidation 

products can accumulate in the negatively charged mitochondria (dependent on Δψm), regardless of 

their source (Zielonka and Kalyanaraman, 2010). Following mitochondrial depolarisation, these 

products can also redistribute to the nucleus, significantly increasing fluorescence due to DNA 

binding and nucleic acid intercalation (Polster et al., 2014). Together, this means that the localisation 

of the fluorescent signal does not inform about where the oxidation took place, even if the nucleus is 

not imaged. MitoSOX is oxidised by photo-toxicity, so low concentrations (0.1-0.2 µM in several 

types of cultured neurons) and minimal laser intensities are required (Polster et al., 2014). Low 

concentrations also reduce the binding capacity of HEt to mitochondrial DNA, and the MitoSOX-

induced impairment of mitochondrial metabolism (Polster et al., 2014, Roelofs et al., 2015). Finally, 

some drugs interact with HEt-derived compounds, such as high concentrations of the Complex III 

inhibitor, antimycin A, or the ROS scavenger MnTBAP (Polster et al., 2014, Zielonka and 

Kalyanaraman, 2010). Guidelines on the utility, optimisation and imaging of MitoSOX in neurons 

have been provided recently (Polster et al., 2014). 

Dihydrorhodamine 123 (excitation/emission 500/536 nm), whose emission spectra is also altered by 

irreversible non-specific oxidation, localises to mitochondria due to its positive charge (Dugan et al., 

1995) and is therefore strongly Δψm-dependent. Indeed, its oxidised product, rhodamine 123, is itself 

used as an indicator of Δψm. Derivatives of dichlorofluorescein (DCF) (excitation/emission 

488/510 nm) only penetrate the outer mitochondrial membrane, and are associated with other issues, 

including a non-linear fluorescence response (Hempel et al., 1999, Chen et al., 2010). MitoPY1 

(Mitochondrial peroxy yellow), a hybrid fluorescein/rhodamine reporter, may selectively report 

mitochondria-derived H2O2 (Dickinson et al., 2013). Similar to HEt-based fluorophores, however, 

these reporters are associated with significant limitations, such as lack of specificity, auto- and photo-

oxidation, and pH sensitivity (Hempel et al., 1999, Nicholls and Budd, 2000, Chen et al., 2010, 

Murphy et al., 2011, Can et al., 2017). 

As H2O2 is fully membrane-permeable, release of H2O2 is sometimes used to infer mitochondrial ROS 

production, especially in isolated mitochondria – Amplex Red (Molecular probes) is a sensitive and 

stable probe that reacts with H2O2 (in the presence of HRP) to produce the highly fluorescent 

resorufin, which can be detected by colorimetric or fluorimetric readers (excitation/emission at 

570/585 nm) (Sipos et al., 2003). However, some mitochondrial H2O2 will be consumed prior to its 
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release from mitochondria, and the contribution to the signal from non-mitochondrial sources of ROS 

is significant and cannot be discounted if performing measurements in intact cells (Murphy, 2009). 

 

Redox-sensitive fluorescent proteins 

Due to the myriad issues with redox-sensitive fluorophores, the use of mitochondria-targeted redox-

sensitive FPs may be more appropriate, although they are prone to similar issues associated with the 

uncertainty over the origin of ROS, and its rapid turnover. In contrast to fluorophores, redox-sensitive 

FPs reversibly react with ROS and can therefore be used to monitor ROS production/consumption 

over longer time periods (Woolley et al., 2013). Within this set of probes, reduction-oxidation-

sensitive GFPs (roGFP) are ratiometric, dual-excitation reporters (excitation 395/470 nm, emission 

~510 nm), whose fluorescence intensity is sensitive to the thiol redox potential (Hanson et al., 2004). 

In addition to their ratiometric measurements, roGFP probes are favoured over the redox-sensitive 

YFP reporters (rxYFP, (Ostergaard et al., 2001)) as they have higher redox sensitivity and lower pH 

sensitivity (Tantama et al., 2012, Booth et al., 2016). roGFP has been targeted to neuronal 

mitochondria in vitro and in vivo (mito-roGFP/roGFPm) (Guzman et al., 2010, Wagener et al., 2016). 

A roGFP variant with Glutaredoxin-1 fused to roGFP (Grx1-roGFP2) reports the glutathione redox 

potential (Gutscher et al., 2008, Breckwoldt et al., 2014), and roGFP2-Tsa1/2 are peroxiredoxin-based 

sensors of H2O2, although they remain to be tested in mammals (Morgan et al., 2016). HyPer is 

another roGFP variant specifically sensitive to H2O2 (Belousov et al., 2006), but comprises a strongly 

pH-sensitive cpYFP, limiting its utility (De Michele et al., 2014, Tantama et al., 2012).  

Table 7: Several fluorescent reporters of reactive oxygen species (ROS) that have been successfully 

targeted to neuronal mitochondria. These reporters do not have absolute specificity for any single 

ROS type, and the accurate measurement of mitochondria-derived ROS is associated with various 

drawbacks, as outlined in the text. Publications refer to the work that originally generated the probe 

and/or studies where the probe was utilised in neuronal mitochondria.  

Reporter name Reporter type Peak excitation, 

emission 

wavelengths (nm) 

References  

mito-HEt 

MitoSOX Red 

Fluorescent molecule λex ~543 

λem ~585 

(Abramov et al., 2007, 

Rueda et al., 2015) 

MitoPY1 Fluorescein/rhodamine 

fluorescent molecule 

λex ~510 

λem ~528 

(Dickinson et al., 2013, 

Duregotti et al., 2015) 

mito-roGFP 

roGFPm 

Single FP (dual-

excitation, ratiometric) 

λex ~395, ~470  

λem ~510 

(Hanson et al., 2004, 

Guzman et al., 2010, 
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Wagener et al., 2016) 

Mito-Grx1-roGFP2 Single FP (dual-

excitation, ratiometric) 

λex ~395, ~488  

λem ~510 

(Gutscher et al., 2008, 

Breckwoldt et al., 2016) 

 

Redox-sensitive enzymatic assays 

Spectrophotometric enzymatic assays have historically been the workhorse assays of traditional 

biochemists studying redox biology, but in contrast to fluorescence measurements, these assays only 

provide fixed time-point readouts. The activity of aconitase, a TCA cycle enzyme that catalyses the 

isomerisation of citrate to isocitrate, is reversibly inhibited by superoxide, peroxynitrite and H2O2, and 

decreased aconitase activity is used as an indicator of increased ROS (Vincent et al., 2005, Sipos et 

al., 2003)). Aconitase activity spectrophotometric assays are commercially available. Aconitase can 

also be a source of ROS (Sipos et al., 2003), however, and cytosolic aconitase (mRNA binding 

regulator of iron homeostasis) contributes ~15-25 % of total cellular aconitase activity (Liang et al., 

2000). 
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6. Additional considerations 

We address here, in a non-exhaustive list, some points worth considering when investigating 

mitochondrial function, with particular relevance to the methods discussed in this article. 

• It is vital to select indicators with affinities/dissociation constants and dynamic ranges 

appropriate for the desired measurement, and to optimise drug concentrations in each 

experimental setting. Generally, concentrations between 0.1-10 times the reporter’s Kd can be 

measured most reliably. 

• A useful resource for experiment design utilising fluorescent reporters is provided by 

ThermoFisher Scientific, which displays the single-photon excitation and emission spectra of 

a broad array of (commercially available) fluorescent indicators - 

https://www.thermofisher.com/ie/en/home/life-science/cell-analysis/labeling-

chemistry/fluorescence-spectraviewer.html. It is important to ensure minimal spectral overlap 

if utilising multiple fluorophores simultaneously.  

• Fluorescent dyes should generally be allowed to equilibrate within cells for at least 30 min 

prior to imaging, and up to 60 min if required – the signal can be measured to ensure it has 

reached a steady state. Removal of potential-sensitive dye can lead to re-equilibration of the 

dye across the cell membranes, altering signal intensity. Appropriate baseline and light 

control experiments should be performed to verify equilibration as well as to ensure signal 

stability and avoid artefacts (focal-drift, phototoxicity etc.). 

• Saturation of fluorescent signal should be avoided and settings should be optimised at the 

beginning of experiments to allow for the anticipated range of fluorescent signal fluctuations. 

On this note, optimised microscope settings should remain constant for all similar 

experiments, to enable inter-experiment comparison. 

• Temperature can significantly alter neuronal physiology and assay performance. The affinity 

of the ATeam fluorescent reporter of ATP concentration, for instance, can vary five-fold over 

a temperature range of 10 °C (Imamura et al., 2009). Where possible, experiments should be 

carried out at the physiological 37 °C. 

• Bioenergetic parameters are exceptionally sensitive (particularly at steady-state), and 

experimental measurements may themselves alter intracellular conditions and physiology. For 

instance, the relatively large GFP molecule may impact mitochondrial transport, and many 

indicators also act as buffers of the species they are measuring, potentially disrupting 

physiological dynamics. For this and other reasons, it is good practice to verify results with 

complementary techniques.  

• Positive and negative controls and appropriate data normalisation are, as with all experiments, 

critical for correct interpretation of results. 
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• Steady-state values (e.g. metabolite or ion concentrations, pH) indicate the balance between 

the generation/influx and the destruction/metabolism/efflux of the measured component. 

Direct measurements of steady-state values provide no information on these specific 

processes, and further experiments are required to elucidate the contributing mechanisms. 

• Changes in mitochondrial morphology or number (e.g. due to fission/fusion, biogenesis or 

mitophagy) can impact mitochondrial parameters measured at the whole cell level, and should 

ideally be monitored in conjunction with any investigation of mitochondrial bioenergetic 

function. 
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7. Conclusions 

In this consensus article we have provided detailed guidelines for the thorough investigation of 

essential mitochondrial bioenergetic function in cellular models of neurodegenerative diseases, 

including specific protocols for the measurement of oxygen consumption rate in intact primary 

neurons, and single-neuron time-lapse fluorescence imaging of the mitochondrial membrane potential 

and mitochondrial NAD(P)H. These guidelines facilitate analysis of primary and secondary 

mitochondrial dysfunction in neurodegenerative diseases. Adherence to standardised protocols will 

enable experimental comparison between laboratories, consolidating this vast area of research and 

optimising translation of in vitro findings to in vivo studies.  
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8. Abbreviations 

Δψm Mitochondrial membrane potential HPLC High performance liquid chromatography 

Δψp Plasma membrane potential iPSC Induced pluripotent stem cell 

AD Alzheimer’s disease MDR Multidrug resistance 

ALS Amyotrophic lateral sclerosis ND Neurodegenerative disease 

ANT Adenine nucleotide translocator NPC Neural progenitor cell 

BRET Bioluminescence energy transfer O2 Oxygen 

Ca2+ Calcium OCR Oxygen consumption rate 

CaM Calmodulin OxPhos Oxidative phosphorylation 

CFP Cyan fluorescent protein PD Parkinson’s disease 

FRET Förster resonance energy transfer ROS Reactive oxygen species 

FP Fluorescent protein TCA Tricarboxylic acid 

GFP Green fluorescent protein TMRM Tetramethylrhodamine methyl ester 

HD Huntington’s disease YFP Yellow fluorescent protein 
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12. Figure Legends 

 


